CMM 109 Tópicos de Análise III S2 - 2024

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

16 DE MARÇO

Aula de hoje: Existência e unicidade das soluções (Parte I)

- O problema de Cauchy;
- Aproximações sucessivas;
- Espaços métricos completos (uma brevíssima introdução);
- Alguns espaços de funções;
- Teorema de Banach para o ponto fixo de contrações;

O GRANDE OBJETIVO

PROBLEMA DE VALOR INICIAL

Considere o problema

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (1)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

DEFINIÇÃO

Uma solução da equação (2) em U é uma função (ou caminho) $x:I\to\mathbb{R}^n$ que é derivável num intervalo $I\subset\mathbb{R}$ contendo t_0 cujo gráfico está contido em U e satisfaz a igualdade

$$x'(t) = f(t, x(t)), \forall t \in I.$$

O GRANDE OBJETIVO

PROBLEMA DE VALOR INICIAL

Considere o problema

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (1)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

DEFINIÇÃO

Uma solução da equação (2) em U é uma função (ou caminho) $x:I\to\mathbb{R}^n$ que é derivável num intervalo $I\subset\mathbb{R}$ contendo t_0 cujo gráfico está contido em U e satisfaz a igualdade

$$x'(t) = f(t, x(t)), \forall t \in I.$$

TEOREMA (T.E.U.)

Suponha $f:U\subset\mathbb{R} imes\mathbb{R}^n o\mathbb{R}^n$ uma unção contínua tal que $\dfrac{\partial f}{\partial x}$ exista e seja contínua em U.

Nestas condições, dado qualquer ponto $(t_0, x_0) \in U$, existe uma única solução do P.V.I. (2) definida num intervalo aberto $(t_0 - \alpha, t_0 + \alpha)$, para um certo $\alpha = \alpha(t_0, x_0) > 0$.

SOBRE A NOTAÇÃO

• Como $f:U\subset \mathbb{R}\times \mathbb{R}^n \to \mathbb{R}^n$, então $\frac{\partial f}{\partial x}$ denota a função

$$\frac{\partial f}{\partial x}:U\to M(n),$$

dada por

$$\frac{\partial f}{\partial x}(t,x) = \left[\frac{\partial f_i}{\partial x_j}(t,x)\right]_{n \times n} \\
= \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(t,x) & \frac{\partial f_1}{\partial x_2}(t,x) & \dots & \frac{\partial f_1}{\partial x_n}(t,x) \\
\frac{\partial f_2}{\partial x_1}(t,x) & \frac{\partial f_2}{\partial x_2}(t,x) & \dots & \frac{\partial f_2}{\partial x_n}(t,x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1}(t,x) & \frac{\partial f_n}{\partial x_2}(t,x) & \dots & \frac{\partial f_n}{\partial x_n}(t,x)
\end{bmatrix}_{n \times n}$$

• Assim, $\frac{\partial f}{\partial x}$ é contínua em U se, e somente se, cada $\frac{\partial f_i}{\partial x_j}$ é contínua em U.

MOTIVAÇÃO

• Considere o problema

$$\begin{cases} x'(t) = x(t), \\ x(t_0) = x_0, \end{cases}$$
 (2)

MOTIVAÇÃO

Considere o problema

$$\begin{cases} x'(t) = x(t), \\ x(t_0) = x_0, \end{cases}$$
 (2)

UMA FUNÇÃO AUXILIAR

Seja $T:\mathcal{F} \to \mathcal{F}$ a aplicação

$$Ty(t) = x_0 + \int_{t_0}^t y(s)ds,$$

sendo ${\mathcal F}$ um espaço de funções adequado.

MOTIVAÇÃO

Considere o problema

$$\begin{cases} x'(t) = x(t), \\ x(t_0) = x_0, \end{cases}$$
 (2)

UMA FUNÇÃO AUXILIAR

Seja $T: \mathcal{F} \to \mathcal{F}$ a aplicação

$$Ty(t) = x_0 + \int_{t_0}^t y(s)ds,$$

sendo ${\mathcal F}$ um espaço de funções adequado.

ullet Note que x é solução do problema acima se, e somente se, é um **ponto fixo** de T, ou seja,

$$T(x) = x$$
.

• Considere então $y_1 \equiv x_0$ e defina

$$y_{n+1} = T(y_n), n \in \mathbb{N}.$$

Considerando então o problema geral

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (3)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

Considerando então o problema geral

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (3)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

• Novamente, podemos definir o operador $T: \mathcal{F} \to \mathcal{F}$ pondo

$$T(y) = x_0 + \int_{t_0}^t f(s, y(s)) ds,$$

sendo ${\mathcal F}$ um espaço de funções adequado.

