MATE-7007 Análise Funcional - Verão 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

24 DE JANEIRO

Aula de hoje: Operadores lineares limitados

- Operadores lineares limitados
- Espaço dual

ESPAÇOS NORMADOS

DEFINIÇÃO (NORMA)

Uma norma num espaço vetorial V é uma função $\mathcal{N}:V\to\mathbb{R}$ que satisfaz as seguintes propriedades:

- (N1) $\mathcal{N}(x) \geq 0$, $\forall x \in V$, valendo a igualdade se, e somente se, x = 0.
- (N2) $\mathcal{N}(\lambda \cdot x) = |\lambda| \mathcal{N}(x)$, para todo $\lambda \in \mathbb{K}$ e para todo $x \in V$;
- (N3) $\mathcal{N}(x+y) \leq \mathcal{N}(x) + \mathcal{N}(y), \ \forall x, y \in V.$
- O par (V, \mathcal{N}) é dito ser um *espaço normado*. Por vezes, utilizaremos a notação $\mathcal{N}(x) = ||x||_{\mathcal{N}}$.
- Num espaço normado (V, \mathcal{N}) tem-se a métrica (induzida por \mathcal{N}):

$$d(x,y) = ||x - y||_{\mathcal{N}}.$$

• Um espaço normado completo é dito espaço de Banach.

DEFINIÇÃO

Um operador linear (transformação linear) entre dois espaços vetoriais X e Y é uma função $T: X \to Y$ tal que $T(\alpha \xi + \eta) = \alpha T(\xi) + T(\eta), \ \forall \xi, \eta \in X, \ \forall \alpha \in \mathbb{K}.$

TEOREMA

Seja $T: \mathcal{N}_1 \to \mathcal{N}_2$ um operador linear entre espaços normados. São equivalentes:

- (a) $\sup_{\|\eta\|_1 \le 1} \|T\eta\|_2 < \infty$.
- (b) Existe C > 0 tal que $||T\xi||_2 \le C||\xi||_1$, para todo $\xi \in \mathcal{N}_1$.
- (c) T é uniformemente contínuo.
- (d) T é contínuo.
- (e) T é contínuo em 0.

DEFINIÇÃO

- Um operador linear contínuo é também chamado de limitado.
- O espaço dos operadores lineares limitados $T : \mathcal{N}_1 \to \mathcal{N}_2$ será denotado por $B(\mathcal{N}_1, \mathcal{N}_2)$. No caso $\mathcal{N} = \mathcal{N}_1 = \mathcal{N}_2$, escreve-se apenas $B(\mathcal{N})$.
- Note que $B(\mathcal{N}_1, \mathcal{N}_2)$ é um espaço vetorial munido das operações usuais.

O ESPAÇO $B(\mathcal{N}_1, \mathcal{N}_2)$

TEOREMA

Para cada $T \in B(\mathcal{N}_1, \mathcal{N}_2)$ defina

$$||T||_{B(\mathcal{N}_1,\mathcal{N}_2)} = \sup_{\eta \neq 0} \frac{||T\eta||_2}{||\eta||_1}.$$

- (a) $\|\cdot\|_{B(\mathcal{N}_1,\mathcal{N}_2)}$ é uma norma em $B(\mathcal{N}_1,\mathcal{N}_2)$.
- (b) Valem as igualdades

$$\sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x|| = 1} ||Tx|| = \sup_{||x|| \le 1} ||Tx|| = \inf_{\eta \in \mathcal{N}_1} \{C > 0; ||T\eta||_2 \le C ||\eta||_1 \}.$$

(c) Se \mathcal{N}_2 é um espaço de Banach, então $B(\mathcal{N}_1, \mathcal{N}_2)$ é Banach.

TEOREMA (EXTENSÃO CONTÍNUA)

Sejam $T:W\to \mathcal{B}$ um operador linear limitado, no qual $W\subset \mathcal{N}$ é um subespaço denso. Nestas condições T possui uma única extensão $\widetilde{T}\in B(\mathcal{N},\mathcal{B})$. Além disso, temos $\|T\|=\|\widetilde{T}\|$.

EXEMPLOS

• O operador integral $T: C[0,1] \to C[0,1]$ dado por

$$(Tx)(t) = \int_0^t x(s) \ ds,$$

é um operador limitado e ||T|| = 1.

• Considere $J=[0,1], R=J\times J$ e $\kappa:R\to\mathbb{R}$ uma função contínua. O operador linear $T:C[0,1]\to C[0,1]$, dado por

$$(Tx)(t) = \int_0^1 x(s)\kappa(t,s) ds$$

é contínuo.

• Considere $T: C[-1,1] \to \mathbb{K}$, dado por Tf = f(0), e assuma C[-1,1] munido da norma da integral. Neste caso, T não é limitado.

ESPAÇO DUAL

DEFINIÇÃO

Se \mathcal{N} é um espaço normado, então o espaço de Banach $B(\mathcal{N}, \mathbb{K})$ será denotado por \mathcal{N}^* e será chamado de **espaço dual** de \mathcal{N} . Cada elemento de \mathcal{N}^* é dito um **funcional linear contínuo**.

EXEMPLOS

• O funcional linear $f: C[a,b] \to \mathbb{K}$ dado por

$$f(x) = \int_{a}^{b} x(s) \ ds,$$

pertence a $C[a, b]^*$.

- O dual de $\mathbb{R}^n \notin \mathbb{R}^n$.
- O dual de $\ell^1 \notin \ell^\infty$.
- Para $1 , o dual de <math>\ell^p \not\in \ell^q$, sendo 1/p + 1/q = 1.

