
Protein and5 Amino Acids

Dietary protein generally refers to crude protein (CP),
which is defined for feedstuffs as the nitrogen (N) content
� 6.25. The definition is based on the assumption that
the average N content of feedstuffs is 16 g per 100 g of
protein. The calculated CP content includes both protein
and nonprotein N (NPN). Feedstuffs vary widely in their
relative proportions of protein and NPN, in the rate and
extent of ruminal degradation of protein, and in the intesti-
nal digestibility and amino acid (AA) composition of rumi-
nally undegraded feed protein. The NPN in feed and sup-
plements such as urea and ammonium salts are considered
to be degraded completely in the rumen.

I MP OR T AN CE A ND GO A LS OF P RO TE I N
A ND AM I NO AC I D N UT R IT IO N

Ruminally synthesized microbial CP (MCP), ruminally
undegraded feed CP (RUP), and to a much lesser extent,
endogenous CP (ECP) contribute to passage of metaboliz-
able protein (MP) to the small intestine. Metabolizable
protein is defined as the true protein that is digested postru-
minally and the component AA absorbed by the intestine.
Amino acids, and not protein per se, are the required
nutrients. Absorbed AA, used principally as building blocks
for the synthesis of proteins, are vital to the maintenance,
growth, reproduction, and lactation of dairy cattle. Presum-
ably, an ideal pattern of absorbed AA exists for each of
these physiologic functions. The Nutrient Requirements of
Poultry (National Research Council, 1994) and the Nutri-
ent Requirements of Swine (National Research Council,
1998) indicate that an optimum AA profile exists in MP
for each physiologic state of the animal and this is assumed
to be true for dairy animals.

The goals of ruminant protein nutrition are to provide
adequate amounts of rumen-degradable protein (RDP) for
optimal ruminal efficiency and to obtain the desired animal
productivity with a minimum amount of dietary CP. Opti-
mizing the efficiency of use of dietary CP requires selection
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of complementary feed proteins and NPN supplements
that will provide the types and amounts of RDP that will
meet, but not exceed, the N needs of ruminal microorgan-
isms for maximal synthesis of MCP, and the types and
amounts of digestible RUP that will optimize, in so far
as possible, the profile and amounts of absorbed AA. As
discussed later, research indicates that the nutritive value
of MP for dairy cattle is determined by its profile of essen-
tial AA (EAA) and probably also by the contribution of
total EAA to MP. Improving the efficiency of protein and
N usage while striving for optimal productivity is a matter
of practical concern. Incentives include reduced feed costs
per unit of lean tissue gain or milk protein produced, a
desire for greater and more efficient yields of milk protein,
creation of space in the diet for other nutrients that will
enhance production, and concerns of waste N disposal.
Regarding milk protein production, research indicates that
content (and thus yield) of milk protein can be increased
by improving the profile of AA in MP, by reducing the
amount of ‘‘surplus’’ protein in the diet, and by increasing
the amount of fermentable carbohydrate in the diet.

Major Differences from Previous Edition

In 1985, the Subcommittee on Nitrogen Usage in Rumi-
nants (National Research Council, 1985) expressed protein
requirements in units of absorbed protein. Absorbed pro-
tein was defined as the digestible true protein (i.e., digest-
ible total AA) that is provided to the animal by ruminally
synthesized MCP and feed protein that escaped ruminal
degradation. This approach was adopted for the previous
edition of this publication (National Research Council,
1989). The absorbed protein method introduced the con-
cept of degraded intake CP (DIP) and undegraded intake
CP (UIP). Mean values of ruminal undegradability for
common feeds, derived from in vivo and in situ studies
using sheep and cattle, were reported. This factorial
approach for estimating protein requirements recognized
the three fates of dietary protein (fermentative digestion
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in the reticulo-rumen, hydrolytic/enzymatic digestion in
the intestine, and passage of indigestible protein with feces)
and separated the requirements of ruminal microorganisms
from those of the host animal. However, a fixed intestinal
digestibility of 80 percent for UIP was used, no consider-
ation was given to the contribution of endogenous CP to
MP, and no consideration was given to the AA composition
of UIP or of absorbed protein.

Some differences exist in terminology. To be consistent
with the current edition of Nutrient Requirements of Beef
Cattle (National Research Council, 1996), and to avoid
implications that proteins are absorbed, the term MP
replaces absorbed protein. To be consistent with the Jour-
nal of Dairy Science, the terms DIP and UIP are replaced
with RDP and RUP, respectively.

The primary differences between the protein system of
this publication and that used in the previous edition relate
to predicting nutrient supply. Microbial CP flows are pre-
dicted from intake of total tract digestible organic matter
(OM) instead of net energy intake. The regression equation
considers the variability in efficiency of MCP production
associated with apparent adequacy of RDP. A mechanistic
system developed from in situ data is used for calculating
the RUP content of feedstuffs. Insofar as regression equa-
tions allow, the system considers some of the factors (DMI,
percentage of concentrate feeds in diet DM, and percent-
age NDF in diet DM) that affect rates of passage of undi-
gested feed and thus the RUP content of a feedstuff. The
system is considered to be applicable to all dairy animals
with body weights greater than 100 kg and that are fed for
early rumen development. To increase the accuracy of
estimating the contribution of the RUP fraction of individ-
ual feedstuffs to MP, estimates of intestinal digestibility
have been assigned to the RUP fraction of each feedstuff
(range � 50 to 100). Endogenous protein and NPN also
are considered to contribute to passage of CP to the small
intestine. Endogenous CP flows are calculated from intake
of DM. And finally, regression equations are included that
predict directly the content of each EAA in total EAA of
duodenal protein and flows of total EAA. Flows of digest-
ible EAA and their contribution to MP are calculated.
Dose-response curves that relate measured milk protein
content and yield responses to changes of predicted per-
centages of digestible Lys and Met in MP are presented.
The dose-response relationships provide estimates of
model-determined amounts of Lys and Met required in
MP for optimal utilization of absorbed AA for milk protein
production. The inclusion of equations for predicting pas-
sage of EAA to the small intestine along with assignment
of RUP digestibility values that are unique to individual
feedstuffs brings awareness to differences in nutritive value
of RUP from different feedstuffs and should improve the
prediction of animal responses to substitution of protein
sources.

P RO TE I N

Chemistry of Feed Crude Protein

Feedstuffs contain numerous different proteins and sev-
eral types of NPN compounds. Proteins are large molecules
that differ in size, shape, function, solubility, and AA com-
position. Proteins have been classified on the basis of their
3-dimensional structure and solubility characteristics.
Examples of classifications based on solubility would
include globular proteins [albumins (soluble in water and
alkali solutions and insoluble in salt and alcohol), globulins
(soluble in salt and alkali solutions and sparingly soluble
or insoluble in water and insoluble in alcohol), glutelins
(soluble only in alkali), prolamines (soluble in 70 to 80
percent ethanol and alkali and insoluble in water, salt,
and absolute alcohol), histones (soluble in water and salt
solutions and insoluble in ammonium hydroxide)] and
fibrous proteins [e.g., collagens, elastins, and keratins
(insoluble in water or salt solutions and resistant to diges-
tive enzymes)] (Orten and Neuhaus, 1975; Rodwell, 1985;
Van Soest, 1994). Globular proteins are common to all
feedstuffs whereas fibrous proteins are limited to feeds of
animal and marine origin. Albumins and globular proteins
are low molecular weight proteins. Prolamines and glutel-
ins are higher molecular weight proteins and contain more
disulfide bonds. Generally, feeds of plant origin contain
all of the globular proteins but in differing amounts. For
example, cereal grains and by-product feeds derived from
cereal grains contain more glutelins and prolamines
whereas leaves and stems are rich in albumins (Blethen et
al., 1990; Sniffen, 1974; Van Soest, 1994). A sequential
extraction of 38 different feeds with water, dilute salt (0.5
percent NaCl), aqueous alcohol (80 percent ethanol), and
dilute alkali (0.2 percent NaOH) indicated that the classic
protein fractions (albumins, globulins, prolamines, and glu-
telins) plus NPN accounted for an average of 65 percent
of total N (Blethen et al., 1990). The unaccounted for,
insoluble N would include protein bound in intact aleurone
granules of cereal grains, most of the cell-wall associated
proteins, and some of the chloroplasmic and heat-dena-
tured proteins that are associated with NDF (Van Soest,
1994). Among the feeds that were evaluated, those with
the highest percentage of insoluble protein (� 40 percent
of CP) were forages, beet pulp, soy hulls, sorghum, dried
brewers grains, dried distillers grains, fish meal, and meat
and bone meal (Blethen et al., 1990).

Feedstuffs also contain variable amounts of low molecu-
lar weight NPN compounds. These compounds include
peptides, free AA, nucleic acids, amides, amines, and
ammonia. Nonprotein N compounds generally are deter-
mined as the N remaining in the filtrate after precipitation
of the true protein with either tungstic or trichloroacetic
acid (Licitra et al., 1996). Grasses and legume forages
contain the highest and most variable concentrations of
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NPN. Most of the reported concentrations of NPN in CP
of grasses and legume forages are within the following
ranges: fresh material (10B15%), hay (15B25%), and silage
(30B65%) (Fairbairn et al., 1988; Garcia et al., 1989; Grum
et al., 1991; Hughes, 1970; Krishnamoorthy et al., 1982;
Messman et al., 1994; Van Soest, 1994; Xu et al., 1996).
Hays and especially silages contain higher amounts of NPN
than the same feed when fresh because of the proteolysis
that occurs during wilting and fermentation. The proteoly-
sis that occurs in forages during wilting and ensiling is a
result of plant and microbial proteases and peptidases.
Plant proteases and peptidases are active in cut forage and
are considered to be the principal enzymes responsible for
the conversion of true protein to NPN in hays and ensiled
feeds (Fairbairn et al., 1988; Van Soest, 1994). Rapid wilt-
ing of cut forages and conditions that promote rapid reduc-
tions in pH of ensiled feeds slow proteolysis and reduce
the conversion of true protein to NPN (Garcia et al., 1989;
Van Soest, 1994). The NPN content of fresh forage is
composed largely of peptides, free AA, and nitrates (Van
Soest, 1994). Fermented forages have a different composi-
tion of NPN than fresh forages. Fermented forages have
higher proportional concentrations of free AA, ammonia,
and amines and lower concentrations of peptides and
nitrate (Fairbairn et al., 1988; Van Soest, 1994). The NPN
content of most non-forage feeds is 12 percent or less of
CP (Krishnamoorthy et al., 1982; Licitra et al., 1996; Van
Soest, 1994; Xu et al., 1996).

Mechanism of Ruminal Protein Degradation

The potentially fermentable pool of protein includes
feed proteins plus the endogenous proteins of saliva,
sloughed epithelial cells, and the remains of lysed ruminal
microorganisms. The mechanism of ruminal degradation
has been reviewed (Broderick et al., 1991; Broderick, 1998;
Cotta and Hespell, 1984; Jouany, 1996; Jouany and Ushida,
1999; Wallace, 1996; Wallace et al., 1999). In brief, all of
the enzymatic activity of ruminal protein degradation is
of microbial origin. Many strains and species of bacteria,
protozoa, and anaerobic fungi participate by elaborating a
variety of proteases, peptidases, and deaminases (Wallace,
1996). The liberated peptides, AA, and ammonia are nutri-
ents for the growth of ruminal microorganisms. Peptide
breakdown to AA must occur before AA are incorporated
into microbial protein (Wallace, 1996). When protein deg-
radation exceeds the rate of AA and ammonia assimilation
into microbial protein, peptide and AA catabolism leads
to excessive ruminal ammonia concentrations. Some of the
peptides and AA not incorporated into microbial protein
may escape ruminal degradation to ammonia and become
sources of absorbed AA to the host animal.

Bacteria are the principal microorganisms involved in
protein degradation. Bacteria are the most abundant micro-

organisms in the rumen (1010– 11/ml) and 40 percent or more
of isolated species exhibit proteolytic activity (Broderick
et al., 1991; Cotta and Hespell, 1984; Wallace, 1996). Most
bacterial proteases are associated with the cell surface
(Kopecny and Wallace, 1982); only about 10 percent of
the total proteolytic activity is cell free (Broderick, 1998).
Therefore, the initial step in protein degradation by rumi-
nal bacteria is adsorption of soluble proteins to bacteria
(Nugent and Mangan, 1981; Wallace, 1985) or adsorption
of bacteria to insoluble proteins (Broderick et al., 1991).
Extracellular proteolysis gives rise to oligopeptides which
are degraded further to small peptides and some free AA.
Following bacterial uptake of small peptides and free AA,
there are five distinct intracellular events: (1) cleavage of
peptides to free AA, (2) utilization of free AA for protein
synthesis, (3) catabolism of free AA to ammonia and carbon
skeletons (i.e., deamination), (4) utilization of ammonia for
resynthesis of AA, and (5) diffusion of ammonia out of the
cell (Broderick, 1998).

The bacterial population that is responsible for AA
deamination has been of considerable interest. Amino acid
catabolism and ammonia production in excess of bacterial
need wastes dietary CP and reduces efficiency of use of
RDP for ruminant production. For many years it was
assumed that deamination was limited to the large number
of species of bacteria that had been identified to produce
ammonia from protein or protein hydrolyzates (Wallace,
1996). However, this assumption was challenged by Russell
and co-workers (Chen and Russell, 1988, 1989; Russell et
al., 1988) who concluded that the deaminative activity of
these bacteria was too low to account for rates of ammonia
production usually observed in vivo or in vitro with mixed
cultures. Their efforts led to the eventual isolation of a small
group of bacteria that had exceptionally high deaminative
activity and that used AA as their main source of carbon
and energy (Russell et al., 1988; Paster et al., 1993). As a
result of these and other studies, it is now accepted that
AA deamination by bacteria is carried out by a combination
of numerous bacteria with low deaminative activity and a
much smaller number of bacteria with high activity (Wal-
lace, 1996). Of particular interest has been the observation
that the growth of some of these bacteria with high deami-
nating activity is suppressed by the ionophore, monensin
(Chen and Russell, 1988, 1989; Russell et al., 1988).

Protozoa also are active and significant participants in
ruminal protein degradation. Protozoa are less numerous
than bacteria in ruminal contents (105– 6/ml) but because
of their large size, they comprise a significant portion of
the total microbial biomass in the rumen (generally less
than 10 percent but sometimes as high as 50 percent)
(Jouany, 1996; Jouany and Ushida, 1999). Several differ-
ences exist between protozoa and bacteria in their metabo-
lism of protein. First, they differ in feeding behavior.
Instead of forming a complex with feeds, protozoa ingest
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particulate matter (bacteria, fungi, and small feed parti-
cles). Bacteria are their principal source of ingested protein
(Jouany and Ushida, 1999). As a result of this feeding
behavior (i.e., ingestion of food), protozoa are more active
in degrading insoluble feed proteins (e.g., soybean meal
or fish meal) than more soluble feed proteins (e.g., casein)
(Hino and Russell, 1987; Jouany, 1996; Jouany and Ushida,
1999). Ingested proteins are degraded within the cell to
yield a mixture of peptides and free AA; the AA are incorpo-
rated into protozoal protein. Proteolytic specific activity of
protozoa is higher than that of bacteria (Nolan, 1993). A
second difference between protozoa and bacteria is that
while both actively deaminate AA, protozoa are not able
to synthesize AA from ammonia (Jouany and Ushida, 1999).
Thus, protozoa are net exporters of ammonia and because
of this, defaunation decreases ruminal ammonia concentra-
tions (Jouany and Ushida, 1999). And lastly, protozoa
release large amounts of peptides and AA as well as pepti-
dases into ruminal fluid. This is the result of significant
secretory processes and significant autolysis and death
(Coleman, 1985; Dijkstra, 1994). Jouany and Ushida (1999)
suggest that excreted small peptides and AA can represent
50 percent of total protein ingested by protozoa. Other
studies indicate that 65 percent or more of protozoal pro-
tein recycles within the rumen (Ffoulkes and Leng, 1988;
Punia et al., 1992).

Much less is known about the involvement of fungi in
ruminal protein catabolism. Currently, anaerobic fungi are
considered to have negligible effects on ruminal protein
digestion because of their low concentrations in ruminal
digesta (103– 4/ml) (Jouany and Ushida, 1999; Wallace and
Monroe, 1986).

Kinetics of Ruminal Protein Degradation

Ruminal degradation of dietary feed CP is an important
factor influencing ruminal fermentation and AA supply to
dairy cattle. RDP and RUP are two components of dietary
feed CP that have separate and distinct functions. Rumina-
lly degraded feed CP provides a mixture of peptides, free
AA, and ammonia for microbial growth and synthesis of
microbial protein. Ruminally synthesized microbial protein
typically supplies most of the AA passing to the small intes-
tine. Ruminally undegraded protein is the second most
important source of absorbable AA to the animal. Knowl-
edge of the kinetics of ruminal degradation of feed proteins
is fundamental to formulating diets for adequate amounts
of RDP for rumen microorganisms and adequate amounts
of RUP for the host animal.

Ruminal protein degradation is described most often by
first order mass action models. An important feature of
these models is that they consider that the CP fraction of
feedstuffs consists of multiple fractions that differ widely
in rates of degradation, and that ruminal disappearance of

protein is the result of two simultaneous activities, degrada-
tion and passage. One of the more complex of these models
is the Cornell Net Carbohydrate Protein System (CNCPS)
(Sniffen et al., 1992). In this model, feed CP is divided
into five fractions (A, B1, B2, B3, and C) which sum to
unity. The five fractions have different rates of ruminal
degradation. Fraction A (NPN) is the percentage of CP
that is instantaneously solubilized at time zero, which is
assumed to have a degradation rate (kd) of infinity; it is
determined chemically as that proportion of CP that is
soluble in borate-phosphate buffer but not precipitated
with the protein denaturant, trichloroacetic acetic (TCA)
(Figure 5-1). Fraction C is determined chemically as the
percentage of total CP recovered with ADF (i.e., ADIN)
and is considered to be undegradable. Fraction C contains
proteins associated with lignin and tannins and heat-dam-
aged proteins such as the Maillard reaction products (Snif-
fen et al., 1992). The remaining B fractions represent
potentially degradable true protein. The amounts of each
of these 3 fractions that are degraded in the rumen are
determined by their fractional rates of degradation (kd) and
passage (kp); a single kp value is used for all fractions.
Fraction B1 is that percentage of total CP that is soluble
in borate-phosphate buffer and precipitated with TCA.
Fraction B3 is calculated as the difference between the
portions of total CP recovered with NDF (i.e., NDIN) and
ADF (i.e., fraction C). Fraction B2 is the remaining CP
and is calculated as total CP minus the sum of fractions
A, B1, B3, and C. Reported ranges for the fractional rates
of degradation for the three B fractions are: B1 (120– 400
%/h), B2 (3– 16 %/h), and B3 (0.06– 0.55 %/h). The RDP
and RUP values (percent of CP) for a feedstuff using this
model are computed using the equations

RDP � A � B1 [kdB1 / (kdB1 � kp)]
� B2 [kdB2 / (kdB2 � kp)]
� B3 [kdB3 / (kdB3 � kp)]

and

RUP � B1 [kp / (kdB1 � kp)]
� B2 [kp / (kdB2 � kp)]
� B3 [kp / (kdB3 � kp)] � C.

This model is used in Level II of the Nutrient Requirements
of Beef Cattle (National Research Council, 1996) report.

The most used model to describe in situ ruminal protein
degradation divides feed CP into three fractions (A, B, and
C). Fraction A is the percentage of total CP that is NPN
(i.e., assumed to be instantly degraded) and a small amount
of true protein that rapidly escapes from the in situ bag
because of high solubility or very small particle size. Frac-
tion C is the percentage of CP that is completely undegrad-
able; this fraction generally is determined as the feed CP
remaining in the bag at a defined end-point of degradation.
Fraction B is the rest of the CP and includes the proteins
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FIGURE 5-1 Analyses of crude protein fractions using borate-
phosphate buffer and acid detergent and neutral detergent solu-
tions (Roe et al., 1990; Sniffen et al, 1992).

that are potentially degradable. Only the B fraction is con-
sidered to be affected by relative rates of passage; all of
fraction A is considered to be degraded and all of fraction
C is considered to pass to the small intestine. The amount
of fraction B that is degraded in the rumen is determined
by the fractional rate of degradation that is determined in
the study for fraction B and an estimate of fractional rates
of passage. The RDP and RUP values for a feedstuff (per-
cent of CP) using this model are computed using the equa-
tions RDP � A � B [kd / (kd � kp)] and RUP � B [kp /
(kd � kp)] � C. This simple model has been the most
widely used model for describing degradation and ruminal
escape of feed proteins (e.g., AFRC, 1984; National
Research Council, 1985; Ørskov and McDonald, 1979). It
is noted that data obtained from in situ, in vitro, and enzy-
matic digestions generally fit a model that divides feed CP
into these fractions (Broderick et al., 1991) and that most
of the in situ data used to validate results obtained with
cell-free proteases have been obtained using this model
(Broderick, 1998). As discussed later, it is this model in
conjunction with in situ derived data that is used for pre-
dicting ruminal protein degradability in this edition.

Numerous factors affect the amount of CP in feeds that
will be degraded in the rumen. The chemistry of feed CP
is the single most important factor. The two most important
considerations of feed CP chemistry are: (1) the propor-
tional concentrations of NPN and true protein, and (2) the
physical and chemical characteristics of the proteins that
comprise the true protein fraction of the feedstuff. Nonpro-
tein N compounds are degraded so quickly in the rumen
(�300%/h) that degradation is assumed to be 100 percent
(Sniffen et al., 1992). However, this is not an entirely
correct assumption because degradability is truly related
to rate of passage. For example, assuming a kp of 2.0%/h
and a kd of 300%/h, then degradation � 3.00/(3.00 � 0.02)
� 0.993 or 99.3 percent, and not 1.00 or 100 percent.
Feedstuffs that contain high concentrations of NPN in CP

contribute little RUP to the host animal. When dairy cattle
are fed all-forage diets, measurements of passage of non-
ammonia, non-microbial N (i.e., RUP-N plus endogenous
N) often are less than 30 percent of N intake (Beever et
al., 1976, 1987; Holden et al., 1994a; Van Vuuren et al.,
1992). In contrast to NPN, which is assumed to be com-
pletely degraded, the rates of degradation of proteins are
highly variable and result in variable amounts of protein
being degraded in the rumen. For example, the range in
kd given in Tables 15-2a,b are 1.4 for Menhaden fish meal
to 29.2 for sunflower meal. Assuming a kp for each feed
of 7.0 percent, the range in degradabilites of the B fraction
would be 16.7 to 80.7 percent. Some characteristics of
proteins shown to contribute to differences in rates of
degradation are differences in 3-dimensional structure, dif-
ferences in intra- and inter-molecular bonding, inert barri-
ers such as cell walls, and antinutritional factors.

Differences in 3-dimensional structure and chemical
bonding (i.e., cross-links) that occur both within and
between protein molecules and between proteins and car-
bohydrates are functions of source as well as processing.
These aspects of structure affect microbial access to the
proteins, which apparently is the most important factor
affecting the rate and extent of degradation of proteins in
the rumen. Proteins that possess extensive cross-linking,
such as the disulfide bonding in albumins and immunoglob-
ulins or cross-links caused by chemical or heat treatment,
are less accessible to proteolytic enzymes and are degraded
more slowly (Ferguson, 1975; Hurrell and Finot, 1985;
Mahadevan et al., 1980; Mangan, 1972; Nugent and Man-
gan, 1978; Nugent et al., 1983; Wallace, 1983). Proteins in
feathers and hair are extensively cross-linked with disulfide
bonds and largely for that reason, a considerable amount
of the protein in feather meal is in fraction C (Tables 15-
2a,b). Similarly, a considerable portion of the protein in meat
meal and meat and bone meal is in fraction C. Proteins in
meat meal and meat and bone meal may contain considerable
amounts of collagen that has both intramolecular and inter-
molecular cross-links (Orten and Neuhaus, 1975). In contrast,
a majority of the protein in menhaden fish meal is in fraction
B but the fractional rate of degradation of fraction B is slower
than in other protein supplements (Tables 15-2a,b). Heat
used in the drying of fish protein was shown to induce the
formation of disulfide bonds (Opstvedt et al., 1984). Heat
processing also coagulates protein in meat products which
makes it insoluble (Bendall, 1964; Boehme, 1982), and cool-
ing of the products causes a random relinkage of chemical
bonds which shrinks the protein molecules (Bendall, 1964).
Collectively, these effects of heating and cooling of proteins
decrease microbial access and make the proteins more resis-
tant to ruminal degradation.

Other factors affecting the ruminal degradability of feed
protein include ruminal retention time of the protein,
microbial proteolytic activity, and ruminal pH. The effect
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of these factors on the kinetics of ruminal protein degrada-
tion have been reviewed (Broderick et al., 1991; National
Research Council, 1985).

Nitrogen Solubility vs. Protein Degradation

Several commercial feed testing laboratories in the
United States provide at least one measurement of N solu-
bility for feedstuffs. Although recognized that N solubility
in a single solvent is not synonymous with CP degradation
in the rumen, the general absence of alternatives other
than using ‘‘book values’’ for RUP (e.g., National Research
Council, 1985) left little else to help nutritionists ensure
that adequate but not excessive amounts of RDP were
fed. Solubility measurements have been useful for ranking
feeds of similar types for ruminal CP degradability. This
is because of the positive relationship that exists between
N solubility and degradation within similar feedstuffs (e.g.,
Beever et al., 1976; Laycock and Miller, 1981; Madsen and
Hvelplund, 1990; Stutts et al., 1988). Many studies have
indicated that changing N solubility by adding or removing
NPN supplements, by changing method of forage preserva-
tion, or processing conditions of protein supplements
affects animal response (e.g., Aitchison et al., 1976; Crish et
al., 1986; Lundquist et al., 1986). Several different solvents
have been used. At present, the most common procedure
is incubation in borate-phosphate buffer (Roe et al., 1990).
This method has gained in popularity because it is used
for determining the A and B1 nitrogen fractions in the
CNCPS (Sniffen et al., 1992).

