ALEXANDRE MICHEL MAUL

ANÁLISE POR TÉCNICA ELETROQUÍMICA DA POROSIDADE DE REVESTIMENTOS SOBRE SUPERFÍCIES METÁLICAS

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre, apresentada ao Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração de Engenharia e Ciência dos Materiais, do Setor de Tecnologia, da Universidade Federal do Paraná. Orientador: Prof. Dr. Haroldo de A. Ponte

CURITIBA

2001

ALEXANDRE MICHEL MAUL

ANÁLISE POR TÉCNICA ELETROQUÍMICA DA POROSIDADE DE REVESTIMENTOS SOBRE SUPERFÍCIES METÁLICAS

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre, apresentada ao Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração Engenharia e Ciência dos Materiais, do Setor de Tecnologia, da Universidade Federal do Paraná. Orientador: Prof. Dr. Haroldo de A. Ponte

CURITIBA

2001

ALEXANDRE MICHEL MAUL

ANÁLISE POR TÉCNICA ELETROQUÍMICA DA POROSIDADE DE REVESTIMENTOS SOBRE SUPERFÍCIES METÁLICAS

Dissertação aprovada como requisito parcial à obtenção do grau de Mestre no Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração Engenharia e Ciência dos Materiais, da Universidade Federal do Paraná, pela comissão formada pelos professores:

Orientador: Prof. Dr. Haroldo de Araújo Ponte

Departamento de Engenharia Química, Universidade Federal do Paraná

Ph.D. Eduardo Homem de Siqueira Cavalcanti Laboratório de Corrosão, de Instituto Nacional de Tecnologia (INT)

Profa. Dra. Lúcia Helena Mascaro Sales Departamento de Química, Universidade Federal do Paraná (UFPR)

Curitiba, 09 de abril de 2001

AGRADECIMENTOS

Esta talvez seja a seção mais difícil de ser escrita entre as existentes nesta dissertação. Afirmo isso baseado na necessidade, comum a maioria das pessoas, de recebermos um agradecimento. E, diante disso, ao redigir estas linhas estamos diante da possibilidade de cometer o erro, quase irreparável, de esquecer alguém que contribuiu para a execução do trabalho. Esta contribuição pode ocorrer de várias formas. Num trabalho técnico, pode ser a cessão de uso de um equipamento, uma discussão acerca do assunto ou um simples comentário. Mas, existem outras contribuições, menos perceptíveis, mas igualmente importantes. Neste ponto me refiro a um sincero bom dia, a uma conversa sobre um assunto alheio ao aqui tratado, a um incentivo para continuar.

Assim, gostaria de me desculpar de antemão com aqueles que contribuíram, mas que por minha negligência não tiveram seus nomes aqui registrados.

AGRADEÇO, com letras maiúsculas, à minha mãe, Sra. Nadir Marli Maul. Pelas noites mal dormidas, ouvindo o barulho do teclado e as músicas que eu costumava ouvir enquanto trabalhava, as quais, com certeza, não eram as suas preferidas. E por tudo que ela já fez por mim até o dia de hoje. Muitíssimo obrigado.

Agradeço, ao meu orientador, Prof. Dr. Haroldo de Araújo Ponte, pela oportunidade de realização deste trabalho e pela convivência nos últimos 5 anos. Um período suficiente para desenvolver uma relação de amizade e cooperação para o desenvolvimento dos trabalhos do Laboratório de Eletroquímica Aplicada (LEA). Muitíssimo obrigado.

Agradeço à Profa. Dra. Maria José J. S. Ponte, pela colaboração, pelas discussões técnicas, nem sempre ligadas à área de eletroquímica, e pelo apoio e

ii

amizade, em momentos difíceis ao longo destes anos. Muito obrigado.

Agradeço à CAPES, pelo apoio financeiro, disponibilizado através de uma bolsa de mestrado (Programa de Demanda Social) e ao Programa Interdisciplinar de Pósgraduação em engenharia (PIPE) pela oportunidade de desenvolvimento deste trabalho.

Agradeço ao Departamento de Química da Universidade Federal do Paraná, pela concessão de uso de equipamentos necessários à realização deste trabalho, em especial à Profa. Dra. Lúcia Helena Mascaro, responsável pelo Potenciostato.

Agradeço ao LACTEC – Instituto de Tecnologia para o Desenvolvimento, pela concessão de uso de equipamentos necessários à realização deste trabalho. Entre eles: Potenciostato, Sistema de eletrodo rotatório, Microscópio eletrônico, Espectrofotômetro e Rugosímetro, utilizados para realização de voltametrias, análises de microscopia (imagens por MEV), de absorção atômica e de rugosidade superficial. Da mesma forma, agradeço aos responsáveis pela utilização e operação destes equipamentos: Dsc. Carlos M. Garcia, Sr. Paulo H. Brixel, MSc. Elaine D. Kenny e Sr. Osnildo Kosel.

Agradeço ao Departamento de Tecnologia Química da Universidade Federal do Paraná, pela disponibilização de espaço físico, em especial ao Prof. Dr. Carlos Itsuo Yamamoto, pela concessão de equipamentos das Usinas Piloto de Tecnologia Química.

Agradeço aos colegas, de mestrado e iniciação científica, do Grupo de Eletroquímica Aplicada (GEA) da Universidade Federal do Paraná.

Agradeço à todos que leram esta dissertação, pelos comentários e sugestões e pela correção dos erros da nossa língua portuguesa. Faço este agradecimento, pois a leitura deste material nem sempre é uma tarefa muito animadora, principalmente para pessoas sem muitos conhecimentos da área que está sendo tratada.

Agradeço a todos que não foram incluídos nesta pequena lista. Muito obrigado.

