PATRÍCIA RAQUEL SILVA

ESTUDO DE APLICAÇÃO DE TÉCNICA ELETROQUÍMICA PARA MONITORAMENTO DA CORROSÃO EM UNIDADES DE CRAQUEAMENTO CATALÍTICO FLUIDO

Dissertação apresentada ao Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração de Engenharia e Ciência dos Materiais, do Setor de Tecnologia, da Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Mestre.

Orientador: Prof. Dr. Haroldo de A. Ponte

CURITIBA

2002

PATRÍCIA RAQUEL SILVA

ESTUDO DE APLICAÇÃO DE TÉCNICA ELETROQUÍMICA PARA MONITORAMENTO DA CORROSÃO EM UNIDADES DE CRAQUEAMENTO CATALÍTICO FLUIDO

Dissertação apresentada ao Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração de Engenharia e Ciência dos Materiais, do Setor de Tecnologia, da Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Mestre.

Orientador: Prof. Dr. Haroldo de A. Ponte

CURITIBA

2002

PATRÍCIA RAQUEL SILVA

ESTUDO DE APLICAÇÃO DE TÉCNICA ELETROQUÍMICA PARA MONITORAMENTO DA CORROSÃO EM UNIDADES DE CRAQUEAMENTO CATALÍTICO FLUIDO

Dissertação aprovada como requisito parcial à obtenção do grau de Mestre no Programa Interdisciplinar de Pós-graduação em Engenharia (PIPE), Área de Concentração Engenharia e Ciência dos Materiais, da Universidade Federal do Paraná, pela comissão formada pelos professores:

Orientador: Prof. Dr. Haroldo de Araújo Ponte

Departamento de Engenharia Química, Universidade Federal do Paraná

Prof^a. Dr^a. Lúcia Helena Mascaro Departamento de Química, Universidade Federal do Paraná

Prof. Dr. José Maurílio da Silva Instituto de Tecnologia Para o Desenvolvimento (LACTEC)

Prof^a. Dr^a. Ivani Aparecida Carlos Departamento de Química, Universidade Federal de São Carlos

Curitiba, 15 de agosto de 2002

Com muito amor dedico este trabalho à minha família, meu grande tesouro: Gilson, Cleia e Alexandre à minha fonte de inspiração, Cristiano e ao maior de todos os cientistas, Deus !

AGRADECIMENTOS

Considero esta seção uma complementação da capa, pois relaciona os co-autores deste trabalho; aqueles que, mesmo sem saber, ajudaram a compor cada linha desta dissertação. Expresso aqui os meus mais sinceros agradecimentos:

- Ao meu orientador, Prof. Dr. Haroldo de Araújo Ponte, com muita admiração e respeito, pela inspiração criativa deste projeto e por conceder a mim a oportunidade de executá -lo; pelo senso prático e objetivo com que orientou este trabalho; pelo crescimento pessoal e intelectual que me proporcionou; por sua compreensão e amizade.
- À Profa. Dra. Maria José Jerônimo Santana Ponte, principal incentivadora de meu ingresso na atividade científica, pelos inestimáveis conselhos profissionais e pessoais; por sua amizade e encorajamento nos momentos de dúvida e insegurança; pelas valiosas correções a esta obra.
- Ao Prof. Dr. José Maurílio da Silva, pelas enriquecedoras observações e discussões, sobretudo no que diz respeito à análise dos resultados desta pesquisa.
- A todos os amigos do Grupo de Eletroquímica Aplicada (GEA) Ana, Bianchi, Carina, Carolina, Danusa, Denise, Douglas, Gilberto, Káthia, Lígia, Maul, Nice e Paulo – pela maravilhosa convivência e pelas proveitosas conversas, técnicas ou não. Ao doutorando Alexandre Maul também agradeço sua efetiva participação e colaboração na fase piloto de testes.
- À Universidade Federal do Paraná e ao Departamento de Tecnologia Química, pela infraestrutura concedida para a realização da pesquisa.
- Ao Programa Interdisciplinar de Pós-Graduação (PIPE), incluindo professores e alunos com os quais tive a oportunidade de conviver.
- À FINEP e ao FNDCT, que financiam o Projeto MONITOR (aprovado no edital nº 3 Ref. FINEP 1122/00, nº 33), pelo qual foram adquiridos diversos materiais utilizados neste trabalho.
- À Agência Nacional do Petróleo (ANP), pela concessão de bolsa de mestrado e taxa de bancada vinculada ao Programa de Recursos Humanos da ANP para o Setor de Petróleo e Gás (PRH 24 – ANP/MME/METC), apoio financeiro indispensável para a condução das pesquisas.

