MATE-7007 Análise Funcional - Verão 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

21 DE FEVEREIRO

Aula de hoje: Teoria espectral

ESPECTRO

Todos os espaços normados serão considerados sobre C.

DEFINIÇÃO

Considere $T:Dom(T)\subseteq\mathcal{N}\to\mathcal{N}$ um operador linear. Dado $\lambda\in\mathbb{C}$, defini-se $T_{\lambda}:Dom(T)\subseteq\mathcal{N}\to\mathcal{N}$ pondo

$$T_{\lambda}(\eta) = T\eta - \lambda\eta,$$

ou seja, $T_{\lambda} = T - \lambda I$. O inverso de T_{λ} , quando existe, será denotado por $R_{\lambda}(T)$, isto é,

$$R_{\lambda}(T) = T_{\lambda}^{-1} = (T - \lambda I)^{-1}.$$

Neste caso, dizemos que R_{λ} é o **operador resolvente de** T.

• Por vezes escreveremos apenas R_{λ} .

VALOR REGULAR, CONJUNTO RESOLVENTE E ESPECTRO

DEFINIÇÃO

Considere $T:Dom(T)\subseteq \mathcal{N}\to \mathcal{N}$ um operador linear. Dizemos que $\lambda\in\mathbb{C}$ é uma valor regular de T se valem as seguintes condições:

- (R1) existe R_{λ} ;
- (R2) R_{λ} é limitado;
- (R3) R_{λ} está definido num subespaço denso de \mathcal{N} .

Introduz-se também os conjuntos

$$\rho(T) = \{ \lambda \in \mathbb{C}; \lambda \text{ \'e valor regular de } T \}$$

e

$$\sigma(T) = \mathbb{C} \setminus \rho(T),$$

chamados de **conjunto resolvente** de *T* e **espectro** de *T*, respectivamente.

CLASSIFICAÇÃO ESPECTRAL

DEFINIÇÃO

O espectro $\sigma(T)$ de um operador linear $T:Dom(T)\subseteq\mathcal{N}\to\mathcal{N}$ dividi-se (de forma disjunta) em:

(A) Espectro pontual (cujos elementos são ditos autovalores):

$$\sigma_p(T) = \{\lambda \in \mathbb{C}; \text{ não existe } R_\lambda\}.$$

(B) Espectro contínuo:

$$\sigma_c(T) = \{ \lambda \in \mathbb{C}; \text{ vale (R1) e (R3), mas não vale (R2) } \}.$$

(C) Espectro residual:

$$\sigma_r(T) = \{ \lambda \in \mathbb{C}; \text{ vale (R1), mas não vale (R3) } \}.$$

UMA TABELA DE CLASSIFICAÇÃO

Satisfaz	Não satisfaz	$\lambda \in \cdots$
R1 R2 R3		$\rho(T)$
	R1	$\rho_p(T)$
R1 R3	R2	$\sigma_c(T)$
R1	R3	$\sigma_r(T)$

IMPORTANTE:

• Podemos ter $\sigma(T) \neq \sigma_p(T)$!

OPERADORES LIMITADOS EM ESPAÇOS DE BANACH

LEMA

Sejam $T: \mathcal{B} \to \mathcal{B}$ linear e $\lambda \in \rho(T)$. Se vale uma das seguintes propriedades,

- (i) T é fechado, ou
- (ii) T é limitado,

então $R_{\lambda}(T)$ está definido em todo espaço \mathcal{B} e é limitado.

OBSERVAÇÃO

Note então que se $T \in B(\mathcal{B})$ e $T_{\lambda} : \mathcal{B} \to \mathcal{B}$ é bijetor, então $R_{\lambda}(T) \in B(\mathcal{B})$.

7/10

RESOLVENTE

TEOREMA (RESOLVENTE FECHADO)

Se $T \in B(\mathcal{B})$, então $\rho(T)$ é aberto e, consequentemente, $\sigma(T)$ é fechado.

TEOREMA (RREPRESENTAÇÃO DO RESOLVENTE)

Sejam $T \in B(\mathcal{B})$ e $\lambda_0 \in \rho(T)$. Então, para qualquer λ pertencente ao disco aberto

$$|\lambda - \lambda_0| < \frac{1}{\|R_{\lambda_0}\|},$$

vale a identidade

$$R_{\lambda} = \sum_{j=0}^{\infty} (\lambda - \lambda_0)^j R_{\lambda_0}^{j+1},$$

sendo está série convergente em B(B).

TEOREMA

Se $T \in B(\mathcal{B})$, então $\sigma(T)$ é compacto e vale

$$\sigma(T) \subset D_{||T||}(0) = \{ z \in \mathbb{C}; |z| < ||T|| \}.$$

RAIO ESPECTRAL

TEOREMA

Sejam $T \in B(\mathcal{B})$ e $r_{\sigma}(T)$ seu raio espectral, isto é,

$$r_{\sigma}(T) = \sup_{\lambda \in \sigma(T)} |\lambda|.$$

Vale que

$$r_{\sigma}(T) = \lim_{n \to \infty} ||T^n||^{1/n} \le ||T||.$$

EQUAÇÃO RESOLVENTE E COMUTATIVIDADE

• Dados $T, S \in B(\mathcal{B})$ defini-se

$$[T,S] = T \circ S - S \circ T.$$

• Em particular, diremos que T e S comutam se [T, S] = 0.

TEOREMA

Sejam $T \in B(\mathcal{B})$ e $\lambda, \mu \in \rho(T)$. Então, temos as seguintes propriedades:

- (a) $R_{\mu} R_{\lambda} = (\mu \lambda)R_{\mu} \circ R_{\lambda}$.
- (b) R_{μ} comuta com qualquer $S \in B(\mathcal{B})$ que comute com T.
- (b) R_{μ} comuta com R_{λ} .