Alexandre Michel Maul

iii

SUMÁRIO

LISTA DE FIGURAS	VII
LISTA DE TABELAS	. XIV
LISTA DE EQUAÇÕES ERRO! INDICADOR NÃO DEFIN	IDO.
LISTA DE SÍMBOLOS	XVIII
LISTA DE SIGLAS	XX
RESUMO	XXIII
ABSTRACT	ΧΙΧ
1. INTRODUÇÃO	2
1.1. DEFINIÇÕES	3
1.2. CAUSAS DO APARECIMENTO DE POROS	5
1.3. CLASSIFICAÇÃO QUANTO À MORFOLOGIA DOS POROS	7
1.4. INFLUÊNCIA DA CRISTALINIDADE NA POROSIDADE	8
1.5. OS DIVERSOS TIPOS DE ENSAIO DE POROSIDADE	9
1.6. CLASSIFICAÇÃO DAS TÉCNICAS EXISTENTES	10
1.6.1. BASEADA NO EXECUTOR	10
1.6.2. BASEADA NO TIPO DE PORO DETECTADO	11
1.7. MÉTODOS CONVENCIONAIS VS. ELETROQUÍMICOS	12
1.7.1. MÉTODOS CONVENCIONAIS	12
1.7.2. MÉTODOS ELETROQUÍMICOS	13
1.8. O REVESTIMENTO SELECIONADO - NÍQUEL	17
1.9. PARÂMETROS DE AVALIAÇÃO DA RUGOSIDADE	18
1.9.1. RUGOSIDADE MÉDIA (RA)	19
2. EVOLUÇÃO DAS TÉCNICAS DE DETERMINAÇÃO POROSIDADE	DA 22
2.1. ESTUDOS ATÉ 1950	27
2.2. A DÉCADA DE 50	28
2.3. A DÉCADA DE 60	36
2.4. A DÉCADA DE 70	39

2.5. A DÉCADA DE 804	17
2.6. A DÉCADA DE 904	19
2.7. O ANO 20006	39
3. TÉCNICAS NÃO-ELETROQUÍMICAS7	'2
3.1. EXPOSIÇÃO À DIVERSAS SOLUÇÕES AGRESSIVAS	72
3.1.1. ENSAIO COM FERROCIANETO (EF)	72
3.1.2. ENSAIOS COM ÁGUA (EA)7	74
3.1.3. ENSAIO COM CLORETO-PERÓXIDO (ECP)	76
3.1.4. ENSAIO DE IMERSÃO EM SOLUÇÕES AGRESSIVAS (EISA) 7	76
3.1.5. ENSAIO ANÓDICO COM ÁCIDO CRÔMICO (EAAC)7	77
3.1.6. ENSAIO COM TIOCIANATO (ET)7	77
3.1.7. ENSAIO COM ALIZARINA (EAL)7	77
3.1.8. ENSAIO ELETROGRÁFICO (EE)	78
3.1.9. ENSAIO ELETROGRÁFICO SOBRE PAPEL (EEP)	78
3.1.10. ENSAIO ELETROGRÁFICO EM MEIO GELATINOSO (EEMG) 8	30
3.2. ENSAIOS ACELERADOS EM CÂMARAS8	31
3.2.1. ENSAIO DE NÉVOA SALINA NEUTRA (ENSN)	33
3.2.2. ENSAIO DE NÉVOA SALINA ÁCIDA (ENSA)	33
3.2.3. ENSAIO DE NÉVOA SALINA ACELERADO COM COBR (ENSAC)	ε 84
3.2.4. ENSAIO DE CORROSÃO SALINO (ECS)	34
3.2.5. ENSAIO DE CORROSÃO COM DIÓXIDO DE ENXOFRE (ECDE) 8	34
3.2.6. ENSAIO DE CORROSÃO COM LAMAS CORROSIVAS (ECLC)8	35
3.2.7. ENSAIO DE CORROSÃO COM ÁCIDO NÍTRICO (ECAN)	36
3.2.8. ENSAIO DE CORROSÃO COM ENXOFRE (ECE)	36
3.3. OUTRAS TÉCNICAS8	37
3.3.1. ENSAIO DE ELETRODEPOSIÇÃO DE COBRE (EEDC) 8	37
3.3.2. ENSAIOS DE EXPOSIÇÃO DE CAMPO (EEC)) 0
3.3.3. MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)	90
3.3.4. ENSAIOS POR PERMEAÇÃO DE GASES (EPG)	90
4. A TÉCNICA PROPOSTA 9)3
4.1. TÉCNICA 19	} 3
4.2. TÉCNICA 2) 5
5. MATERIAIS E MÉTODOS9)8

5.1. ATIVIDADES DESENVOLVIDAS	98
5.2. CONSTRUÇÃO DE ELETRODOS DE TRABALHO	100
5.2.1. ELETRODOS DE COBRE	
5.2.2. ELETRODO DE NÍQUEL	102
5.2.3. ELETRODOS AUXILIARES	103
5.3. MATERIAIS, EQUIPAMENTOS E REAGENTES	103
5.3.1. SOFTWARES UTILIZADOS	104
5.4. PREPARAÇÃO DO ELETRODO DE TRABALHO	105
6. RESULTADOS/ESTUDOS PRELIMINARES	107
6.1. ESTUDO DA SOLUÇÃO DE PASSIVAÇÃO	107
6.1.1. CONCENTRAÇÃO IDEAL DA SOLUÇÃO DE PASSIVA	AÇÃO113
6.1.2. VELOCIDADE DE VARREDURA IDEAL	118
6.2. ESTUDO DO MECANISMO DE PASSIVAÇÃO	122
6.2.1. VOLTAMETRIAS CÍCLICAS	122
6.2.2. VOLTAMETRIAS UTILIZANDO ELETRODO ROTATÓF	RIO 124
6.2.3. TEMPO DE EQUILÍBRIO	129
6.3. RUGOSIDADE SUPERFICIAL	133
6.4. INFLUÊNCIA DO DIÂMETRO DO ELETRODO	135
6.5. ESTUDO DA SOLUÇÃO DE DEPOSIÇÃO	138
6.5.1. COMPORTAMENTO ELETROQUÍMICO DO COBRE E	NÍQUEL 139
6.5.2. CORRENTE DE DEPOSIÇÃO	143
6.6. CÁLCULO DA ESPESSURA DO REVESTIMENTO	146
6.7. ESTUDO DE SOLUÇÃO PARA POLIMENTO QUÍMICO	147
6.7.1. ANÁLISE POR MEV	148
7. RESULTADOS E DISCUSSÃO	151
7.1. DETERMINAÇÃO DA POROSIDADE – POLIMENTO DO ELETRODO DE TRABALHO (LIXA 2000)	MECÂNICO 151
7.1.1. POTENCIAL DE DEPOSIÇÃO = -930 MV	152
7.1.1.1. DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQ	UEL 155
7.1.1.2. CURVAS DE DECAIMENTO DA POROSIDADE	157
7.1.1.2.1. Utilização da Equação 29	157
7.1.1.2.2. Utilização da Equação 28	159
7.1.2. ANÁLISE POR MEV	
7.2. DETERMINAÇÃO DA POROSIDADE – POLIMENTO	MECÂNICO

