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1 Introduction 
Survival analysis is used in various fields for analyzing data involving the du- 
ration between two events. It is also known as event history analysis, lifetime 
data analysis, reliability analysis or time to event analysis. A key characteristic 
that distinguishes survival analysis from other areas in statistics is that survival 
data are usually censored. Censoring occurs when information about the survi- 
val time of some individuals is incomplete. Different circumstances can produce 
different types of censoring, such as, right-censored data, left-censored data and 
interval-censored data. This paper is devoted to this last censoring scheme. 

Interval censoring mechanisms arise when the event of interest cannot be 
directly observed and it is only known to have occurred during a random interval 
of time. In this situation, the only information about the survival time T is 
that it lies between two observed times L and R. We find in the articles of 
Peto (1973) and Turnbull (1976) the first approach to the estimation of the 
distribution function when data are interval-censored. These authors consider 
closed intervals, [L, R], so that exact observations are taking into account. We 
find in the literature other censoring mechanisms closely related to the concept 
of interval censoring as introduced by Peto and Turnbull. For example, if the 
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event is only known to be larger or smaller than an observed monitoring time, 
the data conforms to the current status model or interval-censored data, case 1. 
In experiments with two monitoring times, U and V with U < V, where it is 
only possible to determine whether the event of interest occurs before the first 
monitoring time (T _< U), between the two monitoring times (U < T < V), 
or after the last monitoring time (T > V), the observable data is known as 
interval-censored data, case 2. A natural extension of case 1 and case 2 models 
is the case k model, where k is a fixed number of monitoring times. Schick and 
Yu (2000) discuss an extended case k model where the number of monitoring 
times is random. In all these censoring schemes the intervals are semi-closed 
and non-censored observations are not considered. Yu et al. (2000) generalize 
the case 2 model so that exact observations are allowed. More than 150 papers 
have been published, since those first two pioneering papers, focusing on different 
cases of interval-censored data, deriving theoretical properties for the estimators 
or dealing with regression problems where the response is interval-censored. 

Examples of time-to-event data, and in particular of interval-censored data, 
arise in diverse fields, such as biology, demography, economics, engineering, epi- 
demiology, medicine and public health. Although an adhoc analysis is required 
to analyze interval-censored data, the lack of statistical software packages for 
this type of censoring has driven many researchers to use methods which do not 
take into account the random nature of these intervals. Many researchers use 
imputation techniques, especially right-point or mid-point imputation, which 
may generate biased results. Furthermore, we should remark that theoretical 
and computational results using the techniques we present here could be diffe- 
rent if we treat intervals as closed or semi-closed. The continuous nature of the 
variables would induce us to think that such a precision is not important. Howe- 
ver, as it is exposed in Ng (2002), different interpretations of the intervals lead to 
different likelihood functions, which in turn could imply different nonparametric 
maximum likelihood estimates. 

Section 2 gives a list of illustrations where interval-censored data are encoun- 
tered. Furthermore, we detail along the paper three interval-censored situations 
which have been analyzed by the authors and will illustrate some of the met- 
hods. The data sets, as well as some of the adhoc program% can be downlo- 
aded from www-eio.upc.eslseccio_fme/research/GRhSS or can be obtained 
directly from the authors. In the next three sections, we present an overview 
of different statistical methods to analyze interval-censored data. The estima- 
tion of the survival function, or other related functions, could be accomplished 
either via a frequentist approach, in Sections 3 and 4, or through the Bayesian 
paradigm, in Section 5. Both approaches have important advantages and draw- 
backs and the decision of the most suitable approach is in general difficult to 
determine. For each of these two approaches, nonparametric models, where no 
distributional assumptions are made, as well as parametric models are develo- 
ped. The particular case of doubly-censored data is discussed in Subsection 
3.2. For the sake of inferential completeness we have developed in Section 4 
the nonparametric problem of the comparison of two or more interval-censored 
samples. 



141 

The aim of this paper is to put together, using a common perspective and 
notation, the existing literature on interval censoring. While most of the results 
have been already published, as is cited throughout the text, we provide additio- 
nal technical justifications for some of the theoretical results (Lemma 1, Lemma 
2 and Theorem 1). The justification for the construction of the likelihood given 
in Proposition 1 is new, as it is the way that the permutational tests are presen- 
ted in Section 4. Finally, we are not aware of whether the Bayesian parametric 
approach given in Subsection 5.1, although straigthforward, has been presented 
elsewhere. 

We would like to mention here that in the writing of this paper, many other 
documents have crossed our work. In particular, we are aware that the research 
concerning interval-censored data case 1, 2 or k, as well as semiparametric re- 
gression models, is only briefly commented. We have focused on the more general 
interval censoring scheme, considering closed intervals, and in the development 
of the paper from the applied point of view. For that reason, we have included 
in all the sections a computational subsection describing either our own adhoc 
programs or the implementation with S-Plus. 

2 Examples  of Interval-Censored Survival Data 

In this section we start reviewing different real situations where interval-censored 
data have been encountered. Peto (1973) reports data from annual surveys on 
196 girls for which sexual maturity development, at the time of each survey, were 
recorded. Development was complete in some girls before the first survey, some 
girls were lost to follow-up before the last survey and before development was 
complete, and some girls had not completed development at the last survey. An 
estimator for the proportion who were not yet mature as a function of age was 
required. This is the first paper, to the best of our knowledge, where interval- 
censored data have been analyzed. 

Interval-censored data are quite usual in longitudinal studies where subjects 
in the study are not monitored continuously and instead the event of interest 
is detectable only at specific times of observation, for example, at the time of 
a medical examination. We find this type of censoring in a great variety of 
scenarios. Finkelstein (1986) studies regression analysis methods for interval- 
censored data to analyze data from a breast cancer study where patients were 
followed for cosmetic response to therapy. Although patients were scheduled to 
be seen, at clinic visits, every 4 to 6 months, the fact was that after completion 
of primary irradiation treatment, or for those who were geographically remote, 
the intervals between visits were wider. For this study the data on the time of 
failure were recorded as an interval such as (L, R], meaning that at L months 
the patient had shown no change, but by R months, the cosmetic state of her 
breast had deteriorated. The objective of the analysis is to compare the patients 
who receive adjuvant chemotherapy to those who did not and to determine 
whether chemotherapy affects the rate of deterioration of the cosmetic state. 
Another instance is exemplified by Smith et al. (1997) who, while investigating 



142 

occupational exposure to tuberculosis, encounters interval-censored data because 
the exact data of tuberculosis were unavailable and they had to rely on the time 
interval defined by the tuberculin skin test conversion. 

In the context of the AIDS epidemic we find many instances where interval- 
censored data have been reported. Kooperberg and Clarkson (1997) analyze 
evidence of precancer from an ongoing study of the natural history of anal dys- 
plasia in gay men who are enrolled in the AIDS Prevention Project in Seattle. 
The data are as well interval-censored because the precise time between two in- 
terviews when the precancerous condition was developed is unknown. Yu et al. 
(2000) analyze the distribution of the time to clinical relapse to ovarian cancer 
based on a clinical trial where a tumor marker is available. Those patients with 
high (or low) values are closely monitored. The paper by Goggins and Finkelstein 
(2000) focuses on the analysis of multivariate interval-censored data correspon- 
ding to a study of an opportunistic infection in HIV-infected individuals. The 
presence for the infection agent was tested both in the blood and in the urine at 
scheduled clinic visits. The failure times are censored into the interval between 
the last negative test and the first positive test. Since often patients missed 
several visits, the censoring intervals are overlapping and of varying lengths and 
methods for grouped data are not appropriate. 

Animal tumourigenicity experiments result in another special type of interval- 
censored data. The goal of such studies is to analyze the effect of a suspected 
carcinogen on the time to tumour onset when the onset times cannot be ob- 
served. Rather, animals die or are sacrificed at predetermined time intervals, 
and are examined for the presence or absence of a tumour. If the tumours are 
irreversible, the observed death times (natural and sacrifices) provide left- and 
right-censored observations on the time until tumour onset (GSmez and Julia, 
1990, GSmez and Van Ryzin, 1992). This type of data is an special instance of 
what we have defined as current status data where a unique monitoring time -in 
this case the natural death or the sacrifice- is considered for each individual. 

Interval-censored data is also encountered in demographical studies where 
the use of a retrospective survey and population register data permits nume- 
rous applications of event-history analysis. Courgeau and Najim (1996) exploit 
interval-censored techniques to estimate the distribution of migrations or job 
changes over time based on Demographic Panel Surveys, and on surveys on so- 
cial, geographical and wealth mobility in the 19 th and 20 th centuries in France. 
The data they analyze are interval-censored because, concerning residential or 
occupational mobility, they only know that a move has occurred between two 
censuses or family events. 