- À Daniela Bianchi P. L de Lima, secretária do PRH-24 da ANP, por sua presteza e próatividade na resolução de questões relacionadas à bolsa de mestrado e à compra de materiais para o projeto.
- À PETROBRAS, sobretudo à Unidade de Negócio SIX (Superintendência da Industrialização do Xisto – São Mateus do Sul), pelo envolvimento, apoio técnico e participação com contrapartida no projeto MONITOR.
- Ao coordenador do projeto junto à PETROBRAS, Sócrates Fófano, vínculo efetivo entre a universidade e a empresa, por sua extraordinária colaboração para operacionalizar este trabalho, principalmente na fase piloto de testes, e pelos inestimáveis comentários e sugestões ao longo de toda a pesquisa.
- Ao coordenador do Programa de Otimização e Confiabilidade (PROREC) da PETROBRAS, Pedro P. L. de Matos ; ao ex-Gerente Geral da PETROBRAS/SIX, Rubens E. M. Novicki; ao atual Gerente Geral, Paulo R. de Campos; ao técnico de inspeção, Sérgio A. Galdino; ao operador, Eduardo A. Leite; ao técnico de segurança industrial, Arcízio O. dos Santos; ao inspetor de segurança interna, Duílio Cabral; ao bibliotecário, Jairo da Silveira Gritten; às estagiárias Paula S. Mayer e Luciane Suzuki; aos motoristas Hélio Machado, Orlei Gralaki e Nelson C. de Souza e demais colaboradores deste projeto, pelas diferentes contribuições.
- Ao Eng. Cristiano Azevedo, por seu incomparável auxílio durante toda a pesquisa, contribuindo na forma de relevantes comentários e sugestões, além de seu decisivo estímulo diante das dificuldades encontradas.
- Aos meus queridos pais Gilson Roberto Silva e Cleia Machado Silva e ao meu irmão Alexandre Roberto Silva, pelo incondicional apoio não só neste, mas em todos os projetos da minha vida, e por todos os esforços que já realizaram para que eu pudesse chegar aonde estou.
- A todos aqueles que por ventura não tenham sido acima citados, mas que, de uma forma ou de outra, contribuíram para a execução deste trabalho.
- E, finalmente, a Deus, força propulsora da minha existência.

SUMÁRIO

LISTA DE FIGURAS	IX
LISTA DE TABELAS	XV
LISTA DE SIGLAS	XVI
LISTA DE SÍMBOLOS	XVII
RESUMO	XX
ABSTRACT	XXI
1. INTRODUÇÃO	2
1.1. MOTIVAÇÃO PARA O TRABALHO	2
1.2. OBJETIVOS DO TRABALHO	5
1.3. ESTRUTURA DA DISSERTAÇÃO	5
2. CORROSÃO POR SULFETOS E DANOS POR HIDROGÊNIO	8
2.1. UNIDADES DE CRAQUEAMENTO CATALÍTICO DE PETRÓLEO	8
2.1.1. Importância e Inserção no Contexto da Refinaria	8
2.1.2. Breve Descrição do Processo na Unidade de FCC	10
2.2. CORROSÃO EM UNIDADES DE CRAQUEAMENTO CATALÍTICO DE PETRÓLEO	∃ 15
2.2.1. Mecanismo de Corrosão	15
2.2.2. Ação do Íon Cianeto	19
2.2.3. Histórico de Danos Relacionados ao H_2S em Refinarias	21
2.3. DANOS POR HIDRO GÊNIO	24
2.3.1. Tipos de Danos Relacionados ao Hidrogênio	25
2.3.2. Fatores que Influenciam os Danos	27
2.3.3. Formas de Controle dos Danos por Hidrogênio	31
2.4. CONTROLE DA CORROSÃO	32
2.4.1. Uso de Água de Lavagem	32
2.4.2. Injeção de Inibidores Fílmicos	34
2.4.3. Adição de Polissulfetos	34
2.4.4. Injeção de Ar	35
2.4.5. Injeção de Peróxido de Hidrogênio	
2.5. MONITORAMENTO DA CORROSÃO	39

2.5.1. Resistência de Polarização Linear (RPL)	42
2.5.2. Sensores de Hidrogênio	46
2.5.2.1. Sondas de pressão	48
2.5.2.2. Sondas de vácuo	51
2.5.2.3. Sondas eletroquímicas	51
2.5.2.4. Novas tecnologias	56
2.5.3. Espectroscopia de Impedância Eletroquímica (EIE)	59
2.5.3.1. Fundamentos da impedância eletroquímica	59
2.5.3.2. A técnica de Espectroscopia de Impedância Eletroquímica	61
2.5.4. Ruído Eletroquímico (RE)	70
2.5.4.1. Ruído eletroquímico de potencial	72
2.5.4.2. Ruído eletroquímico de corrente	72
2.5.4.3. Resistência ao ruído	74
2.5.5. Utilização Conjunta de Várias Técnicas	76
2.5.5.1. Célula Multitest	76
2.5.6. A Nova Proposta	78
3 TÉCNICA DE DISSOLUÇÃO ANÓDICA VOLTAMÉTRICA (DAV)	81
3.1. FUNDAMENTOS DA TÉCNICA	81
3.1. FUNDAMENTOS DA TÉCNICA 3.2. EXEMPLOS DE APLICAÇÃO	81 82
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88
 3.1. FUNDAMENTOS DA TÉCNICA 3.2. EXEMPLOS DE APLICAÇÃO 4. SULFETOS DE FERRO	81 82 88 RO . 88
 3.1. FUNDAMENTOS DA TÉCNICA	81 81 82 88 RO.88
 3.1. FUNDAMENTOS DA TÉCNICA	81 81 82 82 83 89
 3.1. FUNDAMENTOS DA TÉCNICA	81 81 82 88 RO.88 89 91 93
 3.1. FUNDAMENTOS DA TÉCNICA	81 81 82 88 RO.88 89 91 93 94
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 88 80.88 89
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 88 80.88 89
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 80.88 89 91 93 93 94 95 96 97
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 80.88 89 91 93 94 95 96 97 98
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 80.88 89 91 93 91 93 93 95 96 97 97 98
 3.1. FUNDAMENTOS DA TÉCNICA	81 82 88 80.88 80.88 89 91 93 93 94 95 95 96 97 98 97 98 97 98 99 99 E