DO ELETRODO DE TRABALHO (LIXA 600)161
7.2.1. POTENCIAL DE DEPOSIÇÃO = -830 MV
7.2.1.1. DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL 163
7.2.1.2. CURVAS DE DECAIMENTO DA POROSIDADE
7.2.2. POTENCIAL DE DEPOSIÇÃO = -930 MV166
7.2.2.1. DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL 167
7.2.2.2. CURVAS DE DECAIMENTO DA POROSIDADE
7.2.3. POTENCIAL DE DEPOSIÇÃO = -1030 MV170
7.2.3.1. DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL 171
7.2.3.2. CURVAS DE DECAIMENTO DA POROSIDADE
7.2.4. ANÁLISE POR MEV174
7.3. INFLUÊNCIA DO POTENCIAL DE DEPOSIÇÃO174
7.4. DETERMINAÇÃO DA POROSIDADE – POLIMENTO QUÍMICO176
7.4.1. DENSIDADE DE CARGA PADRÃO DE PASSIVAÇÃO176
7.4.2. POTENCIAL DE DEPOSIÇÃO = -930 MV178
7.4.2.1. DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL 180
7.4.2.2. CURVAS DE DECAIMENTO DA POROSIDADE
7.4.3. ANÁLISE POR MEV183
7.5. INFLUÊNCIA DA RUGOSIDADE SUPERFICIAL
7.5.1. COMPARAÇÃO DAS CURVAS DE DECAIMENTO DA POROSIDADE183
7.5.2. DENSIDADE DE CARGA DE DEPOSIÇÃO \approx 130 MC/CM ² 185
8. CONCLUSÕES
8.1. SOBRE A TÉCNICA191
8.2. SOBRE A POROSIDADE193
8.3. SUGESTÕES PARA TRABALHOS FUTUROS
ANEXOS 196
REFERÊNCIAS BIBLIOGRÁFICAS

LISTA DE FIGURAS

FIGURA 1 – REPRESENTAÇÃO ESQUEMÁTICA DOS DIFERENTES TIPOS DE POROS E TRINCAS. TIPO 1: PORO/TRINCA PASSANTE, TIPO 2: PORO/TRINCA ABERTO NÃO-PASSANTE, TIPO 3: PORO/TRINCA FECHADO, RESTRITO INTEIRAMENTE NO REVESTIMENTO, TIPO 4 E 5: POROS/TRINCAS FECHADOS, CONTÍGUO E PENETRANTE NO SUBSTRATO, RESPECTIVAMENTE. Com Permissão do Autor......4 FIGURA 2 – TIPOS DE POROS (ADAPTADO DE NAHLE ET AL., 1998)7 FIGURA 5 – RELACÕES SIMPLIFICADAS ENTRE O POTENCIAL E A ÁREA DO SUBSTRATO EXPOSTA ATRAVÉS DOS POROS DO REVESTIMENTO, VÁLIDAS QUANDO O REVESTIMENTO É FIGURA 6 – REPRESENTAÇÃO ESQUEMÁTICA SIMPLIFICADA DAS CURVAS ANÓDICA E FIGURA 7 – REPRESENTAÇÃO ESQUEMÁTICA SIMPLIFICADA DAS CURVAS ANÓDICA E FIGURA 8 – DIAGRAMA DE POLARIZAÇÃO MOSTRANDO O EFEITO DA JUNÇÃO DE DOIS METAIS FIGURA 9 - VOLTAMETRIA TÍPICA DE PASSIVAÇÃO PARA UM ELETRODO DE COBRE REVESTIDO COM NÍQUEL, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s.....95 FIGURA 10 - VOLTAMETRIA TÍPICA DE PASSIVAÇÃO PARA UM ELETRODO DE COBRE REVESTIDO. SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s96 FIGURA 11 - DESENHO ESQUEMÁTICO DAS PONTEIRAS DE COBRE, (A) CORTE LONGITUDINAL, (B) VISTA SUPERIOR101 FIGURA 12 – VOLTAMETRIAS PARA OS ELETRODOS DE TRABALHO DE COBRE (ECM) E DE NÍQUEL (EN), POTENCIAL DE REVERSÃO: 1000 mV, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, FIGURA 13 – VOLTAMETRIAS PARA OS ELETRODOS DE TRABALHO DE COBRE E DE NÍQUEL. POTENCIAL DE REVERSÃO: 300 mV, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s 112 FIGURA 14 – VOLTAMETRIAS PARA OS ELETRODOS DE TRABALHO DE COBRE E DE NÍQUEL, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s113 FIGURA 15 - CURVAS DE PASSIVAÇÃO PARA O COBRE (ECM), SOLUÇÃO: SULFITO DE SÓDIO, VV: 10 mV/s, CONCENTRAÇÕES DE 10, 30, 50 E 70 g/l.....114 FIGURA 16 - CURVAS DE DISSOLUÇÃO/PASSIVAÇÃO PARA O NÍQUEL (EN), SOLUÇÃO: SULFITO DE SÓDIO, VV: 10 mV/s, CONCENTRAÇÕES: 10, 30, 50 E 70 g/l,115 FIGURA 17 - AUMENTO DA CONCENTRAÇÃO DE COBRE EM SOLUÇÃO POR CICLO FIGURA 18 – RAZÃO ENTRE AS DENSIDADES DE CARGA DE PASSIVAÇÃO DO COBRE E DO FIGURA 19 - VOLTAMETRIAS DE DISSOLUÇÃO/PASSIVAÇÃO PARA O COBRE (ECM), FIGURA 20 – VOLTAMETRIAS DE DISSOLUÇÃO/PASSIVAÇÃO PARA O NÍQUEL (EN), SOLUÇÃO: FIGURA 21 - COMPARAÇÃO DAS VOLTAMETRIAS DE DISSOLUÇÃO/PASSIVAÇÃO PARA O COBRE (ECM), SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 5, 10, 20 E 40 mV/s......120 FIGURA 22 - COMPARAÇÃO DAS VOLTAMETRIAS DE DISSOLUÇÃO PARA O NÍQUEL (EN). SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 5, 10, 20 E 40 mV/s120 FIGURA 23 – RAZÃO ENTRE AS DENSIDADES DE CARGA DE PASSIVAÇÃO DO COBRE E DO NÍQUEL, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 5, 10, 20 E 40 mV/s......121 FIGURA 24 – VOLTAMETRIA CÍCLICA PARA O ELETRODO DE COBRE, 4 CICLOS. AS SETAS NUMERADAS INDICAM O DESLOCAMENTO DA CURVA COM OS CICLOS SUBSEQUENTES, FIGURA 25 - VOLTAMETRIA CÍCLICA PARA O ELETRODO DE NÍQUEL, 4 CICLOS. AS SETAS NUMERADAS INDICAM O DESLOCAMENTO DA CURVA COM OS CICLOS SUBSEQUENTES, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s124 FIGURA 26 – VOLTAMETRIAS PARA O ELETRODO DE COBRE, SOLUÇÃO: SULFITO DE SÓDIO FIGURA 27 – COMPARAÇÃO DOS MÉTODOS DE SUAVIZAÇÃO UTILIZADOS PARA AS MEDIDAS COM ELETRODO DE DISCO ROTATÓRIO (EDR), SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 FIGURA 28 – VOLTAMETRIAS PARA O ELETRODO DE COBRE (EDR), SOLUÇÃO: SULFITO DE FIGURA 29 – VOLTAMETRIAS DE PASSIVAÇÃO NO SENTIDO ANÓDICO PARA O ELETRODO DE FIGURA 30 – VOLTAMETRIAS DE PASSIVAÇÃO NO SENTIDO ANÓDICO PARA O ELETRODO DE COBRE, TE: 5 s, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s131 FIGURA 31 – VOLTAMETRIAS DE PASSIVAÇÃO NO SENTIDO ANÓDICO PARA O ELETRODO DE

