CMM 242 Espaços Métricos S1 - 2025

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

ESPAÇO TOPOLÓGICO

DEFINIÇÃO

Seja X um conjunto qualquer. Dizemos que uma coleção de subconjuntos τ de X é uma topologia se:

- (a) $X \in \tau e \emptyset \in \tau$.
- (b) A união qualquer de elementos de τ ainda é um elemento de τ .
- (c) A interseção de uma quantidade finita de elementos de τ ainda é um elemento de τ .

ESPAÇO TOPOLÓGICO

DEFINIÇÃO

Seja X um conjunto qualquer. Dizemos que uma coleção de subconjuntos τ de X é uma topologia se:

- (a) $X \in \tau e \emptyset \in \tau$.
- (b) A união qualquer de elementos de τ ainda é um elemento de τ .
- (c) A interseção de uma quantidade finita de elementos de τ ainda é um elemento de τ .
 - Neste caso, temos o espaço topológico (X, τ) .
 - \bullet Os elementos de au são chamados de abertos.

CONVERGÊNCIA

DEFINIÇÃO

Sejam (X, τ) um espaço topológico e $\{x_n\}_{n\in\mathbb{N}}$ uma sequência de pontos em X. Dizemos que x_n converge para $p\in X$ separa qualquer aberto U que contém p, existe $N\in\mathbb{N}$ tal que

$$n \ge N \Longrightarrow x_n \in U$$
.

Neste caso, escrevemos $x_n \to p$, ou $\lim_{n \to \infty} x_n = p$.

Fernando Ávila (UFPR)

CONVERGÊNCIA

DEFINIÇÃO

Sejam (X, τ) um espaço topológico e $\{x_n\}_{n\in\mathbb{N}}$ uma sequência de pontos em X. Dizemos que x_n converge para $p\in X$ separa qualquer aberto U que contém p, existe $N\in\mathbb{N}$ tal que

$$n \ge N \Longrightarrow x_n \in U$$
.

Neste caso, escrevemos $x_n \to p$, ou $\lim_{n \to \infty} x_n = p$.

EXEMPLO

Considere $X = \{a, b, c, d\}$ e $\tau = \{\emptyset, X, \{a\}, \{a, d\}, \{a, c, d\}\}$. Então, para a sequência constante $x_n = a, n \in \mathbb{N}$, temos

$$\lim_{n\to\infty} x_n = a \ e \ \lim_{n\to\infty} x_n = b$$

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_1 (ou Fréchet) se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$x \notin U_y$$
 e $y \notin U_x$.

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_1 (ou Fréchet) se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$x \notin U_y$$
 e $y \notin U_x$.

EXEMPLO

A topologia cofinita satisfaz T_1 .

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_1 (ou Fréchet) se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$x \notin U_y$$
 e $y \notin U_x$.

EXEMPLO

A topologia cofinita satisfaz T_1 .

PROPOSIÇÃO

Um espaço $X \notin T_1$ se, e somente se, $\{p\}$ é fechado para qualquer $p \in X$.

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_2 , ou mais usualmente Housdorff, se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$U_x \cap U_y = \emptyset.$$

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_2 , ou mais usualmente Housdorff, se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$U_x \cap U_y = \emptyset.$$

• T_2 implies T_1 .

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_2 , ou mais usualmente Housdorff, se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$U_x \cap U_y = \emptyset.$$

• T_2 implies T_1 .

EXEMPLO

A topologia métrica é Hausdorff.

DEFINIÇÃO

Dizemos que um espaço topológico (X, τ) é T_2 , ou mais usualmente Housdorff, se vale a seguinte propriedade:

• Para qualquer $x, y \in X$, com $x \neq y$, existem abertos $u \in U_x$ e $y \in U_y$ tais que

$$U_x \cap U_y = \emptyset.$$

• T_2 implies T_1 .

EXEMPLO

A topologia métrica é Hausdorff.

PROPOSIÇÃO

Sequências convergentes em espaços Hausdorff tem único limite.

BASE

DEFINIÇÃO

Sejam X um conjunto e \mathcal{B} uma coleção de subconjuntos de X satisfazendo a seguintes propriedades:

- (i) Para cada $x \in X$, existe $B \in \mathcal{B}$ tal que $x \in B$.
- (ii) Se $x \in B_1 \cap B_2$, com $B_1, B_2 \in \mathcal{B}$, então existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

BASE

DEFINIÇÃO

Sejam X um conjunto e \mathcal{B} uma coleção de subconjuntos de X satisfazendo a seguintes propriedades:

- (i) Para cada $x \in X$, existe $B \in \mathcal{B}$ tal que $x \in B$.
- (ii) Se $x \in B_1 \cap B_2$, com $B_1, B_2 \in \mathcal{B}$, então existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

Considere então a coleção $\tau_{\mathcal{B}}$ de subconjuntos de X definidas da seguinte forma:

$$\tau_{\mathscr{B}} = \{U \subset X, \text{ tal que } \forall x \in U, \exists B \in \mathscr{B}, \text{ satisfazendo } x \in B \subset U\}.$$

BASE

DEFINIÇÃO

Sejam X um conjunto e \mathcal{B} uma coleção de subconjuntos de X satisfazendo a seguintes propriedades:

- (i) Para cada $x \in X$, existe $B \in \mathcal{B}$ tal que $x \in B$.
- (ii) Se $x \in B_1 \cap B_2$, com $B_1, B_2 \in \mathcal{B}$, então existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

Considere então a coleção $\tau_{\mathcal{B}}$ de subconjuntos de X definidas da seguinte forma:

$$\tau_{\mathscr{B}} = \{U \subset X, \text{ tal que } \forall x \in U, \exists B \in \mathscr{B}, \text{ satisfazendo } x \in B \subset U\}.$$

TEOREMA

A coleção $\tau_{\mathscr{B}}$ define uma topologia em X.