4.4.1.1. H ₂ S	103
4.4.1.2. CO ₂	104
4.4.1.3. Cloretos	105
4.4.1.4. Presença de oxigênio ou outros agentes oxidantes	107
4.4.2. pH	108
4.4.3. Condições de temperatura e pressão	111
4.4.4. Fase (líquida ou gasosa) do meio	112
4.4.5. Condições Hidrodinâmicas	113
4.5. CORROSÃO POR SULFETO DE FERRO SÓLIDO	114
5. COMPORTAMENTO ELETROQUÍMICO DO FERRO EM MEIOS SULFETOS	COM 117
6. MATERIAIS E MÉTODOS	133
6.1. METODOLOGIA EXPERIMENTAL	133
6.2. ENSAIOS EM ESCALA LABORATORIAL	135
6.2.1. Definição das Condições Experimentais	135
6.2.2. Soluções	137
6.2.3. Equipamentos e acessórios	138
6.2.3.1. Instrumentos eletroquímicos	138
6.2.3.2. Acessórios	142
6.2.4. Medidas Eletroquímicas	144
6.3. ENSAIOS EM ESCALA PILOTO	147
6.3.1. Equipamentos e acessórios	148
6.3.2. Medidas Eletroquímicas	149
7. RESULTADOS E DISCUSSÃO	151
7.1. DEFINIÇÃO DA FAIXA INICIAL DE TRABALHO	151
7.2. INFLUÊNCIA DA VELOCIDADE DE VARREDURA	154
7.3. INFLUÊNCIA DE TEMPO DE ESPERA NO POTENCIAL DE REDUÇÃO	D155
7.4. INFLUÊNCIA DA AGITAÇÃO	158
7.5. INFLUÊNCIA DA DESAERAÇÃO	161
7.6. COMPARAÇÃO ENTRE AÇO SEM FILME PRÉVIO X COM FILME PRÉ	ÉVIO162
7.7. DESTRUIÇÃO DO FILME	163
7.7.1. Adição de Ácido	163
7.7.2. Remoção mecânica (riscamento)	166

7.7.3. Adição de Cianeto	.168
7.8. TESTES EM ESCAL A PILOTO	.176
8. CONCLUSÕES	.180
8.1. CONSIDERAÇÕES PARA APLICAÇÃO PRÁTICA DA TÉCNICA	.180
9. SUGESTÕES PARA TRABALHOS FUTUROS	.183
REFERÊNCIAS BIBLIOGRÁFICAS	.186

LISTA DE FIGURAS

FIGURA 1 - ESQUEMA GERAL DE UMA REFINARIA
FIGURA 2 - DIAGRAMA DE BLOCOS DA UNIDADE DE CRAQUEAMENTO CATALÍTICO10
FIGURA 3 – INTERLIGAÇÃO DO SISTEMA DE FRACIONAMENTO COM A SEÇÃO DE RECUPERAÇÃO DE GASES
FIGURA 4 - SEÇÃO DE RECUPERAÇÃO DE GASES DA FCC
Figura 5 – Porcentagem de Concentração das espécies H_2S , HS e S^2
EM FUNÇÃO DO PH EM MEIO AQUOSO 16
FIGURA 6 - EXEMPLOS DE DANOS CAUSADOS PELA ENTRADA DE HIDROGÊNIO NO AÇO (A)
EMPOLAMENTO, (B) TRINCA INDUZIDA POR HIDROGÊNIO
Figura 7 – Representação esquemática dos possíveis caminhos do hidrogênio (H^0)
FIGURA 8 – ESQUEMA MOSTRANDO OS TIPOS DE DANOS POR HIDROGÊNIO27
FIGURA 9 – CURVA RELACIONANDO A CONCENTRAÇÃO DE CN COM A PERMEAÇÃO DE
HIDROGÊNIO, OBTIDA EM CÉLULA MULTITEST
Figura 10 – Esquema de recirculação de água de lavagem e injeção de $H_2O_2 \hdots 37$
FIGURA 11 - SONDA DE RPL DE TRÊS ELETRODOS: VISTA GERAL (A) E EXEMPLOS DE
INSTALAÇÃO (B, C, D)
FIGURA 12 – CIRCUITO ELÉTRICO EQUIVALENTE DE UMA SONDA DE RPL
FIGURA 13 – EXEMPLOS DE SONDAS DE PRESSÃO INTRUSIVAS E EXTERNAS
FIGURA 14 – SENSOR VOLUMÉTRICO
FIGURA 15 – SONDA DE PALÁDIO
FIGURA 16 – SEÇÃO TRANSVERSAL DA "BARNACLE CELL"
FIGURA 17 – SONDA DE ELETRÓLITO SÓLIDO DE FRAY E MORRIS
FIGURA 18 – SENSOR BIMETÁLICO, CONSTITUÍDO DE UM PAR SENSOR E OUTRO DE
FIGURA 18 – SENSOR BIMETÁLICO, CONSTITUÍDO DE UM PAR SENSOR E OUTRO DE REFERÊNCIA
FIGURA 18 – SENSOR BIMETALICO, CONSTITUIDO DE UM PAR SENSOR E OUTRO DE REFERÊNCIA
FIGURA 18 – SENSOR BIMETALICO, CONSTITUIDO DE UM PAR SENSOR E OUTRO DE REFERÊNCIA
FIGURA 18 – SENSOR BIMETALICO, CONSTITUIDO DE UM PAR SENSOR E OUTRO DE REFERÊNCIA 58 FIGURA 19 – EXEMPLO DE CURVA DE RESPOSTA EM CORRENTE, REFERENTE A UMA PERTURBAÇÃO DE POTENCIAL 60 FIGURA 20 – EXEMPLOS DE DIAGRAMAS UTILIZADOS NA EIE: (A) DIAGRAMA DE NYQUIST, 63