COBRE, TE: 20 s, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s
FIGURA 32 – VOLTAMETRIAS DE PASSIVAÇÃO NO SENTIDO ANÓDICO PARA O ELETRODO DE
COBRE, TE: 50 s, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s
FIGURA 33 - VARIAÇÃO DA DENSIDADE DE CARGA PADRÃO DE PASSIVAÇÃO DO COBRE
(VARREDURA 1) COM O TEMPO DE EQUILÍBRIO ANTES DO INÍCIO DA VARREDURA NO SENTIDO
ANÓDICO, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s133
FIGURA 34 – DENSIDADE DE CARGA PADRÃO DE PASSIVAÇÃO PARA O COBRE, POLIMENTO
MECÂNICO COM LIXA 2000, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s134
FIGURA 35 – COMPARAÇÃO ENTRE DENSIDADE DE CARGA PADRÃO DE PASSIVAÇÃO PARA O
COBRE, POLIMENTO MECÂNICO COM LIXAS 600, 1000, 1500 E 2000, SOLUÇÃO: SULFITO DE
sódio 50 g/I, VV: 10 mV/s
FIGURA 36 - CURVAS DE PASSIVAÇÃO PARA O COBRE, DIÂMETRO: 4,43 mm, SOLUÇÃO:
SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s136
FIGURA 37 – COMPARAÇÃO ENTRE DENSIDADE DE CARGA PADRÃO DE PASSIVAÇÃO PARA O
COBRE, DIÂMETRO DO ELETRODO 4,43 mm, 2,63 mm, 1,64 mm e 1,08 mm, SOLUÇÃO:138
FIGURA 38 - VOLTAMETRIA PARA OS ELETRODOS DE COBRE E NÍQUEL NA SOLUÇÃO DE
WATTS SEM ADITIVOS ORGÂNICOS, VV: 10 mV/s139
FIGURA 39 – VARIAÇÃO DO PICO DE REDUÇÃO DE COBRE COM O POTENCIAL DE INÍCIO DA
VARREDURA CATÓDICA, SOLUÇÃO: BANHO WATTS, VV: 10 mV/s140
FIGURA 40 – VOLTAMETRIAS PARA OS ELETRODOS DE COBRE E NÍQUEL, SOLUÇÃO: BRANCO
2, VV: 10 mV/s
FIGURA 41 – VOLTAMETRIAS PARA OS ELETRODOS DE COBRE E NÍQUEL, SOLUÇÃO: BRANCO
4, VV: 10 mV/s
FIGURA 42 – VOLTAMETRIAS PARA OS ELETRODOS DE COBRE E NÍQUEL, SOLUÇÃO: BRANCO
3, VV: 10 mV/s
FIGURA 43 – VARIAÇÃO DA CORRENTE DE DEPOSIÇÃO COM O TEMPO PARA A DEPOSIÇÃO DE
NÍQUEL SOBRE COBRE, <i>E</i> _{DEP} : -830 mV, SOLUÇÃO: BANHO WATTS
FIGURA 44 - CURVAS DA VARIAÇÃO DA DENSIDADE DE CORRENTE COM TEMPO PARA O
PROCESSO DE DEPOSIÇÃO POTENCIOSTÁTICA DE NÍQUEL A POTENCIAIS DISTINTOS,
Solução: banho Watts
FIGURA 45 – CURVAS DE PASSIVAÇÃO DO COBRE PARA VÁRIAS CARGAS DE DEPOSIÇÃO DE
NÍQUEL, <i>E</i> _{DEP} : -930 mV, POLIMENTO MECÂNICO COM LIXA 2000, SOLUÇÃO: SULFITO DE
sódio 50 g/l, VV: 10 mV/s

FIGURA 46 – VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL COM A densidade de carga de deposição, Substrato: cobre, E_{DEP} : -930 mV, Polimento FIGURA 47 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE DEPOSIÇÃO (EQUAÇÃO 29), EDEP: -930 mV, POLIMENTO MECÂNICO COM LIXA 2000, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s158 FIGURA 48 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE DEPOSIÇÃO (EQUAÇÃO 28), E_{DEP} : -930 mV, POLIMENTO MECÂNICO COM LIXA 2000, FIGURA 49 – CURVAS DE PASSIVAÇÃO DO COBRE PARA VÁRIAS CARGAS DE DEPOSIÇÃO DE NÍQUEL, EDEP: -830 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE FIGURA 50 - VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL COM A DENSIDADE DE CARGA DE DEPOSIÇÃO, SUBSTRATO: COBRE, E_{DEP} : -830 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO, 50 g/l, VV: 10 mV/s164 FIGURA 51 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE DEPOSIÇÃO, *E*_{DEP}: -830 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE FIGURA 52 – CURVAS DE PASSIVAÇÃO DO COBRE PARA VÁRIAS CARGAS DE DEPOSIÇÃO DE NÍQUEL, EDEP: -930 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE FIGURA 53 - VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL COM A DENSIDADE DE CARGA DE DEPOSIÇÃO, SUBSTRATO: COBRE, E_{DEP}: -930 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO, 50 g/l, VV: 10 mV/s168 FIGURA 54 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE DEPOSIÇÃO, EDEP: -930 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE FIGURA 55 – CURVAS DE PASSIVAÇÃO DO COBRE PARA VÁRIAS CARGAS DE DEPOSIÇÃO DE NÍQUEL, EDEP: -1030 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE FIGURA 56 - VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL COM A DENSIDADE DE CARGA DE DEPOSIÇÃO, SUBSTRATO: COBRE, EDEP: -1030 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO, 50 g/l, VV: 10 mV/s172 FIGURA 57 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE

DEPOSIÇÃO, <i>E</i> _{DEP} : -1030 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE
sódio 50 g/l, VV: 10 mV/s
FIGURA 58 - CURVAS DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE
DEPOSIÇÃO, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l,
VV: 10 mV/s
FIGURA 59 - CURVAS DE PASSIVAÇÃO PARA O COBRE, POLIMENTO QUÍMICO, SOLUÇÃO:
SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s177
FIGURA 60 – COMPARAÇÃO ENTRE AS CURVAS DE PASSIVAÇÃO PARA O COBRE POLIDO COM
LIXA 600 E SEGUIDO OU NÃO DE POLIMENTO QUÍMICO, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l,
VV: 10 mV/s
FIGURA 61 – CURVAS DE PASSIVAÇÃO DO COBRE PARA VÁRIAS CARGAS DE DEPOSIÇÃO DE
NÍQUEL, E_{DEP} : -930 mV, POLIMENTO QUÍMICO, SOLUÇÃO: SULFITO DE SÓDIO 50 g/I, VV: 10
mV/s
FIGURA 62 – VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL COM A
densidade de carga de deposição, Substrato: cobre, E_{dep} : -930 mV, Polimento
QUÍMICO, SOLUÇÃO: SULFITO DE SÓDIO, 50 g/l, VV: 10 mV/s
FIGURA 63 - CURVA DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE
deposição, E_{DEP} : -930 mV, Polimento químico, Solução: sulfito de sódio 50 g/I,
VV: 10 mV/s
FIGURA 64 - CURVAS DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE
DEPOSIÇÃO, E_{DEP} : -930 mV, Comparação entre polimento mecânico com lixa 2000 e
LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s184
FIGURA 65 - CURVAS DE DECAIMENTO DA POROSIDADE VS. DENSIDADE DE CARGA DE
DEPOSIÇÃO, E_{DEP} : -930 mV, Comparação entre polimento mecânico com lixa 2000 e
POLIMENTO QUÍMICO, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s 185
FIGURA 66 – CURVAS DE PASSIVAÇÃO DO COBRE, DENSIDADE DE CARGA DE DEPOSIÇÃO
132,8 mC/cm ² , <i>E</i> _{DEP} : -930 mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO
DE SÓDIO 50 g/l, VV: 10 mV/s
FIGURA 67 – DENSIDADE DE CARGA DE PASSIVAÇÃO VS. CARGA DE DEPOSIÇÃO, E_{DEP} : -930
mV, POLIMENTO MECÂNICO COM LIXA 600, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10
mV/s187
FIGURA 68 – VARIAÇÃO DA POROSIDADE (EQUAÇÃO 29) COM A RUGOSIDADE SUPERFICIAL,
q_{DEP} : 132,8 mC/cm ² , E_{DEP} : -930 mV, POLIMENTO QUÍMICO E POLIMENTO MECÂNICO COM
LIXAS 600, 1000, 1500 E 2000, SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, VV: 10 mV/s 189

FIGURA 69 – ASPECTO SUPERFICIAL DO COBRE APÓS POLIMENTO QUÍMICO (VER SEÇÃO 6.7), (A) CONDIÇÃO 3, (B) CONDIÇÃO 4, (C) CONDIÇÃO 5......200 FIGURA 70 – ASPECTO SUPERFICIAL DO COBRE APÓS POLIMENTO QUÍMICO (VER SEÇÃO 6.7), (D) CONDIÇÃO 6, (E) CONDIÇÃO 15, (F) CONDIÇÃO 16 E (G) CONDIÇÃO 18201 FIGURA 71 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -930 mV, LIXA 2000, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 25 mC, (D) 35 mC, (E) 50 mC E (F) FIGURA 72 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, EDEP: -930 mV, LIXA 2000, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 25 mC, (D) 35 mC, (E) 50 mC E (F) FIGURA 73 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE, POLIMENTO MECÂNICO: (A) LIXA 2000, (B) LIXA 1500, (C) LIXA 1000 E (D) LIXA 600 - VISTA GERAL (AUMENTO FIGURA 74 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE, POLIMENTO MECÂNICO: (A) LIXA 2000, (B) LIXA 1500, (C) LIXA 1000 E (D) LIXA 600 - DETALHE DO CENTRO FIGURA 75 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE. POLIMENTO MECÂNICO: (A) LIXA 2000, (B) LIXA 1500, (C) LIXA 1000 E (D) LIXA 600 - DETALHE DA BORDA FIGURA 76 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -830 mV, LIXA 600, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 35 mC E (D) 80 mC - VISTA GERAL FIGURA 77 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -830 mV, LIXA 600, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 80 mC – DETALHE DO FIGURA 78 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -930 mV, LIXA 600, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 80 mC – VISTA GERAL FIGURA 79 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -930 mV, LIXA 600, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 80 mC - DETALHE DA FIGURA 80 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -1030 mV, LIXA 600, Q_{DEP}: (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 80 mC – VISTA GERAL

FIGURA 81 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -
1030 mV, LIXA 600, Q _{DEP} : (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 80 mC – DETALHE DO
CENTRO (AUMENTO 1000 X)209
FIGURA 82 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -
930 mV, POLIMENTO QUÍMICO, Q _{DEP} : (A) 5 mC, (B) 15 mC, (C) 25 mC, (D) 50 mC e (E)
80 mC – VISTA GERAL (AUMENTO 200 X)
FIGURA 83 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -
930 mV, POLIMENTO QUÍMICO, Q _{DEP} : (A) 5 mC, (B) 15 mC, (C) 25 mC, (D) 35 mC e (E)
80 mC – DETALHE DO CENTRO (AUMENTO 1000 X)
FIGURA 84 – ASPECTO SUPERFICIAL DAS PONTEIRAS DE COBRE APÓS PASSIVAÇÃO, E_{DEP} : -
930 mV, POLIMENTO QUÍMICO, Q _{DEP} : (A) 5 mC, (B) 15 mC, (C) 35 mC e (D) 50 mC e (E)
80 mC – Detalhe da Borda/Teflon (aumento 1000 x)
FIGURA 85 - PERFIL DE RUGOSIDADE PARA AS PONTEIRAS DE COBRE, POLIMENTO
MECÂNICO: (A) LIXA 600, (B) LIXA 1000, (C) LIXA 1500 E (D) LIXA 2000215