Last but not least, interval censoring might occur together with left trun- 
cation. Different authors have approached this problem. Among others, Pan 
and Chappell (2002) approach this problem while comparing the probabilities 
of losing functional independence for male and female seniors. 
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3 Frequentist Approach 

3.1 Nonparametric Methods 

One of the first papers approaching the interval-censored situation is due to Peto 
(1973) who reports data from annual surveys on sexual maturity development 
of girls. Peto proposes a method based on maximizing the log-likelihood by 
a suitable constrained Newton-Raphson programmed search. Few years later, 
Turnbull (1976) approaches the more general problem of the analysis of arbitra- 
rily grouped, censored and truncated data and derives an algorithm to obtain 
the nonparametric estimator of the distribution function. This algorithm can 
be applied, in particular, to deal with interval-censored situations. Few more 
years elapsed before these methods were applied in different setups, but these 
two pioneers papers are today the seed of most of the practical results. Among 
other papers we mention a couple. Gentleman and Geyer (1994) provide stan- 
dard convex optimization techniques to maximize the likelihood function and 
to check the unicity of the solution; BShning et al. (1996) view the problem 
from the perspective of a mixing problem of indicator functions and propose 
to use their statistical package C.A.MAN to compute the nonparametric esti- 
mator. The nonparametric estimator for the distribution function that these 
authors propose is a discrete distribution function that maximizes the likeli- 
hood over the set of discrete distributions that are piecewise constant between 
a finite set of points that depend on the observations. Since these estimators 
are step functions, their behaviour is quite unsmooth and sometimes they lack 
of interpretability, mainly when comparing survival curves. In the remainder 
of this section, we describe and illustrate the nonparametric methodology. We 
start, in Subsection 3.1.1, giving a theoretical justification for the construction of 
the likelihood function under noninformative censoring. We develop Turnbull's 
self-consistency method in Subsection 3.1.2, providing additional details of the 
proofs of his results. The asymptotic behaviour of the proposed estimators is 
discussed in Subsection 3.1.3. The last two subsections contain a discussion of 
computational aspects and an illustration. 

3.1.1 Definition. Notation.  Estimability. Likelihood 

Let T be the random variable of interest. In our setting T is a positive random 
variable representing the time until the occurrence of a certain event g with 
unknown right-continuous distribution function W ( t )  = Prob{T ~ t}, survival 
function S(t )  = 1 - W ( t )  and density function w(t), if it exists. In a study 
of n items or individuals, their potential times to g, namely, T 1 , . . . , T n ,  are 
unknown and instead we observe intervals that contain the unobserved values 
of T 1 , . . . , T n .  Let 7) -- {[Li, R i ] , l  < i < n} be the interval-censored survival 
data where Li is the last observed time for the ith individual before the event g 
has occurred and Ri indicates the first time the event g has been observed. We 
are in fact formally observing random censoring vectors (Li, Ri) ,  i = 1 , . . . ,  n, 
comming from a joint density function, f[L,R](l,r;~/), such that L <_ R with 
probability 1. Denote by f[T,L,R] (t, l, r; W, ~') the joint density of the unobserved 
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vector (T, L, R) and note that is such that L _< T _< R with probability 1. 
We suppose that censoring occurs noninformatively in the sense that for 

any t, l, r such that i < t < r, the conditional density of T given L and R, 
f[TIL,R] (tll, r; W, 7), satisfies 

dW(t) 
ftTIL'R](tll'r;W'7) = W(r) - W ( I - ) '  (1) 

where we define W ( t - )  = limA_~0+ W(t  - A). That is, censoring times L and 
R do not anticipate events. 

Proposition 1 
Assume that we have a unique individual for which we have observed the failure 
time T falling inside the random interval [l, r]. I f  censoring occurs noninfor- 
matively, the contribution to the likelihood of this individual is proportional to 
ff dW(t). 

Proof .  We first prove that there exists a function K such that the conditional 
density of (L, R) given T is such that for any t, l, r with 1 < t < r, then 

f[L,RIT] (1, rlt; 3') = K(l, r; 7). 

Indeed, for any t, l, r such that l _< t _< r, following the usual rules for 
conditional densities and the noninformative condition (1), we have 

f[T,L,R](t, l, r; W, ~[) _ f[TIL,R](tll, r; W, ~f)f[L,R](l, r; ~f) 
f[L,RIT](I, rlt; W, ~f) -~ dW(t) dW(t) 

= dW(t)f[L'Rl(l'r;7) = f[L'R](l'r;7) = K(l ,r;7)  
(W(r) - W( l - ) )dW( t )  W(r) - W ( l - )  

It is then obvious that the contribution to the likelihood of an individual whose 
failure time is observed to fall within the interval [1, r] is given by 

f[L,Rl(l,r;7) = f[L,RlTl(l,rlt;W,7)dW(t) = g( l , r ;7 )  dW(t). 

[] 

Hence, if censoring occurs noninformatively and if the law governing L and 
R does not involve any of the parameters of interest, we can base our inferences 
on the likelihood function L(WII) ) given by 

ff~ ; R i  n 
L(WIT) ) = dW(ui) = I I  [W(Ri) - W(Li-)]  (2) 

i = 1  J Li  i----1 

n n 

= H [S(LT) - S(Ri)] = H ProblLi  _< 7"/_< Ri}. 
i = 1  i : l  
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3.1.2 Self-consistency equations. Maximum likelihood est imation 

The goal is to find a monotonically increasing function W(t) which maximizes 
the overall likelihood function (2). The resulting estimator might not be unique 
because the likelihood for an interval-censored observation depends only on the 
difference between the survival values at the end-points of that interval and not 
at all on the detailed behaviour within the interval. 

In what follows we describe Turnbull's self-consistency method. We start 
constructing the set of intervals where the mass is concentrated. From the sets 
/: = {Li, 1 < i < n} and 7~ = {Ri, 1 < i < n} we can derive all the distinct closed 
intervals whose left and right end-points lie in the sets s and T~ respectively and 
which contain no members of L: or 7~ other than at their left and right endpoints 
respectively. Let these intervals, known as Turnbull's intervals, be written in 
order as Z -- {[q1,Pl], [q2,P2],--., [qm, Pm]}. We illustrate this construction with 
the following example. 

Example: Suppose that the following n = 6 intervals have been observed 
79 = {[Li, R/] ,I  < i < 6} = {[0,1],[4,6],[2,6],[0,3],[2,4],[5,7]}. Then, Turn- 
bull's intervals are given by Z = {[ql,Pl] = [0, 1], [q2,P2] = [2,3], [q3,P3] = 
[4, 4], [q4,P4] ---~ [5, 6]}. 

Lemma 1 (Turnbul l )  Any distribution function which increases outside Turn- 
bull's intervals I cannot be a maximum likelihood estimator of W.  Thus, it suf- 
fices to consider only distribution curves which are horizontal everywhere except 
in the intervals I and which increase in some or all of these intervals. 

Proof .  Let W be a distribution function which increases outside Turnbull's 
intervals. Assume, without loss of generality, that W is horizontal everywhere 
except in the interval (Pl, qt+l) and in the intervals I .  By the construction of 
Turnbull's intervals, the only possible members of s or 7~ between Pl and ql+l 
are necessarily such that all the right end-points are smaller than all the left end- 
points. Let rz be a point in (Pz, qt+l) that is greater than all the right and less 
than all the left end-points in (Pt, qz+l). We can then construct a distribution 
function W* which is equal to W everywhere except in (Pt, q~+l) where is defined 
as W*(t)  = W(rt)  for every t e (Pt,qt+l). The factors W ( R )  - W ( L )  in the 
likelihood can be one of the following three types: 

1. If L < R < Pt or qt+l < L < R then W ( R )  - W ( L - )  = W*(R)  - W * ( L - )  

2. Ifpt < R < rl < qt+l then W ( R )  - W ( L - )  < W(rl )  - W ( L - )  = W*(R)  - 

W*(L-) 

3. Ifpt  < rt < L < qz+l then W ( R )  - W ( L - )  <_ W ( R )  - W(rt )  = W*(R)  - 
W * ( L - )  

We illustrate the second situation in Figure 1. By construction, if R E (Pt, ql+l) 
then W ( R )  < W*(R).  

Thus, we conclude that L(W*IT) ) >_ L(WIT) ) and that W cannot be a maxi- 
mum likelihood estimator of W. 

[] 
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W*(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

Pl R rl ql§ 

Figura 1: Graphical illustration of the second situation in the proof of Lemma 1 

L e m m a  2 (Turnbul l )  The total likelihood is a function only of the amount 
that the distribution curve increases in the intervals Z and is independent of how 
the increase actually occurs, so the estimated distribution curve is unspecified in 
each [qj,pj] and is well defined and flat between these intervals. Note that while 
estimating the distribution function W ,  we are as well estimating the survival 
function S = 1 - W .  

