CMM 109 Tópicos de Análise III S2 - 2024

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

25 DE MAIO

Aula de hoje: Conjuntos Limites

TRAJETÓRIA (ÓRBITA)

DEFINIÇÃO

Chamamos de **trajetória** (ou **órbita**) de um ponto $x \in \mathcal{A}$ a solução maximal $\varphi_x : \mathbb{R} \to \mathcal{A}$ da equação x' = f(x) com condição inicial x(0) = x. Por vezes, nos referimos a imagem

$$\mathcal{O}_{x} = \{\varphi_{x}(t), \ \forall t \in \mathbb{R}\}$$

como sendo a trajetória de x.

Proposição (2)

Seja $f: \mathcal{A} \to \mathbb{R}^n$ um campo de classe C^1 no aberto $\mathcal{A} \subset \mathbb{R}^n$. Então, duas órbitas nunca se interceptam, a menos que sejam a mesma trajetória (módulo uma translação no tempo).

CLASSIFICAÇÃO DE TRAJETÓRIAS

DEFINIÇÃO

As trajetórias de uma equação autônoma x' = f(x) são classificadas em três tipos:

- trajetória periódica: se existe T > 0 tal que $\phi(t + T, x) = \phi(t, x)$, para todo $t \in \mathbb{R}$. Neste caso, dizemos que x é um ponto periódico;
- trajetória regular não periódica: $\phi(t,x) \neq \phi(s,x)$, para todo $t \neq s$. Neste caso, dizemos que x é um ponto regular não periódico;
- **trajetória estacionária**: $\phi(t,x)=x$, para todo $t\in\mathbb{R}$. Neste caso, dizemos que x é um ponto estacionário.

OBSERVAÇÃO

- Órbitas estacionárias são, por definição, periódicas. Porém, ao nos referirmos especificamente a uma órbita periódica estaremos excluindo o caso estacionário.
- Note que $x \in \mathcal{A}$ é estacionário se, e somente se, f(x) = 0.
- Um ponto estacionário também é chamado de ponto singular.
- Singularidades também são chamadas de ponto de equilíbrio.

Fernando Ávila (UFPR) CMM 109 S2 - 2024

4/10

Conjuntos ω -limite e α -limite

DEFINIÇÃO

Seja $f: \mathcal{A} \to \mathbb{R}^d$ um campo vetorial de classe C^1 no aberto $\mathcal{A} \subseteq \mathbb{R}^d$. Dado um ponto $x \in \mathcal{A}$ definimos os conjuntos

$$\omega(x) = \{ p \in \mathcal{A}; \text{ existe } \{t_n\}_{n \in \mathbb{N}}, \text{ tal que } t_n \to +\infty \text{ e } \phi(t_n, x) \to p \}$$

e

$$\alpha(x) = \{ p \in \mathcal{A}; \text{ existe } \{t_n\}_{n \in \mathbb{N}}, \text{ tal que } t_n \to -\infty \text{ e } \phi(t_n, x) \to p \}$$

chamados de **conjunto** ω -limite e **conjunto** α -limite, respectivamente.

Se γ é um órbita periódica, então para qualquer $x \in \gamma$, temos $\omega(x) = \alpha(x) = \gamma$.

EXEMPLO 2

Para o campo linear f(x, y) = (x, -y) temos:

Se γ é um órbita periódica, então para qualquer $x \in \gamma$, temos $\omega(x) = \alpha(x) = \gamma$.

EXEMPLO 2

Para o campo linear f(x, y) = (x, -y) temos:

- $\omega(0) = \alpha(0) = \{0\};$
- se $x \in E_1 \setminus \{0\}$, então $\omega(x) = \emptyset$ e $\alpha(x) = \{0\}$;
- se $x \in E_2 \setminus \{0\}$, então $\omega(x) = \{0\}$ e $\alpha(x) = \emptyset$;
- se $x \in (E_1 \cup E_2)^C$, então $\omega(x) = \alpha(x) = \emptyset$.

EXEMPLO 3

Considere o campo $f(x, y) = (-y + x(x^2 + y^2 - 1), x + y(x^2 + y^2 - 1))$ e seja γ a sua órbita periódica. Temos então:

Se γ é um órbita periódica, então para qualquer $x \in \gamma$, temos $\omega(x) = \alpha(x) = \gamma$.

