CMM 242 Espaços Métricos S1 - 2025

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

CONVERGÊNCIA PONTUAL

DEFINIÇÃO: CONVERGÊNCIA PONTUAL

Sejam M,N espaços métricos e $f:M\to N$ uma função. Dizemos que uma sequência de funções $f_n:M\to N$ converge pontualmente para f se, para cada $x\in M$, tivermos

$$\lim_{n\to\infty} f_n(x) = f(x),$$

ou seja, dado $x \in M$ obtemos para cada $\epsilon > 0$ um $n_0 = n_0(x, \epsilon) \in \mathbb{N}$ tal que

$$n \ge n_0 \Longrightarrow d_N(f_n(x), f(x)) < \epsilon.$$

Fernando Ávila (UFPR)

CONVERGÊNCIA PONTUAL

DEFINIÇÃO: CONVERGÊNCIA PONTUAL

Sejam M,N espaços métricos e $f:M\to N$ uma função. Dizemos que uma sequência de funções $f_n:M\to N$ converge pontualmente para f se, para cada $x\in M$, tivermos

$$\lim_{n\to\infty} f_n(x) = f(x),$$

ou seja, dado $x \in M$ obtemos para cada $\epsilon > 0$ um $n_0 = n_0(x, \epsilon) \in \mathbb{N}$ tal que

$$n \ge n_0 \Longrightarrow d_N(f_n(x), f(x)) < \epsilon.$$

EXEMPLO 1

A sequência $f_n : \mathbb{R} \to \mathbb{R}$ dada por $f_n(x) = x/n$ converge pontualmente para a função nula em qualquer conjunto limitado de \mathbb{R} .

EXEMPLO 2

A sequência $f_n: [0,1] \to \mathbb{R}$ dada por $f_n(x) = x^n$ converge pontualmente para a função f(x) = 0 para $x \in [0,1)$ e f(1) = 1.

CONVERGÊNCIA UNIFORME

DEFINIÇÃO: CONVERGÊNCIA UNIFORME

Sejam M,N espaços métricos e $f:M\to N$ uma função. Dizemos que uma sequência de funções $f_n:M\to N$ converge uniformemente para f quando para todo $\epsilon>0$ existir $n_0=n_0(\epsilon)\in\mathbb{N}$ tal que

$$n \ge n_0 \Longrightarrow d_N(f_n(x), f(x)) < \epsilon, \ \forall x \in M.$$

CONVERGÊNCIA UNIFORME

DEFINIÇÃO: CONVERGÊNCIA UNIFORME

Sejam M,N espaços métricos e $f:M\to N$ uma função. Dizemos que uma sequência de funções $f_n:M\to N$ converge uniformemente para f quando para todo $\epsilon>0$ existir $n_0=n_0(\epsilon)\in\mathbb{N}$ tal que

$$n \ge n_0 \Longrightarrow d_N(f_n(x), f(x)) < \epsilon, \ \forall x \in M.$$

OBSERVAÇÃO

- Convergência uniforme implica em convergência pontual.
- Note que se $\mathcal{B}(M,N)$ é o conjunto das funções limitadas de M para N, então

$$d(f,g) = \sup_{x \in M} d(f(x), g(x))$$

é uma métrica em $\mathcal{B}(M,N)$. Em particular, a convergência de sequências em $\mathcal{B}(M,N)$ é justamente a convergência uniforme.

3/6

TEOREMA 1

Sejam M, N espaços métricos e $f_n : M \to N$ uma sequência de funções contínuas em $a \in M$. Se f_n converge uniformemente para $f : M \to N$, então f é contínua em a.

TEOREMA 1

Sejam M, N espaços métricos e $f_n : M \to N$ uma sequência de funções contínuas em $a \in M$. Se f_n converge uniformemente para $f : M \to N$, então f é contínua em a.

COROLÁRIO

Sejam M,N espaços métricos e $f_n:M\to N$ uma sequência de funções contínuas. Se f_n converge uniformemente para $f:M\to N$, então f.

TEOREMA 1

Sejam M, N espaços métricos e $f_n : M \to N$ uma sequência de funções contínuas em $a \in M$. Se f_n converge uniformemente para $f : M \to N$, então f é contínua em a.

COROLÁRIO

Sejam M,N espaços métricos e $f_n:M\to N$ uma sequência de funções contínuas. Se f_n converge uniformemente para $f:M\to N$, então f.

TEOREMA 2

Se N é completo, então $\mathcal{B}(M,N)$ também o é.

Fernando Ávila (UFPR)

APLICAÇÃO: SÉRIES

DEFINIÇÃO

Sejam \mathcal{N} um espaço normado e $\{x_n\}_{n\in\mathbb{N}}\subset\mathcal{N}$ um sequência. Denotaremos por $\sum_{n\in\mathbb{N}}x_n$ o limite

$$\lim_{n\to\infty}\sum_{j=1}^n x_j.$$

Dizemos que $\sum_{n\in\mathbb{N}} x_n$ é absolutamente convergente se $\sum_{n\in\mathbb{N}} \|x_n\|$ converge.

Fernando Ávila (UFPR)

APLICAÇÃO: SÉRIES

DEFINIÇÃO

Sejam $\mathcal N$ um espaço normado e $\{x_n\}_{n\in\mathbb N}\subset\mathcal N$ um sequência. Denotaremos por $\sum_{n\in\mathbb N}x_n$ o limite

$$\lim_{n\to\infty}\sum_{j=1}^n x_j.$$

Dizemos que $\sum_{n\in\mathbb{N}} x_n$ é absolutamente convergente se $\sum_{n\in\mathbb{N}} ||x_n||$ converge.

TEOREMA

Se $\mathcal N$ é um espaço normado completo (Banach), então toda série absolutamente convergente é convergente em $\mathcal N$.

APLICAÇÃO: SÉRIES

DEFINIÇÃO

Sejam $\mathcal N$ um espaço normado e $\{x_n\}_{n\in\mathbb N}\subset\mathcal N$ um sequência. Denotaremos por $\sum_{n\in\mathbb N}x_n$ o limite

$$\lim_{n\to\infty}\sum_{j=1}^n x_j.$$

Dizemos que $\sum_{n\in\mathbb{N}} x_n$ é absolutamente convergente se $\sum_{n\in\mathbb{N}} \|x_n\|$ converge.

TEOREMA

Se \mathcal{N} é um espaço normado completo (Banach), então toda série absolutamente convergente é convergente em \mathcal{N} .

OBSERVAÇÃO

Se ${\mathcal N}$ não é um espaço completo, então uma série absolutamente convergente pode não ser convergente em ${\mathcal N}$.

EXEMPLO

EXEMPLO

Considere \mathcal{N} é um espaço normado completo e $T \in \mathcal{B}(\mathcal{N})$ (op. lineares contínuos) tal que $||T||_{\mathcal{B}} < 1$. Nestas condições:

- $\bullet \ \sum_{n=0}^{\infty} T^n \in \mathscr{B}(\mathcal{N}).$