ALGUNS NOMES E EXEMPLOS

OBSERVAÇÃO

- Temos $\mathscr{B} \subset \tau_{\mathscr{B}}$.
- Dizemos que $\tau_{\mathscr{B}}$ é a topologia gerada por \mathscr{B} .
- A coleção ${\mathscr B}$ é chamada de base da topologia $\tau_{\mathscr B}.$
- Dizemos que $B \in \mathcal{B}$ é um elemento da base \mathcal{B} .

ALGUNS NOMES E EXEMPLOS

OBSERVAÇÃO

- Temos $\mathscr{B} \subset \tau_{\mathscr{B}}$.
- Dizemos que $\tau_{\mathscr{B}}$ é a topologia gerada por \mathscr{B} .
- A coleção \mathcal{B} é chamada de base da topologia $\tau_{\mathcal{B}}$.
- Dizemos que $B \in \mathcal{B}$ é um elemento da base \mathcal{B} .

EXEMPLO 1

Num espaço métrico, a coleção de todas as bolas abertas define uma base para a topologia métrica.

ALGUNS NOMES E EXEMPLOS

OBSERVAÇÃO

- Temos $\mathscr{B} \subset \tau_{\mathscr{B}}$.
- Dizemos que $\tau_{\mathscr{B}}$ é a topologia gerada por \mathscr{B} .
- A coleção \mathcal{B} é chamada de base da topologia $\tau_{\mathcal{B}}$.
- Dizemos que $B \in \mathcal{B}$ é um elemento da base \mathcal{B} .

EXEMPLO 1

Num espaço métrico, a coleção de todas as bolas abertas define uma base para a topologia métrica

EXEMPLO 2

Se em *X* considerarmos a topologia discreta, então a coleção de todos os conjuntos unitários formam uma base topológica.

BASE LOCAL

DEFINIÇÃO

Sejam (X, τ) um espaço topológico e $p \in X$ um ponto. Uma coleção \mathcal{B}_p se diz uma base local em p se:

- (i) $p \in B$, para todo $B \in \mathcal{B}$.
- (ii) Se $p \in A$, com $A \in \tau$, então existe $B \in \mathcal{B}$ tal que $p \in B \subset A$.

BASE LOCAL

DEFINIÇÃO

Sejam (X, τ) um espaço topológico e $p \in X$ um ponto. Uma coleção \mathcal{B}_p se diz uma base local em p se:

- (i) $p \in B$, para todo $B \in \mathcal{B}$.
- (ii) Se $p \in A$, com $A \in \tau$, então existe $B \in \mathcal{B}$ tal que $p \in B \subset A$.

EXEMPLOS

- A coleção de todos abertos de X que contém p é uma base local em p.
- Num espaço métrico, temos $\mathscr{B}_p = \{B(p, 1/n), n \in \mathbb{N}\}.$

DEFINIÇÃO

• Dizemos que um espaço topológico satisfaz o **primeiro axioma de enumerabilidade** se cada ponto possui uma base local enumerável.

DEFINIÇÃO

- Dizemos que um espaço topológico satisfaz o **primeiro axioma de enumerabilidade** se cada ponto possui uma base local enumerável.
- Dizemos que um espaço topológico satisfaz o segundo axioma de enumerabilidade se existe uma base enumerável.

DEFINIÇÃO

- Dizemos que um espaço topológico satisfaz o primeiro axioma de enumerabilidade se cada ponto possui uma base local enumerável.
- Dizemos que um espaço topológico satisfaz o segundo axioma de enumerabilidade se existe uma base enumerável.
- Um espaço X no qual conjuntos unitários são fechados é dito **regular** se para cada $x \in X$ e cada conjunto fechado F, com $x \notin F$, existem abertos disjuntos contendo x e F. (Em particular, espaço regular é Hausdorff.)

DEFINIÇÃO

- Dizemos que um espaço topológico satisfaz o primeiro axioma de enumerabilidade se cada ponto possui uma base local enumerável.
- Dizemos que um espaço topológico satisfaz o segundo axioma de enumerabilidade se existe uma base enumerável.
- Um espaço X no qual conjuntos unitários são fechados é dito **regular** se para cada $x \in X$ e cada conjunto fechado F, com $x \notin F$, existem abertos disjuntos contendo x e F. (Em particular, espaço regular é Hausdorff.)
- Um espaço X no qual conjuntos unitários são fechados é dito normal se todo par de conjuntos fechados estiver contido em abertos disjuntos.

TEOREMA DE URYSOHN

TEOREMA

Todo espaço regular que satisfaz o segundo axioma de separação é metrizável.