Denoting by wj = W(p j )  - W ( q f )  = Prob{qj < T < pj} the weight of the 

jth interval, j = 1 , . . . , m  -- 1, wm = 1 - ~ . ~ 1  wj, Lemmas 1 and 2 define 
equivalence classes that enable us to write down L(WI79) as 

L T ( W l , . . . , W m _ I )  = o~[W(pj)  - W(qj ) ]  = ot~wj (3) 
i=1 \ j = l  i=1 \ j = l  ] 

i = l{[qj,pj] C [Li,Ri] expresses whether or not the where the indicator a j  
interval [qj,pj] is contained in [Li, Ri]. The vectors (Wa,... ,win) define equi- 
valence classes on the space of distribution functions W which are fiat outside 
t_J~=t[qj,pj]. Therefore, the maximum will be at best unique only up to equiva- 
lence classes and the problem of maximizing L(WI~) has been reduced to the 
finite-dimensional problem of maximizing a function of w l , . . . ,  Wm-1 subject to 

rn-1 the constraints wj > 0 and 1 - ~--]~j=l wj _> 0. 
The total likelihood, as a function of w l , . . . ,wm-1 ,  is strictly convex (ex- 

cept on the boundaries of the constrained region on which the likelihood func- 
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tion is zero), so the values of w l , . . .  ,Win--1 that maximize it are unique. Let 
(Wl, . - . ,Wm) be the maximizing solution of (3). Turnbu l l ' s  n o n p a r a m e t r i c  
e s t i m a t o r  W for W is given by 

0 if t < q ~  
l)d(t) = tO1 + - . .  + U~k if Pk <_ t < qk+l, 

1 if t >_ Pm 
1 < k < m - 1 (4) 

and is not specified for t E [qj,pj], for 1 _< j _~ m. Therefore 12V is an increasing 
step function, with m + 1 horizontal lines with gaps in between and the way 
in which I)d increases inside these gaps is arbitrary. Note that only the total 
probability assigned by W to the intervals [qj, pj] can be identified. 

The variances and covariances of the non zero U~k are given by the in- 
verse of the second derivatives matrix of the loglikelihood (7) with respect to 
w l , . . . , W m - 1 .  However, there is no yet theoretical justification for this proce- 
dure, the problem being a violation of the usual assumption of a fixed number of 
unknown parameters that remains unchanged with increasing the sample size. 

We now introduce the concept of self-consistency and give its equivalence 
with the property of maximum likelihood. ~ is a se l f - cons i s t en t  e s t i m a t e  
of  w =  (Wl, . . . ,wm) if 

[1. ] 
@j = E ~  E 1 { q j < T i < P J } 1 7 9  . 

i=1 

In other words, solving the conditional expectation equation, a se l f -cons is tent  
e s t i m a t o r  of (w l , . . . ,  win) is defined to be any solution of the following simul- 
taneous equations: 

1 a j  
W j  ~- - -  m _ _ 

n i = l  E l = l  OLIWl W j  1 < j < m.  (5) 

Define tt}(Wl, . . .  ,win) and Tj (Wl , .  �9 �9 ,Win) as 

T j ( W l , . . .  ,Wm)  

i 
_ ~ j  

n #j (w l , . . . ,  win). 
i=1 

(6) 

R e m a r k :  Note that the terms ~ 1  a~wt correspond to the sum of probabilities 
associated with the i th individual. 

L e m m a  3 We introduce the logarithm of the likelihood (3) as 

(7) 
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The directional derivative dj(w) of l(w) defined as 

dj (w)  = Of(w) ~ Of(w) 

k = l  

satisfies 
/ 

dj(w.! + 
\ n 

where Tj has been defined in (6). 

dAw)),  j = 1,--. ,~, 

ProoL Notice that the directional derivative dj (w) corresponds to 

lim O / ( , w l .  w j + e  l + e )  
~-~00~ l + e " ' "  l + e ' ' ' "  

which considers the effect of increasing the jth component by a small positive 
amount e and divides all the components by i + e in order to keep the sum equal 
to 1. That is, 

aj(w) 

...... 

n i m n 0 ~  

W k  O W k  - -  m r a  . ow~ k=l = E "~ '~z k=l i=l E ~2 wt 
1=1 l : 1  

~Tt  

I=1 /=1 1=1 

It follows that, 

l + d j ( w )  _ 1 c~j 
m 

n n ,---1 E ~ i~ '  
1=1 

1 c~j l + d j  w3" = _ ,,~ 

/=1 

i 1 E # j ( w ) =  rj(w). - - W j  = 

i = l  

[] 

T h e o r e m  1 ( T u r n b u l l )  

1. If  @ is a maximum likelihood estimator for W,  then Co satisfies the self- 
consistent equations (5). 

2. Conversely, the solution ~ of the self-consistent equations (5) is the non- 
parametric maximum likelihood estimator of w provided that dj (w) < 0 
whenever wj = O. 
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Proof .  

. The maximization of l(w) can be considered as a concave programming 
problem with linear constraints. Thus, the Kuhn-Tucker conditions (Gent- 
leman and Geyer, 1994) are necessary and sufficient for optimality, that 
is, w is a maximum likelihood estimate if and only if, for every j ,  either 
dj (w) -- 0 or dj (w) _< 0 when wj -- 0. Henceforth, it is obvious that the 
MLE are self-consistent. 

2. If w is a self-consistent solution, it satisfies 

( 1 +  dJ(nW) ) w j = wj, (8 )  

hence if wj > 0, it follows that dj(w) -'- 0 and if wj = 0 since we are 
assuming that dj (w) <_ 0 the Kuhn-Tucker conditions are fulfilled and w 
is a maximum likelihood estimator. 

[] 

E x a m p l e  cont inued:  The likelihood corresponding to the previous 6 intervals 
is given by 

LT(Wl,W2,W3,W4) = H ~}[W(pj) - W(qj-)]  
i = 1  j = l  

= + + +  4)(wl + + 

and the maximizing solution is found at the point (wl,w2,w3,wa) = (�88 4' 8' 8 ) ' 1  1 3 
Thus Turnbull's nonparametric estimator 12d for W is given by 

0 if t < O  
if l _ < t < 2  

= _ 1 ~ - ~ + � 8 8  if 3 _ < t < 4  
5 __ 1 1 1 ~ - ~ + ~ + g  if 4__<t<5 
1 if t>__6 

3.1.3 Asymptot ic  behaviour 

Turnbull derived self-consistent equations for a very general censoring scheme 
and in particular for a very general definition of interval censoring as it is des- 
cribed in the introduction. Since Turnbull's self-consistent equation is not of the 
form of an integral equation, the study of its large sample properties have not 
been very fruitful. Yu et al (2000) prove that Turnbull's estimator is strongly 
consistent under the assumption that the support of the vector (L, R) is finite, 
and that censoring occurs noninformatively in the sense described in (1). The 
assumption concerning the support of (L, R) is reasonable since it means that 
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the support of the inspection times is finite, which in practice is true because 
most follow-up studies are recorded on a discrete time scale and the total study 
period is finite. The asymptotic distributional behaviour of Turnbull's estimator 
has not been yet established. 

Several authors prove consistency of the generalized maximum likelihood 
estimator for interval-censored data, case 2, when there are only a finite number 
of inspection times xj, j = 1 , . . . ,  m in any finite interval (Gentleman and Geyer, 
1994), or under the assumption that the vector (L, R) is discrete but that W is 
arbitrary (Yu et al, 1998). 

The asymptotical properties of the nonparametric maximum likelihood esti- 
mator (NPMLE) when data are interval-censored, case 1 or 2, are largely dis- 
cussed in Groeneboom and Wellner (1992). They propose the convex minorant 
algorithm for computing the nonparametric maximum likelihood of the distribu- 
tion function and prove that if T is a continuous random variable and the interval 
window is independent ofT,  then the NPML estimator is consistent. Concerning 
asymptotic normality, Yu et al (1998) obtain for interval-censored data, case 2, 
the joint asymptotic normality of the generalized maximum likelihood estimate 
at the usual rate v ~ for the points in .A = {a 6 ]1% : P(L = a) + P ( R  = a) > 0}. 

3.1.4 Computational  aspects 

So far, most of the analysis that involve intervai-censored data, have been done 
with software specifically developed by the corresponding authors. The program, 
ICTURNBULL. C, used for the analysis illustrated in this paper, has been written 
in C-language and requires a rectangular data file consisting on 2 columns and 
n + 1 rows, where n is the sample size. The first row includes the sample size and 
the number that play the role of infinity (we usually use 9999). The following 
n rows include the left and the right endpoint of the censoring interval for each 
individual. 

S-Plus version 6 for Linux or 2000 for Windows provides a new set of com- 
mands to perform survival analysis with interval-censored data. The algorithm 
used by this software considers semi-closed intervals (L, R] where L < T _< R 
and incorporates exact, right-censored, and left-censored data. A vector iden t  
containing the identification of the n individuals under study is first defined. 
The object censor ,  codes assigns a numerical value to each individual to dis- 
tinguish whether the observation is exact (censor .codes=l ) ,  right-censored 
(censor.codes=O), left-censored data (censor .codes=2)  or interval-censored 
(censor .  codes=3). Vectors lower and upper contain the lower and the upper 
limit, respectively of the intervals. An object from the type da ta  frame is then 
constructed as follows: i n t . d a t a  <--  d a t a . f r a m e ( i d e n t ,  lower,  upper ,  
censor ,  codes) .  This is the object that the new procedure kaplanMeier needs 
in order to estimate the survival function using Turnbull's method, that is, 
surv. est <--kaplanMeier (censor (lower, upper, censor, codes) -~ 1, 
data=int, data) 
Remark: It is important to note that the original analysis by ~hrnbull, and 
the one used along this paper, where the intervals are closed ([L, R] meaning 
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L < T < R), cannot be done straightforwardly using the above S-plus proce- 
dure. One, not very elegant, way of taking advantage of S-plus procedures is 
to redefine the lower vector subtracting a small quantity, say 0.001, and reinter- 
preting then. Plots of the estimated survival function can be obtained by either 
plot (surv. est) or plot. kaplanMeier (surv. est). 