PELO DIAGRAMA DE NYQUIST
FIGURA 22 – CURVAS DE NYQUIST PARA AÇO EM MEIO DE H_2S 66
FIGURA 23 – CIRCUITO ELÉTRICO EQUIVALENTE DE UMA CÉLULA ELETROQUÍMICA PARA UM PROCESSO DE ELETRODO SIMPLES
Figura 24 – Subdivisão de Z_{F} em uma resistência em série com uma pseudo- capacitância
Figura 25 – Subdivisão de $Z_{\rm f}$ em resistência de transferência de carga e impedância de Warburg
FIGURA 26 – CIRCUITO UTILIZADO NA S MEDIDAS DE RUÍDO ELETROQUÍMICO
FIGURA 27 – ESQUEMA DA CÉLULA MULTITEST
Figura 28 - Voltamograma: eletrodos de cobre e de níquel - Na_2SO_3 0,5 M. Eletrodo de cobre (), eletrodo de níquel ()
Figura 29 - Curvas de passivação do cobre para várias densidades de carga nominais de deposição de níquel. Potencial de deposição = $-0,835$ V (<i>versus</i> ECS) 84
Figura 30 - Variação da porosidade com a densidade de carga de deposição para vários potenciais de deposição diferentes
Figura 31 – Estrutura da mackinawita90
FIGURA 32 - ESTRUTURA DA PIRROTITA – TIPO ARSENETO DE NÍQUEL
Figura 33 – Estrutura da greigita
Figura 34 – Estruturas da smitita e da pirrotita
Figura 35 – Estrutura da marcassita
Figura 36 – Estrutura da pirita96
FIGURA 37 – SUMÁRIO DAS PRINCIPAIS INTER-RELAÇÕES ENTRE SULFETOS DE FERRO EM SOLUÇÕES AQUOSAS
Figura 38 – Diagrama de Pourbaix para o sistema Fe – S – H_2O
FIGURA 39 – POTENCIAL DE CORROSÃO DE ESTADO ESTACIONÁRIO DO FERRO EM SOLUÇÕES DE SULFETO EM FUNÇÃO DO PH
Figura 40 – Diagrama de Pourbaix para o sistema a 25 °C e concentração total
de enxofre, $c_{T,H2S} = 4 \times 10^{-2} \text{ M}$ (os números identificam os limites de equilíbrio) 102
FIGURA 41 – REGIÕES DE IMUNIDADE, CORROSÃO E PASSIVAÇÃO PARA O SISTEMA FE – H_2O (LINHAS FINAS) E PARA O SISTEMA FE – S – H_2O (LINHAS GROSSAS)
Figura 42 – Variação com o tempo da perda de massa de aço carbono exposto a

