MATE-7007 Análise Funcional - Verão 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

31 DE JANEIRO

Aula de hoje: Bases de Hilbert e Representação de Funcionais

- Bases de Hilbert
- Representação de Funcionais

ESPAÇO DE HILBERT

DEFINIÇÃO (PRODUTO INTERNO)

Seja $\mathcal V$ um espaço vetorial sobre o corpo de escalares $\mathbb K$ ($\mathbb K=\mathbb R$ ou $\mathbb C$). Um produto interno em $\mathcal V$ é uma função $\langle \cdot,\cdot \rangle: \mathcal V \times \mathcal V \to \mathbb K$ que satisfaz as seguintes propriedades:

- (P1) $\langle x, x \rangle \neq 0$, para todo $x \neq 0$,
- (P2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ para todo $x, y \in \mathcal{V}$,
- (P3) $\langle \alpha x + y, z \rangle = \alpha \langle x, y \rangle + \langle y, w \rangle$, para todo $x, y, z \in \mathcal{V}$ e todo $\alpha \in \mathbb{K}$.

Um espaço vetorial $\mathcal V$ munido de um produto interno $\langle\cdot,\cdot\rangle$ é chamado de *Espaço com produto interno* e quando necessário usaremos a notação $(\mathcal V,\langle\cdot,\cdot\rangle)$.

• Em $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ sempre iremos considerar a norma induzida; $||x|| = \sqrt{\langle x, x \rangle}$. Em particular, um espaço com produto interno completo é dito *Espaço de Hilbert*.

ORTOGONALIDADE

DEFINIÇÃO

Seja $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno.

- Dizemos que dois vetores $x,y\in\mathcal{V}$ são ortogonais se $\langle x,y\rangle=0$. Neste caso, escrevemos $x\perp y$.
- Um vetor x é ortogonal a um subconjunto $A \subset \mathcal{V}$ se $x \perp a$, para todo $a \in A$.
- Um conjunto A ⊂ V é dito ortogonal se x ⊥ y, para todo x, y ∈ A, com x ≠ y. Se, além disso, tivermos ||x|| = 1, para todo x ∈ A, então dizemos que A é ortonormal.
- Dados dois conjuntos $A, B \subset \mathcal{V}$ escrevemos $A \perp B$ se $x \perp y$, para todo $x \in A$ e para todo $y \in B$. Se A e B são subespaços, então diremos que eles são ortogonais.
- Dado $A \subset \mathcal{V}$, defini-se o complemento ortogonal de A pondo

$$A^{\perp} = \{ x \in \mathcal{V}; \ x \perp y, \ \forall y \in A \}.$$

ALGUMAS OBSERVAÇÕES

Seja $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ um espaço com produto interno

• Se $\{x_n\}$ e $\{y_n\}$ são duas sequências que convergem para x e y, respectivamente. Então

$$\lim_{n\to\infty}\langle x_n,y_n\rangle=\langle x,y\rangle.$$

- Se x e y são ambos não nulos e $x \perp y$, então $\{x, y\}$ é L.I.
- Todo conjunto ortogonal A, que não contém o vetor nulo, é L.I.
- Se $x \perp y$, para todo $y \in \mathcal{V}$, então x = 0.
- Seja $\{x_1, \ldots, x_n\}$ um conjunto ortogonal. Então:

$$\left\| \sum_{j=1}^{n} x_{j} \right\|^{2} = \sum_{j=1}^{n} \|x_{j}\|^{2} \text{ (Pitágoras)}$$

• Se A é um subconjunto ortogonal de vetores não nulos, temos que $B = \{x/||x|| : x \in A\}$ é um subconjunto ortonormal e Ger(B) = Ger(A).

COMPLEMENTO ORTOGONAL

TEOREMA

Seja M, N subconjuntos de um espaço com produto interno $\mathbb X$. Então, as seguintes afirmações são válidas

- (a) M^{\perp} sempre é um subespaço vetorial fechado de X.
- (b) Se $M \subseteq N$, então $M^{\perp} \supseteq N^{\perp}$.
- (c) $M \subseteq M^{\perp \perp}$ onde $M^{\perp \perp} := (M^{\perp})^{\perp}$.
- (d) $M^{\perp} = \left[\operatorname{Ger}(M)\right]^{\perp} = \left[\overline{\operatorname{Ger}(M)}\right]^{\perp}$.

DEFINIÇÃO

Seja X um espaço vetorial.

• Um segmento ligando dois vetores $x, y \in \mathbb{X}$ é o conjunto

$$[x, y] \doteq \{z \in \mathbb{X}; z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1\}.$$

• Um conjunto $M \subset \mathbb{X}$ é dito convexo se para quaisquer $x, y \in M$ tivermos $[x, y] \subset M$.

TEOREMA (PROJEÇÃO ORTOGONAL)

Seja $\mathbb X$ um espaço com produto interno e $M \neq \emptyset$ um subconjunto convexo e completo (com a métrica induzida pelo produto interno). Então, para cada $x \in \mathbb X$ existe um único $y_x \in M$ tal que

$$||x - y_x|| = \inf\{||x - y||, y \in M\}.$$

DEFINIÇÃO

Seja M um subconjunto convexo, completo e não vazio do espaço com produto interno \mathbb{X} . Definimos o *Operador Projeção Ortogonal de* \mathbb{X} *sobre* M, à aplicação $P = P_M : \mathbb{X} \to M$ definida por $Px = y_x$ onde y_x é do teorema anterior. Isto é, para cada $x \in \mathbb{X}$, Px é o único elemento em M tal que

$$||x - Px|| = \inf\{||x - y|| : y \in M\}.$$

TEOREMA

Sejam W é um subespaço vetorial completo de \mathbb{X} e $P=P_W$ o operador projeção ortogonal sobre W. Então, para cada $x\in\mathbb{X}$ temos que Px é o único elemento de W tal que $x-Px\perp W$.