Although a high correlation exists between N solubility
in a single solvent and protein degradability for similar
feedstuffs, the same does not exist across classes of feed-
stuffs. For example, Stern and Satter (1984) reported a
correlation of 0.26 between N solubility and in vivo protein
degradation in the rumen of 34 diets that contained a
variety of N sources. Madsen and Hvelplund (1990) also
reported a poor relationship between N solubility and in
vivo degradation of CP when used over a range of feed-
stuffs. There appear to be several reasons for these poor
relationships. First, as indicated in the section ‘‘Chemistry
of Feed Crude Protein’’, the proteins that are extracted
by a solvent depend not only on the chemistry of the
proteins but also on the composition of the solvent. For
that reason, different solvents provide different estimates
of CP solubility (Cherney et al., 1992; Crawford et al.,
1978; Crooker et al., 1978; Lundquist et al., 1986; Stutts
et al., 1988). Second, soluble proteins are not equally sus-
ceptible to degradation by rumen enzymes. Among the
pure soluble proteins, casein is degraded rapidly whereas
serum albumin, ovalbumin, and ribonuclease A are
degraded much slower (Annison, 1956; Mahadevan et al.,
1980; Mangan, 1972). Mahadevan et al. (1980) also
observed that soluble proteins from soybean meal, rape-

seed meal, and fish meal were degraded at different rates
with rates of degradation for all three supplements being
intermediate between those for albumins and casein.
Therefore, structure as well as solubility determines degra-
dability. Third, as indicated in the section ‘‘Mechanism of
Ruminal Protein Degradation’’, solubility is not a prerequi-
site to degradation. As an example, Mahadevan et al. (1980)
observed that soluble and insoluble proteins of soybean
meal were hydrolyzed in vitro at almost identical rates.
Because bacteria attach to insoluble proteins and because
protozoa engulf feed particles, insoluble proteins need not
enter the soluble protein pool before attack by microbial
proteases. And last, soluble proteins that are not yet
degraded may leave the rumen faster than insoluble pro-
teins. This is because of a more likely association of soluble
protein with the liquid fraction of ruminal contents. For
example, Hristov and Broderick (1996) observed that
although feed NAN in the liquid phase of ruminal contents
was only 12 percent of total ruminal feed NAN, 30 percent
of the feed NAN that escaped the rumen flowed with the
liquids. This indicates a disproportional escape of solu-
ble proteins.

In conclusion, a change in N solubility in a single solvent
appears to be a more useful indicator of a change in protein
degradation when applied to different samples of the same
feedstuff than when used to compare different feedstuffs
that differ in chemical and physical properties. Clearly,
the relationship between solubility and degradability is the
highest when most of the soluble N is NPN (Sniffen
et al., 1992).

Microbial Requirements for N Substrates

Peptides, AA, and ammonia are nutrients for the growth
of ruminal bacteria; protozoa cannot use ammonia. Esti-
mates of the contribution of ammonia versus preformed
AA to microbial protein synthesis by the mixed rumen
population have been highly variable (Wallace, 1997).
Studies using N15 ammonia or urea infused into the rumen
or added as a single dose demonstrated that values for
microbial N derived from ammonia ranged from 18 to 100
percent (Salter et al., 1979). The N15 studies of Nolan
(1975) and Leng and Nolan (1984) indicated that 50 per-
cent or more of the microbial N was derived from ammonia
and the rest from peptides and AA. The mixed ruminal
microbial population has essentially no absolute require-
ment for AA (Virtanen, 1966) as cross-feeding among bac-
teria can meet individual requirements. However,
researchers have observed improved microbial growth or
efficiency when peptides or AA replaced ammonia or urea
as the sole or major source of N (Cotta and Russell, 1982;
Russell and Sniffen, 1984; Griswold et al., 1996). Maeng
and Baldwin (1976) reported increased microbial yield and
growth rate on 75% urea � 25% AA-N as compared to
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100% urea. Microbial requirements for N substrates of
ammonia-N, AA, and peptides can also be affected by the
basal diet and may explain some of the variability in the
above experiments.

There is evidence that AA and especially peptides are
stimulatory in terms of both growth rate and growth yield
for ruminal microorganisms growing on rapidly degraded
energy sources (Argyle and Baldwin, 1989; Chen et al.,
1987; Cruz Soto et al., 1994; Russell et al., 1983). However,
when energy substrates are fermented slowly, stimulation
by peptides and AA does not always occur. Chikunya et
al. (1996) demonstrated that when peptides were supplied
with rapidly or slowly degraded fiber, microbial growth was
enhanced only if the fiber was degraded rapidly. Russell et
al. (1992) indicated that microorganisms fermenting struc-
tural carbohydrates require only ammonia as their N source
while species degrading nonstructural carbohydrate
sources will benefit from preformed AA.

Recent experiments (Wallace, 1997) have confirmed the
earlier results of Salter et al. (1979) showing that the pro-
portion of microbial N derived from ammonia varies
according to the availability of N sources. The minimum
contribution to microbial N from ammonia was 26 percent
when high concentrations of peptides and AA were present,
with a potential maximum of 100 percent when ammonia
was the sole N source. Griswold et al. (1996) examined
the effect of isolated soy protein, soy peptides, individual
AA blended to profile soy protein, and urea on growth
of microorganisms in continuous culture. Griswold et al.
(1996) demonstrated that N forms other than ammonia
are needed not only for maximum microbial growth but
also as NPN for adequate ruminal fiber digestion.

Many reports of the uptake of C14-AA and peptides have
indicated that mixed microbial populations preferentially
took up peptides rather than free AA (Cooper and Ling,
1985; Prins et al., 1979). However, Ling and Armstead
(1995) found that free AA were the preferred form of
AA incorporated by S. bovis, Selenomonas ruminantium,
Fibrobacter succinogenes and Anaerovibrio lipolytica,
whereas peptides were preferred only by P. ruminicola. P.
ruminicola can comprise greater than 60 percent of the
total flora in sheep fed grass silage (Van Gylswyk, 1990).
In other studies where an AA preference was exhibited,
the preference may have been the result of specific dietary
conditions where P. ruminicola numbers were lower. Wal-
lace (1996) demonstrated that AA deamination is carried
out by two distinct bacterial populations, one with low
activity and high numbers and the other with high activity
and low numbers. P. ruminicola occurs in high numbers
but has low deaminase activity.

Jones et al. (1998) investigated the effects of peptide
concentrations in microbial metabolism in continuous cul-
ture fermenters. The basal diet contained 17.8 percent
CP, 46.2 percent NSC, and 32.9 percent NDF. Peptides

replaced urea as a N source at levels of 0, 10, 20 and 30
percent of total N, a urea-molasses mixture represented
8.6, 7.0, 4.9, and 2.9 percent of DM with increasing peptide
and glucose replacement. Digestion of DM and CP and
microbial CP production were affected quadratically by
peptide addition; the highest values for each variable occur-
red at 10 percent peptide addition. Fiber digestion
decreased linearly with increasing peptide addition.
Reduced ammonia-N concentrations appeared to be the
cause of reduced microbial CP production and reduced
fiber digestion at levels of peptides greater than 10 percent
of total N. The efficiency of conversion of peptide N to
microbial CP increased with increasing peptides; however,
there was no change in grams of microbial N produced
per kilogram of OM digested. Jones et al. (1998) suggested
that with diets containing high levels of NSC, excessive
peptide concentrations relative to that of ammonia can
depress protein digestion and ammonia concentrations,
limit the growth of fiber-digesting microorganisms, and
reduce ruminal fiber digestion and microbial protein pro-
duction. Microorganisms that ferment NSC produce and
utilize peptides at the expense of ammonia production
from protein and other N sources (Russell et al., 1992). It
should be noted that in continuous culture systems, proto-
zoa can be washed out in the first few days of operation.

Animal Responses to CP, RDP, and RUP

LACTATION RESPONSES

Crude protein. A data set of 393 means from 82 protein
studies was used to evaluate the milk and milk protein
yield responses to changes in the concentration of dietary
CP (Table 5-1). The descriptive statistics for the data set
are presented in Table 5-2. When CP content of diets
change, the relative contribution of protein from different
sources also change so this evaluation is confounded with
source of protein and concentrations of RDP and RUP.
Overall, milk yield increased quadratically as diet CP con-
centrations increased. The regression equation obtained
was:

Milk yield � 0.8 � DMI � 2.3 � CP
� 0.05 � CP2 � 9.8 (r2 � 0.29)

where milk yield and dry matter intake (DMI) are kilo-
grams/d and CP is percent of diet DM.

Dry matter intake was included in the regression to
account indirectly for some of the differences among stud-
ies such as basal milk production and BW. Dry matter
intake accounted for about 60 percent and CP about 40
percent of non-random variation. Assuming a fixed DMI
(there was no correlation between intake and CP percent
in this data set), the maximum milk production was
obtained at 23 percent CP. The marginal response to
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TABLE 5-1 Studies Used to Evaluate Milk and Milk Protein Yield Responses to Changes in the Concentration of
Dietary Crude Protein

Annexstad et al. (1987) Henderson et al. (1985) McCormick et al. (1999)
Aharoni et al. (1993) Henson et al. (1997) McGuffey et al. (1990)
Armentano et al. (1993) Higginbotham et al. (1989) Nakamura et al. (1992)
Atwal et al. (1995) Hoffman and Armentano (1988) Owen and Larson (1991)
Baker et al. (1995) Hoffman et al. (1991) Palmquist and Weiss (1994)
Bertrand et al. (1998) Holter et al. (1992) Palmquist et al. (1993)
Blauwiekel and Kincaid (1986) Hongerholt and Muller (1998) Polan et al. (1997)
Blauwiekel et al. (1990) Howard et al. (1987) Polan et al. (1985)
Bowman et al. (1988) Huyler et al. (1999) Powers et al. (1995)
Broderick (1992) Jaquette et al. (1986) Robinson and Kennelly (1988b)
Broderick et al. (1990) Jaquette et al. (1987) Robinson et al. (1991b)
Bruckental et al. (1989) Kaim et al. (1983) Roseler et al. (1993)
Canfield et al. (1990) Kaim et al. (1987) Santos et al. (1998a,b)
Casper et al. (1990) Kalscheur et al. (1999a,b) Sloan et al. (1988)
Chen et al. (1993) Kerry and Amos (1993) Spain et al. (1995)
Christensen et al. (1993a, b) Khorasani et al. (1996a) Voss et al. (1988)
Crawley and Kilmer (1995) Kim et al. (1991) Wattiaux et al. (1994)
Cunningham et al. (1996) King et al. (1990) Weigel et al. (1997)
De Gracia et al. (1989) Klusmeyer et al. (1990) Wheeler et al. (1995)
DePeters and Bath (1986) Komaragiri and Erdman (1997) Windschitl (1991)
Dhiman and Satter (1993) Lees et al. (1990) Wohlt et al. (1991)
Garcia-Bojalil et al. (1998a) Leonard and Block (1988) Wright (1996)
Grant and Haddad (1998) Lundquist et al. (1986) Wu et al. (1997)
Grings et al. (1991) Macleod and Cahill (1987) Wu and Satter (2000)
Grings et al. (1992a) Manson and Leaver (1988) Zimmerman et al. (1992)
Grummer et al. (1996) Mantysaari et al. (1989) Zimmerman et al. (1991)
Hadsell and Sommerfeldt (1988) McCarthy et al. (1989)

TABLE 5-2 Descriptive Statistics for Data Set Used
to Evaluate Animal Responses to CP and RDP

Variable N Mean Std. Dev.

Milk, kg/d 393 31.4 6.1
Milk protein yield, g/d 360 972 153
Dry matter intake, kg/d 393 20.2 3.4
CP, % of dry matter 393 17.1 2.6
RDP, % of dry matter 172 10.7 1.8
RUP, % of dry matter 172 6.2 1.4

increased dietary CP (first derivative of the CP components
of the regression equation) is: 2.3 � 0.1 � CP. Therefore,
increasing dietary CP one percentage unit from 15 to 16
percent would be expected to increase milk yield an aver-
age of 0.75 kg/d and increasing CP one percentage unit
from 19 to 20 percent would be expected to increase milk
yield by 0.35 kg/d. Although milk production may be
increased by feeding diets with extremely high concentra-
tions of CP, the economic and environmental costs must
be compared with lower CP diets. The marginal response
obtained from this data set was similar to that obtained by
Roffler et al. (1986). With their equation, increasing dietary
CP from 14 to 18 percent would result in an increase of
2.1 kg/d of milk and with the equation above the expected
increase is 2.8 kg/d.

Dietary CP was not correlated (P�0.25) with milk pro-
tein percent, but was correlated weakly (r � 0.14; P�0.01)
with milk protein yield (because of the relationship of
dietary CP with milk yield). The regression equation was:

milk protein yield (g/d) � 17.7 � DMI � 55.6 � CP �
1.26 � CP2 � 31.8 (r2 � 0.19) where DMI is kilograms/
day and CP is percent of diet DM. Maximum yield of milk
protein was obtained at 22 percent CP (essentially the
same as for milk yield) and the marginal response is equal
to 55.63 � 2.52 � CP where CP is a percent of diet DM.

Rumen degradable and undegradable protein. A regres-
sion approach also was used to evaluate lactation responses
to concentrations of RDP and RUP in the dietary DM. To
evaluate lactation responses to RDP in diet DM, 38 studies
with 206 treatment means were selected in which diets
varied in content of RDP (Table 5-3). All diets were
entered into this edition’s model for predicted concentra-
tions of RDP and RUP in diet DM. As expected, concentra-
tions of RDP and RUP (as percentages of diet DM) were
correlated with concentrations of dietary CP (RDP; r �
0.78, P�0.001; RUP, r � 0.53, P�0.001), therefore it is
not possible to separate effects of total CP from those of
RDP or RUP. A regression equation for milk yield with
RDP and RUP (both as percent of DM) was derived to
overcome the problems associated with the correlation
between CP and RDP and RUP (the correlation between
RDP and RUP was not significant (r � �0.11, P�0.05).
Dietary RDP and RUP were calculated using the model
described in this publication based on values in the data
set described above. The regression equation also included
DMI for the reasons explained above. The regression equa-
tion (Figure 5-2) was:

Milk � �55.61 � 1.15 � DMI � 8.79 � RDP � 0.36
� RDP2 � 1.85 � RUP (r2 � 0.52)
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TABLE 5-3 Studies Used to Evaluate Milk Yield Responses to Changes in the Concentration of Dietary Ruminally
Degraded Protein

Annexstad et al. (1987) Grings et al. (1992) King et al. (1990)
Armentano et al. (1993) Grummer et al. (1996) Komaragiri and Erdman (1997)
Baker et al. (1995) Ha and Kennelly (1984) Leonard and Block (1988)
Barney et al. (1981) Harris et al. (1992) Mantysaari et al. (1989)
Bertrand et al. (1998) Henson et al. (1997) McGuffey et al. (1990)
Blauwiekel et al. (1990) Higginbotham et al. (1989) Palmquist and Weiss (1994)
Casper et al. (1990) Hoffman et al. (1991) Roseler et al. (1993)
Christensen et al. (1993a,b) Holter et al. (1992) Santos et al. (1998a,b)
Cunningham et al. (1996) Hongerholt and Muller (1998) Wattiaux et al. (1994)
Dhiman and Satter (1993) Kalscheur et al. (1999a) Weigel et al. (1997)
Garcia-Bojalil et al. (1998a) Khorasani et al. (1996b) Windschitl (1991)
Grant and Haddad (1998) Kim et al. (1991) Wu and Satter (2000)
Grings et al. (1991)

FIGURE 5-2 Response surface for data set described in ‘‘Ani-
mal Responses to CP, RDP, and RUP’’ section. Maximum milk
yield occurred at 12.2 percent RDP (percent of diet DM). Dry
matter intake was held constant at 20.6 kg/day.

where DMI and milk are kilograms/day, and RDP and
RUP are percent of diet DM. Based on that equation,
maximum milk yield occurred (DMI and RUP held con-
stant) when RDP equaled 12.2 percent of diet DM, and
the marginal change in milk to increasing RDP was 8.79
� 0.72 � RDP. The quadratic term for RUP was not
significant and was removed from the model. Milk yield
increase linearly to RUP at the rate of 1.85 kg for each
percentage unit increase in RUP.

In comparison this edition’s model estimates an average
RDP requirement of 10.2 percent for this data set. Pre-
dicted milk yield (using the above regression equation) at
10.2 percent RDP (DMI and RUP held constant mean
values of the data set of 20.6 kg/d DMI and 6.2 percent,
respectively) is 31.7 kg/d and 33.2 kg/d when RDP is 12.2
percent. A portion of the discrepancy between model pre-
dicted requirement for RDP and regression predicted max-
imal milk production may be caused by the positive correla-
tion between RDP and DM intake (DMI � 14.4 � 0.58

� RDP; r � 0.35, P�0.001). Based on that regression,
an increase in 2 percentage units of RDP (i.e., 10.2 to 12.2
percent) would increase DMI by about 1.1 kg/d. Based on
this edition’s requirements (assumed 72 percent TDN), an
increase of about 2 kg/d of milk is expected from that
change in DMI. Increasing dietary RDP above model pre-
dicted requirements may result in increased DM intake.

A similar shaped function (data not shown) was obtained
when milk protein yield was regressed on dietary RDP
and RUP:

Milk protein � �1.57 � 0.0275 � DMI � 0.223
� RDP � 0.0091 � RDP2 � 0.041
� RUP (r2 � 0.51)

where milk protein and DMI are kilograms per day and
RDP and RUP are percentages of dietary DM. Maximum
milk protein yield occurred at 12.2 percent RDP (the same
as milk yield). Milk protein yield increased linearly with
increasing dietary RUP.

Santos et al. (1998b) published a comprehensive review
of the effects of replacing soybean meal with various
sources of RUP on protein metabolism (29 published com-
parisons) and production (127 published comparisons).
Santos et al. (1998b) reported that in 76 percent of the
metabolism studies, higher RUP decreased MCP flows to
the small intestine. Supplementation with RUP usually did
not affect flow of total EAA, and RUP supplementation
usually did not increase or actually decreased flow of lysine
to the duodenum. Supplementation of RUP increased milk
production in only 17 percent of the studies and heat-
treated or chemically-treated soybean meal or fish meal
were the most likely RUP supplements to cause increased
milk production (Santos et al., 1998b). When studies were
combined, cows fed diets with treated soybean meal
(P�0.03) or fish meal (P�0.01) produced statistically more
milk than cows fed soybean meal. Cows fed other animal
proteins (blood, feather, meat meals) or corn gluten meal
produced similar or numerically less milk than cows fed
soybean meal (Santos et al., 1998b). See additional discus-
sion in Chapter 16.
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The regression equations derived above for milk and
milk protein yield responses to dietary CP, RDP, and RUP
should be interpreted and used cautiously in view of low
r2 values. A more sophisticated statistical analysis (e.g.,
controlling for trial effects, adjusting for variances within
trials, etc.) would probably yield different and more accu-
rate coefficients.

EFFECTS ON REPRODUCTION

Protein in excess of lactation requirements has been
shown to have negative effects on reproduction. Several
workers have reported that feeding diets containing 19
percent or more CP in diet DM lowered conception rates
(Bruckental et al., 1989; Canfield et al., 1990; Jordan and
Swanson, 1979; McCormick et al., 1999). Others have
observed that cows fed 20– 23 percent CP diets (as com-
pared to 12– 15 percent CP) had decreased uterine pH,
increased blood urea, and altered uterine fluid composition
(Jordan et al., 1983; Elrod and Butler, 1993). In a majority
of the studies reviewed by Butler (1998), plasma progester-
one concentrations in early lactation cows were lower when
diets contained 19– 20 percent CP vs. lower concentrations
of CP.

In a review of protein effects on reproduction, Butler
(1998) concluded that excessive amounts of either RDP
or RUP could be responsible for lowered reproductive
performance. However, intakes of ‘‘digestible’’ RUP in
amounts required to adversely affect reproduction without
a coinciding surplus of RDP would be uncommon. In most
of the studies reviewed by Butler (1998), excessive RDP
rather than excessive RUP was associated with decreased
conception rates. Canfield et al. (1990) showed that feeding
diets containing RUP to meet requirements while feeding
RDP in excess of requirements resulted in decreased con-
ception rates. Garcia-Bojalil et al. (1998b) reported that
RDP fed in excess (15.7 percent of DM) of recommenda-
tions decreased the amount of luteal tissue in ovaries of
early lactation cows.

Although most studies have indicated an adverse effect
on reproductive performance of feeding high CP diets,
others indicate no effect of diet CP on reproduction. Car-
roll et al. (1988) observed no differences in pregnancy rate
or first service conception rates of dairy cows fed 20 percent
CP and 13 percent CP diets. Howard et al. (1987) reported
no difference in fertility between cows in second and
greater lactation fed 15 percent CP or 20 percent CP diets.

There are many theories as to why excess dietary CP
decreases reproductive performance (Barton, 1996a,
1996b; Butler, 1998; Ferguson and Chalupa, 1989). The
first theory relates to the energy costs associated with meta-
bolic disposal of excess N. To the extent that additional
energy may be required for this purpose, this energy may
be taken from body reserves in early lactation to support

milk production. Delayed ovulation (e.g., Beam and Butler,
1997; Staples et al., 1990) and reduced fertility (Butler,
1998) have been associated with negative energy status.
Another effect of negative energy status is decreased
plasma progesterone concentrations (Butler, 1998).

Another theory is that excessive blood urea N (BUN)
concentrations could have a toxic effect on sperm, ova, or
embryos, resulting in a decrease in fertility (Canfield et
al., 1990). High BUN concentrations have also been shown
to decrease uterine pH and prostaglandin production (But-
ler, 1998). High BUN may also reduce the binding of
leutinizing hormone to ovarian receptors, leading to
decreases in serum progesterone concentration and fertil-
ity (Barton, 1996a). Ferguson and Chalupa (1989) reported
that by-products of N metabolism may alter the function of
the hypophysealpituitary-ovarian axis, therefore decreasing
reproductive performance. And last, high levels of circulat-
ing ammonia may depress the immune system and, there-
fore, may result in a decline in reproductive performance
(Anderson and Barton, 1988).

Milk urea nitrogen (MUN) and blood urea nitrogen
(BUN) are both indicators of urea production by the liver.
Milk urea N concentrations greater than 19 mg/dl have
been associated with decreased fertility (Butler et al.,
1995). Likewise, BUN concentrations greater than 20 mg/
dl have been linked with reduced conception rates in lactat-
ing cows (Ferguson et al., 1988). Bruckental et al. (1989)
found that BUN levels increased when diet CP was
increased from 17 to 21.6 percent and pregnancy rate
decreased by 13 percentage units. In a case study, Ferguson
et al. (1988) observed that cows with BUN levels higher
than 20 mg/dl were three times less likely to conceive than
cows with lower BUN concentrations. Although high BUN
concentrations have been associated with decreased repro-
ductive performance, others have reported no adverse
effects on pregnancy rate, services per conception, or days
open with BUN levels above 20 mg/dl (Oldick and Fir-
kins, 1996).

Studies by Carroll et al. (1987) and Howard et al. (1987)
indicate that maintaining a strict reproductive management
protocol can reduce the negative effects of excess protein
intake on reproduction. Barton (1996a) demonstrated that
an intense reproductive program could be used to reach
reproductive success regardless of diet CP level or plasma
urea N concentrations. These studies highlight the idea
that dietary protein is just one of many things that have
an effect on reproductive performance. Protein intake,
along with other factors such as reproductive management,
energy status, milk yield, and health status all have an
effect on reproductive performance in dairy cattle.

Synchronizing Ruminal Protein and Carbohydrate
Digestion: Effects on Microbial Protein Synthesis

Microbial protein synthesis in the rumen depends largely
on the availability of carbohydrates and N in the rumen.
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Bacteria are capable generally of capturing the majority of
ammonia that is released in the rumen from AA deamina-
tion and the hydrolysis of NPN compounds. However,
dietary conditions often occur in which the rate of ammonia
release in the rumen exceeds the rate of uptake by ruminal
bacteria. Examples of such conditions would include a
surplus of RDP or a lack of available energy (Maeng et al.,
1997). This asynchronous release of ammonia and energy in
the rumen results in inefficient utilization of fermentable
substrates and reduced synthesis of MCP. A variety of
studies have focused on increasing the efficiency of micro-
bial protein synthesis by manipulating dietary components
(Aldrich et al., 1993a; Hoover and Stokes, 1991; Herrera-
Saldana et al., 1990; Maeng et al., 1976). Excellent reviews
describe the relationship between ruminal protein and car-
bohydrate availability and its impact on MCP synthesis in
the rumen (Hoover and Stokes, 1991; Clark et al., 1992;
Stern et al., 1994; Dewhurst et al., 2000).

Several studies indicate that synchronizing for rapid fer-
mentation with fast degradable starch and protein sources
stimulates greater synthesis or efficiency of synthesis of
MCP. Herrera-Saldana et al. (1990) reported that MCP
passage to the duodenum of lactating cows was highest
(3.00 kg/d) when starch and protein degradability were
synchronized for fast rates of digestion (barley and cotton-
seed meal). Flows of MCP were lower when the primary
fermentable carbohydrate and protein sources were either
synchronized for slow degradability (milo and brewer’s
dried grains; 2.14 kg/d) or asynchronized (barley and brew-
er’s dried grains or milo and cottonseed meal; 2.64 and 2.36
kg/d, respectively). Efficiency of MCP synthesis (MCP/kg
of truly digested OM) followed similar trends as MCP
passage to the duodenum. Aldrich et al. (1993b) formulated
diets to contain high and low concentrations of rumen-
available nonstructural carbohydrates (HRANSC and
LRANSC) and high and low concentrations of rumen-
available protein (HRAP and LRAP) using high moisture
shelled corn vs. coarse ground, dry ear corn and canola
meal vs. blood meal, respectively. Flow of MCP to the
duodenum was highest (1.64 kg/d) with HRANSC/HRAP
and lowest (1.34 kg/d) with HRANSC/LRAP, flows were
intermediate (1.46 and 1.48 kg/d) for the two LRANSC
diets. Similar to the findings of Herrera-Saldana et al.
(1990), efficiencies of synthesis of MCP were highest with
the HRANSC/HRAP diet. Stokes et al. (1991a) reported
that diets formulated to contain 31 or 39 percent NSC and
11.8 or 13.7 percent RDP in diet DM supported greater
MCP synthesis than a diet containing 25 percent NSC and
9 percent RDP. Diets formulated to be synchronous vs.
asynchronous in ruminal digestion rates of carbohydrate
and protein have also increased flows and efficiency of
synthesis of MCP in sheep (Sinclair et al., 1993, 1995). In
the study by Sinclair et al. (1995), diets were similar in
carbohydrate source (barley) and were either synchronous

with rapeseed meal (diet A) or asynchronous with urea
(diet B). The efficiency of MCP synthesis was 11– 20 per-
cent greater in sheep given diet A vs. diet B.