Considerando então o problema geral

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (3)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

• Novamente, podemos definir o operador $T: \mathcal{F} \to \mathcal{F}$ pondo

$$T(y) = x_0 + \int_{t_0}^t f(s, y(s)) ds,$$

sendo \mathcal{F} um espaço de funções adequado.

Assim, x é solução do problema se, e somente se, é um ponto fixo de T, ou seja,

$$T(x) = x$$
.

Considerando então o problema geral

$$\begin{cases} x' = f(t, x), \\ x(t_0) = x_0, \end{cases}$$
 (3)

no qual f = f(t, x) é uma função definida num aberto $U \subset \mathbb{R} \times \mathbb{R}^n$ a valores em \mathbb{R}^n .

• Novamente, podemos definir o operador $T: \mathcal{F} \to \mathcal{F}$ pondo

$$T(y) = x_0 + \int_{t_0}^t f(s, y(s)) ds,$$

sendo ${\mathcal F}$ um espaço de funções adequado.

• Assim, x é solução do problema se, e somente se, é um **ponto fixo** de T, ou seja,

$$T(x) = x$$
.

• Podemos ainda tomar $y_1 \in \mathcal{F}$, com $y_1(t_0) = x_0$ e definir

$$y_{n+1} = T(y_n), n \in \mathbb{N}.$$

PERGUNTAS

- ullet Qual é esse espaço de funções \mathcal{F} ?
- Que tipo de convergência esperamos para o limite $\lim_{n\to\infty} y_n$?
- Como garantir que *T* possua **único** ponto fixo?

ESPAÇO MÉTRICOS

DEFINIÇÃO (MÉTRICA)

Seja M um conjunto. Uma métrica (ou distância) em M é uma função $d: M \times M \to \mathbb{R}$ que satisfaz os seguintes axiomas:

- (D1) $d(x, y) \ge 0, \forall x, y \in M$.
- (D2) $d(x, y) = 0 \iff x = y$.
- (D3) d(x, y) = d(y, x) para todo $x, y \in M$. (Simetria)
- (D4) $d(x, y) \le d(x, z) + d(z, y)$ para todo $x, y, z \in M$. (Designaldade Triangular)

ESPAÇO MÉTRICOS

DEFINIÇÃO (MÉTRICA)

Seja M um conjunto. Uma métrica (ou distância) em M é uma função $d: M \times M \to \mathbb{R}$ que satisfaz os seguintes axiomas:

- (D1) $d(x, y) \ge 0, \forall x, y \in M$.
- (D2) $d(x, y) = 0 \iff x = y$.
- (D3) d(x, y) = d(y, x) para todo $x, y \in M$. (Simetria)
- (D4) $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in M$. (Designaldade Triangular)
 - Um conjunto M munido de uma métrica d é chamado de Espaço Métrico e quando seja necessário este será denotado por (M, d).
 - Se consideramos num conjunto M duas métricas, digamos d_1 e d_2 , então teremos dois espaços métricos $M_1 = (M, d_1)$ e $M_2 = (M, d_2)$.
 - Se (M, d) é um espaço métrico e X ⊂ M é um subconjunto, então podemos considerar o espaço métrico (X, d), sendo d a restrição de d ao conjunto X × X. (Dizemos que d é a métrica induzida por d).

Fernando Ávila (UEPR) MATE 7010 S2 - 2024 8/19

イロン イ御 とくき とくき とっき

O EXEMPLO QUE NOS INTERESSA: ESPAÇOS NORMADOS

DEFINIÇÃO (NORMA)

Uma norma num \mathbb{K} -espaço vetorial V é uma função $\|\cdot\|:V\to\mathbb{R}$ que satisfaz as seguintes propriedades:

- (N1) $||x|| \ge 0$, $\forall x \in V$, valendo a igualdade se, e somente se, x = 0.
- (N2) $\|\lambda \cdot x\| = |\lambda| \|x\|$, para todo $\lambda \in \mathbb{K}$ e para todo $x \in V$;
- (N3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in V.$

O EXEMPLO QUE NOS INTERESSA: ESPAÇOS NORMADOS

DEFINIÇÃO (NORMA)

Uma norma num \mathbb{K} -espaço vetorial V é uma função $\|\cdot\|:V\to\mathbb{R}$ que satisfaz as seguintes propriedades:

- (N1) $||x|| \ge 0$, $\forall x \in V$, valendo a igualdade se, e somente se, x = 0.
- (N2) $\|\lambda \cdot x\| = |\lambda| \|x\|$, para todo $\lambda \in \mathbb{K}$ e para todo $x \in V$;
- (N3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in V.$
- O par $(V, \|\cdot\|)$ é dito ser um *espaço normado*.
- Se $(V, \|\cdot\|)$ é um espaço normado e W é um subespaço vetorial de V, então temos o espaço normado $(W, \|\cdot\|_W)$, sendo $\|\cdot\|_W$ a restrição de $\|\cdot\|$ sobre W.

