Topologia geral

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 2 - Parte 2

Exercício 1 Considere uma função contínua $f:[0,1] \to [0,1]$. Mostre que existe $x \in [0,1]$ tal que f(x) = x. (tente não usar argumentos de análise)

Exercício 2 Para que um espaço X seja conexo é necessário e suficiente que toda aplicação contínua de X num espaço discreto seja constante.

Exercício 3 Mostre que X é conexo se, e somente se, para cada par de pontos $x, y \in X$ existe um conexo contendo x e y.

Exercício 4 Dizemos que um espaço X é totalmente desconexo quando seus únicos subconjuntos conexos são \emptyset e seus pontos. Considere num espaço X a relação de equivalência \sim cujas classes são as componentes conexas de X.

- (a) Mostre que X/\sim é totalmente desconexo;
- (b) Se X for localmente conexo, então a aplicação quociente $\varphi: X \to X/\sim \acute{e}$ aberta.
- (b) Se X for localmente conexo, então $X \to X/\sim \acute{e}$ discreto.

Exercício 5 Mostre que uma topologia induzida por uma pseudométrica p é Hausdorff se, e somente se, p é uma métrica.

Exercício 6 Assuma que a temperatura na superfície terrestre é uma função contínua. Prove que em qualquer instante de tempo t, sobre qualquer grande círculo, existe dois pontos antípodas com mesma temperatura.

Exercício 7 Suponha X um espaço topológico e $\gamma:[0,1]\to X$ contínua. Assuma que γ é localmente injetiva, ou seja, dado $t\in[0,1]$ existe uma vizinhança de t tal que a restrição de γ a V é injeiva. Mostre que, para cada $x\in X$, o seguinte conjunto é finito:

$$\gamma^{-1}(x) = \{ t \in [0, 1] ; \gamma(t) = x \}$$

Exercício 8 O que é a um-ponto compactificação de $X=(0,1)\cup(2,3)$?

Exercício 9 O que é a um-ponto compactificação de $X = \mathbb{R}^2$?

Exercício 10 Considere $pX \to Y$ uma aplicação quociente. Mosre que se cada conjunto $p^{-1}(\{y\})$ é conexo e Y é conexo, então X é conexo.

Exercício 11 Se $f: X \to Y$ é contínua e X conexo por caminhos, então f(X) é conexo por caminhos?

Exercício 12 Se $f: X \to Y$ é contínua e X conexo por caminhos, então f(X) é conexo?

Exercício 13 Se $f: X \to Y$ é contínua e X conexo por caminhos, então f(X) é conexo?

Exercício 14 Se $f: X \to Y$ é contínua e X localmente compacto, então f(X) localmente compacto?

Exercício 15 Se $\{A_{\alpha}\}$ é uma coleção de conjuntos conexos por caminhos e $\cap_{\alpha} A_{\alpha} \neq \emptyset$, então $\cup_{\alpha} A_{\alpha}$ é conexos por caminhos ?

Exercício 16 Se $A \subset X$ é conexo por caminhos, então \overline{A} é conexo por caminhos?

Exercício 17 Se $A \subset X$ é conexo, o que podemos dizer de int(A) e $\partial(A)$?

Exercício 18 Dizemos que uma coleção de subconjuntos C de X tem a propriedade de interceçãio finita (pif) se dada qualquer subcoleção finita $\{C_1, \ldots, C_n\}$ de C tivermos $\bigcap_{i=1}^n C_i \neq \emptyset$.

Seja X um espaço topológico. Mostre que X é compacto se, e somente se, para toda coleção de fechados que satisfazer pif a interceção $\cap_{C \in \mathcal{C}} C$ é não vazia.

Exercício 19 Mostre que se $U \subset \mathbb{R}^n$ é um aberto conexo, então U é conexo por caminhos. (Dica: fixado $x_0 \in U$ considere o conjunto A dos pontos que podem ser ligados a x_0 por caminhos contidos em U)

Exercício 20 Sejam X e Y espaços localmente compactos e $f: X \to Y$ um homemorfismo. Mostre que f se estende a um homemorfismo sobre a um-ponto compactificação destes espaços.