Análise Funcional S2 - 2024

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

RELEMBRANDO

Sejam \mathcal{H} um espaço de Hilbert e $M \subset \mathcal{H}$ um subespaço fechado.

• Para cada $x \in \mathcal{H}$, existe um único $y_x \in M$ tal que

$$\inf\{\|x - y\|; \ y \in M\} = \|x - y_x\|$$

- Fica bem definida a aplicação $P: \mathcal{H} \to M$ dada por $Px = y_x$.
- Px é o único elemento de M tal que $x Px \perp M$.

PROPOSIÇÃO

Sejam $\mathcal H$ um espaço de Hilbert e $M\subset \mathcal H$ um subespaço fechado.

- (a) P é linear.
- (b) $P^2 = P$.
- (c) $KerP = M^{\perp} e ImP = M$.
- (d) ||Px|| < ||x||.

DESIGUALDADE DE BESSEL

TEOREMA

Seja $\{e_{\alpha}\}_{{\alpha}\in J}$ um conjunto ortonormal num espaço de Hilbert ${\mathcal H}.$ Então,

$$\sum_{\alpha \in J} |\langle x, e_{\alpha} \rangle|^2 \le ||x||^2, \ \forall x \in \mathcal{H}.$$

Em particular, $\langle x, e_{\alpha} \rangle \neq 0$ apenas num conjunto enumerável de índices $\alpha \in J$.

Fernando Ávila (UFPR)

BASE

DEFINIÇÃO

Um conjunto ortonormal $\{e_{\alpha}\}_{{\alpha}\in J}$ num espaço de Hilbert ${\mathcal H}$ é dito uma base ortonormal se

$$\overline{Ger(\{e_{\alpha}\}_{\alpha\in J})}=\mathcal{H}.$$

PROPOSIÇÃO

Todo espaço de Hilbert \mathcal{H} não trivial possui é uma base ortonormal.

PROPOSIÇÃO

Seja $\{e_{\alpha}\}_{{\alpha}\in J}$ um conjunto ortonormal num espaço de Hilbert ${\mathcal H}$. Então, são equivalentes:

- (a) $\{e_{\alpha}\}_{{\alpha}\in J}$ é uma base ortonormal.
- (b) se $\xi \in \mathcal{H}$ satisfaz $\xi \perp e_{\alpha}$, para todo $\alpha \in J$, então $\xi = 0$.

DEFINIÇÃO

Seja $\{e_{\alpha}\}_{{\alpha}\in J}$ um conjunto ortonormal num espaço de Hilbert \mathcal{H} . Dado $x\in\mathcal{H}$, o conjunto $\{\langle x,e_{\alpha}\rangle\}_{{\alpha}\in J}$ é dito coeficientes de Fourier de x. A soma

$$\sum_{\alpha\in J}\langle x,e_\alpha\rangle e_\alpha$$

é dita série de Fourier de x, com respeito a $\{e_{\alpha}\}_{{\alpha}\in J}$.

TEOREMA

Seja $\{e_{\alpha}\}_{{\alpha}\in J}$ um conjunto ortonormal num espaço de Hilbert ${\mathcal H}$. Então, são equivalentes:

- (a) $\{e_{\alpha}\}_{{\alpha}\in J}$ é uma base ortonormal.
- (b) a série de Fourier de $x \in \mathcal{H}$, com respeito a $\{e_{\alpha}\}_{{\alpha} \in J}$, converge para x, ou seja,

$$x = \sum_{\alpha \in J} \langle x, e_{\alpha} \rangle e_{\alpha}.$$

(c) Vale a Identidade de Parseval:

$$||x||^2 = \sum_{\alpha \in I} |\langle x, e_{\alpha} \rangle|^2.$$

BASES ENUMERÁVEIS

TEOREMA

Um espaço de Hilbert \mathcal{H} é separável se, e somente se, possui uma base enumerável

TEOREMA

Se $\mathcal H$ é um espaço de Hilbert é separável, então existe uma isometria $T:\mathcal H\to\ell^2(\mathbb K)$