O EXEMPLO QUE NOS INTERESSA: ESPAÇOS NORMADOS

DEFINIÇÃO (NORMA)

Uma norma num \mathbb{K} -espaço vetorial V é uma função $\|\cdot\|:V\to\mathbb{R}$ que satisfaz as seguintes propriedades:

- (N1) $||x|| \ge 0$, $\forall x \in V$, valendo a igualdade se, e somente se, x = 0.
- (N2) $\|\lambda \cdot x\| = |\lambda| \|x\|$, para todo $\lambda \in \mathbb{K}$ e para todo $x \in V$;
- (N3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in V.$
- O par $(V, \|\cdot\|)$ é dito ser um *espaço normado*.
- Se (V, || · ||) é um espaço normado e W é um subespaço vetorial de V, então temos o espaço normado (W, || · ||_W), sendo || · ||_W a restrição de || · || sobre W.

PROPOSIÇÃO

Num espaço normado $(V, \|\cdot\|)$ tem-se a métrica (induzida por $\|\cdot\|$):

$$d(x,y) = ||x - y||_{\mathcal{N}}.$$

O ESPAÇO EUCLIDIANO

- Considere \mathbb{R}^n com sua estrutura natural de espaço vetorial real e assuma fixada a base canônica. Dado $x \in \mathbb{R}^n$, escreva $x = (x_1, \dots, x_n)$.
- Em \mathbb{R}^n temos as seguintes normas:

$$||x|| = \left(\sum_{j=1}^n x_j^2\right)^{1/2}, \ ||x||_s = \sum_{j=1}^n |x_j| \ e \ ||x||_\infty = \max_{1 \le j \le n} |x_j|.$$

O ESPAÇO EUCLIDIANO

- Considere \mathbb{R}^n com sua estrutura natural de espaço vetorial real e assuma fixada a base canônica. Dado $x \in \mathbb{R}^n$, escreva $x = (x_1, \dots, x_n)$.
- Em \mathbb{R}^n temos as seguintes normas:

$$||x|| = \left(\sum_{j=1}^n x_j^2\right)^{1/2}, \ ||x||_s = \sum_{j=1}^n |x_j| \ \mathbf{e} \ ||x||_\infty = \max_{1 \le j \le n} |x_j|.$$

Normas equivalentes

É possível mostrar que em \mathbb{R}^n todas as normas são equivalentes, isto é, dadas duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$, existem contantes a, b tais que

$$a||x||_1 \le ||x||_2 \le b||x||_1, \ \forall x \in \mathbb{R}^n.$$

Fernando Ávila (UFPR)

MATE 7010

S2 - 2024

ESPAÇOS DE FUNÇÕES

• Sejam X um conjunto arbitrário e $f:X\to\mathbb{R}$ uma função. Dizemos que f é limitada se existe $K\ge 0$ tal que

$$|f(x)| \le K, \ \forall x \in X.$$

• O conjunto das funções limitadas de X em \mathbb{R} será denotado por $\mathcal{B}(X;\mathbb{R})$.

ESPAÇOS DE FUNÇÕES

• Sejam X um conjunto arbitrário e $f:X\to\mathbb{R}$ uma função. Dizemos que f é limitada se existe $K\ge 0$ tal que

$$|f(x)| \le K, \ \forall x \in X.$$

• O conjunto das funções limitadas de X em \mathbb{R} será denotado por $\mathcal{B}(X;\mathbb{R})$.

Uma norma em $\mathscr{B}(X;\mathbb{R})$

A função $\|\cdot\|:\mathscr{B}(X;\mathbb{R})\to\mathbb{R}$ definida por

$$||f|| = \sup_{x \in X} |f(x)|$$

define uma norma em $\mathscr{B}(X;\mathbb{R})$, chamada de *norma da convergência uniforme*.

