MATE 7005 Análise Complexa S2 - 2023

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

21 DE SETEMBRO

Aula de hoje: Teorema de Cauchy e Formual integral

JÁ SABEMOS:

TEOREMA (FORMULA INTEGRAL DE CAUCHY-I)

Sejas $f:\Omega\to\mathbb{C}$ uma função analítica no aberto $\Omega\subset\mathbb{C}$ e $B[a,r]\subset\Omega$. Nestas condições, dada a curva

$$\gamma(t) = a + re^{it}, \ t \in [0, 2\pi],$$

vale a igualdade

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \ |z - a| < r.$$

TEOREMA

Seja f uma função analítica em B(a, R). Nestas condições,

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n, \ |z-a| < R,$$

sendo que esta série tem raio de convergência $\geq R$ e

$$a_n = \frac{1}{n!} f^{(n)}(a).$$

TEOREMA DE CAUCHY (EM DISCOS)

TEOREMA DE CAUCHY

Seja f uma função analítica em B(a,R) e γ é uma curva suave e fechada em B(a,R), então

$$\int_{\gamma} f(z)dz = 0.$$

EXEMPLO

Considere a função analítica f(z)=1/z definida no aberto $\Omega\setminus\{0\}$ e a curva $\gamma(t)=e^{it}, t\in[0,2\pi]$. Neste caso,

$$\int_{\gamma} f(z)dz = 2\pi i \neq 0.$$

PERGUNTA:

Podemos colocar condições sobre curvas numa região Ω de modo que

$$\int_{\gamma} f(z)dz = 0,$$

sendo f analítica em Ω ? R: Sim! E a condição diz respeito ao índice!

ÍNDICE

DEFINIÇÃO

Dados um caminho fechado $\gamma:[a,b]\to\mathbb{C}$ e um ponto $z_0\in\mathbb{C}\setminus\gamma$, definimos o índice de γ em z_0 pela formula

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z_0}.$$

ÍNDICE

DEFINIÇÃO

Dados um caminho fechado $\gamma:[a,b]\to\mathbb{C}$ e um ponto $z_0\in\mathbb{C}\setminus\gamma$, definimos o índice de γ em z_0 pela formula

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z_0}.$$

PROPOSIÇÃO

Sejam $\gamma:[a,b]\to\mathbb{C}$ um caminho fechado. Então:

- (a) $n(\gamma, z) \in \mathbb{Z}$, para todo $z \in \mathbb{C} \setminus \gamma$;
- (b) A função $z \mapsto n(\gamma, z)$ é analítica em $\mathbb{C} \setminus \gamma$;
- (c) A função $z\mapsto n(\gamma,z)$ é constante em cada componente conexa de $\mathbb{C}\setminus\gamma$ e é nula na componente conexa ilimitada de $\mathbb{C}\setminus\gamma$.

TEOREMA (FORMULA INTEGRAL DE CAUCHY GLOBAL-I)

Sejam f uma função analítica num aberto Ω e γ um caminho fechado em Ω tal que

$$n(\gamma, z) = 0, \ \forall z \in \mathbb{C} \setminus \Omega.$$

Nestas condições,

$$n(\gamma, a)f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz,$$

para todo $a \in \Omega \setminus \{\gamma\}$.

DEMONSTRAÇÃO

Precisamos do seguinte resultado:

LEMA

Sejam γ um caminho e φ uma função contínua sobre $\{\gamma\}$. Para cada $m\in\mathbb{N}$, definia

$$F_m(z) = \int_{\gamma} \frac{\varphi(w)}{(w-z)^m} dw.$$

Nestas condições, cada F_m é analítica em $\mathbb{C}\setminus\{\gamma\}$ e

$$F'_m(z) = mF_{m+1}(z).$$

DEMONSTRAÇÃO

Precisamos do seguinte resultado:

LEMA

Sejam γ um caminho e φ uma função contínua sobre $\{\gamma\}$. Para cada $m \in \mathbb{N}$, definia

$$F_m(z) = \int_{\gamma} \frac{\varphi(w)}{(w-z)^m} dw.$$

Nestas condições, cada F_m é analítica em $\mathbb{C} \setminus \{\gamma\}$ e

$$F_m'(z) = mF_{m+1}(z).$$

• Defina as funções $\varphi: \Omega \times \Omega \to \mathbb{C}$ e $g: \mathbb{C} \to \mathbb{C}$ dadas por

$$\varphi(z,w) = \left\{ \begin{array}{l} \frac{f(z) - f(w)}{z - w}, \ z \neq w, \\ f'(z), \ z = w. \end{array} \right. \quad \text{e } g(z) = \left\{ \begin{array}{l} \int_{\gamma} \varphi(z,w) dw, z \in \Omega, \\ \int_{\gamma} \frac{f(w)}{w - z} dw, \ z \in H, \end{array} \right.$$

em que

$$H = \{ \eta \in \mathbb{C}; n(\gamma, \eta) = 0 \}.$$

TEOREMA (FORMULA INTEGRAL DE CAUCHY GLOBAL-II)

Seja f uma função analítica num aberto Ω . Sejam γ_1,\ldots,γ_m caminhos fechados em Ω tais que

$$n(\gamma_1, z) + \ldots + n(\gamma_m, z) = 0, \ \forall z \in \mathbb{C} \setminus \Omega.$$

Nestas condições,

$$f(a)\sum_{k=1}^{m}n(\gamma_k,a)=\sum_{k=1}^{m}\frac{1}{2\pi i}\int_{\gamma_k}\frac{f(z)}{z-a}dz,$$

para todo $a \in \Omega \setminus \{\gamma\}$.

TEOREMA (FORMULA INTEGRAL DE CAUCHY GLOBAL-II)

Seja f uma função analítica num aberto Ω . Sejam γ_1,\ldots,γ_m caminhos fechados em Ω tais que

$$n(\gamma_1, z) + \ldots + n(\gamma_m, z) = 0, \ \forall z \in \mathbb{C} \setminus \Omega.$$

Nestas condições,

$$f(a)\sum_{k=1}^{m}n(\gamma_{k},a)=\sum_{k=1}^{m}\frac{1}{2\pi i}\int_{\gamma_{k}}\frac{f(z)}{z-a}dz,$$

para todo $a \in \Omega \setminus \{\gamma\}$.

TEOREMA DE CAUCHY-I

Sejam $\Omega, f \in \gamma_1, \ldots, \gamma_m$ como no teorema acima. Nestas condições,

$$\sum_{k=1}^{m} \int_{\gamma_k} f(z) dz = 0.$$

CONSEQUÊNCIAS

TEOREMA

Nas condições da Formula Integral de Cauchy Global-II vale a identidade

$$f^{(k)}(a)\sum_{k=1}^{m}n(\gamma_k,a)=k!\sum_{k=1}^{m}\frac{1}{2\pi i}\int_{\gamma_k}\frac{f(z)}{(z-a)^{k+1}}dz,$$

para todo $a \in \Omega \setminus \{\gamma\}$.

TEOREMA (DE MORERA)

Sejam A uma região e $f:A\to\mathbb{C}$ contínua. Se

$$\int_{\partial T} f(z)dz = 0,$$

para todo triângulo T contido em A, então f é analítica em A.