LISTA DE TABELAS

TABELA 1 – EVOLUÇÃO DAS TÉCNICAS DE DETERMINAÇÃO DA POROSIDADE DE
REVESTIMENTOS
TABELA 2 – VALORES DE POROSIDADE OBTIDOS POR CREUS ET AL. (2000) COMDIFERENTES TÉCNICAS DE DETERMINAÇÃO DA POROSIDADE(49)70
TABELA 3 – APLICAÇÕES DO ENSAIO DE FERROCIANETO PARA A DETERMINAÇÃO DAPOROSIDADE DE REVESTIMENTOS ⁽¹⁶⁾ 75
TABELA 4 - APLICAÇÕES DE ENSAIOS QUÍMICOS BASEADOS EM IMERSÃO EM SOLUÇÕES
AGRESSIVAS PARA A DETERMINAÇÃO DA POROSIDADE DE REVESTIMENTOS ⁽¹⁶⁾ 79
TABELA 5 – APLICAÇÕES DO ENSAIO ELETROGRÁFICO SOBRE PAPEL ⁽¹⁶⁾
TABELA 6 – SOLUÇÕES DE REVELAÇÃO UTILIZADAS NO ENSAIO ELETROGRÁFICO SOBRE
PAPEL
TABELA 7 - TESTES DE POROSIDADE RECOMENDADOS PARA DIFERENTES COMBINAÇÕES
SUBSTRATO/REVESTIMENTO. A INDICAÇÃO: CROMO/NÍQUEL REPRESENTA UM

REVESTIMENTO DE CROMO, SOBRE UM REVESTIMENTO DE NÍQUEL APLICADO SOBRE OUTRO TABELA 8 – CONDICÕES DE APLICAÇÃO DE ENSAIOS EM CÂMARAS PARA A DETERMINAÇÃO TABELA 9 – ELETRODOS DE TRABALHO DE COBRE CONSTRUÍDOS A PARTIR DE FIOS COM TABELA 11 – DENSIDADES DE CARGA PADRÃO DE DISSOLUÇÃO/PASSIVAÇÃO PARA OS ELETRODOS DE COBRE E NÍQUEL PARA AS CONCENTRAÇÕES DE SULFITO TESTADAS 115 TABELA 12 - CONCENTRAÇÃO DE COBRE EM SOLUÇÃO APÓS VOLTAMETRIAS DE PASSIVAÇÃO EM DIFERENTES CONCENTRAÇÕES DE SULFITO......116 TABELA 13 - VALORES DE RE UTILIZADOS DURANTE AS MEDIDAS COM EDR. SOLUÇÃO: SULFITO DE SÓDIO 50 g/l, DIÂMETRO DO ELETRODO: 3,89 mm, TEMPERATURA: AMBIENTE126 TABELA 14 - CARGAS DE DISSOLUÇÃO/PASSIVAÇÃO PARA O ELETRODO DE COBRE, TABELA 15 - VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO DE ACORDO COM O TABELA 16 – COMPARAÇÃO ENTRE OS VALORES DE CARGA DE DEPOSIÇÃO OBTIDA PELA INTEGRAÇÃO DAS CURVAS DE DENSIDADE DE CORRENTE VS. TEMPO E MEDIDOS NO TABELA 18 - DENSIDADES DE CARGA DE DEPOSIÇÃO, DISSOLUÇÃO/PASSIVAÇÃO E TABELA 19 – PARÂMETROS PARA REGRESSÃO LINEAR DA VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL, *E*_{DEP}: -930 mV, POLIMENTO MECÂNICO LIXA 2000...156 TABELA 20 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 21 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 22 – DENSIDADES DE CARGA DE DEPOSIÇÃO, DISSOLUÇÃO/PASSIVAÇÃO E TABELA 23 – PARÂMETROS PARA REGRESSÃO LINEAR DA VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL, *E*_{DEP}: -830 mV, POLIMENTO MECÂNICO LIXA 600..... 163

TABELA 24 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 25 – DENSIDADES DE CARGA DE DEPOSIÇÃO, DISSOLUÇÃO/PASSIVAÇÃO E TABELA 26 – PARÂMETROS PARA REGRESSÃO LINEAR DA VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL, EDEP: -930 mV, POLIMENTO MECÂNICO LIXA 600..... 167 TABELA 27 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 28 – DENSIDADES DE CARGA DE DEPOSIÇÃO, DISSOLUÇÃO/PASSIVAÇÃO E TABELA 29 – PARÂMETROS PARA REGRESSÃO LINEAR DA VARIAÇÃO DA DENSIDADE DE CARGA DE PASSIVAÇÃO DO NÍQUEL, *E*_{DEP}: -1030 mV, POLIMENTO MECÂNICO LIXA 600...171 TABELA 30 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 31 - DENSIDADE DE CARGA DE PASSIVAÇÃO PARA O ELETRODO DE COBRE. PREPARADO COM LIXA 600 E SEGUIDO DE POLIMENTO QUÍMICO, SOLUÇÃO: SULFITO DE TABELA 32 - DENSIDADES DE CARGA DE DEPOSIÇÃO, DISSOLUÇÃO/PASSIVAÇÃO E TABELA 33 – PARÂMETROS PARA REGRESSÃO EXPONENCIAL DA CURVA DE DECAIMENTO DA TABELA 35 – VARIAÇÃO DA POROSIDADE (EQUAÇÃO 29) COM A RUGOSIDADE SUPERFICIAL, DENSIDADE DE CARGA DE DEPOSIÇÃO 132,8 mC/cm², *E*_{DEP}: -930 mV, SOLUÇÃO: SULFITO TABELA 36 – VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO PARA OS ELETRODOS DE COBRE (ECM) E NÍQUEL (EN), VV: 5 E 10 mV/s......197 TABELA 37 – VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO PARA OS ELETRODOS DE TABELA 38 - VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO E DENSIDADE DE TABELA 39 - VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO E DENSIDADE DE CORRENTE DE PICO PARA O COBRE (EDR), VR: 200 E 300 rpm, VV: 10 mV/s......198

