Cálculo 2

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 3: Curvas e campos

Exercício 1 Uma partícula desloca-se no espaço com equações paramétricas $x=x(t),\ y=y(t)$ e z=z(t) de tal forma que

$$x'(t) = \sqrt{2}, \ y'(t) = \sqrt{2} \ e \ z''(t) = -2.$$

Sabe-se ainda que z'(0) = 2 e que (x(0), y(0), z(0)) = (0, 0, 0).

- (a) Qual a posição da partícula num instante t?
- (b) Determine o instante T no qual a partícula volta a tocar o plano xy.
- (c) Qual o espaço percorrido entre os instantes t = 0 e t = T?

Exercício 2 $D\hat{e}$ um exemplo de duas curvas γ e β que possuem o mesmo traço, ou seja, $Im(\gamma) = Im(\beta)$, mas possuem comprimentos distintos.

Exercício 3 Sejam a e b dois números reais, com a > 0 e b < 0. Considere a curva $\gamma(t) = (ae^{bt}cos(t), ae^{bt}sen(t))$ definida em \mathbb{R} .

- (a) Mostre que quando $t \to \infty$, tem-se $\gamma(t) \to 0$.
- (b) Faça um esboço do traço de γ ;
- (c) Mostre que $\gamma'(t) \to (0,0)$, quando $t \to \infty$ e, além disso, o limite

$$\lim_{t \to \infty} \int_{t_0}^t |\gamma'(t)| dt$$

é finito. Isso significa que γ tem comprimento finito no intervalo $[t_0,\infty)$.

Obs: Dada uma curva $f: \mathbb{R} \to \mathbb{R}^n$, definimos $\lim_{t \to \infty} f(t)$ pondo

$$\lim_{t\to\infty} f(t) \doteq \left(\lim_{t\to\infty} f_1(t), \dots, \lim_{t\to\infty} f_n(t)\right),\,$$

se cada um dos limites $\lim_{t\to\infty} f_j(t)$ existe. (O caso $\lim_{t\to-\infty} f(t)$ é análogo)