MATE-7007 Análise Funcional - Verão 2022

Prof. Fernando de Ávila Silva Dep. de Matemática - UFPR

31 DE JANEIRO

Aula de hoje: Lema de Zorn e Teorema de Hahn-Banach

- Lema de Zorn
- Teorema de Hahn-Banach

CONJUNTOS PARCIALMENTE ORDENADOS

DEFINIÇÃO

Uma ordem parcial " \leq " em um conjunto M, é uma relação binária que satisfaz as seguintes propriedades:

- (i) $a \le a$ para todo $a \in M$,
- (ii) se $a \le b$ e $b \le a$, então a = b,
- (iii) se $a \le b$ e $b \le c$, então $a \le c$.
 - Um conjunto M é dito parcialmente ordenado se tem uma ordem parcial.
 - Um par de elementos que estejam relacionados pela ordem parcial se diz comparáveis, e nesse sentido enfatizamos a palavra "ordem parcial", pois nem todo par de elementos de M são comparáveis.

EXEMPLO

Dado um conjunto X, então a inclusão de conjuntos \subseteq define uma ordem parcial em $M = \mathcal{P}(X) := \{A : A \subseteq X\}$ e neste caso, nem todo par de elementos (conjuntos) são comparáveis.

COTA SUPERIOR E MAXIMAL

DEFINIÇÃO

- Um subconjunto W de um conjunto parcialmente ordenado M é dito totalmente ordenado (ou uma cadeia), se todo par de elementos de W são comparáveis.
- Uma cota superior de um subconjunto W de um conjunto parcialmente ordenado M é um elemento $u \in M$ tal que

$$x \le u, \quad \forall x \in W$$

• Um elemento $m \in M$ é dito um elemento maximal se tem a seguinte propriedade:

se
$$m < x$$
, $x \in M$, então $x = m$.

EXEMPLOS

- Em \mathbb{R} a relação usual $x \leq y$ é uma ordem total. Aqui não existe elemento maximal.
- \bullet Em \mathbb{R}^2 a relação

$$(x_1, x_2) \le (y_1, y_2) \doteq x_1 \le y_1 e x_2 \le y_2$$

é uma ordem parcial.

- Em $M = \mathcal{P}(\mathbb{R})$ temos relação de ordem parcial $\leq \doteq \subseteq$. Note que \mathbb{R} é uma cota superior para qualquer conjunto $W \subset M$.
- Considere

$$M = \{ A \subseteq \mathbb{R}; A \subset \mathbb{Q}, \text{ ou } A \subset \mathbb{R} \setminus \mathbb{Q} \}$$

com $\leq \doteq \subseteq$. Note que *M* não possui cota superior. Além disso,

$$u_1 = \mathbb{Q} e u_2 = \mathbb{R} \setminus \mathbb{Q}$$

são maximais.

LEMA DE ZORN

LEMA

Seja $M \neq \emptyset$ um conjunto parcialmente ordenado. Se todo subconjunto totalmente ordenado possui uma cota superior, então M tem um elemento maximal.

APLICAÇÃO: BASE DE HAMEL

RELEMBRANDO

Seja \mathcal{V} um espaço vetorial.

- Um subconjunto A de V é dito linearmente independente, se qualquer coleção finita de elementos de A é linearmente independente.
- Dado $A \subset \mathcal{V}$ defini-se o subespaço

$$Ger(A) = \{ \xi \in \mathcal{V}; \ \xi \text{ \'e combinação linear (finita) de elementos de } A \}.$$

ullet Uma base de Hamel do espaço vetorial ${\mathcal V}$ é um subconjunto linearmente independente ${\mathcal E}$ tal que

$$Ger(\mathcal{E}) = \mathcal{V}.$$

TEOREMA

Todo espaço vetorial $X \neq \{0\}$ tem uma base de Hamel.

O TEOREMA DE HAHN-BANACH-REAL

TEOREMA(HAHN-BANACH-ℝ)

Sejam $\mathbb X$ um espaço vetorial real e p um funcional sublinear sobre $\mathbb X$, isto é, $p:\mathbb X\to\mathbb R$ satisfaz

$$p(x + y) \le p(x) + p(y), \quad p(\alpha x) = \alpha p(x), \quad \forall x, y \in \mathbb{X}, \quad \forall \alpha \ge 0.$$

Se f é um funcional linear definido sobre um subespaço Z de \mathbb{X} tal que

$$f(x) \le p(x)$$
 para todo $x \in Z$,

então f tem uma extensão linear \tilde{f} definida em todo o espaço $\mathbb X$ tal que,

$$\tilde{f}(x) \le p(x)$$
 para todo $x \in \mathbb{X}$.

O TEOREMA DE HAHN-BANACH-COMPLEXO

TEOREMA(HAHN-BANACH-C)

Seja \mathbb{X} um espaço vetorial real ou complexo e $p: \mathbb{X} \to \mathbb{R}$ uma função que satisfaz

$$p(x+y) \le p(x) + p(y), \quad p(\alpha x) = |\alpha|p(x), \quad \forall x, y \in \mathbb{X}, \quad \forall \alpha \in \mathbb{K}$$

Se f é um funcional linear definido sobre um subespaço Z de $\mathbb X$ tal que

$$|f(x)| \le p(x)$$
 para todo $x \in Z$,

então f tem uma extensão linear \tilde{f} tal que,

$$|\tilde{f}(x)| \le p(x)$$
 para todo $x \in \mathbb{X}$.

EXTENSÃO DE FUNCIONAIS LIMITADOS

TEOREMA

Seja $\mathbb X$ um espaço normado. Todo funcional linear limitado f definido sobre um subespaço Z de $\mathbb X$ tem uma extensão linear limitada $\tilde f$ definida em todo $\mathbb X$ tal que

$$\|\tilde{f}\| = \|f\|.$$