Numerous other studies have reported higher MCP pas-
sage (in vivo or in continuous culture) when either the
NSC level was increased or more degradable carbohydrates
were substituted for those less degradable (McCarthy et
al., 1989; Spicer et al., 1986; Stokes et al., 1991a; Stern et
al., 1978) or when RDP in diet DM was increased (Cecava
et al., 1991; Hussein et al., 1991; McCarthy et al., 1989;
Stokes et al., 1991b). A review of 16 studies indicated that
MCP flow to the duodenum was increased by an average
of 10 percent when slowly degradable sources of starch
(e.g., corn grain) were replaced by more rapidly degraded
starch (e.g., barley) (Sauvant and van Milgen, 1995). How-
ever, there was no effect of differences in rate of starch
degradation on the efficiency of conversion of ruminally
digested OM to MCP. Lykos et al. (1997) evaluated diets
formulated to have similar rates of RDP with three rates
(6.04, 6.98, and 7.94%/h) of NSC degradation in the rumen.
Concentrations of RDP and NSC in diet DM were held
constant across treatments. Rates of NSC degradation were
achieved primarily by replacing cracked corn with ground
high moisture corn. Flow of MCP to the duodenum tended
to be the highest with the highest rate of NSC degradation.
Efficiency of conversion of ruminally digested OM to MCP
was increased as ruminal NSC availability increased, dem-
onstrating the importance of timing of available energy to
the ruminal microorganisms.

Studies evaluating the importance of providing a gradual
or even supply (vs. an uneven supply) of energy and N
substrates to ruminal microorganisms are limited. Henning
et al. (1993) investigated this issue in cannulated sheep
fed both at maintenance and at a higher level of nutrition.
Treatments consisted of a soluble carbohydrate mixture
(maltose, dextrose and maltotriose) and a soluble N mixture
(urea and sodium caseinate). Providing an even supply of
energy increased passage of MCP and efficiency of MCP
synthesis when the maintenance diet was fed but only
tended to increase efficiency of MCP synthesis when the
more adequate diet was fed. In contrast, the even supply
of N increased passage of MCP only when the more ade-
quate diet was fed. The results indicate that merely improv-
ing the degree of synchronization between energy and N
release rates in the rumen does not necessarily increase
microbial cell yield and that a gradual or even release of
energy and possibly N as well are also important.

Synchronizing rates of ruminal degradation of carbohy-
drates and protein may have a more pronounced effect in
animals having high rates of ruminal passage (e.g., high
DMI). Newbold and Rust (1992) observed in batch culture
that a temporary restriction of supplies of either N or
carbohydrate reduced subsequent bacterial growth rate.
However, given the same total supply of nutrients, bacterial



54 Nutrient Requirements of Dairy Cattle

concentrations recovered after 12 h of incubation to con-
centrations observed prior to restriction of nutrient sup-
plies. This suggests that microbial cells in the rumen are
able to handle periods of nutrient shortage. These results
were confirmed by the in vitro studies of Van Kessel and
Russell (1997). However, when midlactation dairy cows
were provided diets that varied in rumen degradable OM
and CP, or fed at different feeding frequencies, no differ-
ences were observed in MCP production or microbial effi-
ciency (Shabi et al., 1998).

The importance of providing a synchronized vs. an
unsynchronized supply of N substrates to the mixed rumi-
nal microbial population on ruminal protein and carbohy-
drate synchrony is unclear. Of particular interest is the
identification of factors that affect efficiency of bacterial
uptake of ammonia and alpha-amino N. Hristov et al.
(1997) investigated the effect of different levels of carbohy-
drates and simultaneous provision of ammonia and alpha-
amino N (AA and peptides) on the utilization of ammonia
and alpha-amino N by ruminal microorganism in vitro.
Rumen inoculum was incubated with five concentrations
(0, 1, 5, 15, and 30 g/L) of carbohydrate (75 percent mixed
sugars and 25 percent soluble starch) and five N sources
(ammonia, free AA, ammonia plus free AA, peptides, and
ammonia plus peptides). The ammonia pool in all treat-
ments was labeled with (1 5NH4)2SO4. Observations
included: (1) increased uptake and incorporation of ammo-
nia into microbial N from all N treatments with increasing
carbohydrate level, (2) a preference for rumen microbes
to use alpha-amino N as compared to ammonia N, and
(3) increased uptake of AA and peptides with added ammo-
nia. It is concluded that the efficiency of use of ammonia
and alpha-amino N by rumen microbes is not constant and
is influenced by the availability (or balance) of energy,
ammonia, and alpha-amino N.

Others have found that higher NSC or RDP in diet DM
does not always support greater microbial growth. The
extent to which ammonia is captured as MCP is affected
by various factors such as diet type, ruminal fermentation
characteristics, and DMI. Therefore, it should not be sur-
prising that several studies conducted to evaluate the effect
of synchronizing carbohydrate and protein degradation in
the rumen observed no effects on MCP synthesis, effi-
ciency of MCP synthesis, or no carbohydrate by protein
interaction effects on MCP passage (Casper et al., 1999;
Cecava et al., 1991; Feng et al., 1993; Hussein et al., 1991;
McCarthy et al., 1989; Scollan et al., 1996; Stokes et al.,
1991b).

The major nutrients required by rumen microbes are
carbohydrates and proteins, but the most suitable sources
and quantities needed to support maximum growth have
not been determined. Although peptides, AA, and ammo-
nia all may serve individually as sources of N for mixed
ruminal microbes, the total population achieves the highest

growth rate on mixtures of all three sources. Based on data
from both in vitro and in vivo studies, there is general
agreement that rate of digestion of carbohydrates is the
major factor controlling the energy available for microbial
growth (Hoover and Stokes, 1991).

It is possible to alter the synchronization of protein and
carbohydrate, either by changing dietary ingredients or by
altering the relative times of feeding ingredients (Shabi et
al., 1998). However it is not possible to identify whether an
increase in MCP synthesis by feeding different ingredients
(Herrera-Saldana et al., 1990; Aldrich et al., 1993a; Sinclair
et al., 1993, 1995) is an effect of synchrony or a factor
associated with the manipulation of the ingredients (level
and type) themselves (Dewhurst et al., 2000).

In summary, it is well documented that the kinetics of
carbohydrate and protein degradation varies widely accord-
ing to feed source, its chemical composition, and method
of processing. The available literature indicates that when
rumen fermentation is normal, there is little additional
benefit of altering carbohydrate and protein degradation
rates, or their level of synchrony, on microbial protein
synthesis.

Ruminally Protected Proteins

‘‘Rumen protected’’ has been defined by the Association
of American Feed Control Officials (Noel, 2000) as ‘‘a
nutrient(s) fed in such a form that provides an increase in
the flow of that nutrient(s), unchanged, to the abomasum,
yet is available to the animal in the intestine.’’ Thus, rumen
protected proteins are protein-containing feeds that have
been treated or processed in ways to decrease ruminal
protein degradability and increase the content of digestible
RUP. Most research has focused on oilseeds and oilseed
meals. Rumen protected proteins, as well as protein supple-
ments that have an inherent high rate of ruminal escape,
are important in dairy cattle nutrition because of the low
content of digestible RUP in most feedstuffs. Reliance on
feed proteins with a high content of digestible RUP is
greatest in high producing cows when most or all of the
forage is provided by high quality grasses and legumes. In
these situations, the basal diet often contains adequate or
more than adequate amounts of RDP but is deficient in
RUP. Thus, protein supplementation should be limited
to high RUP-containing feedstuffs to avoid large excesses
of RDP.

Many methods have been investigated to decrease the
rate and extent of ruminal degradation of feed proteins.
Most of the methods have involved the use of heat, chemi-
cal agents, or a combination of heat and chemical agents
(Kaufmann and Lüpping, 1982; Satter, 1986; Broderick et
al., 1991; Schwab,1995). The challenge has been to identify
treatments or processing conditions that increase digestible
RUP to an extent that justifies the cost of the treatment,
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and in the case of the first three methods, with minimal
loss of AA.

Heat processing is the most used treatment in North
America. Heat processing decreases rumen protein degra-
dability by denaturation of proteins and by the formation
of protein-carbohydrate (Maillard reactions) and protein-
protein cross-links. Commercial methods that rely solely on
heat (dry or in combination with added moisture) include
cooker-expeller processing of oilseeds, additional heat
treatment of solvent extracted oilseed meals, roasting,
extrusion, pressure toasting, and micronization of legume
seeds, and expander treatment of cereal grains and protein
supplements. Studies of ruminal degradation of protein of
heat processed feedstuffs using the in situ approach indi-
cate reductions in fraction A, increases in fractions B and
C, and decreases in the fractional rates of degradation of
the B fraction (Goelema et al., 1999; Prestløkken, 1999;
Wang et al., 1999).

Careful control of heating conditions is required to opti-
mize the content of digestible RUP (Schwab, 1995a).
Under-heating results in only a small increase in digestible
RUP. Over-heating of feeds (i.e., heat-damaged protein)
reduces the intestinal digestibility of RUP through the
formation of indigestible Maillard products and protein
complexes (Van Soest, 1994). Over-heating also causes sig-
nificant absolute losses of lysine, cystine, and arginine (Par-
sons et al., 1992; Barneveld et al., 1994a; Dale, 1996).
Among those AA, lysine is the most sensitive to heat dam-
age and undergoes both destruction and decreased avail-
ability (Weiss et al. 1986a,b; Barneveld et al., 1994b,c;
Nakamura et al., 1994b). Optimal conditions of heat pro-
cessing are generally considered to be those which signifi-
cantly decrease ruminal protein degradability without
adverse effects on postruminal digestion or significant
losses of AA. However, combined measurements of RUP
with measurements (or estimates) of intestinal-available
lysine in RUP indicates that some loss of chemically deter-
mined available lysine is needed to achieve the heat treat-
ment of oilseeds and oilseed meals that maximizes postru-
minal available lysine (Broderick and Craig, 1980; Craig
and Broderick, 1981; Faldet et al., 1991; Faldet et al.,
1992a,b). The relationships between heat input and con-
centrations of RDP, RUP, indigestible RUP, and digestible
RUP have been described (Satter, 1986).

Chemical treatment of feed proteins can be divided
into three categories: (1) chemicals that combine with and
introduce cross-links in proteins (e.g., aldehydes),
(2) chemicals that alter protein structure by denaturation
(e.g., acids, alkalis, and ethanol), and (3) chemicals that
bind to proteins but with little or no alteration of protein
structure (e.g . , tannins) (Broderick et al . , 1991;
Schwab,1995a). For a variety of reasons, often including
less than desired levels of effectiveness, use of chemical
agents as the sole treatment for increasing the RUP content

of feed proteins has not received commercial acceptance.
A more effective approach involving ‘‘chemical’’ agents
has been to combine chemical and heat treatments. An
example of this approach is the addition of lignosulfonate,
a byproduct of the wood pulp industry that contains a
variety of sugars (mainly xylose), to oilseed meals before
heat treatment. The combined treatments enhance nonen-
zymatic browning (Maillard reactions) because of the
enhanced availability of sugar aldehydes that can react with
protein (Broderick et al., 1991; Schwab, 1995a).

Successful use of rumen protected proteins and other
proteins that have a high ruminal escape requires consider-
ation of AA composition and knowledge of the content and
intestinal digestibility of the RUP fraction.

Predicting Passage of Microbial Protein

Ruminally synthesized microbial protein typically sup-
plies a majority of the AA flowing to the small intestine of
growing cattle (Titgemeyer and Merchen, 1990b) and dairy
cows (Clark et al., 1992). Microbial protein is the protein
of the ruminal bacteria, protozoa, and fungi that pass to
the small intestine. Bacteria provide most of the microbial
protein leaving the rumen. Protozoa contribute signifi-
cantly to the microbial biomass of ruminal contents. How-
ever, because they are more extensively recycled in the
rumen than bacteria (Ffoulkes and Leng, 1988; Leng et
al., 1986; Punia et al., 1992), protozoa do not contribute
to postruminal protein supply in proportion to their contri-
butions to the total microbial biomass in the rumen.

In the 1989 Nutrient Requirements of Dairy Cattle publi-
cation, bacterial crude protein production (BCP) in lactat-
ing dairy cows was predicted from net energy intake using
the equation: BCP � 6.25 (�30.93 � 11.45 NEL). For
growing animals, BCP was predicted from TDN intake
using the equation: BCP � 6.25 (�31.86 � 26.12 TDN).
These equations were adapted from the 1985 National
Research Council’s report Ruminant Nitrogen Usage.

The most recent Nutrient Requirements of Beef Cattle
report (National Research Council, 1996) adopted two dif-
ferent strategies in predicting microbial protein production
in the rumen. In Level I of the beef model (National
Research Council, 1996), BCP was estimated to be 130
grams per kilogram TDN intake with a downward adjust-
ment for diets containing less than 40 percent forage, an
unlikely circumstance for growing dairy heifers. Level II
of the beef model (National Research Council, 1996) used
an adaptation of the Cornell Net Carbohydrate and Protein
System to predict BCP in both growing and mature beef
cattle.

Using the range in TDN requirements for growing heif-
ers from Table 6-2 in Nutrient Requirements of Dairy
Cattle (1989), TDN intake would range from 1.82 to 8.80
kg/day. The implied range in BCP production per unit of
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TDN would be 53 to 140 g BCP/kg of TDN. The calculated
variation in microbial efficiency is due to the negative
intercept in the original 1985 National Research Council
equation (National Research Council, 1985). The adjust-
ment to a constant 130 g BCP/kg of TDN presented in
Nutrient Requirements of Beef Cattle (National Research
Council, 1996) appears more reasonable. Burroughs et al.
(1974) proposed a value of 104.4 for microbial amino acids.
Assuming 80 percent microbial amino acids in microbial
N, this would correspond to a factor of 130.5 (104.4/0.8)
for MCP. However, validation of this was nearly impossible
because of the lack of reported data specific to growing
dairy heifers in the literature. There are considerable data
in the beef cattle literature but unfortunately, most of these
reports were in animals fed high concentrate diets that
would be atypical of those fed to growing replacement
heifers and bulls.

There is a wealth of published data on MCP production,
particularly in lactating dairy cows at high feed intakes,
which has been published since the 1985 National
Research Council’s report on Ruminant Nitrogen Usage.
Several methods were considered for predicting MCP pro-
duction in the lactating dairy cow. Figure 5-3 shows the
relationship between NEL intake and microbial N flows
using a data set (Table 5-4) consisting of 334 treatment
means from published literature since 1985 and collected
from lactating and dry cows. Superimposed on Figure 5-
3 is a prediction line using the 1989 lactating dairy cow
equation. Although the previous edition of Nutrient
Requirements of Dairy Cattle (National Research Council,
1989) equation performed reasonably well at intakes of
less than 30 Mcal of NEL, microbial N flow was consistently

-300

-200

-100

0

100

200

300

400

500

600

0.0 10.0 20.0 30.0 40.0 50.0 60.0

NEL Intake Mcal/day

M
ic

ro
bi

al
 N

, g
/d

ay

NRC, 1989

FIGURE 5-3 Plot of observed (open circles) and residuals
(squares) for measured microbial N flow (g/day) versus estimated
NEL intake in lactating and dry dairy cows. The National Research
Council, 1989, line is the predicted line where microbial N �
�30.93 � 11.45 NEL. At high levels of NEL intake, microbial
N production is over-predicted.

over-predicted at high NEL intakes which are more com-
mon in today’s higher producing cows. The 1985 equation
was based on cows fed NEL intakes ranging from 5 to
29 Mcal/day. The maximal NEL intake in that data set is
equivalent to only about 3 times maintenance intake for a
600 kg dairy cow. To overcome this problem, the literature
data set (Table 5-4) was used to develop new microbial N
prediction equations.

Several different prediction variables were evaluated
including both linear and quadratic effects of DM, OM,
and NEL intakes. Although addition of quadratic terms did
correct for over prediction at high feed intake, the standard
error of prediction for individual treatment means was high
(61 g N) and no regression equation had an r2 of more
than 0.39. Alternatively, equations used in Level II of the
beef model (National Research Council, 1996) were tested
on a smaller subset of data with similar results where micro-
bial N flow was again over-predicted at high feed intake
with no improvement in overall prediction error. Measured
rumen fermentable OM obtained from the literature data
set was an even poorer predictor of microbial N with a
standard error of prediction of 67 g N.

Within the literature data set (Table 5-4), there was a
large range in measured efficiencies of microbial protein
synthesis (12-54 g microbial N/kg rumen fermented OM).
The wide range in measured efficiencies of microbial pro-
tein synthesis explains why fermented OM was a poor
predictor of microbial N passage to the duodenum.
Because of the variability in efficiency of microbial protein
synthesis, it was concluded that systems driven by fer-
mented energy alone or by indirect indicators of fermented
energy such as TDN or NEL would not be accurate enough
to predict passage of microbial N to the duodenum unless
at least some of the variability was accounted for in effi-
ciency of microbial protein synthesis.

An important factor affecting efficiency of microbial pro-
tein synthesis is the relative availability of N for fermenta-
tion. Apparent ruminal N balance is an indirect indicator
of N availability for microbial protein synthesis. Where
balance is positive, N from dietary RDP is in excess of N
captured as microbial N and there is a net loss of N from
the rumen to the animal tissues. Where apparent ruminal
N balance is negative, there is a net gain of N in the rumen
indicating inadequate N from RDP for microbial protein
synthesis and a net gain from recycling of N from the animal
tissues to the rumen. Figure 5-4 shows the relationship
between observed microbial efficiency and apparent rumi-
nal N balance using the literature data set where the micro-
bial efficiency (g microbial N/kg truly fermented OM) was
equal to 29.74 � 0.30 ARND (r2 � 0.41, SEy � 6.5).
The equation suggests a microbial efficiency of 29.74 g N/
kg truly fermented OM at an apparent ruminal N digestibil-
ity of zero.
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TABLE 5-4 Studies Used to Determine the Relationship Between NEL Intake and Passage of Microbial Protein to
the Small Intestine of Lactating Dairy Cows

Aldrich et al. (1993b) Klusmeyer et al. (1991b) Robinson and Sniffen (1985)
Arieli et al. (1993) Klusmeyer et al. (1990) Robinson et al. (1991a)
Armentano et al. (1986) Kung et al. (1983) Robinson et al. (1997)
Benchaar et al. (1994a) Lu et al. (1988) Robinson et al. (1994)
Benchaar et al. (1991) Lykos et al. (1997) Robinson et al. (1985)
Benchaar et al. (1994b) Lynch et al. (1991) Rode and Satter (1988)
Blauwiekel et al. (1997) Mabjeesh et al. (1996) Rode et al. (1985)
Calsamiglia et al. (1995b) Mabjeesh et al. (1997) Santos et al. (1984)
Cameron et al. (1991) Madsen (1986) Sarwar et al. (1991)
Chan et al. (1997) Mansfield and Stern (1994) Schwab et al. (1992a)
Christensen et al. (1993b) McCarthy et al. (1989) Schwab et al. (1992b)
Christensen et al. (1996) Merchen and Satter (1983) Seymour et al. (1992)
Cunningham et al. (1993) Moller (1985) Song and Kennelly (1989)
Cunningham et al. (1994) Murphy et al. (1987) Stensig and Robinson (1997)
Cunningham et al. (1996) Narasimhalu et al. (1989) Stern et al. (1983)
Doreau et al. (1991) Ohajuruka et al. (1991) Stern et al. (1985)
Erasmus et al. (1992) Oldham et al. (1979) Stokes et al. (1991b)
Erasmus et al. (1994b) Oliveira et al. (1995) Tamminga et al. (1979)
Espindola et al. (1997) O’Mara et al. (1997b) Teller et al. (1992)
Feng et al. (1993) Overton et al. (1995) Tice et al. (1993)
Herrera-Saldana et al. (1990) Palmquist et al. (1993) van Vuuren et al. (1992)
Holden et al. (1994a) Pantoja et al. (1995) Waltz et al. (1989)
Joy et al. (1997) Pantoja et al. (1994) Weisbjerg et al. (1992)
Kalscheur et al. (1997a) Pena et al. (1986) Windschitl and Stern (1988)
Kalscheur et al. (1997b) Pires et al. (1997) Yang et al. (1997)
Khorasani et al. (1996a) Poore et al. (1993) Yoon and Stern (1996)
King et al. (1990) Prange et al. (1984) Zerbini et al. (1988)
Klusmeyer et al. (1991a) Putnam et al. (1997) Zhu et al. (1997)

FIGURE 5-4 Relationship between measured efficiency of
microbial protein synthesis (g microbial N/kg rumen fermented
OM) and apparent ruminal N balance (microbial efficiency �
29.74 � 0.30 apparent ruminal N digestibility percent, r2 � 0.41,
P �0.001, Sy � 6.49, n � 306).

The Nutrient Requirements of Dairy Cattle (National
Research Council, 1989) report assumed a net recycling
of 15 percent of dietary N intake or an apparent ruminal
N balance of �15 percent. The average apparent ruminal
N balance in the literature data set was plus 1.0 percent
suggesting that on average net recycling of N to the rumen
was zero. If under practical circumstances, ruminal N bal-
ance ranges from �20 to �20 percent, efficiency of micro-
bial protein synthesis would vary from 24 to 36 g N/kg of

OM fermented in the rumen and would have a major
impact on estimated microbial protein production.

The implication is that as availability of N increases in
relation to fermented OM, efficiency of microbial protein
synthesis decreases. If ruminal N availability is relatively
high compared to fermented OM, then output of microbial
N per unit of fermented OM decreases, indicating that
microbial utilization of N and energy becomes uncoupled
and energy utilization for microbial protein synthesis
becomes less efficient because the excess N is not used
by the rumen microbes (Clark et al., 1992). Systems for
predicting microbial N production as fixed linear functions
are likely to over predict microbial protein production,
particularly at high intakes of ruminally fermented OM.
This would be true regardless of whether microbial N
was predicted directly from ruminally fermented OM or
indirectly using total tract digestible OM (TTDOM) intake
or energy intake as an indicator of ruminally fermented
OM.

The 1989 Nutrient Requirements of Dairy Cattle
(National Research Council, 1989) report assumed an effi-
ciency of use of apparent ruminally degraded N (RDP) of
0.9. If N recycling is set to zero, then net RDP required
would be 1.11 � microbial N. The mean RDP to microbial
N ratio (RDP:MN) in the data set was 1.18 or about 1.2.
Although deficits in RDP for microbial N synthesis can be
made up through N recycling, the impact of low RDP
availability on rumen fermentation is not well understood
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nor could it be defined using the current literature data
set. Therefore, the mean RDP to microbial N ratio of
1.18 was used to define RDP requirements assuming an
apparent ruminal N balance of zero.

Ruminally fermented OM is not practical to use as a
direct index of available energy for microbial growth as
there are not adequate means by which rumen fermentabil-
ity of an individual feedstuff or diet can be predicted.
Previously cited techniques for predicting TDN offered a
more practical indirect indicator of ruminally fermented
OM. This is similar to the use of NEL intake in Nutrient
Requirements of Dairy Cattle (National Research Council,
1989) publication. In a summary of experiments with dairy
cows fed diets containing as much as 7 percent of added
dietary fat, rumen fermentability of the diet was reduced
by an amount equivalent to the amount of fat added to
the diet and total microbial N production was unaffected
(Erdman, 1995). Because the increase in efficiency of
microbial protein synthesis was due to a reduction in fer-
mented OM and not an increase in microbial N synthesis,
TTDOM was used as an indirect indicator of fermentable
energy. This can be calculated by adjusting the contribution
of fat to TDN by a factor of 1.25 where: TTDOM � TDN
� [(EE � 1) � 1.25]. The factor of 1.25 corresponds to
the increase in energy content of absorbed ether extract
(EE) versus other dietary components and EE is adjusted
downward to account for the 1 percent dietary EE of non-
fatty acid origin.

To correct for differences in microbial efficiency due to
availability of RDN in relation to microbial N, the microbial
efficiency values were adjusted in the literature data set
using the equation (g microbial N/kg of TTDOM � 32.78
� 8.29 RDN:MN, r2 � 0.35, P �0.001, Sy � 4.8, n
� 270). The microbial N yields adjusted to a common
RDN:MN availability of 1.2 were then regressed against
TTDOM. The results are shown in Figure 5-5.

FIGURE 5-5 Plot of adjusted (open circles) and residuals
(squares) for measured microbial N (g/d) versus measured total
tract digestible OM (kg/d). (Microbial N � 21.03 total tract
digestible OM. r2 � 0.69, P � 0.001, Sy � 38.1, n � 266).

Microbial N flow corrected to 1.2 RDN:MN was related
linearly to TTDOM at all levels of TTDOM intakes. This
was also true for the relationship with both NEL and TDN
intake. Calculated intercepts were not different from zero
and regression coefficients using zero intercepts were
21.03, 20.32, and 8.21 g microbial N per kilogram TTDOM,
per kilogram TDN, and per Mcal NEL, respectively. Each
equation had a standard error of prediction of 38 g. If
coefficients were converted to a microbial CP basis (N �
6.25), corresponding coefficients would be 131, 127, and
51 g respectively. The coefficient (127) for TDN is identical
to the adapted Burrough’s value (130.5) and the value (130)
used in Level I of the Nutrient Requirements of Beef Cattle
report (National Research Council, 1996) suggesting that
a common value (130) could be used for both growing
animals and lactating dairy cows. In this volume, 130 g
of microbial CP/kg discounted TDN is used to estimate
microbial protein synthesis. Because there is no intercept
in these equations, the microbial protein and net absorbed
protein values can be assigned to individual feeds, which
was not possible in the Nutrient Requirements of Dairy
Cattle (National Research Council, 1989) report.

In summary, it is assumed that the yield of MCP is 130
g/kg of TDN (discounted) intake and that the requirement
for RDP is 1.18 � MCP yield. Therefore, yield of MCP
is calculated as 0.130 � TDN (discounted TDN, see Chap-
ter 2) when RDP intake exceeds 1.18 � MCP yield. When
RDP intake is less than 1.18 � TDN-predicted MCP, then
MCP yield is calculated as 0.85 of RDP intake (1.00/1.18
� 0.85).