3.1.5 I l l u s t r a t i on  1 

Intravenous drug addiction and the human immunodeficiency virus (HIV) infec- 
tion are two recent and closely related epidemics. In an attempt to estimate the 
elapsed time to HIV-infection since they enter the intravenous drug users risk 
group, the presence of interval-censored data shows again. 

The cohort is based on the 306 (240 male and 66 female) intravenous drug 
users entering the detoxification unit of the Germans Trias i Pujol Hospital 
in Badalona (Spain), between February 1987 and November 1997 which have 
started intravenous drug use between 1986 and 1991. The following variables 
were available for most of the patients: date of birth, date of first IV-drugs 
use, date of last negative HIV antibody test, date of the first positive HIV 
antibody test. Three exclusive and exhaustive subcohorts were defined. The 
seroconvertor subcohort consists on the 29 patients (9.5%) for whom information 
on a negative HIV test and a positive HIV test was available and these two dates 
define the interval where the HIV-infection has occurred. Thus, the infection 
time for these patients is interval-censored. The HIV-positive subcohort, or 
seroprevalent subcohort, consists on the 121 patients (39.5%) that arrived HIV- 
positive to the detoxification unit. The infection time is in this case left-censored 
in the interval of time between the date starting at risk for HIV-infection and 
the earliest positive HIV test. The HIV-negative subcohort consists on the 
156 patients (51%) that arrived HIV-negative to the detoxification unit and 
remained HIV-negative at the date of their last antibody test. The infection 
time in this subcohort is right-censored, the lower limit of the censoring interval 
being the time of the last negative HIV test and the upper limit is infinity. 

Figure 2, computed via the S-Plus software, shows the estimated survival 
function for the failure time variable defined as the number of months elapsed 
time to HIV-infection since the patients enter the intravenous drug risk group, 
both for men and for women. We observe that men tend to spend more time 
infection free than women. The statistical significance of this difference, along 
with differences of age and year of first IV-drug use are studied in Subsection 
3.3. A larger data set including patients who started intravenous drug use before 
1986 or after 1991 was analyzed using nonpara.metric Bayesian techniques by the 
authors in G6mez et aL (2000). 

3.2 Doubly-Censored Data 

Most statistical methods in survival analysis assume that the time to the origi- 
nating event is known and allow the final time to be censored. Here we consider 
a situation where the origin time is interval-censored and the final time is right- 
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Figura 2: Probabilities of being HIV-infection free for women (line) and men 
(dotted line) 

censored. We refer to such data as doubly-censored data. This sampling scheme 
should not be confused with a different one, also referred to as doubly-censored 
data, where the final event is observed within a window for some subjects and 
left- or right-censored for others (Chang and Yang, 1987). 

Under the assumption that there is a discrete time scale both for the origin 
time and for the latency time, De Gruttola and Lagakos (1989) propose a met- 
hod for analyzing doubly-censored survival data in the context of the study of 
the progression from HIV infection to AIDS. They jointly estimate the infection 
time and the latency period between infection and onset of AIDS, by treating 
the data as a special type of bivariate survival data. An alternative approach 
is proposed by G6mez and Lagakos (1994) who develop a two-step estimation 
procedure. In the first step, they estimate the infection time distribution based 
on the marginal likelihood using the intervals where the infection is observed. 
Once a set of estimators for the infection probabilities is derived, they treat 
the interval-censored infection times as weighted exact infection times and esti- 
mate the latency distribution based on the corresponding conditional likelihood. 
G6mez and Calle (1999) propose a modification of G6mez and Lagakos algorithm 
which does not require the discretization of the data. 
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3.2.1 G 6 m e z  and  Calle es t imator  

Let X and Z denote the chronological times of the originating and final events. 
Define the duration time to be T = Z - X. We wish to estimate the distribution 
functions, W ( x )  and F(t) ,  of X and T, respectively, under the assumption that 
X and T are independent random variables. We assume that X is interval- 
censored in [L, R] and that Z is right-censored. Let V be the minimum between 
the final time Z and the time corresponding to the end of the study or the 
corresponding follow-up. Thus, for each subject i of a random sample of size n 
of a given population, the observable data are of the form (Li, Ri ,  di, Vi, c~) where 
di and ci are the censoring indicators of the origin and final times, respectively. 
That is, di = I{R~ < oo} and ci = 1 if Zi = Vi and ci = 0 if Zi > Vi. 

The procedure is based on the following two steps. In the first step straight- 
forward Turnbull's method is applied. This produces the following set of in- 
tervals {[qa,Pa],.-. ,[qm,Pm]} where the W distribution assigns its mass. The 
corresponding estimator for the distribution is denoted by W. Denote by v~j = 
Prob(qj < T < pj), 1 < j _< m. For the second step, where again discreteness of 
T is removed, a new set of intervals has to be defined where the distribution F 
is identifiable. Denoting by Lij  = Vi - p j  and Rij  = Vi - qj when ci = 1 and by 
Lij  = Vi - r~+qi and Rij  = oo when ci = O, the conditional likelihood can be 2 
written as 

di 

Lc(FII?V ) = aij ~bj [F(R i j )  - F(L~j)] 
i = l  

The reader is addressed to G6mez and Calle (1999) for further details. Note 
l I I l that here, as in the univariate case, a set of intervals, [ql, Pl], [q~, P~],---, [qr, Pr], 

where F places its mass can be defined. These intervals are obtained from the 
different { R i j }  and {L i j }  in the same way as Turnbull's intervals. 

The maximum likelihood estimator for ( f l , . . .  ,fk), where f j  = F(p~) - 
F ( (q~ ) - )  is the probability of the interval [q~,p~], is obtained as the solution of 
the self-consistent equations 

( n - n o ) f k  = ,. m ~ for k = l , . . , r  
LE,=I Ej=   j,wj:, 

with no = . ~ 1  (1 - di) the number of observations with a right-censored origin 
time and c~k , the indicator of an origin time in [qj,pj] and a duration time in 

l ! 

3.2.2 C o m p u t a t i o n a l  a spec t s  

The methodology has been implemented in a C-language program, MODGL. C, 
which is available from the authors upon request. The program requires a data 
file consisting on a first row which contains the sample size n and the number that 
plays the role of infinity (we usually use 9999) and n rows each one containing 
the values of (Li, Ri, 1I/, ci) for each individual. 
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3.2.3 I l lustrat ion 2 

In the study of the chronological time of the HIV infection, De Gruttola and 
Lagakos (1989) analyze a French cohort of hemophilia patients who were infec- 
ted with HIV in the early 1980's. The cohort corresponds to 262 patients that 
were treated at the H6pital Kremlin Bic6tre and the H6pital Coeur des Yveli- 
nes in Prance since 1978 and were at risk of infection from the contaminated 
blood factor they received for their disease. Serum samples were routinely sto- 
red and subsequently they could be tested for presence of HIV antibodies. Two 
group of patients were distinguished: 105 patients in the heavily-treated group, 
that is those who received at least 1,000 #g/kg of blood factor for at least one 
year between 1982 and 1985, and 157 patients in the lightly-treated group, cor- 
responding to those patients who received less than 1,000 I~g/kg in each year. 
By August 1988, 197 patients had become infected ( 97 in the heavily-treated 
group and 100 in the lightly-treated group) and 43 of these had developed clinical 
symptoms of AIDS ( 29 in the heavily-treated group and 14 in the lightly-treated 
group). The comparison of the two treatment groups could allow an indirect eva- 
luation of the effects of different viral doses on the risk of infection and on the 
risk of AIDS once infected. 

Since blood samples from these individuals were periodically collected and 
stored, they could be retrospectively tested to determine a time interval during 
which the infection occurred. The time of infection for these patients is then 
interval-censored, the infection is only known to have occurred in the interval of 
time specified by the last negative and the first positive assessment. Because the 
latency period between infection with HIV and the development of AIDS can be 
very long, many of the hemophiliacs infected at that time still had not developed 
AIDS by the end of the study. Hence, both the initiating and terminating events 
that determine the latency period can be censored in the same individual. 

The observations, based on a discretization of the time axis into 6-month 
intervals, are of the form (Li, Ri, di, Vi, ci). Li and Ri are the chronologic times 
of the patient's last negative and first positive antibody test, respectively, di 
stands for the infection indicator, ~ denotes the chronologic time of first clinical 
symptom of AIDS when ci -- 1 and, for those individuals who had not developed 
AIDS at the end of the study (ci = 0), Vi is the time of the last blood sample 
tested. 