DIFERENTES MEIOS AQU OSOS DE H_2S
FIGURA 43 - SEQÜÊNCIA DE FORMAÇÃO DE SULFETOS DE ÆRRO EM SOLUÇÃO DE ÁGUA
destilada com $H_{\!2}S$ nas condições do experimento de MEYER (1958)106
FIGURA 44 – EFEITO DE ÍONS CLORETO NA CORROSÃO DE AÇO CARBONO EM SOLUÇÕES DE
SULFETO DE AMÔNIO (0,5 M), PH 9,5, A 25 °C 106
FIGURA 45 – EFEITO DE CLORETOS NA CORROSÃO DE AÇO CARBONO EM SOLUÇÕES ÁCIDAS
de sulfeto (pH 4,2); água destilada saturada com $H_{\!_2}S$ a 25 °C; teste estático . 107
Figura 46 – Inverso do poder de proteção (P $^{-1}$) de filmes de sulfeto de ferro em
função do PH de meios aquosos de H_2S
FIGURA 47 – EFEITO DO PH DA SOLUÇÃO NA CORROSÃO, NA ABSORÇÃO DE HIDROGÊNIO E
NA TENDÊNCIA DE TRINCAMENTO POR H_2S úmido (% de redução da ductilidade) de aço
CARBONO EM SOLUÇÕES COM SULFETO
FIGURA 48 – CONCENTRAÇÃO DE HIDROGÊNIO PARA FILMES FORMADOS EM FASE GASOSA E
LÍQUIDA, EXPOSTOS AO MESMO MEIO GASOSO DE H_2S aquoso
Figura 49 – Variação da taxa de corrosão de aço carbono em soluções de
SULFETO DE AMÔNIO COM A CONCENTRAÇÃO DE SULFETO, EM CONDIÇÕES DINÂMICAS E
ESTÁTICAS (FOROULIS, 1993)113
FIGURA 50 – VOLTAMOGRAMA CÍCLICO REGISTRADO A 10 mV.S ⁻¹ (PRIMEIRO CICLO) PARA
VÁRIAS CONCENTRAÇÕES DE OH ⁻ E HS ⁻ 118
FIGURA 51 – VOLTAMOGRAMA CÍCLICO REGISTRADO A 10 mV. S ⁻¹
FIGURA 52 – POLARIZAÇÃO ANÓDICA DO FERRO EM TAMPÃO DE BORATO COM DIFERENTES
CONCENTRAÇÕES DE SULFETO; VELOCIDADE DE VARREDURA = 1 mV. s^{-1} 124
Figura 53 – Voltamogramas cíclicos de um eletrodo de ferro em diferentes
SOLUÇÕES ALCALINAS COM SULFETO, VELOCIDADE DE VARREDURA = 10 mV.s^{-1}
Figura 54 – Voltamograma cíclico registrado em uma solução 0,01 M $N\!a_2S$ entre
$-1,25 \text{ e}+0,20 \text{ V}; \text{ velocidade de varredura} = 20 \text{ mV.s}^{-1}$
FIGURA 55 – CURVAS DE POLARIZAÇÃO ANÓDICA (A) E CATÓDICA (B) COM E SEM KCN A
PRESSÕES DE H_2S de 0,1 atm e 0,9 atm (ou 1,0 atm) na solução de pH 8,7, onde foi
USADO UM ELETRODO DE TRABALHO (ET) DE PLATINA PARA EFEITO DE COMPARAÇÃO 129
FIGURA 56 – (A) FOTO E (B) VISTA EXPLODIDA DA CÉLULA DE ELETRODO PLANO E DETALHE
DO ELETRODO AUXILIAR
do eletrodo auxiliar

FIGURA 58 – VISÃO GERAL DO LOCAL DE TESTES; DA ESQUERDA PARA A DIREITA: POTENCIOSTATO, AGITADOR E CÉLULA SOB EXAUSTÃO DE GASES E BANHO TERMOSTÁTICO143 FIGURA 59 – SISTEMA DE AQUISIÇÃO DE DADOS: VOLTALAB 10 CONTROLADO POR FIGURA 60 - FOTOS DO VASO PARA TESTES INSTALADO NA PETROBRAS/SIX. DESCRIÇÃO DOS PONTOS: (1) ESPERA PARA INSERÇÃO/REMOÇÃO DE SUPORTE PARA CUPONS, (2) ENTRADA DE SOLUÇÃO, (3) SAÍDA DE SOLUÇÃO, (4), (5) E (6) ESPERAS PARA MEDIDOR DE FIGURA 61 - VOLTAMOGRAMA OBTIDO ENTRE -1,4 V e -0,2 V (ER = prata/cloreto de PRATA), $VV = 10 \text{ mV} \cdot \text{s}^{-1}$, 5 CICLOS, SISTEMA AÇO CARBONO - NA₂S 0,05 M, pH = 8 - 9, FIGURA 62 – INFLUÊNCIA DA VELOCIDADE DE VARREDURA, 5º CICLO DE CADA VOLTAMETRIA A VELOCIDADES DE 5, 10, 20 E 50 mV.s⁻¹, -1,4 A -0,2 V (ER = PRATA/CLORETO DE PRATA) SISTEMA AÇO - NA $_2$ S 0,05 M, pH = 8 - 9, SEM DESAERAÇÃO, COM AGITAÇÃO, CÉLULA FIGURA 63 - VOLTAMETRIAS LINEARES CONSECUTIVAS, OBTIDAS APÓS INTERVALOS INTERCALADOS DE TE = 5 S EM $E_1 = -1.4$ V; DE -1.4 A -0.2 V (só IDA), ER = PRATA/CLORETO DE PRATA, $VV = 10 \text{ mV.s}^{-1}$, SISTEMA: ACO - NA₂S 0.05 M, pH = 8 - 9, FIGURA 64 - VOLTAMETRIAS LINEARES CONSECUTIVAS, OBTIDAS APÓS INTERVALOS INTERCALADOS DE TE = 20 S EM E1 = -1,4 V; DE -1,4 A -0,2 V (SÓ IDA), ER = PRATA/CLORETO DE PRATA, VV = 10 mV.s⁻¹, SISTEMA: AÇO – NA₂S 0,05 M, pH = 8 – 9, FIGURA 65 - COMPARAÇÃO DA TERCEIRA CURVA OBTIDA PARA CADA TEMPO DE ESPERA; FIGURA 66 - COMPARAÇÃO DA QUINTA CURVA OBTIDA PARA CA DA TEMPO DE ESPERA; ... 158 FIGURA 67 - COMPARAÇÃO DO QUINTO CICLO DA VOLTAMETRIA CÍCLICA DE -1,4 A -0,2 V, $VV = 10 \text{ mV.s}^{-1}$, sistema aço carbono - Na₂S 0,05 M, pH = 8 - 9, com e sem AGITAÇÃO DA SOLUÇÃO, SEM DESAERAÇÃO, SEM SULFETO PRÉVIO, CÉLULA PLANA 159 FIGURA 68 – VOLTAMOGRAMA OBTIDO SEM AGITAÇÃO DA SOLUÇÃO ENTRE -1.4 V e -0.2 V, FIGURA 69 - VOLTAMOGRAMA OBTIDO COM AGITAÇÃO DA SOLUÇÃO ENTRE -1.4 V e -0.2 V,