Predicting Passage of Rumen Undegradable Feed Protein

The values for RUP reported in the previous edition of
Nutrient Requirements of Dairy Cattle (National Research
Council, 1989) were based on in vivo and in situ estimates
from cattle and sheep and in many cases represented few
observations. Subsequent to the Nutrient Requirements of
Dairy Cattle (National Research Council, 1989) publica-
tion, a wealth of data has been published that have pro-
vided estimates of RUP concentrations in feedstuffs.
Approaches have included in vivo, in situ, and in vitro
(enzymatic, inhibitor, nitrogen solubility and protein frac-
tionation, continuous culture fermentation, gel electropho-
resis, and near-infrared reflectance spectroscopy) tech-
niques (Hoffman et al., 1999; Michalet-Doreau and Ould-
Bah, 1992; Nocek, 1988; Stern et al., 1997). Although often
used as the standard by which other methods are evaluated,
the in vivo approach requires the use of cannulated animals
and, therefore, is subject to errors associated with cannula
placement and the use of microbial and digesta flow
markers.

The in situ procedure has emerged as the most widely
used approach for estimating RUP (Stern et al., 1997) and
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is used in this edition. The procedure has been modified
and adopted in several countries (Lindberg, 1985; Micha-
let-Doreau and Ould-Bah, 1992; Nocek, 1988; Stern et al.,
1997; Vanzant et al., 1998). Adherence to guidelines for
standardizing factors known to affect the results (Michalet-
Doreau and Ould-Bah, 1992; Nocek, 1988; Stern et al.,
1997) have increased considerably the reproducibility of
the measurements within and among laboratories.

As described in the section ‘‘Kinetics of Ruminal Protein
Degradation’’, the in situ procedure can be used to identify
and quantify at least three N fractions which commonly
are referred to as the A, B, and C fractions, and the rate
of degradation (Kd) of fraction B. Fraction A includes
NPN, rapidly solubilized protein, and protein in particles
of smaller size than the porosity of the Dacron polyester
or nylon bags into which the feedstuff is placed during
incubation in the rumen. The different forms of N in
fraction A cannot be separated by using the in situ proce-
dure, nor can the rate be determined at which fraction A
is degraded. Fraction C is estimated by a defined end-point
of degradation, which corresponds to the lowest percent
residual beyond which no further ruminal degradation
occurs (Nocek and English, 1986). Different approaches
have been described to combine estimates of the Kd of
fraction B with rates of passage (Kp) from the rumen to
estimate RUP (see Michalet-Doreau and Ould-Bah, 1992;
Stern et al., 1997; and Bach et al., 1998, for review). The
portion of fraction B determined not to be degraded, plus
fraction C, is assumed to be RUP. Important assumptions
with the in situ method are that ‘‘disappearance’’ from the
bag is synonymous with degradation and that any N that
has disappeared from the bag, including N associated with
rapidly degradable proteins that are likely to be hydrolyzed
as peptides (Broderick and Wallace, 1988), has been
degraded and can be used by ruminal microorganisms.

In situ data from 190 cattle experiments were reviewed.
The experiments involved 1326 individual feedstuff obser-
vations. Most of the publications were published between
1988 and 1998. Experiments involving sheep were not used
because rumen degradation kinetics have been shown to
differ between sheep and cows (Sebek and Everts, 1999;
Siddons and Paradine, 1983; Prigge et al., 1984; Uden and
Van Soest, 1984). Rarely were all three fractions reported,
and sometimes Kd was not reported. In cases of incomplete
information, the data were discarded unless enough infor-
mation was provided to solve for the missing parameter
by using either of the two equations, RDP � A � B[Kd/
(Kd � Kp)] or RUP � B[Kp/(Kp � Kd)] � C. For
observations in which no C fraction was reported, but the
sum of the A and B fractions was less than 100, the residual
was considered to be the C fraction. In the majority of
observations where the protein fractions and Kd were esti-

mated by using the model of Ørskov and McDonald (1979),
or the linear approach of Mathers and Miller (1981), the
sum of the A and B fractions equaled 100 (i.e., B and C
were ‘‘lumped’’ together and Kd was for the ‘‘B � C’’
fractions). In general, those data were considered accept-
able if a small to negligible C fraction could be expected
(e.g., most energy feeds, unprocessed oil-seeds, or unpro-
cessed oil-seed meals). However, for forages or for feed-
stuffs that were heat processed, or feedstuffs where a mod-
erate to large C fraction could be expected (e.g., blood
meal, corn gluten meal), if the sum of the A and B fractions
equaled 100, then those data were not used. In situations
in which an assumed value for Kp was needed to calculate
RDP, RUP, or a missing N fraction, an assumed rate of
5 %/h was used. If needed and not reported, RDP was
calculated as 100– RUP and RUP was calculated as 100 �
RDP. Some authors included a lag term for model-fitting
procedures. However, lag was not considered for purposes
of solving for missing information.

Of the total 1326 feedstuff observations, 801 observa-
tions from 170 experiments (Table 5-5) were considered
acceptable for inclusion into the feed library (Tables 15-
2a,b). Most of the rejected data were of feedstuffs that
were either experimental in nature or uncommon to North
America. Other reasons for not accepting data included
clear deviations from recommended procedures, reported
estimates of protein fractions that exceeded 100% of CP,
or no reported C fraction when one would be expected.

A number of diet-related factors such as ruminal pH,
frequency of feeding, particle size, and Kp can affect the
estimates of Kd (see reviews by Lindberg, 1985; Michalet-
Doreau and Ould-Bah, 1992; Nocek, 1988; Vanzant et al.,
1998). However, sufficient data were not available to allow
for more than one set of Kd values to be summarized for
those factors. The RDP or RUP fraction of CP can be
calculated for each feedstuff by the two equations:

RDP � A � B[Kd/(Kd � Kp)] (5-1)

where:
RDP � RDP of the feedstuff, percentage of CP
A � Fraction A, percentage of CP
B � Fraction B, percentage of CP
Kd � rate of degradation of the B fraction, %/h
Kp � rate of passage from the rumen, %/h

RUP � B[Kp/(Kd � Kp)] � C (5-2)

where:
RUP � RUP of the feedstuff, percentage of CP
B � Fraction B, percentage of CP
Kd � rate of degradation of the B fraction, %/h
Kp � rate of passage from the rumen, %/h
C � Fraction C, percentage of CP

The sum of RDP plus RUP equals 100%.
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TABLE 5-5 Studies Reporting In Situ Determined Estimates of N Fractions and Rates of Protein Degradations That
Were Used in Preparing This Edition

Akayezu et al. (1997) Herrera-Saldana et al. (1990) Robinson et al. (1991a)
Aldrich et al. (1996) Hoffman et al. (1993) Robinson et al. (1991b)
Alexandrov (1998) Hongerholt and Muller (1998) Robinson and Kennelly (1988a)
Antoniewicz et al. (1995) Hristov (1998) Robinson and Kennelly (1988b)
Arieli and Adin (1994) Hristov and Sandev (1998) Robinson and McNiven (1993)
Arieli et al. (1989) Ibrahim et al. (1995) Robinson and McNiven (1994)
Arieli et al. (1995) Janicki and Stallings (1988) Robinson and McQueen (1994)
Armentano et al. (1997) Jones-Endsley et al. (1997) Romagnolo et al. (1994)
Armentano et al. (1993) Keady and Steen (1996) Rooke et al. (1985)
Armentano et al. (1983) Keady et al. (1994) Schroeder et al. (1996)
Armentano et al. (1986) Kenelly et al. (1988) Seymour and Polan (1986)
Balde et al. (1993) Khalili et al. (1994) Sicilano-Jones, J. L., Personal communication.
Barney, N. C., Personal communication. Khalili et al. (1992) Sievert and Shaver (1993)
Batajoo and Shaver (1998) Khorasani et al. (1996a) Singh et al. (1995)
Beauchemin et al. (1997) Khorasani et al. (1994a, b) Song and Kennelly (1989)
Beckers et al. (1995) Khorasani et al. (1992) Stallings et al. (1991)
Beever et al. (1986) Khorasani et al. (1993) Stanford et al. (1996)
Ben Salem et al. (1993) Kibelolaud et al. (1993) Steg et al. (1994)
Berzaghi et al. (1997) Kirkpatrick and Kennelly (1987) Stutts et al. (1988)
Bohnert et al. (1998) Klover et al. (1998) Subuh et al. (1994)
Boila and Ingalls (1992) Kowalski et al. (1997) Susmel et al. (1993)
Boila and Ingalls (1994) Lehman et al. (1995) Susmel et al. (1991)
Brown and Pate (1997) Lu et al. (1988) Susmel et al. (1990)
Calsamiglia et al. (1995b) Lykos and Varga (1995) Tamminga et al. (1991)
Carey et al. (1993) Maiga et al. (1997) Valentine and Bartsch (1988)
Caton et al. (1994) Makoni et al. (1991) van der Aar et al. (1984)
Cecava, M. J., Personal communication. Manyuchi et al. (1992) van der Koelan et al. (1992)
Coblentz et al. (1999) Marshall et al. (1993) Vanhatalo et al. (1995)
Coblentz et al. (1997) McKinnon et al. (1995) van Vuuren et al. (1989)
Coblentz et al. (1998) McNiven et al. (1994) van Vuuren et al. (1992)
Cody et al. (1990) Michalet-Doreau and Cerneau (1991) van Vuuren et al. (1991)
Cozzi et al. (1995) Michalet-Doreau and Nozière (1998) van Vuuren et al. (1993)
Cozzi et al. (1993) Michalet-Doreau and Ould-Bah (1992) Vanzant et al. (1996)
Cozzi and Polan (1994) Mir et al. (1993) Varvikko and Vanhatalo (1992)
Cushnahan et al. (1995) Mir et al. (1992) Vasquez-Anon et al. (1993)
Dawson and Mayne (1997) Mupeta et al. (1997) Vieira et al. (1997)
Dawson and Mayne (1998) Murphy and Kennelly (1987) Vik-Mo (1989)
Deacon et al. (1988) Murphy et al. (1993) von Keyserlingk and Mathison (1993)
Deacon et al. (1988) Mustafa et al. (1996) von Keyserlingk and Mathison (1989)
Denham et al. (1989) Mustafa et al. (1997) von Keyserlingk et al. (1996)
DePeters and Bath (1986) Napoli and Santini (1989) Walhain et al. (1992)
DeVisser et al. (1998) Negi et al. (1988) Waltz and Stern (1989)
England et al. (1997) Nocek et al. (1979) Waltz et al. (1989)
Erasmus (1993) Nocek and Grant (1987) Wanderly et al. (1999)
Erdman et al. (1986) Olson et al. (1994) Wang et al. (1997)
Erdman and Vandersall (1983) O’Mara et al. (1997a, b) Wattiaux et al. (1994)
Erdman et al. (1987) O’Mara et al. (1998) Wen-Shyg et al. (1995)
Erickson et al. (1986) Petit et al. (1994) Windschitl and Stern (1988)
Faldet et al. (1991) Petit and Tremblay (1992) Xu et al. (1996)
Ganesh and Grieve (1990) Peyraud et al. (1997) Yan et al. (1998)
Givens et al. (1997) Piepenbrink and Schingoethe (1998) Yang et al. (1997)
Goelema et al. (1998) Pires et al. (1997) Yang et al. (1996)
Gordon and Peoples (1986) Polan et al. (1997) Yang et al. (1999)
Grings et al. (1991) Polan et al. (1998) Yong-Gang et al. (1994)
Grings et al. (1992a) Powers et al. (1995) Yoon et al. (1996)
Grings et al. (1992b) Prakash et al. (1996) Zerbini and Polan (1985)
Ha and Kennelly (1984) Rioux et al. (1995)

The use of the equations presented above requires for
each feedstuff an estimate of the rate of passage (Kp) from

the rumen. For the purpose of developing equations that
would predict rates of passage, 275 experiments were
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reviewed in which estimates of Kp were reported for a
variety of feedstuffs. Three equations were developed and
have been adopted for use in this publication:

Equation for estimating Kp of wet forages (i.e., silages
and fresh forages)

Kp � 3.054 � 0.614X1

where:
Kp � rate of passage from the rumen, %/h
X1 � DMI, percentage of BW

Equation for estimating Kp of dry forages

Kp � 3.362 � 0.479X1�0.007X2�0.017X3

where:
Kp � rate of passage from the rumen, %/h
X1 � DMI, percentage of BW
X2 � concentrate, percentage of diet DM
X3 � NDF of feedstuff, percentage of DM

Equation for estimating Kp of concentrates

Kp � 2.904 � 1.375X1�0.020X2

where:
Kp � rate of passage from the rumen, %/h
X1 � DMI, percentage of BW
X2 � concentrate, percentage of diet DM

The equations were derived from experiments in which
rare earth elements were used as Kp markers. Studies
involving Cr-mordanted feeds and Cr-mordanted NDF
were not used to estimate Kp of feeds. No significant inde-
pendent variables could be identified for predicting Kp of
concentrates when the data set included these studies.
The subcommittee recognized that intrinsic properties of
feedstuffs, such as particle size and density, functional spe-
cific gravity, and processing of grains are not considered
by the equations. Those factors, in addition to others (e.g.,
ruminal pH, feeding frequency, and use of ionophores)
(see reviews by Owens and Goetsch, 1986 and Firkins et
al., 1998), could not be considered because data are too
sparse to make adjustments for those factors. Nonetheless,
data from which the equations were developed for estimat-
ing Kp are diverse with respect to DMI (2.7 to 26.8 kg/d),
body weight (120 to 745 kg), DMI as percentage of body
weight (0.8 to 4.4%), concentrate in dietary DM (0 to
85%), and represent estimates of Kp obtained in growing,
lactating, and nonlactating cattle.

Standardized methods have been proposed (AFRC,
1992; Lindberg, 1985; Madsen et al., 1995; Michalet-Dor-
eau and Ould-Bah, 1992; Nocek, 1988; Ørskov, 1982; Van-
zant et al., 1998; Wilkerson et al., 1995) for the in situ
procedure of estimating RUP of feedstuffs. Those reviews
agree generally about most procedural aspects, but the

committee deemed it necessary to augment the recommen-
dations in those reviews to foster a more complete report-
ing of data such that future summaries possibly may
account for factors (e.g., ruminal pH, DMI) that may affect
estimates of Kd. The recommendations by the committee
are shown in Table 5-6.

The committee encourages the development and accep-
tance of an alternative method for quantifying N fractions
and Kd that can be adopted by commercial feed testing
laboratories for estimating RUP of feedstuffs. Chemical
approaches are the most attractive for quantifying N frac-
tions in feedstuffs because those procedures can be per-
formed under routine laboratory conditions. The most
sophisticated approach described to date is the use of the
detergent system developed by Goering and Van Soest
(1970) for analysis of carbohydrates in conjunction with
extraction with borate phosphate buffer (Krisnamoorthy
et al., 1982; Fox et al., 1990; Chalupa et al., 1991; Sniffen
et al., 1992). As discussed previously, this method partitions
CP into five fractions (A, B1, B2, B3, and C) according to
rates of ruminal degradation and is the method that is used
in the CNCPS (Sniffen et al., 1992). Protein degradability
is calculated on the basis of pool size and rates of degrada-
tion of protein fractions in combination with ruminal pas-
sage rate.

Digestibility of Rumen Undegradable Feed Protein

The previous edition of Nutrient Requirements of Dairy
Cattle (National Research Council, 1989) recognized that
intestinal digestion of feed proteins may differ. However,
because of the lack of sufficient data at the time, a constant
digestibility value of 80 percent was used for RUP of all
feedstuffs. This value was selected because it approximated
the average calculated true absorption of both nonammo-
nia-N and RUP as measured in vivo (see Tables 13 and
14 in Nutrient Requirements of Dairy Cattle 1989 report).
The current edition of Nutrient Requirements of Beef Cat-
tle (National Research Council, 1996) also assumes that
all RUP is 80 percent digestible.

Other feeding standards have attempted to account for
differences in RUP digestibility among feedstuffs. How-
ever, the approaches have differed. For example, it is
assumed in the UK Metabolizable Protein System (Web-
ster, 1987) that acid detergent insoluble nitrogen (ADIN)
is both undegradable in the rumen and indigestible in the
small intestine. The equation of Webster et al. (1984) was
adopted in that publication to predict digestible RUP from
ADIN values [g/kg DM � 0.90 (RUP N-ADIN)/RUP N].
However, more recent data raise concerns about the appro-
priateness of using ADIN to predict RUP digestibility.
Although a good relationship between ADIN and N indi-
gestibility has been demonstrated for most forages (Goer-
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TABLE 5-6 Recommended Procedures and Reporting Details for a Standardized In Situ Procedure for Measuring
Ruminal Degradability of Protein in Dairy Cattlea

Item Recommendation

Diet
Type Similar to that of desired application. Report ingredient and chemical composition (minimum of DM, CP, NDF, and ash)
Feeding level Similar to that of desired application; report DMI and ruminal pH
Feeding frequency 2 times/d if not fed for ad libitum DMI

Evaluated feedstuff
Chemical composition Report (minimum) DM, CP, NDF, and ash
Physical characteristics Report specifics about processing of feedstuffs (e.g., steam-flaked, 0.39 kg/L; heated, 150 ° C, 3 h)
Sample processing 2-mm screen size (Wiley mill)

Bag
Material Polyester
Pore size 40 to 60 �

Incubation procedure
Number of animals 2; report BW
Number of days 2
Number of replications 1
Presoaking Recommended
Ruminal position Ventral rumen
Insertion/removal Remove simultaneously
Incubation times, h 0, 2, 4, 8, 16, 24, and 48 (include 72 for forages). Report time zero washout so a lag time can be calculated.
Rinsing Machine (5 times at 1 min/rinse)
Standard substrate Recommended

Microbial correction Required

Mathematic model Non-linear
aAdapted and modified from AFRC, 1992; Lindberg, 1985; Madsen et al., 1995; Michalet-Doreau and Ould-Bah, 1992; Nocek, 1988; Ørskov, 1982; Vanzant et al., 1998;

Wilkerson et al., 1995.

ing et al., 1972; Yu and Thomas, 1976) and other feeds
that were not heat processed (Waters et al., 1992), others
have reported that ADIN is partially digestible and that a
poor relationship exists between ADIN and N digestibility
in nonforage plant protein sources that have been subjected
to heat treatment (e.g., Nakamura et al., 1994a; Rogers et
al., 1986; Cleale et al., 1987; Weiss et al., 1989; Harty et
al., 1998; Waters et al., 1992). In each of the latter studies,
the evaluated feedstuffs were distiller’s products and other
grain-byproducts that had been subjected to sufficient heat
and moisture to induce the Maillard reactions and thus
have ‘‘added’’ ADIN. These data indicate that much of the
ADIN from these products is digestible but it is not clear
whether this involves ruminal digestion, postruminal diges-
tion, or both. Nakamura et al. (1994b) confirmed that
significant amounts of ADIN in heat-damaged corn gluten
meal and distillers grains were digestible but that the
absorbed N from the heat-damaged protein was not used
for growth by lambs and cattle. Waters et al. (1992) also
confirmed the findings of Van Soest et al. (1987) that high
tannin feeds bind protein in the gut which appears as
ADIN in feces. The result was a high negative mean value
(�89 percent) for apparent digestibility of ADIN in digest-
ibility trials with sheep in which diets contained high tannin
feeds. In contrast, diets that contained distillers products
resulted in high positive values (62 percent) for ADIN
digestibility whereas diets consisting only of ‘‘conventional’’

feeds resulted in a mean digestibility value for ADIN of 2
percent (Waters et al., 1992). Observations such as these
indicate that ADIN is probably a useful indicator of non-
usable N but that it may not be useful for estimating
digestibility of RUP. In the French PDI System (Jarrige,
1989), variable digestibility values for RUP (0.25 to 0.95)
are assigned to feedstuffs. Digestibility values were calcu-
lated from results of digestibility experiments with sheep
using the assumption that the between-feed differences in
fecal N excretion per unit of DMI results from indigestible
dietary protein.

Other methods for estimating the intestinal digestibility
of RUP include in vivo procedures, nonruminant animal
bioassay, the in situ mobile nylon bag technique, and in
vitro techniques (e.g., lysine availability test and enzymatic
methods) (Stern et al., 1997). Although used as the stan-
dard by which other methods are evaluated, the in vivo
approach requires the use of cannulated animals and is
subject to inherent animal variation and errors associated
with cannula placement and the use of microbial and
digesta flow markers. The most widely used approach for
estimating the true intestinal digestibility of the RUP frac-
tion of feedstuffs is the mobile bag technique. Although
requiring the need for ruminally and duodenally cannu-
lated animals, the technique is relatively easy and it pro-
vides a more direct and physiologic approach than the use
of ADIN. Using this method, small amounts of washed,
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ruminally undegraded feed residues are placed in bags.
The bags are then usually preincubated in a pepsin/HCl
solution for 1 to 3 h, inserted into the duodenum of cannu-
lated ruminants, and then recovered either from an ileal
cannula or (more typically because of convenience) from
the feces. A comparison of ileal and fecal recovery of mobile
bags provides similar estimates of RUP digestibility (Beck-
ers et al., 1996; Boila and Ingalls, 1994, 1995; Hvelplund,
1985; Jarosz et al., 1994; Moshtaghi Nia and Ingalls, 1995;
Todorov and Griginov, 1991; Vanhatalo and Ketoja, 1995).
Recovered bags are washed thoroughly to remove endoge-
nous and other contaminating protein and analyzed for N
or AA content. Therefore, estimates of RUP digestibility
obtained using this technique are considered to be esti-
mates of true rather than apparent digestibility. Factors
that can potentially affect the accuracy of the estimates
of intestinal digestibility obtained using the mobile bag
technique have been reviewed (Beckers et al., 1996; Stern
et al., 1997) and a standardized procedure for its use has
been recommended (Madsen et al., 1995). Studies have
indicated good correlation between results from fecal col-
lection of bags and in vivo intestinal CP digestion (Hvel-
plund, 1985; Todorov and Griginov, 1991).

Calsamiglia and Stern (1995) developed a three-step in
vitro procedure that provides an alternative to the use of
intestinally cannulated ruminants for estimating intestinal
digestibility of the RUP fraction of feed proteins. The
procedure consists of: (1) incubating ruminally undegraded
feed residues for 1 h in 0.1N HCl solution containing l g/L
of pepsin, (2) neutralizing the mixture with 1N NaOH and
a pH 7.8 phosphate buffer containing pancreatin followed
by a 24-h incubation, and (3) precipitation of undigested
proteins with a 100 percent (wt/vol) trichloracetic acid
solution. Pepsin-pancreatin digestion of protein is calcu-
lated as TCA-soluble N divided by the amount of N in the
sample (Dacron bag residue) used in the assay. The authors
reported an excellent correlation (r � 0.91) with in vivo
estimates of intestinal CP digestion when using ruminally
undegraded feed residues from 16-h ruminal incubations.

To arrive at estimates of RUP digestibility for this publi-
cation, 54 studies were summarized (Table 5-7). The
mobile bag technique with recovery of the bags from the
feces was used in 48 studies and the in vitro procedure of
Calsamiglia and Stern (1995) was used in 6 studies. Porosity
of bag material used in the mobile bag technique studies
ranged from 9 to 53 �m. Comparative data within studies
in which the effect of bag pore size on protein digestibility
was measured indicated that digestibility tended to increase
slightly with increasing pore size. Beckers et al. (1996)
obtained digestibility values of 87 and 92 percent, 72 and
75 percent, and 64 and 69 percent for ruminal residues of
soybean meal, wheat bran, and meat and bone meal when
pore size was 10 and 43 �m, respectively. Hvelplund (1985)
obtained values of 95 and 97 percent, 87 and 87 percent,

and 74 and 75 percent for residues of soybean meal, coco-
nut cakes, and rapeseed meal when pore size was 9 and
22 �m. Porosities of 40 to 53 �m were used in all but
twelve studies identified for this data set. Mobile bags
containing the ruminal residues were preincubated in a
pepsin/HCl solution before placement in the duodenum
in 75 percent of the studies. Studies not employing pepsin/
HCl preincubation were retained in the data set because
comparative data in studies that have evaluated the impor-
tance of pepsin/HCl preincubation indicate that it is not
a necessary step when the mobile bag technique includes
preincubation of feeds in the rumen (Vanhatalo et al., 1995;
Voigt et al., 1985). For feeds in which data were limited
or did not exist, the values reported by Jarrige (1989) in
Table 13.3 of Ruminant Nutrition: Recommended Allow-
ances and Feed Tables were used. The mean values used
in this revision (Tables 15-2a,b) are rounded to the nearest
5 percentage units to emphasize the lack of precision
involved in arriving at mean values.

Predicting Passage of Endogenous Protein

Predicted passage of protein to the small intestine in
the previous Nutrient Requirements of Dairy Cattle publi-
cation (National Research Council, 1989) was assumed
to originate entirely from ruminally synthesized microbial
protein and RUP. However, research indicates that endog-
enous protein N also contributes to N passage to the duode-
num and maybe should be considered in models designed
to predict passage of protein to the small intestine. Sources
of endogenous protein that may contribute to duodenal
protein include: (1) mucoproteins in saliva, (2) epithelial
cells from the respiratory tract, (3) cellular debris from the
sloughing and abrasion of the epithelial tissue of the mouth,
esophagus, and the reticulo-rumen, (4) cellular debris from
the sloughing and abrasion of the epithelial tissue of the
omasum and abomasum, and (5) enzyme secretions into
the abomasum. Significant amounts of the first three
sources of endogenous protein probably are degraded by
ruminal microorganisms, and therefore do not contribute
in their entirety to protein passage to the small intestine.

