CM 095 - Análise I

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 1

1 Conjuntos

Exercício 1 Prove que o conjunto vazio é subconjunto de qualquer conjunto.

Exercício 2 Sejam $A, B \subset E$. Prove que:

$$A \cap B = \emptyset \Leftrightarrow A \subset B^c,$$

$$A \cup B = E \Leftrightarrow A^c \subset B.$$

Exercício 3 Dados $A, B \subset E$, prove que $A \subset B$ se, e somente se, $A \cap B^c = \emptyset$.

Exercício 4 Dê um exemplo de conjuntos A, B e C tais que $(A \cup B) \cap C \neq A \cup (B \cap C)$.

Exercício 5 Se $A, X \subset E$ são tais que $A \cap X = \emptyset$ e $A \cup X = E$, então $X = A^c$.

Exercício 6 Prove as sequintes afirmações:

(a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
;

(a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C);$$
 (c) $(A - B) \times C = (A \times C) - (B \times C);$

(b)
$$(A \cap B) \times C = (A \times C) \cap (B \times C);$$

(d)
$$A \subset A', B \subset B' \Rightarrow A \times B \subset A' \times B'$$
:

Exercício 7 Sejam L e M dois conjuntos de índices e duas famílias de conjuntos $\{A_{\lambda}\}_{{\lambda}\in L}$, $\{B_{\mu}\}_{{\mu}\in M}$,

$$\{A_{\lambda} \cup B_{\mu}\}_{(\lambda,\mu) \in L \times M} \quad e \quad \{A_{\lambda} \cap B_{\mu}\}_{(\lambda,\mu) \in L \times M}.$$

- (a) Exiba um exemplo para o caso em que L e M são finitos;
- (b) Exiba um exemplo para o caso em que L e M são infinitos;
- (c) Prove as sequintes iqualdades

$$\left(\bigcup_{\lambda \in L} A_{\lambda}\right) \bigcap \left(\bigcup_{\mu \in M} B_{\mu}\right) = \bigcup_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cap B_{\mu})$$

$$\left(\bigcap_{\lambda \in L} A_{\lambda}\right) \bigcup \left(\bigcup_{\mu \in M} B_{\mu}\right) = \bigcap_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cap B_{\mu})$$

Exercício 8 Seja $\{A_{i,j}\}_{(i,j)\in\mathbb{N}\times N}$ uma família de conjuntos com índices em $\mathbb{N}\times N$. Exiba uma demonstração, ou um contra-exemplo, para a seguinte igualdade:

$$\bigcup_{j=1}^{\infty} \left(\bigcap_{i=1}^{\infty} A_{i,j} \right) = \bigcap_{i=1}^{\infty} \left(\bigcup_{j=1}^{\infty} A_{i,j} \right)$$

Exercício 9 Para cada elemento $n \in \mathbb{N}$ defina $A_n = \{(n+1)k, \ \forall k \in \mathbb{N}\}.$

- (a) Determine $A_1 \times A_2$;
- (b) Determine

$$\bigcup_{n\in\mathbb{N}} A_n \quad e \quad \bigcap_{n\in\mathbb{N}} A_n.$$

Exercício 10 Dada uma sequência de conjuntos $A_1, A_2, \ldots A_n, \ldots$, considere os conjuntos

$$\limsup A_n \doteq \bigcap_{n=1}^{\infty} \left(\bigcup_{i=n}^{\infty} A_i \right) \quad e \quad \liminf A_n \doteq \bigcup_{n=1}^{\infty} \left(\bigcap_{i=n}^{\infty} A_i \right).$$

- (a) Prove que $\limsup A_n$ é o conjunto dos elementos que pertencem a A_n para uma infinidade de valores de n;
- (b) Prove que $\liminf A_n$ é o conjunto dos elementos que pertencem a todo A_n , salvo para uma quantidade finita de de valores de n;
- (c) Prove que $\liminf A_n \subset \limsup A_n$;
- (d) Se $A_n \subset A_{n+1}$ para todo n, então

$$\lim\inf A_n = \lim\sup A_n = \bigcup_{i=n}^{\infty} A_i.$$

(e) Se $A_{n+1} \subset A_n$ para todo n, então

$$\lim\inf A_n = \lim\sup A_n = \bigcap_{i=n}^{\infty} A_n.$$

(f) Exiba um exemplo em que $\liminf A_n \neq \limsup A_n$;

2 Funções

Exercício 11 Dados conjuntos A e B, suponha que existam funções injetivas $f: A \to B$ e $g: B \to A$. Prove que existe uma bijeção $h: A \to B$.