EXEMPLO 2

Para o campo linear f(x, y) = (x, -y) temos:

- $\omega(0) = \alpha(0) = \{0\};$
- se $x \in E_1 \setminus \{0\}$, então $\omega(x) = \emptyset$ e $\alpha(x) = \{0\}$;
- se $x \in E_2 \setminus \{0\}$, então $\omega(x) = \{0\}$ e $\alpha(x) = \emptyset$;
- se $x \in (E_1 \cup E_2)^C$, então $\omega(x) = \alpha(x) = \emptyset$.

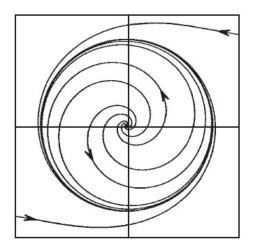
EXEMPLO 3

Considere o campo $f(x, y) = (-y + x(x^2 + y^2 - 1), x + y(x^2 + y^2 - 1))$ e seja γ a sua órbita periódica. Temos então:

CMM 109

- se x é um ponto no *interior* de γ , então $\alpha(x) = \{0\}$;
- se x é um ponto no *exterior* de γ , então $\alpha(x) = \emptyset$;
- se x é um ponto em γ , então $\alpha(x) = \gamma$;
- se $x \neq 0$, então $\omega(x) = \gamma$.

O campo
$$f(x, y) = (-y + x(x^2 + y^2 - 1), x + y(x^2 + y^2 - 1)).$$



Para o campo

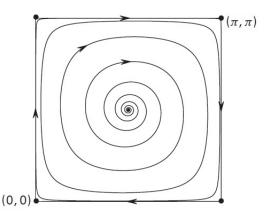
$$f(x,y) = (\sin(x)(-0.1\cos(x) - \cos(y)), \sin(y)(\cos(x) - 0.1\cos(y)))$$

temos o seguinte:

Para o campo

$$f(x,y) = (\sin(x)(-0.1\cos(x) - \cos(y)), \sin(y)(\cos(x) - 0.1\cos(y)))$$

temos o seguinte:



• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

PROPOSIÇÃO

(a) Se y pertence a órbita de x, então $\omega(x) = \omega(y)$.

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

PROPOSIÇÃO

- (a) Se y pertence a órbita de x, então $\omega(x) = \omega(y)$.
- (b) O conjunto $\omega(x)$ é fechado e invariante.

Fernando Ávila (UFPR)

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

PROPOSIÇÃO

- (a) Se y pertence a órbita de x, então $\omega(x) = \omega(y)$.
- (b) O conjunto $\omega(x)$ é fechado e invariante.
- (c) Se $F\subseteq \mathcal{A}$ é um conjunto fechado e positivamente invariante, então $\omega(x)\in F$, para todo $x\in F$.

Fernando Ávila (UFPR)

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

PROPOSIÇÃO

- (a) Se y pertence a órbita de x, então $\omega(x) = \omega(y)$.
- (b) O conjunto $\omega(x)$ é fechado e invariante.
- (c) Se $F\subseteq \mathcal{A}$ é um conjunto fechado e positivamente invariante, então $\omega(x)\in F$, para todo $x\in F$.
- (d) Se $z \in \omega(x)$, então $\omega(z) \subseteq \omega(x)$.

Fernando Ávila (UFPR)

• Note que o conjunto α -limite de x para o campo f é o conjunto ω -limite de x para o campo -f.

DEFINIÇÃO

Dizemos que um conjunto $C \subseteq \mathcal{A}$ é **invariante** pelo fluxo ϕ se $\phi(t,p) \in C$, para todo $p \in C$ e todo $t \in \mathbb{R}$. De modo mais preciso, diremos **positivamente invariante** se for para todo $t \geq 0$ e **negativamente invariante** se for para todo $t \leq 0$.

PROPOSIÇÃO

- (a) Se y pertence a órbita de x, então $\omega(x) = \omega(y)$.
- (b) O conjunto $\omega(x)$ é fechado e invariante.
- (c) Se $F \subseteq \mathcal{A}$ é um conjunto fechado e positivamente invariante, então $\omega(x) \in F$, para todo $x \in F$.
- (d) Se $z \in \omega(x)$, então $\omega(z) \subseteq \omega(x)$.
- (e) Se $\omega(x)$ é compacto, então é conexo.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

O TEOREMA DE POINCARÉ-BENDIXSON

TEOREMA

Seja $f: \mathcal{A} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ um campo planar de classe C^1 cujas soluções de x' = f(x) estão definidas em \mathbb{R} . Nestas condições, os únicos conjuntos ω -limite compactos, não vazios e sem singularidades são as órbitas periódicas do campo.