TABELA 40 - VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO PARA O ELETRODO DE
COBRE, DIÂMETRO: 4,43 mm (ECM) E 2,63 mm (ECM2), VV: 10 mV/s199
TABELA 41 - VALORES DE DENSIDADE DE CARGA DE PASSIVAÇÃO PARA O ELETRODO DE
COBRE, DIÂMETRO: 1,64 mm (ECM6) E 1,08 mm (ECM8), VV: 10 mV/s199
TABELA 42 – DENSIDADES DE CARGA DE DISSOLUÇÃO/PASSIVAÇÃO E POROSIDADE, E_{DEP} : -
930 mV, POLIMENTO MECÂNICO COM LIXA 600
TABELA 43 – DENSIDADES DE CARGA DE DISSOLUÇÃO/PASSIVAÇÃO E POROSIDADE, E_{DEP} : -
930 mV, POLIMENTO MECÂNICO COM LIXA 1000
TABELA 44 – DENSIDADES DE CARGAS DE DISSOLUÇÃO/PASSIVAÇÃO E POROSIDADE, E_{DEP} : -
930 mV, POLIMENTO MECÂNICO COM LIXA 1500
TABELA 45 – DENSIDADES DE CARGAS DE DISSOLUÇÃO/PASSIVAÇÃO E POROSIDADE, E_{DEP} : -
930 mV, POLIMENTO MECÂNICO COM LIXA 2000

LISTA DE SÍMBOLOS

Símbolo

Descrição

$\overline{\omega}$	Velocidade angular, rad/s
A	Área geométrica da superfície, cm ²
<i>A, B</i>	Parâmetros de ajuste de uma regressão linear
a, n, K, K ₁ , K ₂	Constantes
A _{1, 2, n}	Áreas individuais , cm ²
A_{1}, t_{1}	Parâmetros de ajuste de uma regressão exponencial de primeira ordem
A ^A	Área anódica real, $cm^2 - A^A + A^C = 1$
A _A	Fração de área anódica, adimensional - A_A + A_C = 1
A ^C	Área catódica real, cm ²
A _C	Fração de área do catódica, adimensional
d	Densidade, g/cm ³
di	Variação de densidade de corrente, A
dV	Variação de potencial, V
е	Espessura do revestimento, cm, μ m ou micropolegadas
E _A	Potencial de corrosão do ânodo, medido com relação ao potencial de equilíbrio do cátodo puro no mesmo eletrólito, o qual é tomado como zero, V
E _{CORR}	Potencial de corrosão de um par galvânico, V
E_{DEP}	Potencial de deposição, mV
<i>E_{PICO}</i>	Potencial de pico, V
F	Faraday, \approx 96500 C.mol ⁻¹
f (x)	Função que descreve o perfil de rugosidade do substrato
<i>f</i> _{1, 2, n}	Fração de área
1	Corrente, A
i, i'	Densidade de corrente, A/cm ²
i _{oA}	Densidade de corrente de troca para a reação anódica, A/cm ²
i _{oc}	Densidade de corrente de troca para a reação catódica, A/cm ²
<i>I</i> _{1, 2, n}	Correntes de reações individuais, A
I _{AMOSTRA}	Corrente de dissolução do metal base revestido, A
Ic	Corrente de corrosão, A
I _{CORR}	Corrente de corrosão do par galvânico, A
I _{DISS}	Corrente limitante de dissolução do metal base, A

Densidade de corrente limite de deposição, A/cm ²
Densidade de corrente de pico, A/cm ²
Densidade de corrente resultante, A/cm ²
Corrente de dissolução/passivação do eletrodo revestido, A
Corrente de dissolução/passivação do substrato, A
Corrente total, A
Densidade de corrente total, A/cm ²
Funções dependentes de t
Percurso de medição, μm
Constante, geralmente entre 1,3 e 2; depende do tipo de banho utilizado (composição, concentração, temperatura, agitação)
Peso atômico, g/mol
Massa de níquel depositada, g
Número de elétrons
Porosidade, poros/cm ² , % ou fração de área
Densidade de carga de dissolução/passivação do substrato isento de revestimento, mC/cm ²
Carga limitante de dissolução do material do revestimento, mC
Carga medida durante a polarização de uma amostra revestida, mC
Carga depositada, mC
Densidade de carga depositada, mC/cm ²
Densidade de carga de dissolução/passivação do substrato revestido, mC/cm ²
Densidade de carga de dissolução/passivação do revestimento puro, mC/cm ²
Carga de passivação do eletrodo revestido, mC
Carga medida durante a polarização do substrato isento de revestimento, mC
Carga de passivação do substrato, mC
Resistência, Ω Coeficiente de correlação de um ajuste linear
Raio do disco, mm
Coeficiente de correlação de um ajuste exponencial
Rugosidade média, μm
Número de Reynolds, adimensional
Rugosidade máxima, μm
Desvio médio quadrático, μm
Profundidade total da rugosidade, μm
Tempo, s
Fração de contato a determinada profundidade, %
Viscosidade cinemática, m ² /h

V	Volume, cm ³
Ζ	Grau de proteção, %
$\Delta \phi_{C}$	Diferença de potencial entre uma amostra revestida e não-revestida, V
ΔA_A	Variação da fração de área anódica
ΔE_{CORR}	Variação do potencial de corrosão, V
$\Delta I / \Delta E$	Condutância de polarização, m²/Ω
E _{corr}	Potencial de corrosão de um par galvânico, medido com relação a um eletrodo de referência
β _Α	Inclinação de Tafel para reação anódica
βc	Inclinação de Tafel para reação catódica
η _{corr}	Potencial de corrosão do par galvânico, medido com relação ao potencial de equilíbrio do cátodo puro no mesmo eletrólito, o qual é tomado como zero, V
θ _i	Porosidade, na i-ésima iteração
θ1	Porosidade, na iteração anterior