FIGURA 71 – INFLUÊNCIA DA EXISTÊNCIA DE FILME PRÉVIO NA VOLTAMETRIA CÍCLICA DE – 1,4 A -0.2 V, VV = 10 mV.s⁻¹, TOTAL = 12 CURVAS DE CADA CONDÇÃO, SISTEMA AÇO carbono – $N_{2}S$ 0,05 M, pH = 8 - 9, com agitação, sem desaeração, célula normal 162 FIGURA 72 – INFLUÊNCIA DA ADIÇÃO DE ÁCIDO NAS VOLTAMETRIAS CÍCLICAS DE –1,4 A –0,2 V, VV = 10 mV.s⁻¹, 5 ciclos de cada, adição antes das voltametrias, sistema aço CARBONO – NA₂S 0,05 M, COM AGITAÇÃO, SEM DESAERAÇÃO, COM SULFETO PRÉVIO ... 164 FIGURA 73 – INFLUÊNCIA DA ADIÇÃO DE ÁCIDO NA VOLTAMET RIA CÍCLICA DE -1,4 A -0,2 V, VV = 10 mV.S⁻¹, CICLOS = 8, ADIÇÃO DURANTE A VOLTAMETRIA (NO 5º CICLO), pH FINAL = 6, SISTEMA AÇO CARBONO – SOLUÇÃO DE Na_2S 0,05 M, COM AGITAÇÃO, SEM FIGURA 74 - VOLTAMETRIA CÍCLICA DE -1,4 A -0,2 V, VV = 10 mV.s⁻¹, CICLOS = 6, RISCAMENTO DURANTE A VOLTAMETRIA (NO 4º CICLO), SISTEMA AÇO CARBONO – $N_{2}S$ FIGURA 75 - VOLTAMETRIA CÍCLICA DE -1,4 A -0,2 V, VV = 10 mV.s⁻¹, CICLOS = 7, RISCAMENTO DURANTE A VOLTAMETRIA (NO 5º CICLO), SISTEMA AÇO CARBONO – $N_{2}S$ FIGURA 76 – ADIÇÃO DE 10 PPM DE CN^{-} DURANTE VOLTAMETRIA CÍCLICA DE -1,4 A -0,4 V, VV = 10 mV.s⁻¹, 31° CICLO (CURVA ESTABILIZADA – SEM CIANETO) E 34° (TERCEIRO APÓS A ADIÇÃO – COM CIANETO), SISTEMA AÇO CARBONO – $NA_2S 0,05$ M, pH = 9, COM AGITAÇÃO, COM DESAERAÇÃO, SEM SULFETO PRÉVIO169 FIGURA 77 - ADIÇÃO DE 50 PPM DE CN⁻ DURANTE VOLTAMETRIA CÍCLICA DE -1,4 A -0,4 V, $VV = 10 \text{ mV.s}^{-1}$, 33° CICLO (CURVA ESTABILIZADA – SEM CIANETO) E 36° (TERCEIRO APÓS A ADIÇÃO – COM CIANETO), SISTEMA AÇO CARBONO – $NA_2S 0.05 \text{ M}$, pH = 9, COM

APÓS A ADIÇÃO – COM CIANETO), SISTEMA AÇO CARBONO – $Na_2S 0,05 \text{ M}, \text{ pH} = 9$, COM FIGURA 80 - ESTABILIZAÇÃO DA CURVA E ADIÇÃO DE 1000 PPM DE CN DURANTE VOLTAMETRIA CÍCLICA DE -1,4 A -0,4 V, VV = 10 mV.S⁻¹, ADIÇÃO NO 57º CICLO, TOTAL = 61 CICLOS, SISTEMA AÇO CARBONO – $N_{2}S$ 0,05 M, pH = 9, COM AGITAÇÃO, COM DESAERAÇÃO, SEM SULFETO PRÉVIO172 FIGURA 81 - VARIAÇÃO DE POTENCIAL (A), DENSIDADE DE CORRENTE (B) E DENSIDADE DE CARGA (C) DE MEIO PICO DE DISSOLUÇÃO-PASSIVAÇÃO, DURANTE A ESTABILIZAÇÃO (EM PRETO) E APÓS A ADIÇÃO DE CIANETO (EM VERMELHO); VALORES RELATIVOS À FIGURA 80173 FIGURA 82 - ESTABILIZAÇÃO DA CURVA E ADIÇÃO DE 1000 PPM DE CN DURANTE VOLTAMETRIA CÍCLICA DE -1,2 A -0,4 V, VV = 10 mV.s⁻¹, ADIÇÃO NO 49° CICLO, TOTAL = 50 ciclos, sistema aço carbono – Na_2S 0,05 M, pH = 9, com agitação, com FIGURA 83 - ESTABILIZAÇÃO DA CURVA E ADIÇÃO DE 1000 PPM DE CN DURANTE VOLTAMETRIA CÍCLICA DE $-1,2 \text{ A} -0,5 \text{ V}, \text{ VV} = 10 \text{ mV}.\text{s}^{-1}, \text{ ADIÇÃO NO 6° CICLO}, \text{ TOTAL} = 10$ ciclos, sistema aço carbono – Na_2S 0,05 M, pH = 9, com agitação, com FIGURA 84 - VOLTAMETRIA OBTIDA NA SOLUÇÃO DE PROCESSO DO VASO-PILOTO (SEM FLUXO), UTILIZANDO SONDA DE TRÊS ELETRODOS DE AÇO CARBONO, NA FAIXA DE POTENCIAL DE -0,65 V ATÉ +0,4 V(EM RELAÇÃO AO ELETRODO DE REFERÊNCIA DE AÇO FIGURA 85 – COMPARAÇÃO ENTRE CURVA PILOTO TRANSFORMADA E CURVA DE