Uma norma em $\mathscr{C}(I; \mathbb{R}^n)$

Sejam $I \subset \mathbb{R}$ intervalo compacto e $\mathscr{C}(I;\mathbb{R}^n)$ o espaço das funções contínuas $f:I \to \mathbb{R}^n$. Então temos a norma

$$||f|| = \sup_{x \in I} ||f(x)|| = \max_{x \in I} ||f(x)||$$

SEQUÊNCIA CONVERGENTE

Dizemos que uma sequência $\{x_n\}\subset M$ converge para $x\in M$ se: dado $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que

$$d(x_n, x) \leq \epsilon, \ \forall n \geq n_0.$$

Utilizaremos a notação

$$\lim_{n\to\infty} x_n = x, \text{ ou simplesmente, } x_n \to x.$$

• Exercício: Se $x_n \to x$ e $x_n \to y$, então x = y.

SEQUÊNCIA CONVERGENTE

Dizemos que uma sequência $\{x_n\}\subset M$ converge para $x\in M$ se: dado $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que

$$d(x_n, x) \leq \epsilon, \ \forall n \geq n_0.$$

Utilizaremos a notação

$$\lim_{n\to\infty} x_n = x, \text{ ou simplesmente, } x_n \to x.$$

• Exercício: Se $x_n \to x$ e $x_n \to y$, então x = y.

SEQUÊNCIA DE CAUCHY

Dizemos que uma sequência $\{x_n\}\subset M$ é de Cauchy se: dado $\epsilon>0$ existe $n_0\in\mathbb{N}$ tal que

$$n, m \ge n_0 \implies d(x_n, x_m) < \epsilon$$
.

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

ESPAÇO MÉTRICO COMPLETO

DEFINIÇÃO

Um espaço métrico M é dito completo se toda sequência de Cauchy é convergente. Em particular:

- Um espaço normado completo é dito Espaço de Banach
- Um espaço com produto interno completo é dito Espaço de Hilbert

ESPAÇO MÉTRICO COMPLETO

DEFINIÇÃO

Um espaço métrico M é dito completo se toda sequência de Cauchy é convergente. Em particular:

- Um espaço normado completo é dito Espaço de Banach
- Um espaço com produto interno completo é dito Espaço de Hilbert

EXEMPLOS

- (a) \mathbb{K}^n é completo.
- (b) Todo espaço normado de dimensão finita é Banach.
- (c) Um subespaço fechado de um espaço métrico completo é completo.
- (d) O espaço $\mathscr{C}(I;\mathbb{R}^n)$ com a norma da convergência uniforme é completo.

PONTO DE FIXO DE BANACH PARA CONTRAÇÕES

TEOREMA

Seja (M,d) um espaço métrico completo. Se $f:M\to M$ é uma contração, isto é, existe $0<\alpha<1$ tal que

$$d(f(x), f(y)) \le \alpha d(x, y), \quad \forall x, y \in M,$$

então f tem um único ponto fixo, isto é, existe um único $\hat{x} \in M$ tal que $f(\hat{x}) = \hat{x}$.

4□ > 4□ > 4 = > 4 = > = 90

PONTO DE FIXO DE BANACH PARA CONTRAÇÕES

TEOREMA

Seja (M,d) um espaço métrico completo. Se $f:M\to M$ é uma contração, isto é, existe $0<\alpha<1$ tal que

$$d(f(x), f(y)) \le \alpha d(x, y), \quad \forall x, y \in M,$$

então f tem um único ponto fixo, isto é, existe um único $\hat{x} \in M$ tal que $f(\hat{x}) = \hat{x}$.

COROLÁRIO

Sejam (M,d) um espaço métrico completo e $f:M\to M$ uma função. Se existe $k\in\mathbb{N}_0$ tal que f^k é uma contração, então f possui um único ponto fixo $a\in M$ tal que

$$\lim_{n\to\infty} f^n(x) = a, \ \forall x \in M.$$

(Dem: Corolário 8.6 no livro do Lopes)

4 □ → 4 □ → 4 □ → 4 □ → 9 Q Q

RETORNEMOS AO PROBLEMA PRINCIPAL

TEOREMA (T.E.U.)

Suponha $f:U\subset \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ uma função contínua tal que $\frac{\partial f}{\partial x}$ exista e seja contínua em U. Nestas condições, dado qualquer ponto $(t_0,x_0)\in U$, existe uma única solução do P.V.I.

$$\begin{cases}
 x' = f(t, x), \\
 x(t_0) = x_0,
\end{cases}$$
(4)

definida num intervalo aberto $(t_0 - \alpha, t_0 + \alpha)$, para um certo $\alpha = \alpha(t_0, x_0) > 0$.

• Tática para a demonstração: iniciar com algumas hipóteses extras...