Exercício 12 Considere uma função $f: X \to Y$. Mostre que f é injetiva se, e somente se, existe uma função $g: Y \to X$ tal que $g \circ f$ é a função identidade de X, ou seja, $(g \circ f)(x) = x, \forall x \in X$.

Exercício 13 Considere uma função $f: X \to Y$. Mostre que f é sobrejetiva se, e somente se, existe uma função $g: Y \to X$ tal que $g \circ f$ é a função identidade de Y, ou seja, $(f \circ g)(y) = y, \forall y \in Y$.

Exercício 14 Considere uma função $f: X \to Y$, conjuntos $A \subset X$ e $B \subset Y$.

- $(a)\ \, \textit{Mostre que}\,\, f[f^{-1}[B]] \subset B\,\, e\,\, f^{-1}[f[A]] \supset A;;$
- (b) Mostre um exemplo onde não vale $f[f^{-1}[B]] = B$, ou $f^{-1}[f[A]] = A$;
- (c) Mostre que se f é sobrejetiva, então $f[f^{-1}[B]] = B$.

Exercício 15 Considere um conjunto A e uma coleção de subconjuntos $\{A_{\lambda}\}_{{\lambda}\in M}$, sendo M um conjunto de índices. Dada uma função $f:A\to B$, mostre que:

(a)
$$f[\cup A_{\lambda}] = \cup f[A_{\lambda}];$$

- (b) $f[\cap A_{\lambda}] \subset \cap f[A_{\lambda}];$
- (c) Obtenha um exemplo em que $f[\cap A_{\lambda}] \neq \cap f[A_{\lambda}]$;

Supondo $\{B_{\mu}\}_{\mu\in L}$ uma coleção de subconjunto de B, para uma família de índices L. Mostre que:

- (d) $f^{-1}[\cup B_{\mu}] = \cup f[B_{\mu}];$
- $(f) f^{-1}[\cap B_{\mu}] = \cap f[B_{\mu}];$

3 Indução

Exercício 16 Demonstre os seguintes fatos:

- (a) $2(1+2+3+\ldots+n) = n(n+1);$
- (b) $1+2+3+\ldots+(2n+)=(n+1)^2$;
- (c) $(a-1)(1+a+\ldots a^n)=a^{n+1}-1$, dado $a\in\mathbb{N}$;
- (d) $n \geqslant 4 \Rightarrow n! > 2^n$;
- (e) $n^3 + 5n$ é divisível por 6;
- (f) $n < 2^n$;

Exercício 17 Dados os números naturais a, b, prove que existe um número natural m tal que ma > b.

Exercício 18 Um elemento $a \in \mathbb{N}$ chama-se antecessor de $b \in \mathbb{N}$ se a < b e não existe $c \in \mathbb{N}$ tal que a < c < b. Prove que, exceto o 1, todo número natural possui um antecessor.

Exercício 19 Seja X um conjunto com n elementos. Prove que o conjunto das bijeções $f: \mathbb{N} \to \mathbb{N}$ possui n! elementos.

Exercício 20 Dado um conjunto finito X, prove que uma função $f: X \to X$ é injetiva se, e somente se, é bijetiva.

Exercício 21 Sejam X e Y conjuntos finitos. Prove que

$$card(X \cup Y) = card(X) + card(Y) - card(X \cap Y).$$

Exercício 22 Prove que se A tem n elementos, então $\mathcal{P}(A)$ tem 2^n elementos.

Exercício 23 Considere a sequência $\{x_n\}$ definida da seguinte forma: $x_1 = 1$, $x_2 = 2$ e

$$x_{n+1} = \frac{1}{2}(x_{n+1} + x_n), \ \forall n \in \mathbb{N}.$$

Use o Princípio da Indução Forte para mostrar que $1 \leq x_n \leq 2$, $\forall n \in \mathbb{N}$.

Exercício 24 Prove a fómula binomial: dados $a, b \ge 0$ e qualquer $n \in \mathbb{N}$ temos

$$(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}, \quad sendo \quad \binom{k}{n} = \frac{n!}{(n-k)!k!}.$$