Attempts to measure passage of endogenous protein N
to the small intestine of ruminants are limited because of
the difficulty of being able to distinguish endogenous N
from microbial N and feed N in duodenal digesta. Several
different approaches have been used. One approach has
been to measure the flow of nonammonia-N (NAN)
through the rumen and abomasum when cows and steers
were nourished totally on volatile fatty acids infused into
the rumen. Using this approach, Ørskov et al. (1986)
obtained mean flows of NAN from the rumen of two non-
lactating, pregnant Holstein cows (650 and 700 kg) of 8.3
g/d or 51 mg/kg BW0.75; for two steers (307 and 405 kg),
the flows were 5.1 g/d or 58.2 mg/kg BW0.75. Ørskov et al.
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TABLE 5-7 Published Studies That Were Summarized for the Purpose of Arriving at Estimates of Intestinal
Digestibility of the RUP Fraction of Feedstuffs

Antoniewicz et al. (1992) Hvelplund et al. (1994) Prestløkken (1999)
Arieli et al. (1989) Hvelplund et al. (1991) Rae and Smithard (1985)
Beckers et al. (1996) Jarosz et al. (1994) Rooke (1985)
Boila and Ingalls (1994) Kendall et al. (1991) Steg et al. (1994)
Boila and Ingalls (1995) Kibelolaud et al. (1993) Todorov and Girginov (1991)
Calsamiglia and Stern (1995) Kopecný et al. (1998) Vanhatalo et al. (1995)
Calsamiglia et al. (1995a) Liu et al. (1994) Vanhatalo and Ketoja (1995)
Cros et al. (1992a) Maiga et al. (1996) Vanhatalo and Varvikko (1995)
Cros et al. (1992b) Masoero et al. (1994) Vanhatalo et al. (1996)
Dakowski et al. (1996) Mhgeni et al. (1994) van Straalen and Huisman (1991)
Deacon et al. (1988) Moshtaghi Nia and Ingalls (1992) van Straalen et al. (1993)
de Boer et al. (1987) Moshtaghi Nia and Ingalls (1995) van Straalen et al. (1997)
Erasmus et al. (1994a) Mupeta et al. (1997) Varvikko and Vanhatalo (1992)
Frydrych (1992) Mustafa et al. (1998) Volden and Harstad (1995)
Goelema et al. (1998) O’Mara et al. (1997a) von Keyserlingk et al. (1998)
Hindle et al. (1995) Palmquist et al. (1993) Walhain et al. (1992)
Howie et al. (1996) Pereira et al. (1998) Wang et al. (1999)
Hvelplund (1985) Piepenbrink and Schingoethe (1998) Weisbjerg et al. (1996)

(1986) used the same approach with growing cattle and
lambs but measured flows of NAN through both the rumen
and abomasum. In this experiment with four steers (240
to 315 kg), they reported flows of total N and NAN through
the rumen of 9.9 and 5.8 g/d (145 and 85 mg/kg BW0.75)
and flows through the abomasum of 17.0 and 13.4 g/d (248
and 195 mg/kg BW0.75). In lambs (40 to 50 kg), respective
flows of N and NAN from the rumen and abomasum were
103 and 76 and 244 and 181 mg/kg BW0.75. In both steers
and lambs, the contribution of the omasum and abomasum
to the total endogenous N leaving the abomasum was
greater than the contributions from the other sources.

A more physiologic approach for obtaining estimates of
passage of endogenous N to the small intestine of cattle
has been to measure flows of N fractions when diets consid-
ered free of rumen digestible protein are fed. In this case,
flows of endogenous N are estimated as the difference
between the sum of N intake and measured flows to the
duodenum of microbial N and flows of total NAN. Hannah
et al. (1991) and Lintzenich et al. (1995) fed dormant
bluestem-range hay (2.3 and 2.8 percent CP, respectively)
as the sole source of dietary energy and protein to Holstein
steers (370 to 424 kg). Ad libitum intake of DM was 0.7
to 0.8 percent of BW (about 3.1 kg/d in both studies). Flows
of endogenous N to the small intestine were calculated
to be 278 (Hannah et al., 1991) and 279 mg/kg BW0.75

(Lintzenich et al., 1995). Hart and Leibholz (1990) fed
variable amounts of alkali-treated wheat straw (1.7 to 4.1
kg/d) to 300 kg steers fitted with ruminal and abomasal
(distal pyloric region) cannulas. The hay was demonstrated
to be free of rumen digestible protein. The average flow
of endogenous N to the abomasum was 325 mg/kg BW0.75.
The flow of endogenous N from the rumen to the omasum
increased with increasing DMI, averaging 2.2 g/kg DMI
(87 mg/kg BW0.75), whereas the contribution of the omasum

to flow of endogenous N to the abomasum appeared unaf-
fected by DMI, averaging 17.2 g N/d.

Brandt et al. (1980) used an alternative approach that
allowed for the provision of N for ruminal microorganisms.
Two lactating cows fitted with ruminal and duodenal can-
nulas were fed twelve daily meals of (kg/d) 4.86 cellulose,
0.48 straw, and 3.0 concentrate (corn starch, sugar, oil, and
minerals). The basal diet was supplemented with constant
ruminal infusions of 15N-enriched urea. From measured
15N surpluses in duodenal NAN, microbial N, and milk N
they determined that 3.6 g of endogenous protein N passed
to the duodenum of dairy cows for each kilogram of OM
that passes to the small intestine. Assuming that dietary
DM approximates 90 to 93 percent OM and that 60 to 65
percent of OM intake passes to the small intestine of dairy
cows (Clark et al., 1992), then approximately 2.1 g of endog-
enous N passes to the small intestine for each kilogram of
DM consumed (3.6 g � 0.915 � 0.625 � 2.1 g). The
authors concluded that with normal diets, endogenous pro-
tein N may constitute 9 to 12 percent of NAN passing to
the small intestine.

Vérité and Peyraud (1989) reported a regression equa-
tion that was developed to determine the contributions of
microbial N, feed N, and endogenous N to passage of NAN
to the small intestine. It was assumed in the regression
model that flow of endogenous N to the small intestine is
proportional to the intake of nondigestible OM (OM not
digested in the entire digestive tract). Using a data set
involving 405 measurements of NAN passage in sheep,
growing cattle and cows, the resulting equation indicated
that flow of endogenous N to the small intestine is equal
to 5.3 g/kg of nondigestible OM intake, or approximately
1.7 g/kg DMI.

In summary, it is apparent that significant amounts of
endogenous N may pass to the small intestine. The quantity
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that passes to the duodenum in an animal of a given BW
appears to be correlated closely to intake of indigestible
OM. However, because OM digested in the rumen is not
calculated in the model, for purpose of simplicity it was
decided to predict passage of endogenous N to the duode-
num from DMI. The equation selected for use in this
publication is: endogenous N (g/d) � 1.9 � DMI (kg/d).
The value of 1.9 is less than the value of 2.1 reported by
Brandt et al. (1980) and was selected for use in this model
because it yields a mean bias closest to zero for predicting
non-ammonia-non-microbial N in the model (see next sec-
tion). The value of 1.9 also provides estimates of endoge-
nous N that are consistent with the above cited data. For
example, using a cow weighing 600 kg and consuming 25
kg of dry matter, the predicted flow of endogenous N is
47.5 g/d, or 392 mg/kg BW0.75. The value of 392 mg/kg
BW0.75 is 58 percent higher than the measured flow of 248
mg/kg BW.75 in steers maintained by intragastric infusion
and consuming no feed (Ørskov et al., 1986).

Evaluation of Model for Predicting Flows of N Fractions

The described approaches to predicting passage of MCP,
RUP, and ECP to the small intestine were validated using
99 published studies that reported flows of N fractions
[non-ammonia N (NAN), microbial N (MN), and non-
ammonia-non-microbial N (NANMN)] to the small intes-
tine (Table 5-8). Selected studies were limited to those in
which duodenal N flow was partitioned into NAN, MN,
and NANMN; data were not used if it was not explicitly
clear that ammonia-N was measured and subtracted from
total N for reporting flows of NAN. Of the 99 selected
studies, 27 used growing cattle (106 treatment means) and
72 used lactating and non-lactating dairy cows (284 treat-
ment means). The animals (155 to 785 kg BW) were fed
a diversity of diets (e.g., 0 to 90% concentrate, mean �

50%; 8.0 to 24.8% CP, mean � 16.2%; and 7.2 to 12.8%
RDP, mean 10.9%) at variable intakes of DM (0.95 to
4.40% of BW; mean � 2.86%). Although independently
selected by a blind collaborator, 56 of the 72 studies involv-
ing cows in the 99-study data base used for evaluation were
used for developing the equation for predicting passage of
MCP. None of the growing cattle studies were used in
developing the equation for predicting passage of MCP.

Figures 5-6, 5-7, and 5-8 are plots of predicted vs. mea-
sured flows and of residuals (predicted-measured) vs. mea-
sured flows for MN, NANMN (ruminally undegraded feed
N � endogenous N), and NAN for cows. The plots for
growing cattle showed the same tendencies as those for
the cows so only the plots for cows are presented. On
average, for all variables and for both growing cattle and
cows, discrepancies were small between predicted and

measured flows. Mean biases of prediction for MN,
NANMN, and NAN for growing cattle and cows were
(g/d) �0.75, �0.44, �1.9 and �0.52, �0.12, �0.14,
respectively. Mean biases of prediction for MN, NANMN,
and NAN for the combined data set were (g/d) �0.18,
�0.01, and �0.37. In 57 percent of the cases for growing
cattle and 28 percent of the cases for cows (36 percent of
the total cases), passage of microbial CP was restricted by
the availability of RDP and therefore, predicted by RDP
intake (0.85 � RDP intake).

The degree of the negative slope-bias that is evident in
the residual plots are of concern. However, some negative
slope-bias was expected because of errors in measurement.
A negative slope-bias was expected for NAN (Figure 5-8)
because of errors associated with quantifying passage of
digesta to the small intestine. Because measurements of
digesta passage require the use of markers, flows can be
under- or over-estimated to varying degrees. A greater
negative slope-bias was expected for MN (Figure 5-6) and
NANMN (Figure 5-7) because errors in measurement
include errors in quantifying passage as well as estimating
the content of MN in NAN. Primarily because of the error
associated with the use of markers for estimating MN in
NAN, estimates may be lower or higher than actual. To
help determine if the negative slope-biases were attribut-
able to the data used for evaluation, the model, or both,
the residuals were regressed on some variables that were
reported in most of the studies and considered to possibly
influence the prediction accuracy of the model. These vari-
ables included BW, DMI (percent of BW and kg/d), con-
centrate intake (percent of DMI), diet CP (percent of
DM), and CP intake. None of these factors contributed
appreciably to the negative slope biases. Therefore, it was
concluded that errors in the structure of the model are
probably major contributors to the negative slope biases.
The series of equations used for predicting flows of N
fractions includes some nonlinear equations. Therefore,
because of its nonlinear nature, the model is sensitive to
generating bias predictions because of errors in model
input (i.e., errors in measuring the independent variables).

Predicting Passage of Metabolizable Protein

Microbial CP as provided by bacteria and protozoa is
considered to contain 80 percent true protein; the remain-
ing 20 percent of MCP is considered to be provided by
nucleic acids (National Research Council, 1989). The true
protein of MCP is assumed to be 80 percent digestible
(National Research Council, 1989). Consequently, the con-
version of MCP to MP is assumed to be 64 percent. Rumi-
nally undegraded feed CP is assumed to be 100 percent
true protein (National Research Council, 1989). As dis-



66 Nutrient Requirements of Dairy Cattle

TABLE 5-8 Studies Used to Evaluate the Model Equations for Predicting Flows of MCP, RUP plus ECP, and NAN
Flows to the Small Intestine

Aldrich et al. (1995) Klusmeyer et al. (1990) Robinson et al. (1985)
Aldrich et al. (1993a) Köster et al. (1997) Rode et al. (1985)
Aldrich et al. (1993b) Kung et al. (1983) Rooke et al. (1985)
Armentano et al. (1986) Lardy et al. (1993) Santos et al. (1984)
Beauchemin et al. (1999) Lu et al. (1988) Sarwar et al. (1991)
Bernard et al. (1988) Lykos et al. (1997) Schwab et al. (1992a)
Bohnert et al. (1999) Lynch et al. (1991) Schwab et al. (1992b)
Cameron et al. (1991) Mabjeesh et al. (1996) Song and Kennelly (1989)
Cecava et al. (1993) Mansfield and Stern (1994) Stern et al. (1983)
Cecava and Parker (1993) McCarthy et al. (1989) Stern et al. (1985)
Christensen et al. (1993a, b) Merchen and Satter (1983) Stokes et al. (1991b)
Christensen et al. (1996) Milton et al. (1997) Tesfa (1993)
Crocker et al. (1998) Murphy et al. (1993) Tice et al. (1993)
Cunningham et al. (1993) Murphy et al. (1994) van Vuuren et al. (1992)
Cunningham et al. (1994) Narasimhalu et al. (1989) van Vuuren et al. (1993)
Cunningham et al. (1996) Ohajuruka et al. (1991) Volden (1999)
Elizalde et al. (1999) Oliveira et al. (1995) Waltz et al. (1989)
Erasmus et al. (1992) O’Mara et al. (1998) Wessels et al. (1996)
Erasmus et al. (1994b) O’Mara et al. (1997b) Yang et al. (1997)
Espindola et al. (1997) Overton et al. (1995) Yang et al. (1999)
Feng et al. (1993) Pantoja et al. (1995) Yoon and Stern (1996)
Glenn et al. (1989) Pantoja et al. (1994) Younker et al. (1998)
Goetsch et al. (1987) Pena et al. (1986) Zerbini et al. (1988)
Holden et al. (1994a) Peyraud et al. (1997) Zhu et al. (1997)
Holden et al. (1994b) Pires et al. (1997) Zinn (1988)
Johnson et al. (1998) Poore et al. (1993) Zinn (1993a)
Joy et al. (1997) Prange et al. (1984) Zinn (1993b)
Kalscheur et al. (1997a) Putnam et al. (1997) Zinn (1995)
Kalscheur et al. (1997b) Rangngang et al. (1997) Zinn et al. (1995)
Keery et al. (1993) Rinne et al. (1997) Zinn and Plascencia (1993)
Khorasani et al. (1996b) Robinson (1997) Zinn et al. (1994)
Klusmeyer et al. (1991a) Robinson and Sniffen (1985) Zinn and Shen (1998)
Klusmeyer et al. (1991b) Robinson et al. (1994) Zinn et al. (1996)

FIGURE 5-6 Plot of predicted vs. measured (filled circles) and
residuals (predicted-measured; open circles) vs. measured flows
of microbial N to the small intestine of dairy cows (y � 0.4109x
� 146.5; r2 � 0.35; mean bias � � 0.52; RMSPE � 63.1; n
� 284).

cussed previously, estimates of intestinal digestibility have
been assigned to the RUP fraction of each feedstuff;
assigned values vary from 50 to 100 percent. Therefore,
the contribution of RUP to MP is variable and dependent
on feed type. Published data on the content and digestibil-

FIGURE 5-7 Plot of predicted vs. measured (filled circles) and
residuals (predicted-measured; open circles) vs. measured flows
of NANMN (rumen undegradable N plus endogenous N) to the
small intestine of dairy cows (y � 0.5701x � 91.193; r2 � 0.51;
mean bias � �0.12; RMSPE � 63.1; n � 275).

ity of true protein in ECP is extremely limited. Ørskov et
al. (1986) reported that NAN constituted 79 percent of
total N in ruminal fluids and 74 percent of total N in
abomasal fluids collected from 40-50 kg lambs nourished
by N-free ruminal infusions of volatile fatty acids. Using a
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FIGURE 5-8 Plot of predicted vs. measured (filled circles) and
residuals (predicted-measured; open circles) vs. measured flows
of NAN (microbial N � rumen undegradable N � endogenous
N) to the small intestine of dairy cows (y � 0.7251x � 127.1;
r2 � 0.64; mean bias � �0.14; RMSPE � 78.3; n � 275).

similar approach, Guilloteau (1986) found that 30 percent
of abomasal endogenous N was AA-N. Based on these two
experiments, the true protein content of ECP passing to
the duodenum is assumed to be 50 percent. The true
protein of ECP is assumed to be 80 percent digestible;
consequently, the conversion of ECP to MP is assumed to
be 40 percent.

M ET AB O LI ZA B LE PR O TE IN
R EQ UI R EM EN T S

Previous National Research Council (1985, 1989)
requirements for MP were based on the factorial method.
The same approach is used in this edition. The protein
requirement includes that needed for maintenance and
production. The maintenance requirement consists of uri-
nary endogenous N, scurf N (skin, skin secretions, and
hair), and metabolic fecal N. The requirement for produc-
tion includes the protein needed for the conceptus, growth,
and lactation.

MP Requirements for Maintenance

Swanson (1977) derived the equation used to estimate
the endogenous urinary protein requirement. The equation
of Swanson (UPN � 2.75 � BW0.50) was in net protein
units and was used as such in the previous Nutrient
Requirements of Dairy Cattle publication (National
Research Council, 1989). The protein system used in this
version is based on MP. Assuming an efficiency of convert-
ing MP to net protein of 0.67 (National Research Council,
1989), the endogenous urinary protein requirement in MP
units is 4.1 � BW0.50.

The original equation of Swanson (1977) for predicting
protein requirements for scurf protein also was in units of
net protein (SPN � 0.2 BW0.60) and used in the previous
Nutrient Requirements of Dairy Cattle publication
(National Research Council, 1989). Assuming an efficiency
of converting MP to net protein of 0.67 (National Research
Council, 1989), the scurf protein requirement in MP units
is 0.3 � BW0.60 .

In the last edition (National Research Council, 1989),
metabolic fecal protein (MFP) was calculated using an
equation based on intake of indigestible DM (IDM) (i.e.,
MFP, g/d � 90 � IDM, kg/d). Because of the errors
associated with estimating the indigestibility of diets, the
committee chose to calculate MFP directly from DM
intake (DMI). Estimates of MFP have been made by two
methods (Swanson, 1982). The first is by feeding diets of
differing content of CP and regressing intake of digestible
CP on intake of CP. The intercept is estimated MFP.
Using this approach, Waldo and Glenn (1984) obtained a
proportional intercept of 0.029 on the lactating dairy cow
data of Conrad et al. (1960). Also using lactating cows,
Boekholt (1976) obtained a proportional intercept of 0.033.
Using sheep and cattle fed forage diets, Holter and Reid
(1959) obtained an intercept of 0.034. The other approach
for estimating MFP is to measure fecal N output when
animals are fed low CP diets and subtract from fecal N
an estimate of undigested feed N. Using this approach,
Swanson (1977) estimated metabolic fecal N for ruminating
cattle fed 70 natural and semi-synthetic low protein diets.
By subtracting 10 percent of feed N from fecal N, Swanson
(1977) obtained a mean estimate of metabolic fecal N of
4.7 g /kg DMI (29.4 g CP/kg of DMI). Based on the above
data, the committee chose to calculate MFP (g/d) as: MFP
� 30 � DMI (kg).

Metabolic fecal protein consists of bacteria and bacterial
debris synthesized in the cecum and large intestine, kera-
tinized cells, and a host of other compounds (Swanson,
1982). Using different solvents and centrifugation tech-
niques, Mason (1979) reported that about 30 percent of
the nonfeed portion of fecal N was soluble and about 70
percent was bacterial and endogenous debris. Quantitative
data on the contribution of undigested bacterial CP synthe-
sized in the rumen to metabolic fecal N are limited. In a
series of experiments using cannulated lambs, Mason and
White (1971) observed no degradation in the small intes-
tine of the 2,6-diaminopimelic acid (DAPA)-containing
fraction of bacterial cell-wall material. Based on differences
in the quantities of DAPA passing through the terminal
ileum and passing out of the rectum, the authors reported
an 80 percent loss (apparent) of DAPA when the lambs
were fed concentrate diets and a 30 percent loss when
forage diets were fed. The true losses of the DAPA-contain-
ing material that originated in the rumen would be higher
than the reported values to the extent that hindgut synthesis
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of bacterial CP occurred, an event that is influenced by
the availability of energy in the hindgut (Mason et al.,
1981). Measurements of the amount of undigested ruminal
bacterial CP that appears in the feces of dairy cattle fed a
variety of diets are needed. Although uncertain of the
amount of undigested ruminal bacterial CP that appears
in the feces of dairy cattle, the subcommittee chose to
assume that 50 percent of model estimated, intestinally
indigestible MCP appears in the feces and that the other
50 percent is digested in the hindgut. Therefore, the equa-
tion for predicting the MP requirements for MFP (g/d) is:
MP � [(DMI (kg) � 30) � 0.50((bacterial MP/0.80)-
bacterial MP)].

In this edition, endogenous crude protein secretions are
considered to contribute to MP supply. In view of the lack
of published data, the efficiency of use of the absorbed
MP for endogenous MP is assumed to be 0.67. Therefore
the equation to calculate the MP requirement for endoge-
nous MP is: endogenous MP/0.67.

In summary, the overall equation for predicting the MP
requirement for maintenance (g/d) is: MP � 4.1 � BW0.50

(kg) � 0.3 � BW0 . 6 0 (kg) � [(DMI (kg) � 30) �
0.50((bacterial MP/0.8)-bacteria MP)] � endogenous
MP/0.67.

Protein Requirements for Pregnancy

Dry cows require nutrients for maintenance, growth of
the conceptus, and perhaps growth of the dam. Estimating
nutrient requirements for pregnancy by the factorial
method requires knowledge of the rates of nutrient accre-
tion in conceptus tissues (fetus, placenta, fetal fluids, and
uterus) and the efficiency with which dietary nutrients are
utilized for growth of the conceptus. Data are limited for
dairy cattle.

This document differs from the last edition (National
Research Council, 1989) for estimates of protein require-
ments for gestation during the last two months of preg-
nancy. Current estimates are from Bell et al. (1995). Other
estimates are available, but they were obtained from beef
cattle, dairy breeds other than Holsteins, or from research
conducted more than 25 years ago. However, estimates
from Bell et al. (1995) do not vary greatly from previous
estimates and thus support the requirements published in
the 1989 National Research Council report. Bell et al.
(1995) measured rates of growth and conceptus chemical
composition in multiparous Holstein cows that were seri-
ally slaughtered from 190 to 270 d of pregnancy. A qua-
dratic regression equation best described protein accretion
in the gravid uterus.

Estimates were derived from cows with a mean BW of
714 kg that carried a single fetus. Estimates of protein
requirements to support pregnancy are solely a function
of day of gestation and calf BW. The requirement for

metabolizable protein to meet the demands of pregnancy
(MPPreg) was derived from the equation of Bell et al.
(1995), which includes conceptus weight, calf birth weight
and days of gestation as variables. The efficiency with which
MP is used for pregnancy (EffMPPreg) is assumed to be
0.33. Because the experiments conducted by Bell included
only animals more than 190 days pregnant and because
the requirements for pregnancy are small before this time,
pregnancy requirements are calculated only for animals
more than 190 days pregnant. If the animal is between
190 and 279 days pregnant, the equation to compute the
weight of the conceptus (CW) is:

CW � (18 � ((DaysPreg � 190) � 0.665)) � (CBW/45)
Where DaysPreg � days pregnant and CBW � calf

birth weight.
The average daily gain due to pregnancy (ADGPreg) is:

ADGPreg � 665 � (CBW/45).
The MPPreg is MPPreg � (((0.69 � DaysPreg) �

69.2) � (CBW/45))/EffMPPreg.

In the model, animals more than 279 days pregnant have
the same requirements as animals that are 279 days
pregnant.

Protein Requirement for Lactation

Protein required for lactation is based on the amount
of protein secreted in milk. The equation for calculating
protein in milk (kg/d) is (YProtn) � milk production, kg/d
� (milk true protein / 100). The efficiency of use of MP
for lactation is assumed to be 0.67. Use of this efficiency
value in this edition’s model resulted in MP balances of
zero or less for 61 of the 206 diet treatments reported in
the studies presented in Table 5-2. In all cases, cows were
in early to mid lactation and averaged 30.9 kg/d of milk
(range � 18.8 to 44.0). Crude protein, RDP, and RUP in
diet DM averaged 16.1 percent (range � 13.8 to 20.8),
10.9 percent (range � 7.8 to 14.7), and 5.2 percent (range
� 2.8 to 8.9). The equation to calculate MP requirement
for lactation (MPLact) is (g/d) MPLact � (YProtn/0.67)
� 1000.

Protein Requirements for Growth

The protein requirements for heifers and steers are from
the Nutrient Requirements of Beef Cattle (National
Research Council, 1996) (see growth section Chapter 11).
The net protein requirement (NP, g/d) for growth is calcu-
lated using retained energy (RE), average daily weight
gain (WG), and equivalent shrunk BW (EQSBW). The
following equations are needed: if WG � 0 then NPg �
0 otherwise NPg � WG � (268– (29.4 � (RE / ADG))).
If (EQSBW � or � 478 kg) then efficiency of use of MP
for growth (EffMP NPg) � (83.4�(0.114 � EQSBW)) /
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100 otherwise EffMP NPg � 0.28908. Metabolizable pro-
tein for growth in g/d (MPGrowth) � NPg / EffMP NPg.

A MI NO A CI DS

Absorbed AA provided by ruminally synthesized MCP,
RUP, and ECP are essential as the building blocks for the
synthesis of tissue and milk proteins. Although to a lesser
extent, absorbed AA are required also as precursors for
the synthesis of other body metabolites. Amino acids other
than leucine also serve as precursors for gluconeogenesis
and all can be converted to fatty acids or serve as immediate
sources of metabolic energy when oxidized to CO2. The
metabolic fate of AA in ruminants has been reviewed
(Lobley, 1992).

Amino acids in plant and animal proteins and those
produced industrially in pure form for the feed industry
by fermentative technology (lysine, threonine, and trypto-
phan) are of the L-form. In contrast, methionine produced
by chemical synthesis is a DL-racemic mixture. Small
amounts of D-AA exist in bacterial cell walls and in free
form in a number of plants. Biologic use of absorbed D-
AA requires conversion to the L-isomer, the efficiency of
which is both AA and species dependent (Baker, 1994).
The conversion of D-methionine to L-methionine has been
of some concern in cattle nutrition because of the commer-
cial availability of various types of ruminally protected DL-
methionine. Titgemeyer and Merchen (1990a) noted a ten-
dency for lower N retention when steers were infused
abomasally with DL-methionine than with L-methionine.
However, Campbell et al. (1996) concluded that D-methio-
nine was used as effectively as L-methionine for N reten-
tion of growing cattle. Doyle (1981) and Reis et al. (1989)
concluded that D-methionine was used as efficiently as
L-methionine for wool growth.