We apply G6mez and Calle procedure to each one of the two groups of this 
data set and we obtain estimators for the distribution to the time to HIV- 
infection and for the latency distribution. Figure 3 gives the estimated cumula- 
tive distribution function of the latency times for the two groups. The estimators 
are very similar for the first 3 years and differ thereafter. We find here again 
differences between the two treatment groups. The heavily-treated group seems 
to have shorter latency times than the other group of patients. However, the in- 
terpretation of these results must be done carefully because of the small number 
of patients who developed AIDS. 

The data were analyzed by the authors in G6mez and Lagakos (1994) and 
G6mez and Calle (1999). In this paper, the data are analyzed as well in Subsec- 
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Figura 3: Estimated cumulative distribution function of latency time between 
HIV seroconversion and onset of symptoms for heavily-treated group and lightly- 
treated group. 

tion 5.1 to illustrate a Bayesian regression model for interval-censored data. 

3 . 3  P a r a m e t r i c  r e g r e s s i o n  m o d e l s  

An effective and standard approach to analyze interval-censored survival data 
when a parametric model is appropriate is to use maximum likelihood estima- 
tion. Let T be a positive random variable representing the time until the oc- 
currence of a certain event ~ with unknown right-continuous distribution func- 
tion W(t;O) = Prob{T < t;O}, density function w(t;O) and unknown finite- 
dimensional parameter O. The potential times TI , . . . ,  Tn of n individuals are 
unknown and we assume here that, as usual, we have interval-censored survival 
data 79 = {[Li, Ri], 1 < i < n} such that Li <_ T~ <_ R~. Under the noninfor- 
mative assumption (1), the parametric likelihood for W, given 79, is proportional 
to 

/t/? L(O}I)) = H [W(Ri; 0) - W(Li - ;  0)1 = w(ui; O)dui. (9) 
i = l  i = l  i 

Lindsey and Ryan (1998) develop a piecewise exponential model for the 
interval-censored case. In order to do that they break the time scale into J 
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intervals and assume a constant hazard within each. This model has the advan- 
tage that as J increases it becomes more nonparametric in nature. This method 
can be extended so that covariate effects are accommodated using proportional 
hazards. Standard likelihood theory can be used if the number of intervals is not 
too large. Although no standard statistical packages consider this model, the 
EM algorithm is easily implemented as the authors describe in the appendix. 

Lindsey (1998) investigates the effect of ignoring interval censoring for para- 
metric modeling. To this end he fits different parametric families and accommo- 
dates regression equations both for the location and dispersion parameters. His 
conclusions -somehow arguable- are that for parametric models interval censo- 
ring can often be ignored and the midpoint of the interval used instead in the 
likelihood function. 

The decision between a parametric or a nonparametric approach is not easy. 
On one hand, if there is scientific or empirical knowledge of the problem that 
justifies a model, the nonparametric approach may represent an important loss 
of efficiency versus the use of a parametric method, specially if the variable is 
heavily censored. On the other hand, the parametric assumptions are in general 
difficult to assess based on a censored sample. Therefore, the use of completely 
parametric methodologies involves the risk of deriving inconsistent estimators for 
the parameters of interest and if the parametric model does not fit suitably the 
data, this might lead to inaccurate conclusions. However, among other features, 
the parametric approach has the advantage that it provides the means to predict 
different parameter based quantities for a longterm (.i.e., the percentage of HIV- 
infected individuals who will be AIDS-free). It also permits the description of 
the hazard function at different times and are useful for point and variance 
estimation of relative percentiles. However, all the inferences will depend upon 
the assumption of the model, and there are not, yet, goodness-of-fit tests to check 
how suitable is the parametric model when data are interval-censored. A large 
number of papers have acknowledged the interval-censored nature of the data 
and have used parametric regression models to analyze the data. It is is worth 
mentioning, in the context of the AIDS epidemic, the papers by Brookmeyer 
and Goedert (1989) and Mufioz and Xu (1996). 

There has been also recent work on estimation from semiparametric regres- 
sion models with interval-censored data. Semiparametric models such as the 
proportional hazards model or the proportional odds model treat the baseline 
hazard function, or the survival baseline function, as a nuisance parameter. You- 
nes and Lachin (1997) present a flexible family of link-based regression models 
with time-independent covariates. Their model yields the proportional hazards 
model and the proportional odds model as special cases. Kooperberg and Clark- 
son (1997) introduce a methodology for hazard regression in which linear or cubic 
splines and their tensor products are used to estimate the conditional log-hazard 
function based on a great variety of censoring scenarios that include interval- 
censored data and time dependent covariates. Goetghebeur and Ryan (2000) 
propose a semiparametric approach that while retaining some of the appealing 
features of Kooperberg and Clarkson's smoothing method, it reduces to a stan- 
dard Cox proportional hazards model in the absence of interval censoring. 
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3.3.1 C o m p u t a t i o n a l  a spec t s  

Several parametric families can be framed into a log-linear model, log T -- 
#+BZ+aW, where W stands for the error distribution, for which standard maxi- 
mum likelihood theory can be used. S-plus new release develops the censorReg 
routine which provides a way of fitting the above log-linear model for interval- 
censored data, accepting, among others, the Weibull, extreme value, normal, 
log-normal, logistic and log-logistic as the error distributions.. 

Following the example for the data frame •  in Subsection 3.1, the 
S-plus procedure censorReg can be used as follows: 

int.data.censor<-censor(lower,upper,censor.codes) 
cens.mod<-censorReg(int.data.censor-l,dist="weibull",data=int.data) 

This command fits a Weibull model (without covariates). An extensive output 
will be given using sl,mmaxy(cens .mod). Plots to judge the goodness-of fit can 
be obtained via p lo t (cens .mod)  or p robp lo t (cens .mod) .  In particular, the 
command p robp lo t6  (cens .  rood) produces 6 probability plots for the maximum 
likelihood fitting of 6 different distributions. Once an error distribution has been 
chosen, the procedure censorReg can be used, as well, to incorporate several 
covariates. 

3.3.2 I l l u s t r a t i on  1 

We reanalyze again the time to HIV-infection choosing a regression parametric 
model including the covariates age, gender, and year of first intravenous drug 
use. The data were reasonably well fitted by the log-logistic distribution and 
age was found to be significant at a 95% level (p = 0.0345). The parameter/3 
in the log-linear model, when only age is taken as covariate, is estimated to be 
equal to 0.0686, with a 95% confidence interval given by [0.0365, 0.133]. As a 
consequence, older people tend to be HIV-infection free for longer number of 
months. For instance, the median number of months until HIV-infection for a 
35 years old intravenous drug user is exp((35 - 20) �9 0.0686) ~ 2.8 times the 
median number of months of a 20 years old individual. 

4 Hypothesis testing 

One important question that arises in many survival studies is to establish if 
there are differences in the survival times among different groups of individuals. 
While many k-sample tests have been developed when data are uncensored 
or right-censored, research for interval-censored data is still ongoing. Most 
approaches to this problem try to generalize these known tests to the interval- 
censored framework. In Mantel (1967) we find an interval-censored data version 
of the Wilcoxon test, in Peto and Peto (1972) we find a different extension of the 
Wilcoxon test and an extension of the Log-rank test and in Fay and Shih (1998) 
we find an interval-censored data form of the t-test.  The main characteristic of 
these articles is the use of permutational distributions. The difficulty of finding 
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the distribution of the test statistic is avoided with this permutational approach. 
Other approaches assume that the collection of possible interval endpoints is 
discrete. This assumption ensures a finite number of parameters in the log- 
likelihood which allows to find test statistics with known asymptotic distribution, 
see for example Finkelstein (1986) and Petroni and Wolfe (1994). 

4 . 1  P e r m u t a t i o n a l  t e s t s  

We introduce now the permutational approach to the k-sample problem. Let 
T be the time to the event of interest. Assume that we have k groups of data, 
G1, . . . ,  Gk with respective sample sizes n l , . . . ,  nk. Define W1, . . . ,  Wk the dis- 
tribution functions of T under each one of these groups. The k-sample problem 
establishes a test between Ho : W1 . . . . .  Wk and Ha : Wi ~ Wj for some i,j. 
Denote by zi a vector of covariates representing to which group the ith obser- 
vation belongs. In the two sample problem, the usual choice of the covariate is 
zi = al 2) where a~ 2) is an indicator function that is equal to 0 if the individual 
belongs to group G1 and 1 if it belongs to group G2. When we have k groups 
many choices of zi are possible, for instance, 

z , =  ,r 

where al j) is an indicator function that is equal to 1 if the individual belongs to 
group Gj and 0 otherwise. 