DEFINIÇÃO

Dizemos que um espaço vetorial $\mathbb X$ é soma direta dos subespaços vetoriais Y e Z, e escrevemos $\mathbb X=Y\oplus Z$, se

- (a) $X = Y + Z := \{y + z : y \in Y, z \in Z\}.$
- (b) $Y \cap Z = \{0\}$

TEOREMA

Se Z é um subespaço vetorial completo de um espaço com produto interno \mathbb{X} , então

$$X = Z \oplus Z^{\perp}$$

Além disso, $Z = Z^{\perp \perp}$.

RELEMBRANDO

• Se $\{e_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ um conjunto ortonormal de \mathcal{H} , então

$$\sum_{\alpha \in \mathcal{I}} |\langle x, e_{\alpha} \rangle|^2 \le ||x||^2, \ \forall x \in \mathcal{H}.$$

• Em particular, para cada $x \in \mathcal{H}$, o conjunto

$$J = \{ \alpha \in \mathcal{I}; \langle x, e_{\alpha} \rangle \neq 0 \}$$

é contável.

- Cada um dos números $\langle x, e_{\alpha} \rangle$ será chamado de **coeficiente de Fourier** de x.
- A série

$$\sum_{\alpha\in\mathcal{I}}\langle x,e_{\alpha}\rangle e_{\alpha}$$

é dita série de Fourier de x, em relação a $\{e_{\alpha}\}_{{\alpha}\in\mathcal{I}}$.

CONJUNTOS ORTONORMAIS TOTAIS

DEFINIÇÃO

Sejam \mathbb{X} um espaço com produto interno e $M \subset \mathbb{X}$ um subconjunto.

- Dizemos que M é **total** se $\overline{Ger(M)} = X$, ou seja, Ger(M) é denso em \mathbb{X} .
- Dizemos que *M* é **ortonormal total** se é simultaneamente ortonormal e total.
- Num Hilbert um conjunto ortonormal total será chamado de Base de Hilbert.

PROPOSIÇÃO

Sejam $\mathbb X$ um espaço com produto interno e $M\subset \mathbb X$ um subconjunto.

- (a) Se M é total, então $M^{\perp} = \{0\}$.
- (b) Se \mathbb{X} é Hilbert e $M^{\perp} = \{0\}$, então M é total.

TEOREMA(IDENTIDADE DE PARSEVAL)

Sejam $\mathcal H$ um espaço de Hilbert e $\beta=\{e_\alpha\}_{\alpha\in\mathcal I}$ um conjunto ortonormal. Então, β é uma base se, e somente se,

$$||x||^2 = \sum_{\alpha \in \mathcal{I}} |\langle x, \alpha \rangle|^2, \ \forall x \in \mathcal{H}.$$

TEOREMA

Seja \mathcal{H} um espaço de Hilbert não trivial.

- (a) \mathcal{H} tem uma base de Hilbert.
- (b) Todas as bases de Hilbert em ${\mathcal H}$ tem a mesma cardinalidade.
- (c) Todo subconjunto ortonormal pode ser estendido a uma base de Hilbert.

DEFINIÇÃO

A dimensão de Hilbert (ou simplesmente dimensão) de um espaço de Hilbert \mathcal{H} é definida como a cardinalidade de uma de suas bases ortornormais.

RESUMINDO

TEOREMA

Sejam $\mathcal H$ um espaço de Hilbert não trivial e $\beta=\{e_\alpha\}_{\alpha\in\mathcal I}$ um conjunto ortonormal. Então as seguintes afirmações são equivalentes

- (a) β é base ortotnormal de \mathcal{H} .
- (b) Se $\xi \in \mathcal{H}$, então a **série de Fourier** de ξ , em relação a base β , converge em \mathcal{H} para ξ (independentemente da ordem na soma), ou seja,

$$\xi = \sum_{lpha \in \mathcal{I}} \langle \xi, e_lpha
angle e_lpha, \; \xi \in \mathcal{H}.$$

(c) Para todo $\xi \in \mathcal{H}$, tem-se

$$||x||^2 = \sum_{\alpha \in \mathcal{I}} |\langle x, \alpha \rangle|^2, \ \forall x \in \mathcal{H}.$$

SEPARABILIDADE

TEOREMA

Um espaço de Hilbert \mathcal{H} é separável, se e somente se, tem uma base de Hilbert contável.

TEOREMA

Se \mathcal{H} é um espaço de Hilbert de dimensão infinita e separável, então ele é isometricamente isomorfo com $\ell^2(\mathbb{K})$ onde \mathbb{K} é o corpo de escalares sobre o qual \mathcal{H} esta definido.

REPRESENTAÇÃO DE RIESZ

TEOREMA (REPRESENTAÇÃO DE RIESZ)

Seja \mathcal{H} um espaço de Hilbert. Para cada $f \in \mathcal{H}^*$ existe um único $x_f \in \mathcal{H}$ tal que

$$f(x) = \langle x, x_f \rangle, \ \forall x \in \mathcal{H}.$$

Alem disso, $||f||_{\mathcal{H}^*} = ||x_f||_{\mathcal{H}}$.

OBSERVAÇÃO

Note que:

- O operador $\Psi: \mathcal{H}^* \to \mathcal{H}$ dado por $\Psi(f) = x_f$ é uma isometria sobrejetiva.
- A norma em \mathcal{H}^* provém do produto interno

$$\langle f,g\rangle_{\mathcal{H}^*}=\overline{\langle x_f,x_g\rangle_{\mathcal{H}}}.$$

• Todo espaço de Hilbert \mathcal{H} é isometricamente isomorfo a \mathcal{H}^{**} .