LISTA DE SIGLAS

Símbolo	Descrição
AC	Alternating current, Corrente alternada
AES	Auger Electron Spectroscopy, Espectroscopia de elétrons Auger
Ag/AgCl	Eletrodo de Referência de Prata/Cloreto de Prata
BL	By-Layer, revestimentos com uma camada intermediária
Bronze	Liga de cobre e estranho
CA	Medidas Cronoamperométricas
CC	Corrente de Corrosão
CE	Contra-eletrodo
CVD	Chemical Vapour Deposition, Deposição química em fase vapor
DAV	Dissolução Anódica Voltamétrica
DC	Direct Current, Corrente contínua
EA	Ensaio com Água
EAA	Espectrofotometria de Absorção Atômica
EAAC	Ensaio Anódico com Ácido Crômico
EAAE	Ensaio com Água Aerada
EAL	Ensaio com Alizarina
EAQ	Ensaio com Água Quente

ECAN	Ensaio de Corrosão com Ácido Nítrico
ECDE	Ensaio de Corrosão com Dióxido de Enxofre
ECE	Ensaio de Corrosão com Enxofre
ECLC	Ensaio de Corrosão com Lamas Corrosivas
ECM	Eletrodo de Cobre Maciço, diâmetro do eletrodo = 4,43 mm
ECM2	Eletrodo de Cobre, composto por 2 fios de 2,63 mm de diâmetro
ECM6	Eletrodo de Cobre, composto por 6 fios de 1,64 mm de diâmetro
ECM8	Eletrodo de Cobre, composto por 8 fios de 1,08 mm de diâmetro
ECP	Ensaio com Cloreto-Peróxido
ECS	Eletrodo de Referência de Calomelano Saturado Ensaio de Corrosão Salino
EDR	Eletrodo de Disco Rotatório
EDS	Energy Dispersive Spectrofotometry, Espectrofotometria de dispersão de energia
EDX	Energy Dispersive X-ray, Análise de dispersão de raios X
EE	Ensaio Eletrográfico
EEC	Ensaio de exposição de campo
EEDC	Ensaio de Eletrodeposição de Cobre, Cementação
EEMG	Ensaio Eletrográfico em Meio Gelatinoso
EEP	Ensaio Eletrográfico com Papel
EF	Ensaio com Ferrocianeto
EFM	Ensaio com Ferrocianeto Modificado
EISA	Ensaio de Imersão em Soluções Agressivas
ENH	Eletrodo Normal de Hidrogênio
ENS	Ensaio de Névoa Salina
ENSA	Ensaio de Névoa Salina Ácida
ENSAC	Ensaio de Névoa Salina Acelerado com Cobre
ENSN	Ensaio de Névoa Salina Neutra
EPG	Ensaio por Permeação de Gases
ET	Ensaio com Tiocianato
Latão	Liga de cobre e zinco
MC	Medidas Coulométricas
MEV	Microscopia Eletrônica de Varredura
ML	Multi-Layer, revestimentos com várias camadas
MMA	Método da Média Adjacente
MSG	Método de Savitzky-Golay
PAR	Princeton Applied Research
PC	Potencial de Corrosão, Potencial de circuito aberto Ponteira de Cobre

PM	Potencial Misto
PPM	Partes Por Milhão, unidade de concentração
PVC	Polivinilcloroetano ou cloreto de polivinila
PVD	Physical Vapour Deposition, Deposição física em fase vapor
RC	Resistência à Corrosão, critério de avaliação da porosidade
RP	Resistência de Polarização
RPL	Resistência de Polarização Linear
RPM	Rotações Por Minuto
Sal de Rochelle	Tartarato de sódio e potássio - KO ₂ CCH(OH)CH(OH)CO ₂ Na
SCP	Superposição de Curvas de Polarização
SL	Single-Layer, revestimentos com uma única camada
TAPA	Técnica de Amônia Persulfato de Amônio
TE	Tempo de Equilíbrio
TIE	Técnica de Impedância Eletroquímica
ТМ	Trade Mark, Marca registrada
TREP	Técnica da Resistência Elétrica dos Poros
VC	Voltametria Cíclica
VR	Velocidade de Rotação, rpm
VV	Velocidade de Varredura, mV/s
XPS	X-ray Photoelectron Spectroscopy, Espectroscopia fotoeletrônica de raio-X

RESUMO

O trabalho desenvolvido se refere à aplicação da técnica de Dissolução Anódica Voltamétrica (DAV) na determinação da porosidade (poros e trincas passantes) de revestimentos de níquel eletroquímico sobre substrato de cobre. A técnica consiste na comparação entre as densidades de carga envolvidas no processo de passivação do substrato isento de revestimento e as densidades de carga envolvidas no processo de passivação do substrato revestido. A solução de passivação foi selecionada de forma a manter o revestimento tão inerte quanto possível na região de potenciais em que ocorre a passivação do substrato, preservando desta forma a sua integridade e aumentando a sensibilidade da técnica. Definidas as condições experimentais de aplicação da técnica (solução, concentração da solução, faixa de potenciais, velocidade de varredura, mecanismo de passivação, cálculo da densidade de carga de passivação e equações para cálculo da porosidade), o decaimento da porosidade foi estudado para diversas condições de deposição diferentes. Estudou-se a influência do potencial de deposição e da preparação do substrato (rugosidade) sobre o decaimento da porosidade. Os resultados, para todos os casos, indicaram um decaimento exponencial da porosidade com o aumento da espessura do revestimento. Sendo mais acentuado para revestimentos obtidos em potenciais de deposição mais negativos e com polimento mecânico utilizando lixa 600.

Palavras-chave: Porosidade, Revestimentos sobre superfícies metálicas, Voltametrias, Polarização anódica voltamétrica, Eletroquímica.

ABSTRACT

The developed work refers to the application of the technique of Voltammetric Anodic Dissolution Technique (DAV) in the porosity determination ("through pores and cracks") of electrochemical nickel coatings on copper substrate. The technique consists on the comparison among the charge densities involved in the passivation process of the substrate without coating and the charge densities involved in the passivation process of the covered substrate. The passivation solution was selected in way to maintain the coating as inert as possible in the potentials region where the substrate passivation process happens, preserving its integrity and increasing the technique sensibility. Defined the experimental conditions of the technique application (solution, solution concentration, and potential range, sweep rate, passivation mechanism, calculation of passivation charge density and equations for porosity calculation), the porosity decreasing was studied for different deposition conditions. It was studied the influence of the deposition potential and of the substrate preparation (rugosity) on the porosity decrease. The results, for all cases, indicated an exponential decline of the porosity with the increase of the coating thickness. It being more accentuated for coatings obtained in more negative deposition potentials and with mechanical polishing using emerypaper 600.

Keywords: Porosity, Coatings on metallic surfaces, Voltammetries, Voltammetric anodic polarization, Electrochemistry.