A permutational linear test statistic is of the form: 

n 

Lo = Z zic~, (10) 
i----1 

where ci is a scalar score associated to the ith observation which is independent 
of the covariates. The idea behind the permutational test is that, if the null 
hypothesis is true and the censoring mechanism does not depend on the grouping, 
the labels on the scores are exchangeable. Thus, the permutational distribution 
of L0 is obtained by permuting the labels and recomputing the test statistic 
for all the possible rearranged labels. The main key for these procedures is to 
use scores that are sensitive to the alternative hypothesis and, in that case, the 
null hypothesis will be rejected if L0 is an extreme value for the permutational 
distribution. This permutational distribution can be computed exactly when the 
sample size is small. When n is large, a version of the Central Limit theorem 
for exchangeable random variables allow us to rely on a normal asymptotic 
approximation for the permutational distribution of L0 where E(Lo) = n ~ '  
(g = 0 in our examples) and variance 

n 2 n 
Var(L0) = (Y~i=l ci - nc2) (Ei=l (ziz~ - ~. ')) 

( n  - 11 
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The Wilcoxon-Gehan (WG) score for each observation is the difference between 
the number of time observations that are clearly to its left and the number of 
time observations that are clearly to its right. Intervals which overlap with the 
ith interval don't contribute in the computation of the ith score. That is, 

WGc,-= ~ I{Rj < L i } -  ~ I{Lj > R~). 
j : l  j : l  

Gehan (1965) proposes these scores in order to extend the two sample Wilcoxon 
test for right-censored data. The proposal is reviewed by Mantel (1967) to allow 
the use of interval-censored data. 

The Wilcoxon-Peto (WP) score for each observation is the difference between 
Turnbull's estimated proportion of time observations that are to the left and 
Turbull's estimated proportion of time observations that are to the right, that 
is, 

WPci = IV(L~-) - (1 - IV(Ri)) = IV(L:() + IV(Ri) - 1. 

Note that IV is TurnbuU's estimator for the pooled sample given in (4). This 
proposal is introduced by Peto and Peto (1972) and it is asymptotically efficient 
for time distributions in the logistic family. 

In the same article Peto and Peto extend the Savage or Log-rank (LR) test 
to interval-censored data. The Log-rank scores are, 

LRci : (1 - IV(Ri)) log(1 - IV(Ri)) - (1 - IV(L~-))log(1 - IV(L~-)) 

Iv(ni) - IV(L;) 

where again IV is given in (4). This proposal is asymptotically efficient for time 
distributions with Lehmann-type alternatives. 

Fay and Shih (1998) introduce what they call distribution permutation tests, 
which provides another interesting approach to the k-sample problem. These 
are permutational tests with scalar scores obtained as follows: an estimate of the 
distribution function for each observation is compared to the overall Turnbull's 
estimate of the distribution function. The use of the self-consistent equations 
allow them to define these empirical estimates of the distribution function for 
each observation. For particular ways of comparing these estimated distributions 
Fay and Shih obtain the Wilcoxon-Peto test, the Log-rank test and a new test 
called the difference in means (DIM) test. In what follows we describe the 
difference in means test as an extension of the permutational t-test.  In order 
to calculate the total mean of the distribution induced by IV, they identify 
each Turnbull's interval [qj,pj] with the right endpoint pj and assign all the 
probability of [qj,pj], ~j ,  to pj. When p m =  co, they let Pm = q,~. The use of 
this distribution allows, as well, to compute for the ith individual the imputed 
mean value of its interval, that is, the conditional expectation of T given that 
T E [Li, Ri]. Because of the self-consistent property of Turnbult's estimate, the 
mean of these imputed means is equal to the total mean of the distribution. The 
scalar score they propose for each individual is the difference between the above 
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imputed mean value and the total mean, that is, 

7n 

DiMc~  = Y]j~=I pj~bja} _ E p y ~ j "  
lzd(ni) - I)V(L~-) j=l 

Example :  We use the fifth interval observation, [2, 4], in the example in Section 
3.1 to illustrate the computation of the different scores. The only interval obser- 
vation that is to the left to [2, 4] is the interval [0, 1], while to its right is [5, 7]. 
Thus, the Wilcoxon-Gehan score value is, W G s c 5  = 1 - 1 = O. Wilcoxon-Peto 

1 3 score value is W P s c 5  = ~ - g = -0.125, because the probability mass assigned 
by Turnbull's distribution function to the interval [0, 1] is Wl --- �88 and to the 
interval [5, 6] is w4 = 3. The Log-rank score value is given by, 

L n s c 5  = (1 - l f d ( 4 ) ) l o g ( 1  - I 4 r ( 4 ) )  - (1 - l f i d ( 2 - ) ) l o g ( 1  - l ) v ' ( 2 - ) )  = - 0 . 4 0 5 5 .  

w ( 4 )  - w ( 2 - )  

Since the interval [2, 4] contains Turnbull's intervals [2, 3] and [4, 4], with res- 
pective probability mass ~2 = 0.25 and v)3 = 0.125, the imputed mean is, 
(3.0.25+4-0.125)/(0.25+0.125) = 3.33. Furthermore, the total mean using Turn- 
bull's estimate of the distribution function is, 1.0.25+3-0.25+4.0.125+6.0.375 = 
3.75. Therefore, the score value is given by, D i M s c 5  = 3.33 - 3.75 = -0.4267. 

4.2 I l l u s t r a t i on  3 

Another instance of interval-censored data is found in an AIDS Clinical Trial 
designed to study the benefits of zidovudine therapy in patients in the early 
stages of the human immunodeficiency virus (HIV) infection (Volberding et al., 
1995). The design compares three groups. The first group, G1, corresponds to 
those patients who started zidovudine monotherapy after their CD4 cell count 
fell below 500 per cubic millimeter. In the second and third groups, G2 and Ga, 
two different dosages of zidovudine were given immediately after randomization. 
Among the 1607 subjects who could be evaluated, 541 were in the deferred- 
therapy group, 538 in the 500-mg group and 528 in the 1500-mg group. Sub- 
jects were followed prospectively until the development of AIDS or death. As a 
measure of the clinical progression of the disease, CD4 cell counts were periodi- 
caUy determined. The reported data included the times of the first count below 
500 cells per cubic millimeter, as well as below 400 and below 300. We will focus 
on the time T, measured in months from randomization, until the CD4 count 
first reaches 400 cells per cubic millimeter. The random variable T is interval- 
censored, that is, for each individual i, we know that Ti is between Li  and Ri  
where Ri  is the time of the first visit when CD4 was observed to be below 400 
cells per cubic millimeter and Li is defined to be the time of the preceding visit. 

We illustrate now the above permutational methodology with the comparison 
of the survival of these three groups (k -- 3). The choice for the zi covariates is 
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the following, 

z', = ~ v / ~ ,  ~ 2 2 '  V f ~ ]  = \ 23.-~-94' 23.-1948' 22.9783] 

where a~ j) is an indicator function that  is equal to 1 if the individual belongs to 
group Gj and 0 otherwise. Then the linear permutational statistic form simplifies 
to the expression, 

Lo = z~ci = ~ ~(~) = 
i=1 V / ~  C(3) 

23.2594 ~(1) ) 
23.1948 ~(2) , 
22.9783 ~(3) 

n c a (j) The permutational distribution of L0 is asympto- where ~( j ) - - l~- '~ i=  1 i i �9 
tically distributed as a k-dimensional normal and we can use the Mahalanobis 

2 distance (Md) to obtain a Xk-1 = X~ distribution: 

k 
~0 V ~r'TT-r0 n - 1 1606 

= - -  ~-n--- -2  E n j ~ j )  - -  n (541 c~1) + 538 c~2) + 528 c~3)), M d  
j = l  

where V -  is the generalized inverse of Vat(L0). The results using each of the 
permutational tests (see Table 1) show significant evidence of the differences 
between the survival curves. In this paper, the data are again analyzed in 
Subsection 5.2 to illustrate the nonparametric Bayesian method for interval- 
censored data. 

Taula 1: Permutational test statistic (Lo) for different score choices, the related 
Mahalanobis distance (Md) and p-values for the null hypothesis of equal distri- 
butions: Ho : W1 = W2 -- W3 versus the alternative of some differences between 
the distributions Ha : Wi ~ Wj  for some i , j  

L0 

M d  
p-va lue  

Wilcoxon- Wilcoxon- Difference 
Gehan Peto Log-Rank in Means 

-1804.732 ) 
337.9202 
1485.709 

16.3978 
0.000275 

( -1.5351 ~ 
0.2687 

\ 1.2826 j 

16.6800 
0.000239 

-2.2098 
0.3449 
1.8887 j 

17.6607 
0.000146 

( -84.0323 
16.4337 
68.4719 j 

17.8151 
0.000135 
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4.3 Likelihood approaches 

In this section we review different papers that introduce test statistics derived 
directly from the likelihood function. The first two papers derive equivalent 
forms of the Wilcoxon-Peto and the Log-rank tests from regression models. 
Finkelstein (1986) proposes an extension to interval-censored data of the pro- 
portional hazards model. Finkelstein assumes a discrete interval-censored time 
distribution and derives, from the likelihood function, the score vector that re- 
sults for testing the hypothesis of a null regression coefficient. This statistic has 
the form ~'].(O - E) and it can be seen as the Log-rank test proposed by Peto 
and Peto. Because of the discrete nature of the data, Finkelstein uses the Fisher 
information matrix to derive the asymptotic distribution of the statistic instead 
of the permutational distribution. Their approach, however, produces numerical 
problems when applied to a large group of patients. Fay (1996) extends Finkels- 
tein's work to the grouped continuous model. The score vector for testing the 
null hypothesis that the failure times are unrelated to the covariates, reduces to 
the Wilcoxon-Peto or the Log-rank tests as special cases. Fay (1999) shows the 
equivalence between the weighted Log-rank form of these score vectors given by 

w .  (O - E) and the permutational linear form (equation 10). 
The approach by Petroni and Wolfe (1994) is different from all the above 

methods. Their proposal is a class of two sample tests based on Turnbull's es- 
timated survival function from each group and requires a finite pre-specified 
number of intervals. These tests are based on the integrated weighted difference 
in Turnbull's estimators and extend the weighted Kaplan-Meier class developed 
by Pepe and Fleming (1989) for right-censored data. Under the null hypothe- 
sis of no difference between the distributions, the distribution of these tests is 
asymptotically normal and the variance is obtained via information matrices. 
This approach is specially indicated under crossing hazard alternatives. 