LISTA DE TABELAS

ABELA 1 - MECANISMOS DE DANOS RELACIONADOS AO HIDROGÊNIO	26
ABELA 2 – SULFETOS DE FERRO E ALGUMAS DE SUAS PROPRIEDADES	. 89
ABELA 3 – CORROSÃO DO AÇO POR ESPÉCIES DE ENXOFRE COMUMENTE ENCONTRA	DAS
M POÇOS DE GÁS ÁCIDO	114
ABELA 4 – RELAÇÃO ENTRE A RAZÃO FERRO : ENXOFRE E A CORROSIVIDADE DE SULFE	тоѕ
E FERRO QUIMICAMENTE PREPARADOS, COM RELAÇÃO AO FERRO	115
ABELA 5 – CARACTERÍSTICAS DA FASE LÍQUIDA DA CORRENTE DE PROCESSO	147
ABELA 6 - COMPOSIÇÃO QUÍMICA DO AÇO AISI 1020	149

LISTA DE SIGLAS

API	- American Petroleum Institute
ARN	- Amperometria de resistência nula
DAV	- Dissolução Anódica Voltamétrica
DEA	- Di-etanol-amina
DEPs	- Densidades espectrais de potência
ECS	- Eletrodo de Calomelano Saturado
EDS	- "Energy dispersive x-ray spectroscopy"
EIE	- Espectroscopia de impedância eletroquímica
ENH	- Eletrodo Normal de Hidr ogênio
ER	- Eletrodo de referência
ET	- Eletrodo de trabalho
FCC	- Craqueamento catalítico fluido
FFT	- Fast Fourrier Transform
GLP	- Gás liquefeito de Petróleo
HIC	- Trinca induzida por hidrogênio
LCO	- Óleo Leve de reciclo
MEV	- Microscopia eletrônica de varredura
P.A .	- Pureza analítica
PMRS	- "Potential -modulated reflectance spectroscopy"
RE	- Ruído eletroquímico
RLP	- Resistência de polarização linear
SIX	- Superintendência da Industrialização do Xisto
SOHIC	- Trinca induzida por hidrogênio e orientada por tensões
SSC	- Trinca sob tensão por sulfetos
ТС	- Taxa de corrosão
TE	- Tempo de espera
VV	- Velocidade de varredura, mV.s ⁻¹
ZTA	- Zona termicamente afetada

LISTA DE SÍMBOLOS

[]	- Concentração molar de uma espécie química (ex: [HS], [OH], [Na2S])
r	- Densidade
q	- Porosidade do revestimento
re	- Desvio padrão das variações de potencial
\boldsymbol{r}_i	- Desvio padrão das variações de corrente
(NH4)2S	- Sulfeto de amônio
(NH4)2SO4	- Sulfato de amônio
(NH4)HS	- Bissulfeto de amônio
⁰ API	- Medida de densidade da carga
°C	- Unidade de temperatura, Celsius
a _c	- Contante de rede perpendicular ao eixo hexagonal "c"
a _{co}	- Contante de rede paralela ao eixo hexagonal "c"
Ag	- Prata
b	- Inclinação de Tafel
В	- Coeficiente de Stern-Geary
С	- Carbono
C ₁ , C ₂ C _n	- Hidrocarboneto com n átomos de carbono
C _{dl}	- Capacidade da dupla camada elétrica
Cl	- Cloro
CN	- Cianeto
СО	- Monóxido de carbono
CO ₂	- Dióxido de carbono
Cs	- Pseudo-capacitância
DE	- Diâmetro externo
DI	- Diâmetro interno
E	- Potencial
e	- Elétron
Eo	- Potencial em que a densidade de corrente é igual a zero
$E_{ ho}$	- Potencial de pico
EW	- Peso equivalente
F	- Faraday, \approx 96500 C.mol ⁻¹
Fe	- Ferro
$Fe(CN)_6^{-4}$	- Íon ferrocianeto
Fe^{+2}	- Íon ferro II