Essential vs. Nonessential Amino Acids

Of the twenty primary AA that occur in proteins, ten
are usually classified as being ‘‘essential’’ (or indispensable).
These include arginine (Arg), histidine (His), isoleucine
(Ile), leucine (Leu), lysine (Lys), methionine (Met), phe-
nylalanine (Phe), threonine (Thr), tryptophan (Trp), and
valine (Val). Amino acids termed essential either cannot
be synthesized by animal tissues or if they can (Arg and
His), not at rates sufficient to meet requirements, particu-
larly during the early stages of growth or for high levels
of production. It is understood that when EAA are
absorbed in the profile as required by the animal, the
requirements for total EAA is reduced and their efficiency
of use for protein synthesis is maximized (Heger and Fry-
drych, 1989). Amino acids classified as ‘‘nonessential’’ (or
dispensable) are those which are readily synthesized from

metabolites of intermediary metabolism and amino groups
from surplus AA. Unlike the EAA, there remains little
evidence that the profile of absorbed nonessential AA
(NEAA) is important for efficiency of use of absorbed AA
for protein synthesis. If one or more of the NEAA are in
short supply relative to metabolic need, most of the evi-
dence indicates they can be synthesized in adequate
amounts from one another or from one or more of the
EAA that are absorbed in excess of need.

The classification of AA as being essential or nonessential
originates from research with nonruminant animals.
Research with dairy cattle is extremely limited. However,
the early isotopic tracer studies of Black et al. (1957) and
Downes (1961), using dairy cattle and sheep, indicated
that the classification is similar to that of non-ruminants.
Other studies in a more indirect way support that conclu-
sion. For example, it was demonstrated that postruminal
administration of mixtures of NEAA did not substitute for
mixtures of EAA in supporting N retention of postweaned
calves (Schwab et al., 1982) or milk protein production in
lactating cows (Oldham et al., 1979; Schwab et al., 1976).
Using the total intragastric nutrition technique, Fraser et
al. (1991) observed that exclusion of NEAA from a supple-
mental mixture of EAA and NEAA decreased urinary N
excretion without affecting productive N (milk N �
retained N). Schwab et al. (1976) observed that increases
in milk protein yields were generally of the same magnitude
as for casein when only the 10 standard EAA were infused
into the abomasum. Collectively, these observations indi-
cate that when AA supplies approach requirements for
total absorbable AA, requirements for total NEAA are met
before the requirements for the most limiting of the EAA
and that individual NEAA absorbed in amounts less than
required for metabolic need can be synthesized in adequate
amounts such that animal performance is not affected.
These observations are consistent with those observed in
Nutrient Requirements of Swine (National Research Coun-
cil, 1998) and Nutrient Requirements of Poultry (National
Research Council, 1994).

Although there is no evidence that NEAA as a group of
AA become more limiting than EAA when dairy cattle are
fed conventional diets, research is too limited to rule out
the potential importance of selected NEAA to dairy cattle
nutrition and production. For example, it is well-docu-
mented in nonruminants such as swine and poultry that
the EAA, Met and Phe, are precursors to the synthesis of
the NEAA, cysteine and tyrosine, respectively. Research
indicates also that cysteine and its oxidation product cystine
can satisfy approximately 50 percent of the need for total
sulfur AA and that tyrosine can satisfy approximately 50
percent of the need for tyrosine � Phe (National Research
Council, 1998; National Research Council, 1994). How-
ever, there are no reports involving dairy cattle as to the
extent that cysteine/cystine and tyrosine can spare Met and
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Phe in MP for maintenance and productive functions. Such
information is ultimately needed to balance diets for AA
and to know when cysteine/cystine or tyrosine in RUP can
substitute for Met and Phe. A single study by Ahmed and
Bergen (1983) indicated that as much as 58 percent of the
total sulfur AA requirement of growing cattle can be met
by cysteine and cystine. There are no reports that provide
an example of the Met-sparing effect of cysteine/cystine
in lactating dairy cows. Pruekvimolphan et al. (1997) con-
cluded from an experiment with lactating dairy cows fed
a Met-deficient diet that cystine in feather meal probably
cannot substitute for Met in MP.

The percentage contributions of cysteine/cystine to total
sulfur AA and of tyrosine to tyrosine � Phe of ruminal
microorganisms and of feedstuffs are presented in Table
5-9. If cysteine/cystine can satisfy approximately 50 percent
of the sulfur AA requirements and tyrosine can satisfy
approximately 50 percent of the tyrosine � Phe require-
ments of dairy cattle, then it would appear there may often
be an obligatory use of Met and Phe for cysteine and
tyrosine synthesis. In cases where this exists, feedstuffs
with higher concentrations of cysteine/cystine and tyrosine

TABLE 5-9 Mean Percentage Contributions of Cysteine (and its oxidation product cystine) to Total Sulfur Amino
Acids (methionine � cysteine � cystine) and of Tyrosine to Tyrosine � Phenylalanine in Ruminal Microbes and
Feedstuffs

Cysteine Tyrosine Cysteine Tyrosine

Ruminal microbesa Plant proteinsb

Bacteria 36 47 Brewer’s grains, dry 52 40
Protozoa 40 46 Brewer’s grains, wet 50 —

Foragesb Canola meal 58 44
Alfalfa hay 48 41 Corn distillers grain w/sol. 51 38
Alfalfa silage 37 39 Corn gluten meal 43 46
Corn silage 47 35 Cottonseed meal 51 36
Grass hay 47 39 Fava beans 61 46
Grass pasture Linseed meal 50 —
Grass silage 39 — Lupin 65 53
Oat silage 28 — Peas, field 60 42
Rye silage 36 — Peanut meal 54 45
Sorghum silage 33 — Rapeseed meal 55 44
Wheat silage 34 — Safflower meal 53 42

Grains and energy feedsb Soybean meal 51 43
Barley 57 38 Sunflower meal 44 37
Corn 50 44 Animal proteinsb

Corn gluten feed 57 45 Blood meal 52 31
Cottonseed 51 — Feather meal 87 38
Oats 63 40 Fish meal, menhaden 24 45
Sorghum 51 42 Fish meal, anchovy 24 45
Triticale 58 38 Meat meal 44 39
Wheat 58 39 Meat and bone meal 42 40

Fibrous byproduct feedsb Skim milk powder 24 51
Beet pulp 47 57 Whey, wet 59 41
Citrus pulp 57 38
Cottonseed hulls 47 —
Rice bran 52 42
Soybean hulls 60 —
Wheat bran 57 42
aValues were calculated from mean AA concentrations as reported by Martin et al. (1996) and Storm and Ørskov (1983).
bContributions of cysteine to total sulfur AA were calculated from AA concentrations presented in Tables 15-2a,b. Contributions of tyrosine to tyrosine � phenylalanine

were calculated largely from AA concentrations presented in the Degussa book (Fickler et al., 1996); the remaining values were calculated from data presented in Nutrient
Requirements of Swine (National Research Council, 1998).

in RUP would be important in reducing the need for Met
and Phe in MP. An eventual understanding of the extent
that cysteine/cystine can contribute to the requirements
of total sulfur AA in MP is particularly important as Met
has been identified as one of the most limiting EAA for
growth and milk protein production. An apparent example
of the Phe-sparing effect of tyrosine was provided by Rae
and Ingalls (1984) who reported increased milk yields with
supplemental tyrosine when cows were fed large amounts
(17 percent of DM) of formaldehyde-treated canola meal.
Substantial amounts of tyrosine have been shown to be
destroyed or rendered unavailable by formaldehyde treat-
ment (Rae et al., 1983; Sidhu and Ashes, 1977). The milk
yield response of cows in the study by Rae and Ingalls
(1984) may have resulted because of decreased bioavail-
ability of tyrosine and an increased requirement for Phe
to synthesize tyrosine.

Two NEAA that have received limited attention in
regards to their importance to milk production in dairy
cows are proline and glutamine. Bruckental et al. (1991)
reported increased content and yield of fat in milk when
proline was infused into the duodenum of early and midlac-
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tation cows. Proline infusion increased content and yield
of protein in milk during midlactation but not in early
lactation. In the same study, it was observed that proline
infusion reduced mammary gland uptake of Arg by 40 to
50 percent. Glutamine has been hypothesized to be one
of the first-limiting AA for milk protein synthesis in cows
during early lactation (Meijer et al., 1993, 1995). The rea-
sons for glutamine being suggested to be deficient were
low concentrations of free glutamine in plasma of cows
during early lactation and increased metabolic require-
ments during periods of energy deficiency. However, there
are no reported studies in which intestinal supplies of gluta-
mine were increased in cows during early lactation and
lactational responses measured. Increasing duodenal sup-
plies during late lactation did not increase content or yield
of protein in milk (Meijer and van der Koelen, 1994).
Proline and glutamine (including its intermediate precur-
sor glutamic acid) are similar in that: (1) concentrations of
both are considerably higher in milk casein (11.6 and 22.3
percent, respectively) than in the true protein fraction of
either ruminal bacteria (3.5 and 12.6 percent, respectively)
or of most feedstuffs (Fickler et al., 1996; Storm and
Ørskov, 1983), (2) extraction by the lactating mammary
gland is considerably less than the quantities secreted in
milk protein (Clark, 1975; Clark et al., 1978; Illg et al.,
1987), and (3) both can be synthesized in the mammary
gland from Arg, an EAA, and ornithine (Clark et al., 1975;
Mepham and Linzell, 1967; Mezl and Knox, 1977). Gluta-
mine has received widespread attention in humans because
of its numerous physiologic roles and its increased require-
ments during stress and illness. The additional quantities
of glutamine required for stress and mild illness can be
met by adaptive mechanisms for biosynthesis and utiliza-
tion (Neu et al., 1996). However, during serious or long
illness, glutamine producing tissues are unable to meet
increased needs and thus, glutamine becomes conditionally
essential (Young and El-Khoury, 1995). Currently, there
are no reports of glutamine becoming a conditionally EAA
for dairy cattle. However, such might be expected, particu-
larly in young calves and early postpartum cows, when
nutritional status is compromised for extended periods of
time because of disease and metabolic disorders.

Limiting Essential Amino Acids

As noted in the previous section, research indicates that
the dairy animal’s requirement for total NEAA for growth
and milk protein production are met before the require-
ment for at least the most limiting of the EAA. If this is
true, then it follows that the efficiency of use of MP for
protein synthesis will be determined by how well the profile
of EAA in MP matches the profile required by the animal
and by the amount of total EAA in MP. This logic has led
to an interest in identifying the EAA that are most limiting

when dairy cattle are fed diets that differ in ingredient
composition. Knowledge of how the sequence of AA limita-
tion is influenced by diet composition is useful for selecting
feed protein supplements that will improve the profile of
AA in MP. Also, knowledge of the first limiting EAA when
a diet of known composition is fed is requisite information
for initial studies to determine AA requirements.

Lysine and Met have been identified most frequently
as first-limiting EAA in MP of dairy cattle. The most direct
evidence of their limitation has been observed by infusing
individual AA or combinations of EAA into the abomasum
or duodenum and measuring effects on N retention and
milk protein production. Feeding ruminally inert supple-
ments of ruminally protected Met (RPMet) and ruminally
protected Lys (RPLys) and measuring effects on weight
gains of growing cattle and milk protein production of
lactating cows have confirmed and extended the results of
infusion studies. Use of the reflex closure of the reticular
groove also has provided a means of delivering AA to the
small intestine of weaned calves (Abe et al., 1997, 1998).

Use of the above approaches indicate that the sequence
of Lys and Met limitation is determined by their relative
concentrations in RUP. For example, Lys was identified
as first limiting for young post-weaned calves (Abe et al.,
1997), growing cattle (Abe et al., 1997; Burris et al., 1976;
Hill et al., 1980), and lactating cows (King et al., 1991;
Polan et al., 1991; Schwab et al., 1992a) when corn and
feeds of corn origin provided most or all of dietary RUP.
In contrast, Met was identified as first-limiting for young
post-weaned calves (Donahue et al., 1985; Schwab et al.,
1982), growing cattle (Hopkins et al., 1999; Klemesrud and
Klopfenstein, 1994; Lusby, 1994; Robert et al., 1999) and
lactating cows (e.g., Armentano et al., 1997; Rulquin and
Delaby, 1997; Robert et al., 1994; Schingoethe et al., 1988)
when smaller amounts of corn were fed, when high forage
diets were fed, or when most of the supplemental RUP was
provided by soybean products, animal-derived proteins, or
a combination of the two. Relative to concentrations in
ruminal bacteria, feeds of corn origin are low in Lys and
similar in Met whereas soybean products and most animal-
derived proteins are similar in Lys and low in Met (Table
5-10). Lysine and Met were identified as co-limiting when
lactating cows were fed diets without (Schwab et al., 1976)
or with minimal protein supplementation (Rulquin, 1987).

That Lys and Met are often the first two limiting EAA for
both growth and milk protein production may be expected.
First, Met was identified as first limiting (Richardson and
Hatfield, 1978; Titgemeyer and Merchen, 1990b) and Lys
was identified as second limiting (Richardson and Hatfield,
1978) in MCP for N retention of growing cattle. Second,
most feedstuffs have lower amounts of Lys and Met, partic-
ularly of Lys, in total EAA than in MCP (Table 5-10). And
last, contributions of Lys and Met to total EAA in body
lean tissue and milk are similar (Table 5-10).
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TABLE 5-10 A Comparison of the EAA Profiles of Body Tissue and Milk With That of Ruminal Bacteria and
Protozoa and Common Feeds

Item Arg His Ile Leu Lys Met Phe Thr Trp Val EAA
(% of total EAA) (%CP)

Animal products
Lean tissuea 16.8 6.3 7.1 17.0 16.3 5.1 8.9 9.9 2.5 10.1 —
Milkb 7.2 5.5 11.4 19.5 16.0 5.5 10.0 8.9 3.0 13.0 —

Rumen microbes
Bacteriac 10.2 4.0 11.5 16.3 15.8 5.2 10.2 11.7 2.7 12.5 —
Bacteriad 10.6 4.3 11.6 15.5 17.3 4.9 10.0 11.0 2.6 12.2 —
Protozoae 9.3 3.6 12.7 15.8 20.6 4.2 10.7 10.5 2.8 9.7 —

Forages f,g

Legume (alfalfa) hay 12.5 4.7 10.3 17.9 12.4 3.8 11.6 10.6 3.6 12.7 41.2
Legume (alfalfa) silage 10.9 4.7 11.1 17.9 12.1 3.8 11.7 10.7 2.7 14.1 35.6
Corn silage, normal 6.2 5.7 10.6 27.2 7.9 4.8 12.1 10.1 1.4 14.1 31.6
Grass hay 11.7 4.9 10.0 18.8 10.5 3.9 11.8 10.9 3.7 13.6 33.1
Grass silage 9.4 5.1 10.9 18.8 10.1 3.7 13.4 10.2 3.3 15.0 32.6

Grainsf

Barley 13.4 6.1 9.2 18.5 9.6 4.5 13.5 9.1 3.1 13.0 37.7
Corn, grain, cracked 11.5 7.8 8.2 27.9 7.1 5.3 11.5 8.8 1.8 10.0 40.1
Corn gluten feed 10.9 8.3 8.8 25.4 7.7 4.5 10.4 9.8 1.6 12.6 35.4
Oats 16.6 5.9 9.1 17.7 10.1 4.2 12.5 8.4 2.9 12.6 41.2
Sorghum 9.4 5.7 9.3 31.9 5.4 4.2 12.3 7.8 2.5 11.6 42.8
Wheat 13.6 7.1 9.6 19.3 8.1 4.6 13.3 8.4 3.5 12.3 34.4

Plant proteinsf

Brewers grains, dry 14.7 5.1 9.8 20.0 10.4 4.3 11.7 9.1 2.5 12.1 39.2
Canola meal 16.5 6.6 9.0 15.9 13.2 4.4 9.5 10.4 3.4 11.1 42.6
Corn DDG w/sol. 10.7 6.6 9.8 25.4 5.9 4.8 12.9 9.1 2.3 12.4 37.8
Corn gluten meal 7.1 4.7 9.1 37.2 3.7 5.2 14.1 7.5 1.2 10.3 45.2
Cottonseed meal 26.0 6.6 7.3 13.8 9.7 3.7 12.5 7.6 2.8 10.0 42.6
Linseed meal 20.9 4.8 11.0 14.5 8.7 4.2 11.1 8.9 3.7 12.3 42.2
Peanut meal 27.6 6.0 8.1 15.9 8.3 2.9 12.1 6.7 2.4 9.8 40.1
Safflower meal 22.4 6.5 7.3 16.7 8.1 3.7 11.7 7.1 3.6 12.9 39.0
Soybean meal 16.2 6.1 10.1 17.2 13.9 3.2 11.6 8.7 2.8 10.2 45.3
Sunflower meal 20.8 6.2 9.9 15.2 8.0 5.6 11.0 8.7 2.9 11.7 42.2

Animal proteins f

Blood meal, ring dried 7.8 11.3 2.2 22.7 15.9 2.1 12.1 7.7 2.8 15.4 56.4
Feather meal 16.2 2.7 11.4 19.9 6.0 1.8 11.6 11.1 1.7 17.6 42.7
Fish meal, menhaden 13.1 6.4 9.2 16.2 17.2 6.3 9.0 9.4 2.4 10.8 44.5
Meat and bone meal 19.5 5.3 7.7 17.2 14.5 3.9 9.4 9.1 1.6 11.8 35.7
Whey, dry 5.0 4.5 12.1 21.2 17.6 3.3 7.0 14.1 3.5 11.7 42.2
aFrom Ainslie et al. (1993); average values of empty, whole body carcasses as reported in 3 studies.
bEach value is an average of 3 observations from Jacobson et al. (1970), McCance and Widdowson (1978), and Waghorn and Baldwin (1984).
cFrom Clark et al. (1992); average values from 61 dietary treatments.
dFrom Storm and Ørskov (1983); average values from 62 literature reports.
eFrom Storm and Ørskov (1983); average values from 15 literature reports.
fCalculated from values presented in this edition of Nutrient Requirements of Dairy Cattle feed table.
gLegume and grass hays and silages are mid-maturity.

Responses of growing cattle to improved supplies of Lys
and Met in MP include variable increases in BW gains and
feed efficiency (Hopkins et al., 1999; Robert et al., 1999;
Veira et al., 1991) and variable decreases in urinary N
excretion (Abe et al., 1997, 1998; Campbell et al., 1996,
1997; Donahue et al., 1985; Schwab et al., 1982). Produc-
tion responses of lactating dairy cows to increased supplies
of Lys and Met in MP include variable increases in content
and yield of protein in milk, milk yield, and feed intake.
The nature of production responses of lactating cows to
increased postruminal supplies of Lys and Met have been
reviewed (Rulquin and Vérité, 1993; Schwab 1995b, 1996a;
Garthwaite et al., 1998). Collectively, these reviews and
other more recent studies (Piepenbrink et al., 1999; Nocek

et al., 1999; Sniffen et al., 1999a,b; Freeden et al., 1999;
Rode et al., 1999; Wu et al., 1999; Nichols et al., 1998;
Rulquin and Delaby, 1997) indicate: (1) that content of
protein in milk is more responsive than milk yield to supple-
mental Lys and Met, particularly in post-peak lactation
cows, (2) that increases in milk protein percentage are
independent of milk yield, (3) that casein is the most influ-
enced milk protein fraction, (4) that increases in milk pro-
tein production to increased supplies of either Lys or Met
in MP are the most predictable when the resulting pre-
dicted supply of the other AA in MP is near or at estimated
requirements (Rulquin et al., 1993; Schwab, 1996a; Sloan
et al., 1998), (5) that milk yield responses to Lys and Met
are more common in cows during early lactation than in
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mid or late lactation cows, and (6) production responses
to increased supplies of Lys and Met in MP typically are
greater when CP in diet DM approximates normal levels
(14 to 18 percent) than when it is lower or higher. That
milk protein percentage is more sensitive than milk yield
to improved concentrations of Lys and Met in MP of post-
peak lactation cows was demonstrated by Chapoutot et al.
(1992). The authors used a multiple switch-back experi-
ment to determine individual responses of 40 post-peak
lactation cows to ruminally protected Lys and Met. The
RPAA blend was fed in amounts to provide 23 g/d of
digestible Lys and 7 g/d of digestible Met. They observed
that 37 cows responded with greater content of milk pro-
tein, 31 responded with greater protein yield, and 16
responded with more milk.

In addition to the effects on milk protein production,
there are reports also of increased percentages of fat in
milk with increased amounts of Met or Met plus Lys in
MP. These increases in milk fat have been observed in
postruminal infusion studies (Socha et al., 1994b) and when
Met (Brunschwig and Augeard, 1994; Brunschwig et al.,
1995; Yang et al., 1986) or Met and Lys (Bremmer et al.,
1997; Canale et al., 1990; Rogers et al., 1987; Xu et al.,
1998) were supplied in ruminally protected forms. The
increases in milk fat generally have been observed in associ-
ation with increases in milk protein but increases also have
been observed without increases in milk protein (Varvikko
et al., 1999). Increases in percentages of fat in milk with
improved Met and Lys nutrition also have not been predict-
able. For example, the infusion of graded amounts of Met
(0, 3.5, 7.0, 10.5, and 16.0 g/d) into the duodenum of post-
peak lactation cows fed a corn-based diet supplemented
with soybean products and blood meal increased percent-
ages in milk of both fat (3.73, 3.86, 3.78, 3.91, and 4.15)
and true protein (3.00, 3.07, 3.09, 3.13, and 3.15) (Socha
et al., 1994b). However, when the same cows fed the same
feedstuffs were infused with similar amounts of Met during
peak lactation (Socha et al., 1994c) or mid lactation (Socha
et al., 1994a), percentages of fat in milk did not change
but protein in milk increased.

It is not clear why increased amounts of Met and Lys
in MP may sometimes increase fat content of milk. One
reason may involve a possible effect of Met on de novo
synthesis of short- and medium-chain fatty acids in the
mammary gland. This was suggested by Pisulewski et al.
(1996) who demonstrated that the infusion of Met into the
duodenum of early lactation cows increased proportions
of short- and medium-chain fatty acids and decreased pro-
portions of long-chain fatty acids in milk fat. Christensen
et al. (1994) reported a similar trend in the fatty acid
composition of milk when lactating cows were fed rumina-
lly protected Met and Lys. However, others did not observe
an effect of increased postruminal supplies of Met on fatty
acid composition of milk (Casper et al., 1987; Chow et al.,

1990; Karunanandaa et al., 1994; Kowalski et al., 1999;
Rulquin and Delaby, 1997; Varvikko et al., 1999). Another
reason may relate to the role of AA in the intestinal and
hepatic synthesis of chylomicrons and very low density
lipoproteins (VLDL). Required substrates for the synthesis
of chylomicrons and VLDL, in addition to the presence
of the long-chain fatty acids that stimulate their formation,
include apolipoproteins and phospholipids (Bauchart et al.,
1996). The synthesis of apolipoproteins requires AA. The
synthesis of phosphatidylcholine (lecithin), the most abun-
dant phospholipid, requires choline. It has been demon-
strated that a portion of the dairy cows’ requirement for
Met is as a methyl donor for choline synthesis (Sharma
and Erdman, 1988) and that in some studies (Sharma and
Erdman,1988,1989; Erdman, 1994), but not in others (Erd-
man and Sharma, 1991; Grummer et al., 1987), choline
can be a limiting nutrient for milk fat synthesis. That Met
and Lys may sometimes be limiting for the synthesis of
chylomicrons or VLDL such that the availability of long-
chain fatty acids for milk fat synthesis is reduced has not
been demonstrated. However, there is limited evidence
that formation or secretion of these lipoproteins can be
enhanced with improved Met and Lys nutrition (Auboiron
et al., 1995; Durand et al., 1992). Decreases in plasma
nonesterified fatty acids concentrations in preruminant
calves (Auboiron et al., 1995; Chilliard et al., 1994) and
lactating cows (Pisulewski et al., 1996; Rulquin and Delaby,
1997) with increased amounts of Met in MP have been
reported. However, decreases in plasma nonesterified fatty
acids concentrations are generally considered to reflect
reduced mobilization of fatty acids from body reserves
rather than increased utilization.

Attempts to identify EAA that may become limiting after
Lys and Met in dairy cattle are limited. Using the total
intragastric nutrition technique, Fraser et al. (1991) con-
cluded that His was limiting after Met and Lys for lactating
cows when casein was the infused protein. Similar conclu-
sions could not be drawn from the abomasal infusion exper-
iments of Schwab et al. (1976) and Rulquin (1987) when
lactating cows were fed diets of conventional ingredients.
Rulquin (1987) concluded that Thr was not limiting after
Lys and Met. Schwab et al. (1976) concluded from five
infusion experiments that the sequence of limiting EAA
after Lys and Met for lactating cows will be determined
by the ingredient composition of the diet. Amino acid
extraction efficiencies, transfer efficiencies, and ratios of
uptake to output have been used in many studies to evalu-
ate the order of limiting AA. Nichols et al. (1998) and
Piepenbrink et al. (1999) concluded that AA extraction
efficiency is the most accurate of the three methods for
estimating the sequence of AA limitation because no errors
from estimates of blood flow are involved. Use of this
method identified Phe and Ile as most frequently limiting
after Lys and Met (Nichols et al., 1998; Piepenbrink et al.,
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1998; Liu et al., 2000) when corn-based diets are supple-
mented with common protein supplements such as soy-
bean meal, corn distillers dried grains, canola meal, or a
mixture of canola meal, corn gluten meal, blood meal, and
fish meal.