4.4 Computational aspects 

The following four S-Plus routines: WGsc(-,-), WPsc(-,-,-), LRsc( . , . , . )  and 
DiMsc (-,-, .) implement, respectively, the Wilcoxon-Gehan scores, the Wilcoxon- 
Peto scores, the Log-Rank scores, and the Difference in Means scores. The test 
statistic can be computed from each set of scores using either the two sample 
methodology (w2tes t ( - , . ) ) ,  or the k-sample methodology, (wktes t ( - , . ) ) .  We 
illustrate these routines with the k-sample Wilcoxon-Peto test. First, we esti- 
mate the survival function from the pooled sample using Turnbull's method, 
surv. est <-kaplanMeier (censor (lower, upper, censor, codes) ~i, 

data=int, data) 
Then, we compute the Wilcoxon-Peto scores, 
scores<-WPsc (lower, upper, surv. set) [ [6] ] 
Afterwards we create a vector of covariates, covar,  that assigns the value 1 for 
individuals in the first group, the value 2 for individuals in the second group 
and likewise until the k th group. The wktes t  (-,-) routine would transform each 
covariate value s in a k-vector whose s-component is 1/vies and the rest of the 
components are 0. At last, we compute the permutational test statistic and the 
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corresponding Mahalanobis distance, wktes t  ( s c o r e s ,  covar)  

5 Bayesian Approach 
The Bayesian approach is tempting in survival analysis because of the direct pro- 
babilistic interpretation of the posterior distribution and because many problems 
can be formulated in terms of integrals with respect to the posterior distribution. 
Furthermore, this framework allows the incorporation of prior beliefs about the 
distribution function. The reason why Bayesian methods had not been widely 
used in survival analysis until the last few years is because, for realistic mo- 
dels, the posterior distribution under censoring is extremely difficult to obtain 
directly. The development of new numerical algorithms, such as Markov chain 
Monte Carlo algorithms, which allow to obtain a sample from the posterior of 
interest has open the door to the use of Bayesian methods to survival analysis. 

In this section we discuss both parametric and nonparametric approaches 
to interval-censored data. The review paper by Sinha and Dey (1997) and the 
recent book by Ibrahim, Chen and Sinha (2001) give details on semiparametric 
Bayesian models. 

5 .1  B a y e s i a n  P a r a m e t r i c  A p p r o a c h  

As usual, let T1, . . . ,  Tn be the potential times for the n individuals and denote 
by 7) = ([Li,Ri], 1 < i < n} the observed censoring intervals. We assume 
that T1, . . . ,  T,, are independent and identically distributed with density function 
w(t; 0). As in section 3.3, the likelihood function L(OIT) ) is given by (9) if we 
assume that the censoring occurs noninformatively. By means of Bayes theorem 
and after assuming a prior distribution p(O) for 0, the posterior distribution of 
0 is given by: 

L(017) ) .p(O) 
p(017)) = $ n(017)), p(0) dO" 

Usually the integral in the denominator does not admit an explicit solution 
and numerical methods are needed to obtain the posterior distribution function. 
As suggested in Smith and Roberts (1993), the Gibbs sampler is a very useful 
method in problems involving incomplete or censored data. The unobserved 
data are reintroduced in the model as further unknowns and this leads in general 
to more tractable situations. This strategy of introducing additional or latent 
variables in the model is also called the data augmentation algorithm (Tanner 
and Wong, 1987). 

5.1.1 Data augmentation m e t h o d  

The basic idea behind the data augmentation algorithm is the following: Let 
p(x) be the distribution of interest which does not have an explicit form and is 
difficult to sample from. Let y be an additional variable, which is referred to 
as latent variable, so that we can calculate or sample from p(xly ) and also from 
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p(ylx). The data augmentation algorithm consists on sampling iteratively from 
these two conditional distributions. That is, given an initial value x (~ draw a 
value y0) from p(ylx (~ and then draw a value x (1) from p(xly(1)). Tanner and 
Wong (1987) proved that performing iteratively these two steps provides pairs 
(X(/), y(i)) such that the sequence X (i) converges in distribution to a variable 
X with distribution p(x) and the sequence y(i) converges in distribution to a 
variable Y with distribution p(y). 

In our setting the distribution of interest is p(OID ) and the latent variables 
which are introduced in the model as additional parameters are the censored 
times T1, . . . ,  Tn. Then, the Gibbs sampler consists in sampling iteratively from 
p(TilO,79), for each i and from p(O[T1,... ,Tn,79). In the first step each censo- 
red time is imputed; this produces as a result a complete data set. In the se- 
cond step, since the noninformative condition implies that p(OITx,... , Tn, 79) = 
p(OlTx,..., Tn), the parameter 0 is updated based on the complete imputed sam- 
ple. The successive implementation of these two steps provides a sample of the 
parameter 0 which, under weak conditions (Gelfand and Smith, 1990), conver- 
ges to the posterior distribution of 0. Averages from these samples are used to 
estimate posterior quantities. 

This data augmentation scheme also applies to the analysis of regression 
models where the parameter 0 in the parametric distribution is related to some 
covariates Xl , . . . ,  xk through a link function 0 = g(xi, B). The goal in this case 
is the estimation of the regression parameter/3. The Gibbs sampling algorithm 
to obtain the posterior distribution of/3 is given by the the successive iteration 
of the following steps: 

1. Impute a value T~ sampled from w(t; O) truncated in the interval [L~, R~]. 

2. Update the value of/3 sampling from the posterior distribution p(]~ tT1,.. . ,  T~) 
where 

p ( Z l T 1 , . .  �9 = . . . . . .  w(T ;e = .p(Z) 
f l-Ii=l w(T,;O = g(xi,t~)).p-(~ d/~ 

and p(fl) is the prior density for the regression parameter. 

3. Update the value of 0 = g(xi, ~). 

5.1.2 Computational aspects 

The program BUGS, which stands as an acronym for Bayesian inference Using 
Gibbs Sampling, is a very useful tool for the implementation of this algorithm. 
This program provides a language for specifying complex Bayesian models and 
performs the Gibbs sampler by simulating from the full conditional distributi- 
ons. Further details of the program are given in Spiegelhalter et al.(1996). The 
software is freely available at http://www.mrc-bsu.cam.ac.uk/bugs/.  
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5.1.3 I l l u s t r a t ion  2 

We reanalyze the data from a cohort of hemophiliacs described in Illustration 2 
assuming a log-normal model for the time to HIV infection. For each individual 
T~ denotes its infection time which is interval censored in [Li, Ri] �9 The covariate 
xi indicates the treatment group: xi = 0 for the heavily-treated group and xi = 1 
for the lightly-treated group. The model assumptions and prior specifications 
can be expressed through the following hierarchical model: 

[Stagel] Ti ~ l o g N ( # i , a  2) truncated in [Li ,Ri]  

~i = ~o-[-~1 "xi  

[Stage2] So ~ N(ao,ao  2) 

fll ~'~ N(o~I,(Yl 2) 

a 2 ,,~ IG(0.001,0.001) 

[Stage3] ao ~ N(0,1.10 -6 ) 

ao 2 ,-~ IG(0.001,0.001) 

a l  ~ N(0,1.10 -6 ) 

al 2 ~ IG(0.001,0.001) 

In stage 1 we specify the observational model: for each individual we assume a 
log-normal model truncated in the corresponding censoring interval. The mean 
#i is assumed to be equal to ]~0 for the heavily-treated group and equal to 
]~o + ~1 for the lightly-treated group. The normal prior distributions for these 
parameters are specified in stage 2 and an inverse gamma distribution for the 
variance. In stage 3 we specify vague priors for the hyperparameters. 

The analysis was performed using BUGS. We implemented 2000 iterations 
of the algorithm and the results are in Table 2. For illustrative purposes we give 
in Figure 4 the posterior distribution for ]~0 and/~1- 

Taula 2: Posterior means and 95% credible intervals for Illustration 1 

Parameter 

So mean 2.422 
95% credible interval (2.345, 2.494) 

~1 mean 0.2401 
95% credible interval (0.1383, 0.3411) 

a mean 0.3635 
95% credible interval (0.3176, 0.4151) 

Using these results and the expression of the mean of a lognormal distribution 
(#T  = e x p ( #  + 0.5-a2)), we obtain that the mean infection time for the heavily- 



166 

15.0 

10.0 

5.0 

0.0 

betaO sample: 2000 

I I 

2.25 2.5 2.75 
I 

3.0 

10.0 
7.5 
5.0 
2.5 
0.0 

beta1 sample: 2000 

I I 

.1.5 .1.0 ~ 
I 

0.0 

Figura 4: Posterior distribution for/~0 and fll 

treated group is 12.03 (which corresponds to 6 years) while for the lightly- 
treated group is 15.3 (approximately 7.6 years). In Figure 5 we have plotted the 
distribution functions of infection time for both groups. We can observe that the 
lightly-treated group has larger infection times than the heavily-treated group. 

