CMM202 - CMI 062 Análise I S2 - 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

19 DE OUTUBRO

Aula de hoje: Números naturais e Axiomas de Peano.

Referências:

- LIMA, Elon L., ANÁLISE REAL.
- LIMA, Elon L., UM CURSO DE ANÁLISE.

Consideremos três objetos:

- Um conjunto N, cujos elementos são chamados de números naturais;
- Existe um elemento $1 \in \mathbb{N}$;
- Uma função $s : \mathbb{N} \to \mathbb{N}$. Cada número natural s(n) é dito *sucessor* de n.

Consideremos três objetos:

- Um conjunto N, cujos elementos são chamados de números naturais;
- Existe um elemento $1 \in \mathbb{N}$;
- Uma função $s : \mathbb{N} \to \mathbb{N}$. Cada número natural s(n) é dito *sucessor* de n.

Para tal função, exige-se as seguintes propriedades (Axiomas de Peano):

(P1) s é uma função injetiva;

Consideremos três objetos:

- Um conjunto N, cujos elementos são chamados de números naturais;
- Existe um elemento $1 \in \mathbb{N}$;
- Uma função $s : \mathbb{N} \to \mathbb{N}$. Cada número natural s(n) é dito *sucessor* de n.

Para tal função, exige-se as seguintes propriedades (Axiomas de Peano):

- (P1) s é uma função injetiva;
- (P2) $s(\mathbb{N}) = \mathbb{N} \setminus \{1\};$

Consideremos três objetos:

- Um conjunto N, cujos elementos são chamados de números naturais;
- Existe um elemento $1 \in \mathbb{N}$;
- Uma função $s : \mathbb{N} \to \mathbb{N}$. Cada número natural s(n) é dito *sucessor* de n.

Para tal função, exige-se as seguintes propriedades (Axiomas de Peano):

- (P1) s é uma função injetiva;
- (P2) $s(\mathbb{N}) = \mathbb{N} \setminus \{1\};$
- (P3) se $X \subset \mathbb{N}$ é um subconjunto que satisfaz as condições

Consideremos três objetos:

- Um conjunto N, cujos elementos são chamados de números naturais;
- Existe um elemento $1 \in \mathbb{N}$;
- Uma função $s : \mathbb{N} \to \mathbb{N}$. Cada número natural s(n) é dito *sucessor* de n.

Para tal função, exige-se as seguintes propriedades (Axiomas de Peano):

- (P1) s é uma função injetiva;
- (P2) $s(\mathbb{N}) = \mathbb{N} \setminus \{1\};$
- (P3) se $X \subset \mathbb{N}$ é um subconjunto que satisfaz as condições
 - a) $1 \in X$,
 - b) dado qualquer $n \in X$ tem-se que $s(n) \in X$,

então temos que $X = \mathbb{N}$.

• Temos de P1 que $s(n) \neq s(m)$, sempre que $n \neq m$;

- Temos de P1 que $s(n) \neq s(m)$, sempre que $n \neq m$;
- P2 diz que 1 é o único número natural que não é sucessor de nenhum outro, isto é, $1 \neq s(n)$, para todo $n \in \mathbb{N}$.

- Temos de P1 que $s(n) \neq s(m)$, sempre que $n \neq m$;
- P2 diz que 1 é o único número natural que não é sucessor de nenhum outro, isto é, $1 \neq s(n)$, para todo $n \in \mathbb{N}$.
- P3 é conhecido como Princípio de indução. Ele pode ser enunciado da seguinte forma equivalente:

- Temos de P1 que $s(n) \neq s(m)$, sempre que $n \neq m$;
- P2 diz que 1 é o único número natural que não é sucessor de nenhum outro, isto é, $1 \neq s(n)$, para todo $n \in \mathbb{N}$.
- P3 é conhecido como Princípio de indução. Ele pode ser enunciado da seguinte forma equivalente:

O PRINCÍPIO DE INDUÇÃO

Seja \mathcal{P} uma propriedade referente a números naturais. Se 1 satisfazer \mathcal{P} e se, do fato de um número natural n satisfazer \mathcal{P} puder-se concluir que s(n) também a satisfaz, então todos os números naturais irão satisfazer \mathcal{P} .

 Enfatizamos que P3 é muito útil para se fazer demonstrações. Neste caso, utilizamos a expressão: demonstração por indução.

• Enfatizamos que P3 é muito útil para se fazer demonstrações. Neste caso, utilizamos a expressão: *demonstração por indução*.

MUITO IMPORTANTE:

Identificar a hipótese de indução!!!!

 Enfatizamos que P3 é muito útil para se fazer demonstrações. Neste caso, utilizamos a expressão: demonstração por indução.

MUITO IMPORTANTE:

Identificar a hipótese de indução!!!!

Exemplo

• Para todo $n \in \mathbb{N}$ temos $s(n) \neq n$.

 Enfatizamos que P3 é muito útil para se fazer demonstrações. Neste caso, utilizamos a expressão: demonstração por indução.

MUITO IMPORTANTE:

Identificar a hipótese de indução!!!!

Exemplo

- Para todo $n \in \mathbb{N}$ temos $s(n) \neq n$.
- Se $n \in \mathbb{N} \setminus \{1\}$, então existe $m \in \mathbb{N}$ tal que s(m) = n.

Operações em $\mathbb N$

DEFINIÇÃO

Seja $s: \mathbb{N} \to \mathbb{N}$ a função sucessor. Dados $m, n \in \mathbb{N}$ defini-se:

Soma
$$\begin{cases} m+1 \doteq s(m) \\ m+s(n) \doteq s(m+n) \end{cases}$$

e

Produto
$$\begin{cases} m \cdot 1 \stackrel{.}{=} m \\ m \cdot s(n) \stackrel{.}{=} m \cdot n + m \end{cases}$$

TEOREMA

Sejam $m, n, p \in \mathbb{N}$. Temos então as seguintes propriedades:

a)
$$(m+n) + p = m + (n+p)$$
;

e)
$$(m \cdot n) \cdot p = m \cdot (n \cdot p)$$
;

b)
$$m + n = n + m$$
;

d) $m \cdot n = n \cdot m$;

f)
$$m \cdot (n+p) = m \cdot n + m \cdot p$$
;

c)
$$m+p=n+p \implies m=n$$
;

g)
$$m \cdot (n+p) = (n+p) \cdot m$$
.

NOVA VERSÃO DO PRINCÍPIO DE INDUÇÃO

O PRINCÍPIO DE INDUÇÃO

Seja \mathcal{P} uma propriedade referente a números naturais. Se 1 satisfazer \mathcal{P} e se, do fato de um número natural k satisfazer \mathcal{P} puder-se concluir que k+1 também a satisfaz, então todos os números naturais também satisfazem \mathcal{P} .

NOVA VERSÃO DO PRINCÍPIO DE INDUÇÃO

O PRINCÍPIO DE INDUÇÃO

Seja \mathcal{P} uma propriedade referente a números naturais. Se 1 satisfazer \mathcal{P} e se, do fato de um número natural k satisfazer \mathcal{P} puder-se concluir que k+1 também a satisfaz, então todos os números naturais também satisfazem \mathcal{P} .

EXEMPLO

Dado $n \in \mathbb{N}$ vale que

$$2(1+2+3+\ldots+n) = n(n+1).$$