Although research is limited, there is little direct evi-
dence to indicate that other EAA might be more limiting
than either Lys or Met. Two exceptions may be Arg and
His. Abomasal infusion of Arg (13.7 g/d) increased N reten-
tion of 159-kg Holstein steers fed direct-cut vegetative
wheat silage (12.3 percent CP) as the sole feed. In contrast,
abomasal (178 g/d) and intravenous (112 g/d) infusions of
Arg did not affect milk production or milk composition
when post-peak lactating Holstein cows (544 kg) were fed
a 15.3 percent CP diet of alfalfa-grass silage, corn silage,
corn, and soybean meal (Vicini et al., 1988). Vanhatalo et
al. (1999) concluded that His was the first-limiting EAA
when post-peak lactating Finnish Aryshire cows were fed
a grass silage-based diet without feeds of corn origin and
without protein supplementation. The diet contained 56
percent grass silage ensiled with an acid-based additive,
18 percent barley, 18 percent oats, 6.7 percent beet pulp,
and 1.3 percent minerals and vitamins. The abomasal infu-
sion of 6.5 g/d His increased yields of milk (23.6 vs. 22.9
kg/d) and milk protein (721 vs. 695 g/d) but not milk protein
content. The infusions of either 6.0 g/d of Met or 19.0
g/d of Lys or both in combination with 6.5 g/d of His did
not further increase milk protein production. Factors that
probably contributed to His being first limiting in the study
by Vanhatalo et al. (1999) are: (1) the low content of RUP
in dietary DM, (2) the low content of His in microbial
protein as compared to feed proteins (Table 5-10), and (3)
the low content of His in barley and oats as compared to
corn (Table 5-10). Mackle et al. (1999) found no response
in milk yield or milk composition when Holstein cows in
early lactation fed a 16.2 percent CP diet (based on alfalfa
hay, corn, and soybean products) were abomasally infused
with branched-chain AA (55.5, 39.0, and 55.5 g/d of Leu,
Ile, and Val, respectively). Hopkins et al. (1994) provided
daily intraperitoneal infusions of branched-chain AA plus
Arg (46.1, 31.4, 38.3, and 25.0 g/d of Leu, Ile, Val, and
Arg, respectively) over a 2-h period each day to Holstein
cows in early lactation fed 13.6 percent CP diets that con-
tained 15.0 or 22.4 percent ADF, respectively. The infusion
of AA did not increase the content or yield of protein in
milk but it did appear to attenuate the decreases in content
and yield of fat in milk, when cows were fed the low fiber
diet. Analysis of milk fat for fatty acids indicated that the
infused AA may have increased de novo synthesis of C4 to
C16 fatty acids, particularly the C16 fatty acids. It is well-
documented that Arg and the branched-chain AA are taken
up by the mammary gland well in excess of their direct
output in milk protein (Clark et al., 1978; Nichols et al.,
1998; Piepenbrink et al., 1999) and that they can be con-

verted to NEAA or utilized as energy sources in the mam-
mary gland (Mepham, 1982; Wohlt et al., 1977).

Predicting Passage to the Small Intestine

As reviewed in the previous section, the efficiency of
use of MP by dairy cattle is influenced by its content of
EAA. To advance AA nutrition research (e.g., to define
the ideal content of EAA in MP) and to implement the
results of such research (e.g., to select protein and AA
supplements to optimize the balance of EAA in MP) mod-
els are needed that predict accurately the EAA composition
of duodenal protein. In recognition of this need, it was the
goal of the subcommittee to extend the use of the MP
system developed for this revision of Nutrient Require-
ments of Dairy Cattle to one that would predict directly the
EAA composition of duodenal protein. The EAA content of
MP and flow to the duodenum of the individual digestible
EAA could be calculated from knowledge of: (1) the pre-
dicted EAA composition of duodenal protein; (2) the pre-
dicted contribution of each protein fraction (microbial pro-
tein, the RUP fraction of each feedstuff, and endogenous
protein) to the total flow of each EAA; (3) the digestibility
coefficients assigned to microbial protein, the RUP fraction
of each feedstuff, and endogenous protein; and (4) the
predicted flows of MP.

The subcommittee considered both factorial and multi-
variate regression approaches. Prediction models based on
the factorial method require the assignment of AA values
to model-predicted supplies of ruminally synthesized
microbial protein, ruminally undegraded feed proteins, and
if predicted, endogenous protein. The challenge associated
with such an approach is to have the predicted flows of
protein fractions and their assigned AA values be accurate.
Indeed, it can be assumed that there are errors in predict-
ing flows of protein fractions as well as in assigning AA
values to each fraction. To the extent that this occurs, then
at each step in the factorial process, errors of prediction
are aggregated, and depending on the number of steps
involved, the aggregated error can be quite large. The net
result of such errors are biases of prediction of mean values.

Two examples of published factorial approaches for pre-
dicting AA passage to the small intestine are the AA submo-
del of the Cornell Net Carbohydrate and Protein System
(CNCPS) (O’Connor et al., 1993) and the AA submodel
developed by Rulquin et al. (1998). The CNCPS AA sub-
model, adopted in conjunction with the CNCPS model
for Level II of the Nutrient Requirements of Beef Cattle
(National Research Council, 1996) model, was developed
to predict directly the absolute flows of each of the EAA.
The AA submodel of Rulquin et al. (1998), which uses
the PDI system (INRA, 1989) to predict flows of protein
fractions, was developed to predict directly the content of
AA in duodenal protein and not the absolute flows of the
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individual AA. This approach provided for a true integra-
tion of the AA submodel with the protein model. The
Nutrient Requirements of Beef Cattle (National Research
Council, 1996) and Rulquin et al. (1998) models differ in
the AA values assigned to microbial protein and RUP. In
the Nutrient Requirements of Beef Cattle (National
Research Council, 1996) model, predicted flows of micro-
bial protein are partitioned into cell wall and non-cell wall
fractions and estimated EAA compositions of each (O’Con-
nor et al., 1993) are assigned. The EAA values assigned to
the predicted digestible RUP fractions of feedstuffs are
those of the insoluble protein fraction of feedstuffs and
not of total CP (O’Connor et al., 1993). In the model of
Rulquin et al. (1998), the average AA composition of liquid-
associated bacteria from 66 publications are assigned to
microbial protein. The AA profile of the RUP fraction of
feedstuffs is assumed to be the same as in the original
feedstuff. The two submodels also differ in that endoge-
nous protein is considered in the model of Rulquin et al.
(1998) but not in the Nutrient Requirements of Beef Cattle
(National Research Council, 1996) model.

Both models were tested against published AA flow data
and reasonable results were obtained. However, in both
cases, the evaluation studies indicated biases of prediction
for individual AA. Based on slopes of regression lines that
related observed flows obtained from 200 diets (as reported
in 12 lactating cow studies and 9 nonlactating cow studies)
to predicted flows, O’Connor et al. (1993) observed that
the CNCPS model over-predicted flows of Thr and Leu
and under-predicted flows of Arg. Rulquin et al. (1998)
tested their model against abomasal and duodenal digesta
AA compositions measured in 133 dairy cow diets and 49
growing cattle diets. Mean percentage differences between
predicted and measured concentrations (g/100 g AA) were:
Arg (�5.6%), His (�0.9%), Ile (�1.5%), Leu (�5.8%),
Lys (�4.7%), Met (�12.3%), Thr (�0.2%), Phe
(�0.4%), and Val (�0.8%). As a result of these biases,
the authors adjusted the initial model by covariance (i.e.,
regression) analysis. This improved the accuracy of predic-
tion. In summary, if the two described models were perfect
both in structure (i.e., all of the contributing variables were
included) and parameters (i.e., assigned constants were
correct), and measured profiles of AA in duodenal digesta
protein used for evaluation were without systematic errors,
then a comparison of predicted values with measured val-
ues would have revealed no biases of prediction of mean
values.

In contrast to the described factorial models in which
both the structure and the parameters were determined
on theoretic grounds, the multivariate regression or semi-
factorial approach allows for some of the parameters to
be determined by regression. This allows the model (i.e.,
equations) to adapt to the measured data, and allows for at
least partial correction of the errors of the mechanistically

determined variables. The result is that semi-mechanistic
models generally are better at predicting (forecasting) than
full mechanistic models when forecasting is within the
inference range of the model. Because of the potential for
increased accuracy of prediction, and because the approach
eliminated the need to assign AA values to ruminally syn-
thesized microbial protein and endogenous protein (AA
values had to be assigned only to feedstuffs), the semi-
mechanistic method was the method of choice by the sub-
committee for predicting the content of EAA in total EAA
of duodenal protein. This approach required the develop-
ment of an equation for each of the EAA and one for
predicting flows of total EAA.

The approach used for developing the AA submodel was
as follows. A data set of observed abomasal and duodenal
AA flows was compiled from 57 published studies involving
199 treatment means (Table 5-11). The data set included
155 treatment means from cows (lactating and dry) and
44 treatment means from growing cattle (dairy and beef).
Only one experiment reported flows of Trp; thus, no equa-
tion could be developed for predicting the content of Trp
in total EAA of duodenal protein. For data to be included
in the final data set, the following requirements had to be
met: (1) DMI was reported or could be calculated from
the information given, (2) ingredient composition of diets
was reported, (3) feedstuffs used in the experiments were
represented in the feed library of the model for N fractions,
Kd, and AA composition, and (4) flows (g/d) to the duode-
num of Arg, His, Ile, Leu, Lys, Met, Phe, Thr, and Val
were reported. An exception was made in regard to require-
ment # 3 in that N fractions and Kd for barley straw were
used for oat straw, but the AA composition of oat straw
was used. The first three requirements were necessary
because the information is model-required data. For exper-
iments that employed a factorial arrangement of treatments
and reported main effect means only, data were used only
if one of the main effects was not related to diet (e.g., for
an experiment with main effects of protein source and
feeding frequency, data for the main effect of protein
source was used). Body weights of animals had to be esti-
mated for 15 of the 57 published studies; in all cases, these
15 studies involved cows. Body weights were estimated
from reported information on breed, stage of lactation,
and BW reported by the same authors in other papers.

The 199 treatment means for duodenal flows of each
EAA in the final data set represented 199 unique and
diverse diets fed to cattle ranging in BW from 191 to 717
kg. Intake of DM ranged from 3.6 to 26.7 kg/d. Feedstuffs,
their frequency of use, and the means and ranges of their
contribution to diet DM are summarized in Table 5-12.
Diets varied in percent concentrate (0 to 86%, mean �
46%), dietary CP (8.5 to 29.6%, mean � 16.2%), dietary
RDP (4.6 to 18.2, mean � 10.7%), and dietary RUP (2.2
to 11.9%, mean � 5.5%). The descriptive statistics of the
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TABLE 5-11 Experiments Used to Develop Equations for Predicting Amino Acid Passage to the Small Intestine

Aldrich et al. (1995) Klusmeyer et al. (1991b) Robinson (1997)
Aldrich et al. (1993a) Klusmeyer et al. (1990) Robinson et al. (1991a)
Aldrich et al. (1993b) Lardy et al. (1993) Robinson et al. (1994)
Armentano et al. (1986) Lynch et al. (1991) Santos et al. (1984)
Bernard et al. (1988) Mabjeesh et al. (1996) Schwab et al. (1992a)
Bohnert et al. (1999) Mansfield and Stern (1994) Schwab et al. (1992b)
Cameron et al. (1991) McCarthy et al. (1989) Stern et al. (1983)
Cecava et al. (1993) McNiven et al. (1995) Stern et al. (1985)
Cecava and Parker (1993) Merchen and Satter (1983) Titgemeyer et al. (1988)
Christensen et al. (1993a, b) Murphy et al. (1993) van Vuuren et al. (1992)
Christensen et al. (1996) Narasimhalu et al. (1989) van Vuuren et al. (1993)
Cunningham et al. (1993) O’Mara et al. (1998) Volden (1999)
Cunningham et al. (1994) O’Mara et al. (1997b) Waltz et al. (1989)
Cunningham et al. (1996) Overton et al. (1995) Wessels et al. (1996)
Erasmus et al. (1992) Palmquist et al. (1993) Zerbini et al. (1988)
Erasmus et al. (1994b) Pena et al. (1986) Zinn (1988)
Holden et al. (1994b) Pisulewski et al. (1996) Zinn (1993b)
Keery et al. (1993) Prange et al. (1984) Zinn and Shen (1998)
Klusmeyer et al. (1991a) Putnam et al. (1997)

TABLE 5-12 Feedstuffs and the Extent of Their Use in the 199 Diets in the Data Set Used to Develop Equations
to Predict the Content of Individual EAA in Total EAA of Duodenal Protein

Contribution to Contributions to
dietary DM (%) dietary DM (%)

Feedstuff Na Mean Range Feedstuff Na Mean Range

Forages Protein supplements
Corn silage 108 35 8– 80 Alfalfa meal 5 9 5– 10
Grass, fresh 10 87 56– 100 Blood meal 22 4 0.6– 10
Grass, hay 26 21 5– 100 Brewers grains, dry 2 34 25– 44
Grass, silage 17 58 38– 100 Brewers grains, wet 1 32 —
Grass-legume, silage 18 19 11– 26 Canola meal 10 12 4– 20
Legume, fresh 5 86 65– 100 Casein 4 3 2– 4
Legume, hay 61 17 5– 65 Corn distillers grains 14 8 4– 28
Legume, silage 37 33 8– 65 Corn gluten meal 17 6 1– 19
Oat, silage 10 18 9– 30 Feather meal 6 4 0.3– 10
Oat, straw 13 6 3– 95 Feather meal with viscera 3 4 2– 6
Sorghum, sudan hay 7 11 10– 12 Fish meal, anchovy 1 5 —
Sorghum, sudan, silage 6 68 66– 70 Fish meal, menhaden 23 5 2– 13
Wheat, silage 8 33 23– 45 Meat meal 5 2 0.3– 9
Wheat, straw 1 25 — Rapeseed meal 7 6 1– 19

Energy feeds Soybean meal, expeller 6 8 4– 15
Barley, grain 24 26 4– 46 Soybean meal, heated 3 11 5– 15
Barley, grain, heated 1 46 Soybean meal, nonenz browned 2 17 16– 17
Barley, grain, steam-rolled 12 36 12– 50 Soybean meal, solvent 78 9 0.3– 20
Corn, grain 119 24 1– 49 Sunflower meal 2 12 10– 13
Corn, grain and cob 6 40 37– 42 Urea 66 0.5 0.1– 2.0
Corn, grain, high moisture 19 25 2– 32 Energy and protein feeds
Corn, grain, steam-flaked 7 51 16– 65 Cottonseed, whole, extruded 1 42 —
Corn, hominy 1 22 — Cottonseed, whole, heated 1 43 —
Corn, starch 19 5 0.3– 17 Cottonseed, whole, raw 1 41 —
Fat 33 3 0.2– 6 Soybean seed, raw 5 12 6– 20
Molasses 75 4 0.5– 13 Soybean seed, roasted 5 17 16– 19
Oats, grain 5 21 17– 25 Byproduct feeds
Sorghum, grain 1 10 — Beet pulp 7 18 9– 36
Sugar/dextrose 2 3 — Corn gluten feed 9 14 6– 32
Wheat, grain 5 23 5– 29 Soy hulls 21 15 0.3– 36
Wheat, grain, steam. flaked 2 51 50– 52 Tapioca 4 7 2– 20

Wheat middlings 16 8 0.2– 34
aNumber of diets in which the feedstuff was an ingredient.
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animal, diet, and EAA flow data used in the development
of the equations are presented in Table 5-13. All of the
required animal and diet data for the 199 diets were
entered into this edition’s model for predicted intakes of
RUP and RDP and for predicted duodenal flows of MCP,
RUP, and endogenous CP. The CP content of feedstuffs
was obtained from the experiment if reported; otherwise,
model default values (�1.0 SD) were used.

The following approach was used to identify the inde-
pendent variables and a model structure that would most
accurately predict the content of each EAA (except Trp)
in total EAA of duodenal protein and flows of individual
EAA to the small intestine. The first step involved calculat-
ing the content of each EAA in total EAA of the RUP
fraction of each diet in the data set. The three equations
used for this purpose are presented; Lys is used as the
example EAA.

RUPLys � �f (DMIf � CPf � RUPf � Lysf

� 0.001) (5-3)

where:
RUPLys � amount of Lys supplied by total diet RUP, g
DMIf � intake of DM of each feedstuff contributing

RUP, kg
CPf � crude protein content of each feedstuff con-

tributing RUP, g/100 g DM
RUPf � ruminally undegraded protein content of

each feedstuff contributing RUP, g/100 g CP
Lysf � lysine content of each feedstuff contributing

RUP, g/100 g CP

RUPEAA � RUPArg � RUPHis � RUPIle �

TABLE 5-13 Descriptive Statistics of the Data Used for Developing Equations for Predicting Content of Individual
EAA in Total EAA of Duodenal Protein and for Predicting Flows of Total EAA to the Small Intestine

Item Mean Median Minimum Maximum SD

Animal characteristics
DMI, kg/d 15.5 16.4 3.6 26.7 6.4
BW, kg 515.2 568.0 191.0 717.0 128.0
DMI, %BW 2.9 2.9 1.3 4.4 0.8

Diet characteristics, %DM
CP 16.2 16.5 8.5 29.6 2.7
RUPa 5.5 5.3 2.2 11.9 1.6
Concentrate 46.3 50.0 0.0 85.7 18.0

AA in duodenal protein, %EAA
Arg 10.4 10.3 7.1 16.1 1.2
His 5.0 4.9 3.1 9.2 0.8
Ile 10.8 10.9 6.4 14.5 1.4
Leu 20.2 20.4 9.6 28.5 2.5
Lys 14.4 14.7 9.7 18.0 1.4
Met 4.3 4.1 2.2 7.1 0.9
Phe 11.3 11.2 9.8 15.1 0.7
Thr 11.1 11.1 8.9 13.8 0.8
Val 12.5 12.6 9.0 15.7 1.2

EAA flow to duodenum, g/d 894.1 938.5 169.2 1970.0 463.7
aPredicted by the model.

RUPLeu � RUPLys � RUPMet � RUPPhe �
RUPThr � RUPTrp � RUPVal (5-4)

where:
RUPEAA � amount of essential AA supplied by RUP, g

RUPLysPctRUPEAA � 100 �
(RUPLys/RUPEAA) (5-5)

where:
RUPLysPctRUPEAA � Lys as percentage of essential

AA in RUP, each g/100 g essential AA.
The content of each EAA in total EAA of the RUP

fraction of each diet was estimated in recognition of the
belief that the resulting values would be significant predict-
ors of the contributions that each EAA makes to total EAA
in duodenal protein. Multivariate analysis of measurements
of AA passage to the small intestine indicated that the
concentrations of individual AA in RUP and the propor-
tional contribution of RUP to total protein passing to the
duodenum explained most of the variation in AA profiles
of duodenal protein (Rulquin and Vérité, 1993). Dietary
RUP and the percentage contributions of Lys and Met to
total EAA in diet RUP also emerged as significant indepen-
dent variables in regression equations developed for pre-
dicting concentrations of Lys and Met in total EAA of
duodenal protein of lactating dairy cows (Schwab, 1996b;
Socha, 1994).

The second step involved the identification of significant
independent variables to develop equations to predict per-
centages of each EAA (excluding Trp) and total EAA in
duodenal protein. Variables that were evaluated as poten-
tial significant predictors of the content of each EAA in
total EAA (e.g., g/100 g total EAA) of duodenal protein
were: ‘‘Trial,’’ dietary CP and predicted dietary RUP as
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percentages of dietary DM, the percentage of each EAA
in dietary RUP (e.g., RUPLys, g/100 g RUP), the percent-
age of each EAA in total EAA of dietary RUP (e.g.,
RUPLysPctRUPEAA, g/100 g), and the percentage of pre-
dicted RUP in predicted flows of total duodenal protein
(predicted MCP � predicted RUP � predicted endoge-
nous protein). The potential independent variables consid-
ered for predicting flows of total EAA to the duodenum
were: ‘‘Trial,’’ dietary CP and predicted dietary RUP as
percentages of diet DM, the percentage of total EAA in
dietary RUP, RUPEAA intake (g/d), predicted flows of
endogenous protein (g/d), and model predicted MCP (g/d).
Trial was included in all models as a class variable to
account for variation caused by independent variables or
factors that are not continuous (e.g., feeding frequency,
sampling methods, microbial markers used, etc.) and for
which their inclusion risks overparameterization of the
model. Significant independent variables were identified
by using the backward elimination procedure of multiple
regression. Briefly, independent variables, their squared
terms (except for ‘‘Trial’’), and all possible two-way interac-
tions (excluding interactions with ‘‘Trial’’) were entered
into the model. The following algorithm was used to reduce
the model to significant (P � 0.05) independent variables.
First, non-significant (P � 0.05) interactions were removed
sequentially from the model. Second, non-significant main
effects were removed from the model if no interactions or
squared term of the main effect was significant. Third, if
variance inflation factors (VIF) were all less than 100 then
the model was accepted. If a term had a VIF greater than
100, it was removed. If more than one had a VIF greater
than 100, the term with the largest P value was removed.
In that case, all steps were repeated until an accepted
model was obtained at the third step. When an apparently
acceptable model was generated, the Difference in Fits
Statistic (DFFITS) was used as the basis for omitting outli-
ers; absolute values of DFFITS � 2 were omitted (Bower-
man and O’Connell, 1990). The variables that emerged as
significant predictors of the content of individual EAA in
total EAA of duodenal protein were Trial, each EAA as a
percentage of EAA in RUP, and RUP as a percentage of
total duodenal protein.

The third step involved the use of PROC MIXED of
SAS (a random effects model) to develop the final equa-
tions. This was done to yield more accurate parameter
estimates and to increase the utility of the prediction equa-
tions for purpose of field application (i.e., Trial effects
would be unknown). In brief, two random coefficient mod-
els for each EAA and for total EAA were fitted for the
prediction equations generated by using PROC GLM. The
first random coefficient model utilized unstructured covari-
ance to test whether the intercept and slope within trials
were significantly (P � 0.05) correlated, which was not
the case for any of the equations. The second random

coefficients model, which models a different variance com-
ponent for each random effect (the default structure), then
was used to generate the final prediction equations.

Arginine

Y � 7.31 � 0.251X1 (RMSE � 0.278)

where:
Y � Arg, % of EAA in duodenal protein
X1 � Arg, % of EAA in RUP

Histidine

Y � 2.07 � 0.393X1 � 0.0122X2 (RMSE � 0.156)

where:
Y � His, % of EAA in duodenal protein
X1 � His, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Isoleucine

Y � 7.59 � 0.391X1– 0.0123X2 (RMSE � 0.174)

where:
Y � Ile, % of EAA in duodenal protein
X1 � Ile, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Leucine

Y � 8.53 � 0.410X1 � 0.0746X2 (RMSE � 0.541)

where:
Y � Leu, % of EAA in duodenal protein
X1 � Leu, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Lysine

Y � 13.66 � 0.3276X1– 0.07497X2 (RMSE � 0.400)

where:
Y � Lys, % of EAA in duodenal protein
X1 � Lys, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Methionine

Y � 2.90 � 0.391X1– 0.00742X2 (RMSE � 0.168)

where:
Y � Met, % of EAA in duodenal protein
X1 � Met, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Phenylalanine
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Y � 7.32 � 0.244X1 � 0.0290X2 (RMSE � 0.194)

where:
Y � Phe, % of EAA in duodenal protein
X1 � Phe, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Threonine

Y � 7.55 � 0.450X1– 0.0212X2 (RMSE � 0.167)

where:
Y � Thr, % of EAA in duodenal protein
X1 � Thr, % of EAA in RUP
X2 � RUP, % of duodenal protein (MCP � RUP �

endogenous CP)

Valine

Y � 8.68 � 0.314X1 (RMSE � 0.216)

where:
Y � Val, % of EAA in duodenal protein
X1 � Val, % of EAA in RUP

Total essential amino acids

Y � 30.9 � 0.863X1 � 0.433X2 (RMSE � 58.8)

where:
Y � EAA in duodenal protein, g
X1 � EAA supplied by RUP, g
X2 � MCP, g

The model predicts flows (g/d) of individual EAA to the
small intestine by multiplying predicted concentrations of
each EAA in duodenal total EAA by predicted flows of
total EAA. Plots of predicted vs. measured values and of
residuals (predicted � measured) vs. measured values for
Lys, Met, and total EAA are presented in Figures 5-9
through 5-11.

FIGURE 5-9 Plot of predicted vs. measured (filled circles) and
residuals (predicted � measured; open circles) vs. measured
(Lys, g/d) (from predicted Lys, percent of EAA and predicted
EAA, g/d) (mean bias � 2.4 � 10�2; RMSPE � 3.5; n � 186).

FIGURE 5-10 Plot of predicted vs. measured (filled circles)
and residuals (predicted � measured; open circles) vs. measured
Met, g/d (from predicted Met, percent of EAA and predicted
EAA, g/d) (mean bias � 2.2 � 10�3; RMSPE � 1.3; n � 182).

FIGURE 5-11 Plot of predicted vs. measured (filled circles)
and residuals (predicted � measured; open circles) vs. measured
flow of total EAA (mean bias � 3.06 � 10�5; RMSPE � 47.8;
n � 196).

The subcommittee also evaluated the use of a semi-
mechanistic approach to predict directly the ‘‘flows’’ of
individual EAA to the duodenum. Using the same data
base, the theoretically based model structure for each EAA
was Y � �0 � �1X1 � �2X2 where: Y � flow to duode-
num(g), �0 � parameter estimate for contribution of
endogenous protein (g), �1 � parameter estimate of the
fractional contribution of RUP to flows from RUP, X1 �
model predicted flow of the EAA (g), �2 � parameter
estimate of the fractional content of the EAA in MCP, and
X2 � model predicted flow of MCP (g). The parameter
estimates that resulted appeared reasonable, indicating
that the model does an adequate job of predicting flows
of MCP and RUP and that the content of EAA in MCP
is similar to mean values reported in the literature (e.g.,
Clark et al., 1992). A comparison of the root mean square
prediction errors (RMSPE) obtained from two sets of resid-
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ual plots (‘‘g/d’’ and ‘‘% of total EAA’’) for each of the two
approaches is presented in Table 5-14.

The residual plots indicated that the equations that pre-
dict percentages directly predict more accurately both the
‘‘percentages’’ of individual EAA in duodenal total EAA
and ‘‘flows’’ (g/d) of individual EAA. The lower RMSPE
for predicting ‘‘percentages’’ and ‘‘flows’’ when percentages
are predicted directly (and flows are calculated) result par-
tially because errors of prediction are ‘‘condensed’’ into
two variables (i.e., the prediction of the percentage and
prediction of total EAA, from which the product yields
prediction of flow). In contrast, prediction errors of all
nine EAA are aggregated into total EAA and subsequently
into the calculation of percentages for the more theoreti-
cally based model. Thus, the equations that predict directly
the percentages of each EAA in total EAA of duodenal
protein were accepted for use in this publication.

