Análise I

Professor:

Fernando de Ávila Silva

Departamento de Matemática - UFPR

LISTA 5 - Sequências

Exercício 1 Dados $X, Y \subset \mathbb{R}$, mostre que $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$ e $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$;

Exercício 2 Sejam um conjunto $A \subset \mathbb{R}$ e um ponto $p \in \mathbb{R}$. Dizemos que p é um ponto de fronteira de A se toda bola aberta centrada em p contém pontos de A e de A^c. O conjunto de todos estes os chamado de fronteira de A e denotado por ∂A .

- (a) Determine $\partial \mathbb{Q}$;
- (b) Mostre que $A = \overline{A}$ se, e somente se, $\partial A \subset A$;

Exercício 3 Mostre que se $A \subset \mathbb{R}$ é não enumerável, então A' também é não enumerável;

Exercício 4 Mostre que se $A \subset \mathbb{R}$ então $\overline{A} \setminus A'$ é enumerável (pode também ser finito);

Exercício 5 Prove as seguintes igualdades (não precisa ser utilizando a definição de limite):

(a)
$$\lim \frac{2n+1}{n} = 2;$$
 (b) $\lim \frac{2n+1}{n+5} = 2;$ (c) $\lim \frac{2n+1}{n^2+1} = 0;$

(b)
$$\lim \frac{2n+1}{n+5} = 2;$$

(c)
$$\lim \frac{2n+1}{n^2+1} = 0$$

Exercício 6 Calcule $\lim(x_n)$, sendo $\{x_n\}_{n\in\mathbb{N}}$ definida sa seguinte forma:

$$x_1 = 1, \ x_2 = \frac{1}{1+1}, \ x_3 = \frac{1}{1+\frac{1}{1+1}}, \dots, \ x_n = \frac{1}{1+\frac{1}{1+1}}$$

Exercício 7 Considere a sequência (de Fibonacci) $\{f_n\}_{n\in\mathbb{N}}$ definda sa seguinte forma: $f_1=1,\ f_2=2$ $e \ f_{n+1} = f_{n-1} + f_n, \ se \ n \ge 2. \ Calcule \ \lim (f_{n+1}/f_n);$

Exercício 8 Suponha que $x = \{x_n\}_{n \in \mathbb{N}}$ é uma sequência de números reais. Prove que se x é convergente, então a sequência $\{|x_n|\}_{n\in\mathbb{N}}$ também o é. O contrário é verdadeiro?

Exercício 9 Sejam $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ sequências de números reais. Mostre que:

- (a) se $x_n \to a$ e $x_n \ge 0$, para todo $n \in \mathbb{N}$, então $a \ge 0$;
- (b) se $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ são convergentes, com $x_n\leqslant y_n$, para todo $n\in\mathbb{N}$, então

$$\lim(x_n) \leqslant \lim(y_n);$$

(c) se existe outra sequência $\{z_n\}_{n\in\mathbb{N}}$ satisfazendo

$$\lim(x_n) = \lim(z_n) = a \ e \ x_n \leqslant y_n \leqslant z_n,$$

 $ent\tilde{a}o \lim(y_n) = a;$

(d)
$$\lim \frac{\sin(n)}{n} = 0;$$

Exercício 10 Mostre que para cada $a \in \mathbb{R}$ existe uma sequência $\{x_n\}_{n\in\mathbb{N}}$ de termos racionais convergindo para a;

Exercício 11 Sejam $x = \{x_n\}_{n \in \mathbb{N}}$ e $y = \{y_n\}_{n \in \mathbb{N}}$ duas sequências de Cauchy de números reais. Defina a seguinte relação:

$$x \sim y \Leftrightarrow \lim_{n \to \infty} (|x_n - y_n|) = 0.$$

Mostre que:

(a)
$$x \sim x$$
, (b) $x \sim y \Rightarrow y \sim x$, (c) $x \sim y \ e \ y \sim z \Rightarrow x \sim z$,

sendo $z = \{z_n\}_{n \in \mathbb{N}}$ uma sequência de Cauchy;

Exercício 12 Sejam $\{x_n\}_{n\in\mathbb{N}}$ e $\{y_n\}_{n\in\mathbb{N}}$ sequências (limitadas) de números reais, com

$$\limsup (x_n) = A$$
, $\liminf (x_n) = a$, $\limsup (y_n) = B$, e $\liminf (y_n) = b$

Mostre que:

- (a) $\limsup (x_n + y_n) \leq A + B$ e $\liminf (x_n + y_n) \geq a + b$;
- (b) $\limsup(-x_n) = -a$ e $\liminf(-y_n) = -A$;
- (c) $\limsup (x_n \cdot y_n) \leqslant A \cdot B$ e $\liminf (x_n \cdot y_n) \geqslant a \cdot b$;

1 Desafios: Espaços Métricos

Definição 1 Um espaço métrico M=(M,d) é um conjunto munido de uma função $d:M\times M\to\mathbb{R}$ que satisfiaz as sequintes propriedades:

- (a) $d(x,y) \ge 0$, para todo $x,y \in M$;
- (b) $d(x,y) = 0 \Leftrightarrow x = y$;
- (c) $d(x,y) \le d(x,z) + d(z,y)$, para todo $x, y, z \in M$;

Uma função com tal propriedade é dita uma métrica em M.

- 1. Qual deveria ser a definição de sequência convergente num espaço métricos?
- 2. Qual deveria ser a definição de sequência de Caucy num espaço métricos?
- 3. Ser convergente e ser de Cauchy são conceitos equivalentes?
- 4. Um espaço métrico no qual vale tal equivalência é dito espaço métrico completo.

Exercício 13 Seja C o conjunto dos números complexo s com sua estrutura natural de soma e produto.

(a) Mostre que $d(w,z) \doteq |w-z|$ define uma métrica em \mathbb{C} . Aqui, $|z| = \sqrt{a^2 + b^2}$, em que z = a + ib.

(b) Dada uma squência $\{x_n\}_{n\in\mathbb{N}}$, podemos escrever

$$x_n = a_n + ib_n, \ n \in \mathbb{N},$$

com $\{a_n\},\{b_n\}\subset\mathbb{R}$. Mostre que $x_n\to p=a+ib$ se, e somente se

$$a_n \to a \ e \ b_n \to p;$$

(c) O espaço métrico \mathbb{C} é completo?

Exercício 14 Considere em \mathbb{C} a métrica usual d(z, w) = |z - w|.

Exercício 15 Seja M um conjunto não vazio. Dados $p, q \in M$ defina

$$d(p,q) \doteq \{ 1, se \ p \neq q, 0, se \ p = q. \}$$

Mostre que d(p,q) define uma métrica;

Exercício 16 Considere o espaço \mathbb{R}^k com a métrica

$$d(x,y) = ||x - y|| = \left(\sum_{j=1}^{k} (x^j - y^j)^2\right)^{1/2},$$

sendo $x=(x^1,\ldots,x^k)$ e $y=(y^1,\ldots,y^k)$. Os termos de uma sequência $\{x_n\}_{n\in\mathbb{N}}$ em \mathbb{R}^k podem ser denotados da seguinte forma:

$$x_n = (x_n^1, x_n^2, \dots, x_n^k) \in \mathbb{R}^k.$$

Mostre que uma sequência $\{x_n\}_{n\in\mathbb{N}}$ converge para $p=(p^1,\ldots,p^k)$ se, e somente se, a sequência $\{x_n^j\}_{n\in\mathbb{N}}$ converge para p^j , para cada $j\in\{1,2,\ldots,k\}$;