Fe ₄ [Fe(CN) ₆] ₃	- Ferrocianeto férrico
FeS	- Sulfeto de ferro
Н	- Hidrogênio
H,M	- Material hidrogenável em equilíbrio com o hidrogênio em solução sólida
H ₂ O	- Água
H_2O_2	- Peróxido de hidrogênio
H₂S	- Sulfeto de hidrogênio
HCI	- Ácido clorídrico
HCN	- Cianeto de hidrogênio
i	- Corrente
i _{corr}	- Densidade de corrente de corrosão
<i>i</i> _p	- Densidade de corrente de pico
I _{par}	- Corrente do par galvânico
К	- Potássio
Mn	- Manganês
Na	- Sódio
Na_2SO_3	- Sulfito de sódio
NaCl	- Cloreto de sódio
NaCN	- Cianeto de sódio
NaOH	- Hidróxido de sódio
NH ₃	- Amônia
NH4OH	- Hidróxido de amônio
Ni	- Níquel
NiO	- Óxido de níquel
NiOOH	- Oxi-hidróxido de níquel
0	- Oxigênio
Р	- Fósforo
pН	- Potencial hidrogeniônico
p _{H2S}	 Pressão parcial de sulfeto de hidrogênio
ppm	- Partes por milhão
Pt	- Platina
$q^{o}_{\ pass}$	 Densidade de carga no processo de dissolução-passivação do substrato isento de revestimento, densidade de carga padrão
q _{pass}	 Densidade de carga no processo de dissolução-passivação do substrato revestido
R_W	- Resistência ôhmica
R _{ct}	- Resistência de transferência de carga
R _n	- Resistência ao ruído
R _p	- Resistência de polarização

R _s	- Resistência da solução
S	- Enxofre
S _x ⁻²	- Íon polissulfeto
SCN	- Tiocianato
Si	- Silício
SO4 ⁻²	- Íon sulfato
Ζ	- Impedância
Z'	- Componente real da impedância
Ζ"	- Componente imaginário da impedância
Z_{f}	- Impedância do processo faradaico
Zw	- Impedância de Warburg

RESUMO

Alguns vasos das Unidades de Craqueamento Catalítico Fluido (FCC) são susceptíveis a problemas de corrosão sob tensão e danos por hidrogênio. Esta situação ocorre devido à presença de HO, HS, NH₃, e CN nas soluções de processo. A corrosão do aço pelo sulfeto conduz à formação de hidrogênio atômico e de uma camada de sulfeto de ferro que age como barreira entre metal - solução, retardando a corrosão. Quando o cianeto está presente na corrente, este destrói o filme de sulfeto e expõe novamente a superfície metálica ao meio agressivo. Propõe-se um novo método de monitoramento "on-line" em tempo real da corrosão, baseado na avaliação da integridade da película de sulfeto utilizando o princípio da técnica de Dissolução Anódica Voltamétrica (DAV). Uma vez desenvolvido, este método possibilitará a inibição em tempo real do processo de degradação do sulfeto de ferro pelo cianeto. Em comparação com os sensores de hidrogênio, tal técnica apresentaria a vantagem de atuar antes da ocorrência de permeação significativa de hidrogênio, aumentando a vida útil dos equipamentos. Resultados de ensaios laboratoriais indicaram a viabilidade da técnica para detectar o ataque do cianeto ao filme de sulfeto de ferro. Como eletrólito, foram usadas soluções de Na₂S 0,05 M, à pressão atmosférica e à temperatura ambiente, com pH ajustado para 9. Também são mostrados resultados preliminares obtidos na fase de testes de escala piloto, em um vaso instalado em uma refinaria.

Palavras-chave: Monitoramento da corrosão, Sulfeto de ferro, Corrosão por sulfetos, H₂S, Cianeto.

ABSTRACT

Some Fluid Catalytic Cracking (FCC) vessels are prone to suffer serious problems such as stress corrosion cracking and hydrogen damage. This situation takes place due to the presence of H₂S, NH₃ e CN in the process solutions. The corrosion of steel by hydrogen sulfide leads to the formation of atomic hydrogen and an iron sulfide scale, which acts like a barrier and retards the corrosion process. When cyanide is present, it reacts with the sulfide film, exposing again the steel surface to the aggressive medium. Thus, a new method for on-line monitoring of this kind of corrosion is been proposed and tested. It uses the concept of the Voltammetric Anodic Dissolution (VAD) Technique for the evaluation of the iron sulfide film integrity. VAD technique for discontinuity evaluation of coatings is based on the fact that the film porosity is directly proportional to the charge involved in the dissolution-passivation process of the covered substrate. This methodology will make possible detecting and inhibiting the degradation process of the iron sulfide by cyanide action at real time. In comparison to the commonly used hydrogen sensors, such technique would have the advantage of acting before occurring a large amount of hydrogen generation and permeation through the steel, increasing equipments lifetime. This work have been conducted in both laboratory and pilot scale. The latter is being accomplished in PETROBRAS/SIX Unit (São Mateus do Sul, Paraná, Brazil), where a pilot-reactor was especially constructed for this purpose. Laboratory results showed that VAD technique can be used for evaluation of sulfide films integrity. Preliminary curve obtained in pilot vessel are also presented.

Keywords: Corrosion monitoring, Iron sulfide, Sulfide stress cracking, H₂S, Cyanide