Knowledge of predicted flows of digestible EAA and the
EAA content of MP is more important than knowing the
predicted flows of total EAA and the EAA content of total
duodenal protein. This is because the AA in undigested
protein are not absorbed and do not contribute to meeting
the AA requirements of the animal. The EAA composition
of MP will generally be different from that of total duodenal
protein. This is because of differences among feedstuffs
in both the digestibility and the EAA composition of their
RUP fractions, differences in the proportional contribu-
tions that microbial protein and RUP make to total EAA
passage, and mean differences in the digestibility of micro-
bial protein and total dietary RUP. Because undigested
AA do not contribute to meeting the AA requirements of
the animal, and because the AA composition of MP is
likely to differ from the AA composition of total duodenal
protein, it is desirable also to express EAA requirements
in terms of digestible (i.e., metabolizable) requirements
rather than on the basis of total flows. In recognition of
the need for research aimed at defining AA requirements

TABLE 5-14 Comparison of Root Mean Square Prediction Errors (RMSPE) Obtained from Plots of Residuals
(predicted-measured vs. measured) for Equations That Predicted Directly the Flow of Each EAA With Those
Accepted for Use in the Model That Predict Directly the Percentage of Each EAA in Total EAA of Duodenal Protein

Flow Percentage
RMSPE from RMSPE from RMSPE from RMSPE from

Amino acid plots for % plots for g/da plots for % plots for g/db

Arg 0.46 6.1 0.24 2.8
His 0.26 3.0 0.13 1.3
Ile 0.34 4.4 0.14 1.3
Leu 0.51 9.4 0.45 4.8
Lys 0.45 7.0 0.33 3.5
Met 0.22 2.7 0.14 1.3
Phe 0.28 5.9 0.16 1.5
Thr 0.25 5.6 0.14 1.5
Val 0.22 5.4 0.17 1.7
Total EAA 40.6 47.8

aPercentages of each EAA in duodenal total EAA were calculated from predicted flows of individual EAA.
bFlows of each EAA to the duodenum were calculated from predicted flows of total EAA and predicted percentages of each EAA in duodenal total EAA.

and the need for models designed to predict as accurately
as possible passage of digestible EAA to the small intestine,
the model was extended to predict flows of digestible EAA
and the EAA composition of MP. The following 9 equations
are used; again, Lys is used as the example EAA.

RUPLys � �f (DMIf � CPf � RUPf

� Lysf � 0.01) (5-6)

where:
RUPLys � amount of Lys supplied by total diet RUP, g
DMIf � intake of DM of each feedstuff contributing

RUP, kg
CPf � crude protein content of each feedstuff con-

tributing RUP, g/100 g DM
RUPf � ruminally undegraded protein content of

each feedstuff contributing RUP, g/100 g CP
Lysf � lysine content of each feedstuff contributing

RUP, g/100 g CP

The preceeding equation is used to calculate for each
feedstuff, and subsequently the diet, the amount of Lys
supplied by RUP. Equation 5-6 is extended in the following
manner to calculate the amount of digestible Lys supplied
by RUP, which weights feedstuffs appropriately for differ-
ences of digestibility of RUP and concentration of Lys
among feeds.

dRUPLys � �f (DMIf � CPf � RUPf �
RUPdigestibilityf � Lysf � 0.001) (5-7)

where:
dRUPLys � amount of digestible Lys supplied by total

diet RUP, g
DMIf � intake of DM of each feedstuff contributing

RUP, kg
CPf � crude protein content of each feedstuff contribut-

ing RUP, g/100 g DM
RUPf � ruminally undegraded protein content of each

feedstuff contributing RUP, g/100 g CP
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RUPdigestibilityf � digestibility coefficient of ruminally
undegraded protein for each feedstuff contributing
RUP, g/100 g RUP

Lysf � lysine content of each feedstuff contributing
RUP, g/100 g CP

The preceeding two equations then are combined to
yield the calculation of digestible RUPLys as a percentage
of total RUPLys for the diet.

PctdRUPLys � 100 � (dRUPLys/RUPLys) (5-8)

where:
PctdRUPLys � digestibility coefficient for Lys supplied

by RUP, g/100 g
dRUPLys � amount of digestible Lys supplied by total

diet RUP, g
RUPLys � amount of Lys supplied by total diet RUP, g

In order to calculate the supply of total digestible Lys,
two ‘‘pools’’ must be considered. The first pool is the
amount supplied by RUP. The equation for predicting
total EAA has associated with it a coefficient of 0.863 for
RUPEAA, which indicates that the total EAA supplied by
RUP (thus, individual AA supplied by RUP) is ‘‘discounted’’
by 13.8 percent (i.e, 100 � 86.3). Theoretically, the total
flow (g/d) of Lys from RUP can be calculated.

TotalRUPLysFlow � 0.863 � RUPLys (5-9)

where:
TotalRUPLysFlow � adjusted total supply of Lys from

RUP, g
RUPLys � amount of Lys supplied by total diet RUP, g

The second ‘‘pool’’ is the amount of Lys supplied from
MCP and endogenous CP, and is calculated by difference
from total Lys flow and the supply of Lys from RUP as
calculated in Equation 5-9.

TotalMCPEndoLysFlow � LysFlow �
TotalRUPLysFlow (5-10)

where:
TotalMCPEndoLysFlow � supply of Lys from MCP

and endogenous CP, g
LysFlow � total amount of Lys in duodenal protein, g
TotalRUPLysFlow � adjusted total supply of Lys from

RUP, g

The amount of digestible Lys supplied by each of the two
pools and total digestible Lys is calculated as follows:

dTotalRUPLys � TotalRUPLysFlow � PctdRUPLys
� 0.01 (5-11)

where:

dTotalRUPLys� supply of digestible Lys from RUP, g
TotalRUPLysFlow � adjusted total supply of Lys from

RUP, g

PctdRUPLys � digestibility coefficient for Lys supplied
from RUP (i.e., Equation 5-8), g/100g

dTotalMCPEndoLys � 0.80 �
TotalMCPEndoLysFlow (5-12)

where:

dTotalMCPEndoLysFlow � supply of Lys from MCP
and endogenous CP, g

TotalDigestibleLys � Equation 5-11 �
Equation 5-12 (5-13)

The final step is to calculate digestible Lys as percentage
of MP.

dLysPctMP � 100 � (TotalDigestibleLys/(MPBact �
MPFeed � MPEndo)) (5-14)

where:
dLysPctMP � digestible Lys as percentage of MP, %
TotalDigestibleLys � total amount of digestible Lys

(i.e., Equation 5-13), g
MPBact � model predicted MP from MCP, g
MPFeed � model predicted MP from RUP, g
MPEndo � model predicted MP from endogenous

CP, g

Requirements for Lysine and Methionine in
Metabolizable Protein for Lactating Cows

The AA requirements of dairy cattle are not known with
much certainty. Attempts have been made to quantify AA
requirements of cattle using the factorial approach (Old-
ham, 1981; O’Connor et al., 1993). The factorial method
is a mathematic approach of calculating requirements from
a segmentation of the requirements into individual and
independent components, and from knowledge of pool
sizes and the rates by which nutrients move through diges-
tive and metabolic pools. More specifically, calculating
requirements for absorbed AA using this approach requires
at a minimum a knowledge of: (1) net protein requirements
for maintenance, growth, pregnancy, and lactation, (2) AA
composition of products, and (3) efficiencies of use of
absorbed AA for maintenance and product formation. The
Cornell Net Carbohydrate and Protein System for evaluat-
ing cattle diets and the associated AA submodel (O’Connor
et al., 1993) is the most tested of the AA factorial models
published to date in the United States. It was the opinion
of the subcommittee, however, that current knowledge
is too limited, both for model construction and model
evaluation, to put forth a model that quantifies AA require-
ments for dairy cattle. Indeed, there have been few direct
attempts to quantify AA requirements of dairy cattle
(Campbell et al., 1997; Fenderson and Bergen, 1975; Tit-
gemeyer et al., 1988; Williams and Smith, 1974). This is
due largely to the technical difficulties involved in provid-
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ing graded amounts of a limiting AA to sites of absorption
in ruminants at various production levels, while simultane-
ously measuring AA flows to the small intestine and weight
gains or milk production.

An alternate and more direct approach to defining AA
requirements is to use the dose-response approach to esti-
mate required AA concentrations in MP for maximal use
of MP for protein synthesis. Thus far, the most progress
has been made for Lys and Met in lactating cows. Two
dose-response approaches have been used. The first is
the ‘‘direct’’ dose-response approach, whereby postruminal
supplies of Lys (Rulquin et al., 1990; Schwab et al., 1992b)
or Met (Pisulewski et al., 1996; Socha et al., 1994a,b,c)
were increased in graded fashion via intestinal infusion and
production responses and AA flows to the small intestine
were measured. A constant amount of supplemental Met
was provided in each of the Lys experiments and a constant
amount of supplemental Lys was provided in each of the
Met experiments to reduce the possibility that they would
limit responses. This approach indicated that for cows fed
corn-based diets, Lys must contribute about 7.0 percent
and Met about 2.5 percent of total AA in duodenal digesta
for maximum content and yield of protein in milk.

The second method for estimating the optimum amounts
of Lys and Met in MP for lactating cows is an ‘‘indirect’’
dose-response approach. This approach was used by Rul-
quin et al. (1993) and involved five steps: (1) predicting
concentrations of digestible Lys and Met in protein truly
digested in the small intestine (PDI) for control and treat-
ment groups in experiments in which postruminal supplies
of Lys, Met, or both were increased (either by intestinal
infusion or by feeding in ruminally protected form) and
production responses were measured, (2) identifying
‘‘fixed’’ concentrations of Lys and Met in PDI that were
intermediate to the lowest and highest values in the greatest
number of Lys experiments and Met experiments, respec-
tively, (3) calculating by linear regression a ‘‘reference pro-
duction value’’ for each production parameter in each Lys
experiment that corresponded to the ‘‘fixed’’ level of Lys
in PDI and in each Met experiment that corresponded to
the ‘‘fixed’’ level of Met in PDI, (4) calculating ‘‘production
responses’’ (plus and minus values) for control and treat-
ment groups relative to the ‘‘reference production values,’’
and (5) regressing the production responses on the pre-
dicted concentrations of Lys and Met in PDI. Experiments
involving ruminally protected Lys or Met were limited to
those in which data on ruminal stability and postruminal
release of Lys and Met had been obtained in the
author’s laboratory.

Using the described approach, Rulquin et al. (1993)
obtained curvilinear (monomolecular) dose-response rela-
tionships for content and yield of milk protein to increasing
concentrations of Lys in PDI. The authors reported that
concentrations of Met in PDI had no apparent effect on

milk protein responses to Lys in PDI. In contrast, concen-
trations of Lys lower than 6.5 percent of PDI limited
responses to increases in Met. Thus, curvilinear dose-
response relationships for content and yield of milk protein
to increasing concentrations of Met in PDI were obtained
from the data for Lys concentrations greater than 6.5 per-
cent of PDI. Assuming that Lys and Met requirements
were met when protein yield responses were slightly below
the maximum attainable values (as determined from the
derived exponential equations), the authors concluded that
the requirements for Lys and Met in PDI are the amounts
that would result in the production of 16 g less milk protein
(i.e., 0.5 kg milk containing 3.2 percent true protein) than
the maximum attainable values. Using the derived equa-
tions, the calculated requirements for Lys and Met in PDI
were 7.3 percent and 2.5 percent, respectively.

The ‘‘indirect’’ dose-response approach described by
Rulquin et al. (1993) was used in this revision to determine
the requirements for Lys and Met in MP for lactating cows.
A unique and practical feature of this approach is that the
requirement values are estimated using the same model
as that used to estimate the contributions of feedstuffs
to AA passage to the small intestine. Experiments were
identified in which Lys (18 experiments; 63 treatments) or
Met (27 experiments; 87 treatments) was infused continu-
ously into the abomasum or duodenum or fed in ruminally
protected form (Table 5-15). Experiments were not consid-
ered if diet or feed intake information was insufficient for
model input, or if Lys and Met were supplemented
together and there was no corresponding control where
one of the two AA was supplemented at the same concen-
tration. Of the 36 different experiments that were identi-
fied (9 experiments involved the administration of one or
more quantities of both Lys and Met), 24 were Latin
squares and of these 18 were infusion experiments. Experi-
ments in which ruminally protected products were fed
were restricted to those that had data for viability reported
in peer-reviewed literature and estimates of ruminal escape
were 80 percent or higher. Experiments involving rumina-

TABLE 5-15 Studies Used to Determine the Dose-
Response Relationships for Lysine and Methionine in
Metabolizable Protein

Armentano et al. (1997) Rogers et al. (1987)
Casper et al. (1987) Rulquin and Delaby (1997)
Casper and Schingoethe (1988) Rulquin and Delaby (1994)
Guinard and Rulquin (1994) Rulquin et al. (1994)
Illg et al. (1987) Schingoethe et al. (1988)
King et al. (1991) Schwab et al. (1976)
Munneke et al. (1991) Schwab et al. (1992a)
Papas et al. (1984a) Schwab et al. (1992b)
Papas et al. (1984b) Socha (1994)
Piepenbrink et al. (1999) Socha et al. (1994a)
Pisulewski et al. (1996) Socha et al. (1994b)
Polan et al. (1991) Yang et al. (1986)



Protein and Amino Acids 83

lly protected products with published estimates of ruminal
escape less than 80 percent were not used because of the
concern that ruminally released Met may affect ruminal
fermentation and AA passage to the small intestine. All
experiments utilized Holstein cows. All but 2 experiments
involved early and mid lactation cows. Ten experiments
involved both multiparous and primiparous cows and 26
experiments involved only multiparous cows. Cows pro-
duced an average of 31.5 kg milk in the Lys experiments
(range � 20.7 to 46.3 kg) and an average of 33.7 kg milk
in the Met experiments (range � 20.9 to 43.1 kg).

To calculate concentrations of Lys and Met in MP, all
cow and diet data were entered into the model. Published
nutrient composition of the individual ingredients was used
when available; otherwise, model default values were used.
When nutrient composition of ingredients was not pub-
lished but nutrient composition of the total diet was
included, nutrient composition of individual ingredients
(usually only the forages) was changed so that the composi-
tion of the diet was the same as the published composition.
In all cases, model default values were used for the AA
composition of feeds. Contributions of supplemental Lys
and Met to predicted flows of digestible Lys and Met
originating from the basal diet were estimated as follows:
(1) the intestinal availability of infused Lys and Met was
considered to be 100 percent, (2) ruminally protected
sources of Lys and Met containing polymers in the surface
coating (see next section, ‘‘Ruminally Protected Amino
Acids’’) were considered to have a ruminal escape of 90
percent and an intestinal digestibility coefficient of 90 per-
cent (Rogers et al., 1987; Schwab, 1995a) so 81 percent
(0.90 � 0.90) of the fed amounts of Lys and Met was
considered digestible, and (3) the ruminally protected Met
product, Ketionin (Rumen Kjemi; Oslo, Norway), was con-
sidered to have a ruminal escape of 80 percent and an
intestinal digestibility of 75 percent (Schwab, 1995a; Yang
et al., 1986) so 60 percent of the fed amounts of Met was
considered digestible.

Predicted concentrations of Lys in MP varied between
4.33 percent and 9.83 percent and for Met between 1.70
percent and 3.36 percent. The ‘‘fixed’’ concentration of
Lys in MP that was selected (6.67 percent) to calculate
the required ‘‘reference production values’’ was intermedi-
ate to the lowest and highest concentrations in 16 of the
18 Lys experiments. This eliminated the experiments of
Polan et al. (1991) (6 treatments with predicted concentra-
tions of Lys in MP between 4.32 percent and 5.87 percent)
and Rogers et al. (1987) (4 treatments with predicted con-
centrations of Lys in MP between 6.76 and 7.55 percent).
The ‘‘fixed’’ concentration of Met in MP (2.06 percent) that
was selected was intermediate to the lowest and highest
concentrations in all of the 27 Met experiments. The ‘‘refer-
ence production values’’ for each experiment and the ‘‘pro-
duction responses’’ (plus and minus values) for each pro-

duction parameter for each treatment were calculated as
described above. The final database contained 53 observa-
tions for Lys and 87 observations for Met.

As observed by Rulquin et al. (1993), changes in milk
yield, milk fat content, and milk fat yield to changes in
concentrations of Lys and Met in MP were small and
inconsistent. These observations were expected (see sec-
tion, ‘‘Limiting Essential Amino Acids’’). Therefore, no
attempt was made to use these production measurements
as response criteria for establishing requirements for Lys
and Met in MP.

Four statistical models were used to describe the rela-
tionships between increasing concentrations of Lys and
Met in MP and milk protein content and yield responses.
These were: (1) a straightforward quadratic model (SAS,
GLM procedure), (2) a negative exponential curve model
(SAS, NLIN procedure), (3) a segmented quadratic model
with a plateau (SAS, NLIN procedure), and (4) a rectilinear
model (referred to in the literature as a linear abrupt
threshold and plateau model, essentially consisting of a
straight line followed by a plateau) (SAS, NLIN proce-
dure). Analyses involving all models indicated that low
concentrations of Met in MP limited responses to increas-
ing concentrations of Lys in MP and that low concentra-
tions of Lys in MP limited responses to increasing concen-
trations of Met in MP. The final regression analysis for
Lys was limited to data where Met was 1.95 percent or
more of MP (n � 41 of 53) and for Met it was limited to
data where Lys was 6.50 percent or more of MP (n � 48
of 87). Using these restricted databases, the rectilinear
model was either equal to or superior to the other models
for describing protein content and protein yield responses
to increasing amounts of both Lys and Met in MP. Based
on these findings, the rectilinear model was accepted as
the final model. An advantage of the rectilinear model
is that the breakpoint in the nutrient dose-response line
provides an objective, mathematically determined estimate
of nutrient requirements. However, a requirement pre-
dicted by this type of break-point analysis is usually lower
than that predicted by a curvilinear model because of the
implicit smoothness constraint of curvilinear models. The
appropriateness of different models for defining AA
requirements have been discussed (Baker, 1986; Fuller
and Garthwaite, 1993; Owens and Pettigrew, 1989).

The plots of predicted concentrations of Lys and Met
in MP and the corresponding responses for milk protein
content for all data are presented in Figure 5-12; the equiv-
alent plots for milk protein yield are in Figure 5-13. The
rectilinear dose-response relationships for the restricted
databases are in the same figures. There are several note-
worthy observations. First, the breakpoint estimates for
the required concentrations of Lys and Met in MP for
maximal yield of milk protein (7.08 percent and 2.35 per-
cent, respectively; Figure 5-13) are similar to those
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FIGURE 5-12 Milk protein content responses as a function of
digestible Lys and Met concentrations in MP. Regression analysis
for Lys was limited to data where Met was 1.95 percent or more
of MP (filled circles) [y � �0.712 � 0.106x for the linear part
of the model and y � �0.712 � 0.106 � 7.24 for the plateau
(SE � 0.12 for x value of breakpoint); r2 � 0.85; SE � 0.029;
n � 41]. Regression analysis for Met was limited to data where
Lys was 6.50 percent or more of MP (filled circles) [y � �0.496
� 0.238x for the linear part of the model and y � �0.496 �
0.238 � 2.38 for the plateau (SE � 0.07 for x value of breakpoint);
r2 � 0.76; SE � 0.033; n � 48]. The ‘‘trial’’ effect was not
significant and therefore, not included in the model.

required for maximal content of milk protein (7.24 percent
and 2.38 percent; Figure 5-12). For both AA, the nutrient-
response relationships were determined more accurately
for protein content than for protein yield

Based on these results, it is concluded that optimal use
of MP for the combined functions of maintenance and
milk protein production requires concentrations of Lys and
Met in MP (as determined by this edition’s model) that
approximate 7.2 percent and 2.4 percent, respectively. Sec-
ond, the resultant requirement values are strikingly similar
to the values of 7.3 percent and 2.5 percent proposed by
Rulquin et al. (1993). As noted previously, the require-
ments proposed by Rulquin et al. (1993) were calculated

FIGURE 5-13 Milk protein yield responses as a function of
digestible Lys and Met concentrations in MP. Regression analysis
for Lys was limited to data where Met was 1.95 percent or more
of MP (filled circles) [y � �419.6 � 63.62x for the linear part
of the model and y � �419.6 � 63.62 � 7.08 for the plateau
(SE � 0.18 for x value of breakpoint); r2 � 0.62; SE � 27.9; n
� 41]. Regression analysis for Met was limited to data where
Lys was 6.50 percent or more of MP (filled circles) [y � �159.1
� 77.30x for the linear part of the model and y � �159.1 �
77.30 � 2.35 for the plateau (SE � 0.13 for x value of breakpoint);
r2 � 0.40; SE � 21.8; n � 48]. The ‘‘trial’’ effect was not
significant and therefore, not included in the model.

to be somewhat less than required for maximum response
as determined using an exponential representation of milk
protein yield responses. Third, the observed optimum con-
centrations of Lys and Met in MP for the combined func-
tions of maintenance and milk protein production (7.3
percent and 2.4 percent) are within their reported concen-
trations in milk protein (7.1 to 8.2 percent and 2.4 to 2.7
percent, respectively) (Rulquin et al., 1993; Waghorn and
Baldwin, 1984). This observation may be considered as
providing evidence of the reasonableness of the observed
requirements. And last, an examination of Figures 16-4
and 16-5 indicates that implementation of diet formulation
strategies that increase Lys and Met in MP to concentra-
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tions that approach or meet the requirement levels can
result in more actual milk than MP allowable milk. Indeed,
achieving the optimum concentrations of the most limiting
AA in MP is the first step in balancing diets for AA. The
subcommittee encourages more research aimed at deter-
mining the ideal profile of EAA in MP of growing cattle
and lactating cows. The results of such efforts are needed
to combine protein supplements and ruminally protected
AA in ways to meet AA requirements of dairy cattle with
minimal MP, and thus, minimal RUP.

Ruminally Protected Amino Acids

As discussed, Lys and Met are two of the most limiting
AA for protein synthesis in dairy cattle fed corn-based diets.
A challenge in diet formulation, particularly for animals
requiring higher RUP diets, is to achieve the desired con-
centrations of both Lys and Met in MP by relying solely
on feed protein supplements. Supplements of crystalline
Lys and Met have not been considered efficacious because
of rapid deamination in the rumen (Chalupa, 1976; Onod-
era, 1993). Thus, a considerable effort has been made to
develop technologies for supplying Met and Lys in forms
that would allow them to escape ruminal degradation with-
out compromising substantially their digestibility in the
small intestine. The physical-chemical properties of Lys
are such that application of most technologies are currently
limited to Met.

The methods that have been evaluated for protecting
free AA from ruminal degradation have been reviewed
(Loerch and Oke, 1989; Schwab, 1995a). Technologically,
the approaches in current use fall into one of three catego-
ries: (1) surface coating with a fatty acid/pH-sensitive poly-
mer mixture, (2) surface coating or matrices involving fat
or saturated fatty acids and minerals, and (3) liquid sources
of Met hydroxy analog (DL-2-hydroxy-4-methylthiobuta-
noic acid; HMB).

Technology # 1 provides for a postruminal delivery sys-
tem that is independent of digestive enzyme function and
dependent on the differences in pH between the rumen
and abomasum. The resulting ruminally inert products
have an apparent high coefficient of rumen protection
(Mbanzamihigo et al., 1997; Robert and Williams, 1997;
Schwab, 1995a) and possess high intestinal release coeffi-
cients of the coated AA (Robert and Williams, 1997). This
technology appears to be the most effective in increasing
Met in MP as evidenced by the largest increases in blood
Met concentrations (Blum et al., 1999; Robert et al., 1997).

Several variations of technology # 2 have been evaluated
(Loerch and Oke, 1989; Schwab, 1995a). The physical-
chemical properties of Lys are such that this technology
has generally been limited to Met. The technology relies
in identifying a combination of process and materials that
provides a coating or matrix that gives a reasonable degree
of protection against ruminal degradation, provided by the

relatively inert characteristics of saturated fat in the rumen,
while providing also for a reasonable degree of intestinal
release. The apparent bioavailability of Met (ruminal
escape � intestinal release) from RPMet products using
this approach is less than RPMet products utilizing technol-
ogy # 1 (Bach and Stern, 2000; Berthiaume et al., 2000;
Blum et al., 1999; Mbanzamihigo et al., 1997; Overton et
al., 1996).

Technology # 3 (i.e., liquid HMB) is currently being
evaluated as an alternative to coated or encapsulated forms
of Met. The Ca salt of HMB, commonly known as Met
hydroxy analog, has been studied extensively as a supple-
ment for increasing milk and milk fat production (Loerch
and Oke, 1989). The Ca salt of HMB is no longer manufac-
tured but liquid HMB is available and is used in the poultry
and swine industry as a substitute for Met. It is well docu-
mented in nonruminants that following absorption, HMB
is first converted to the �-keto analog of Met and then
transaminated to L-Met (Baker, 1994). The combined effi-
ciencies of absorption and conversion rates to Met in non-
ruminants is still being questioned. Baker (1994) summa-
rized the efficiency estimates for dietary HMB and con-
cluded that appropriate ‘‘Met bioavailability’’ values (molar
basis) for rats, chickens, and pigs were 70, 80, and 100
percent, respectively. Comparable ‘‘Met bioavailability’’
data (ruminal escape � intestinal absorption � conversion
to Met) is not available for ruminants. However, studies
indicate that HMB is more resistant to ruminal degradation
than free Met (Belasco, 1972, 1980; Patterson and Kung,
1988), that it can be absorbed across the ruminal and
omasal epithelium (McCollum et al., 2000), and that rumi-
nants possess the enzymes involved in the conversion of
HMB to Met (Belasco, 1972, 1980; Papas et al., 1994).
The study of Koenig et al. (1999) is the only reported
attempt to quantify ruminal escape and intestinal absorp-
tion of liquid HMB in dairy cattle. In this study, a 90-g
pulse-dose of HMB was given to lactating dairy cows fed
a diet containing 30 g/d HMB. Based on fractional rate
constants for ruminal and duodenal disappearance of HMB
and passage of liquid, the workers reported that 50 percent
of the HMB escaped ruminal degradation. However, the
extent to which dietary HMB substitutes for absorbed Met
for protein synthesis remains questionable because of
observed minimal effects on blood Met concentrations
(Johnson et al., 1999; Robert et al., 1997) and milk protein
concentrations (Johnson et al., 1999; Rode et al., 1998).
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