A HIPÓTESE LIPSCHITZ

DEFINIÇÃO

Dizemos que uma função $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ é lipschitziana na variável espacial em U se existe K>0 tal que

$$||f(t,x) - f(t,y)|| \le K||x - y||, \ \forall (t,x), (t,y) \in U.$$

A HIPÓTESE LIPSCHITZ

DEFINIÇÃO

Dizemos que uma função $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ é lipschitziana na variável espacial em U se existe K>0 tal que

$$||f(t,x) - f(t,y)|| \le K||x - y||, \ \forall (t,x), (t,y) \in U.$$

HIPÓTESE

Suponha que tenhamos um intervalo I tal que $(t_0, x_0) \in I \times \mathbb{R}^n \subset U$.

A HIPÓTESE LIPSCHITZ

DEFINIÇÃO

Dizemos que uma função $f:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ é lipschitziana na variável espacial em U se existe K>0 tal que

$$||f(t,x) - f(t,y)|| \le K||x - y||, \ \forall (t,x), (t,y) \in U.$$

HIPÓTESE

Suponha que tenhamos um intervalo I tal que $(t_0, x_0) \in I \times \mathbb{R}^n \subset U$.

• Para cada $y \in \mathcal{C}(I; \mathbb{R}^n)$, defina

$$Ty(t) = x_0 + \int_{t_0}^t f(s, y(s)) ds, \ t \in I.$$

• Note que x é solução de (5) se, e somente se, Tx = x.

- Note que $Ty \in \mathscr{C}(I; \mathbb{R}^n)$, ou seja, $T : \mathscr{C}(I; \mathbb{R}^n) \to \mathscr{C}(I; \mathbb{R}^n)$.
- Mais ainda, se supormos que I é um intervalo compacto, então $\mathscr{C}(I;\mathbb{R}^n)$ é um espaço métrico completo (ou um espaço de Banach).

- Note que $Ty \in \mathscr{C}(I; \mathbb{R}^n)$, ou seja, $T : \mathscr{C}(I; \mathbb{R}^n) \to \mathscr{C}(I; \mathbb{R}^n)$.
- Mais ainda, se supormos que I é um intervalo compacto, então $\mathscr{C}(I;\mathbb{R}^n)$ é um espaço métrico completo (ou um espaço de Banach).

LEMA

Seja K > 0 uma constante de Lipschitz de f em $I \times \mathbb{R}^n$. Então, dado $m \in \mathbb{N}_0$,

$$|T^m g(t) - T^m h(t)| \le \frac{K^m}{m!} |t - t_0|^m ||g - h||,$$

para quaisquer $g, h \in \mathcal{C}(I; \mathbb{R}^n)$ e todo $t \in T$.

UM PRIMEIRO RESULTADO

TEOREMA 1

Suponha $f:U\subset \mathbb{R}\times \mathbb{R}^n\to \mathbb{R}^n$ uma função contínua. Assuma que $[a,b]\times \mathbb{R}^n\subset U$ e que f é lipschitziana na variável espacial em $[a,b]\times \mathbb{R}^n$. Nestas condições, dados qualquer ponto $(t_0,x_0)\in [a,b]\times \mathbb{R}^n$, existe uma única solução do P.V.I.

$$\begin{cases}
 x' = f(t, x), \\
 x(t_0) = x_0,
\end{cases}$$
(5)

definida no intervalo [a, b].

APLICAÇÃO

TEOREMA 2

Sejam $A: I \to M(n)$ e $b: I \to \mathbb{R}^n$ dois caminhos contínuos num intervalo $I \subseteq \mathbb{R}$. Então, dados quaisquer $t_0 \in I$ e $x_0 \in \mathbb{R}^n$, existe uma única solução do P.V.I.

$$\begin{cases} x' = A(t)x + b(t), \\ x(t_0) = x_0, \end{cases}$$

definida no intervalo I.

APLICAÇÃO

TEOREMA 2

Sejam $A:I\to M(n)$ e $b:I\to\mathbb{R}^n$ dois caminhos contínuos num intervalo $I\subseteq\mathbb{R}$. Então, dados quaisquer $t_0\in I$ e $x_0\in\mathbb{R}^n$, existe uma única solução do P.V.I.

$$\begin{cases} x' = A(t)x + b(t), \\ x(t_0) = x_0, \end{cases}$$

definida no intervalo I.

COROLÁRIO

Se $A = [a_{i,j}]_{n \times n}$ é uma matriz real, então dado $x_0 \in \mathbb{R}^n$ existe única solução do P.V.I.

$$\begin{cases} x' = Ax, \\ x(0) = x_0, \end{cases}$$

definida em \mathbb{R} .