5.2 Nonparametric Bayesian Approach 
Here we describe the analysis of interval-censored data in the Bayesian para- 
digm without the assumption of any parametric model. Susarla and Van Ryzin 
(1976) were the first to derive a nonparametric Bayesian estimator (NPBE) of 
the survival function for right-censored data. Their estimator is based on the 
class of Dirichlet processes a priori introduced by Ferguson (1973). They proved 
that the nonparametric Bayesian estimator includes the Kaplan-Meier estimator 
as a special case, both estimators are asymptotically equivalent and that NPBE 
has better small sample properties than the Kaplan-Meier estimator (Rai et al, 
1980). The extension of this approach to more complex censoring situations 
and, in particular, to interval censoring is not straightforward. Nonparametric 
Bayesian estimators of the survival curve have only been obtained in an explicit 
way for special cases of interval-censored data. For instance, Johnson and Chris- 
tensen (1986) obtain explicit formulas for the survival curve estimator using a 
Dirichlet process prior for the special case of nested interval data. What is me- 
ant by nested interval is that the intervals do not overlap, that is, given two 
censoring intervals, either one interval is contained into the other or they both 
are disjoint. 

Since for a more general situation the estimation of the survival curve can- 
not be achieved explicitly, computing intensive methods can provide a solution. 
Doss (1994) propose a Gibbs sampling algorithm to deal with interval censoring 
based on the simulation of samples from the Dirichlet process. In what follows 
we propose an alternative approach (Calle and G6mez, 2001) which, by means 
of the use of latent count variables, only require simulation from a Dirichlet 
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distribution. 

5.2.1 Calle  and  G d m e z  es t imator  

Let 7"1,..., Tn be the sample of the potential times for the n individuals and de- 
note by D ={[Li ,  Ri], 1 < i < n} the observable data. Let {0, t l , . . . ,  tr-1, tr --- 
CO} denote the unique ordered elements of the lower and upper limits of the cen- 
soring intervals {[L~,Ri], i = 1 , . . . , n}  and define wj as the probability of T 
being between t j -1  and tj .  Assume that there is some prior belief in the shape 
of the distribution function that can be summarized by a parametric model W0 
for the distribution function W. The uncertainty on this parametric form W0 is 
modeled through a prior Dirichlet distribution for (Wl, . . . ,  wr) with parameters 
~j =/3(Wo(t j )  - Wo(tj-1)), j = 1, . . .  , r  where/3 is a positive real number that 
represents the precision or the measure of faith in the prior guess W0. 

Since the posterior distribution of the vector w given a sample from a Dirich- 
let process, only depends on the number of events, nj,  that fall in the interval 
( t j_ l , t j ] ,  and not on where they fall exactly, the posterior distribution of w 
can be derived by introducing the vector n = ( n l , . . . , n r )  in the model as a 
latent variable. If 6~ = I{T~ E ( t j - l , t j ] }  is an indicator for the ith indivi- 

dual that represents whether or not the event has occurred in the jth interval, 
n i then every component nj can be expressed as nj  = ~ = 1  ~" As a matter of 

fact 6 i = (5~,. . . ,  6~) is a vector such that every component equals zero, except 
one. We assume that the prior distribution of 6i conditioned to w and 7:) is a 
multinomial distribution of sample size 1. 

To obtain the posterior distribution of the vector w, given the data D, a 
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multiple sequence Gibbs sampling method is proposed. The following algorithm 
iterates alternatively from the posterior conditional distribution of n given w 
and from the posterior conditional distribution of w given n. 

For each sequence m = 1 , . . . ,  M we perform the following steps: 

A. Initial values: Define the initial probabilities W(m ~ , (0) W(m0)). 
~--- ~ W m l  ~ . . . 

B. Updated n: For each individual i = 1, . . .  ,n, generate ~i from a trunca- 

ted multinomial of sample size 1 and parameters w(m ~ Compute n~ ~ = 
)-'~in=a 6j, the number of events in each interval (tj-1, tj]. 

C. Updated w: Generate w ~  ) , (1) , (1) ~ from a Dirichlet distribution = ~ W m l ,  �9 �9 �9 , ~ m r ]  

of parameter vector (al + n~~ ar  + n(~ 

D. Replace w (~ by w (1) and return to Step B. 

Repeat steps B, C and D until convergence. 

It can be shown under rather weak conditions (Gelfand and Smith, 1990) that 
the Markovian sequence (w (t+l), n (t)) converges to an equilibrium distribution 
that is the joint distribution of (w, n). After generating M samples from Gibbs 
sampling chains one can approximate the marginal posterior distribution of w 
by the empirical sampling distribution, or by using the average of the posterior 
conditional distributions of w given n. Since the distribution function at time tj 
can be expressed as W(tj) = ~-]s<j ws, a sample from the posterior distribution 
of W(tj) can as well be derived. 

Calle and G6mez (2001) illustrate the effect of different prior weights (/3) 
of the Dirichlet process. The Bayesian estimator is shown to be close to the 
nonparametric maximum likelihood estimator as the prior weight of the Dirich- 
let process approaches zero. On the other hand, as the prior weight increases, 
the Bayesian estimator approaches the parametric prior guess Wo. To illustrate 
this behaviour, Doss and Narasimhan (1998) describe an importance sampling 
scheme which allows the dynamic display of the changing estimated survival 
curves for different prior hyperparameters. This can be used to show how the 
nonparametric Bayesian estimator based on a Dirichlet process prior is a com- 
promise between purely parametric and purely nonparametric estimators. 

5.2.2 C o m p u t a t i o n a l  a spec t s  

The methodology has been implemented in a C-language program, ICGIBBS.C. 
The data file has the same structure that the one required for the program 
MODGL.C in Subsection 3.2, that is, 2 columns and n + 1 rows. The first row 
includes the sample size n and the number that plays the role of infinity. The 
following n rows include the left and the right endpoint of the censoring interval 
for each individual. 
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5 .2 .3  I l l u s t r a t i on  3 

The above methodology is illustrated in Calle and G6mez (2001) with data from 
the AIDS Clinical Trials Group protocol 019 described in Subsection 4.2. The 
variable of interest is the time T, measured in months from randomization, until 
the CD4 count first reaches 400 cells per cubic millimeter and it is interval- 
censored. 

Tanla 3: Mean and posterior 95% credible interval (in parentheses) of the sur- 
vival function by treatment group 

Month Treatment group 
Deferred therapy 500 mg ZDV 1500 mg ZDV 

12 0.63 (0.61,0.65) 0.68 (0.65,0.70) 0.71 (0.69,0.73) 
24 0.46 (0.42,0.48) 0.55 (0.53,0.57) 0.59 (0.56,0.61) 
36 0.36 (0.33,0.38) 0.46 (0.43,0.48) 0.49 (0.46,0.51) 
48 0.29 (0.26,0.31) 0.38 (0.35,0.40) 0.43 (0.40,0.45) 
60 0.25 (0.22,0.27) 0.32 (0.29,0.34) 0.39 (0.36,0.42) 
72 0.19 (0.17,0.25) 0.27 (0.26,0.32) 0.32 (0.30,0.38) 

The Bayesian estimators were obtained through the implementation of the 
Gibbs sampling scheme described above taking M = 5 independent sequences 
and i = 2000 iterations in each sequence and discarding the first 500 iterations. 
Convergence of the Gibbs sampler was established both graphically and numeri- 
cally using the program CODA (Best et al., 1995). Figure 6 shows the estimated 
survival function for T according to treatment group and using B = v/-~- The 
survival curves suggest differences between the deferred-therapy group and the 
immediate-therapy groups (500-mg and 1500-mg). In particular, the median 
time to a CD4 cell count equal 400 in the immediate-therapy groups is approxi- 
mately 32 months while the median time is 20 months in the deferred-therapy 
group. Table 3 gives the mean and the posterior pointwise 95% credible interval 
of the survival function by treatment group, every 12 months. We observe that 
the mean survival time is always smaller in the deferred therapy group than in 
the immediate therapy groups. For instance, if we focus on 48 months, we see 
that the probability that the time to reach 400 cells be larger than 4 years is 29% 
in the deferred therapy group while it is around 40% in the immediate therapy 
groups. We can also see that, after 60 months of randomization, only 25% of the 
patients have a CD4 cell count above 400 in the deferred therapy group while 
this percentage is 32% and 39% in the other groups. This behaviour remains 
the same at any time in the study. Furthermore, while the credible intervals for 
the immediate-therapy groups overlap, the corresponding credible interval for 
the deferred-therapy group lies always below the other two, which indicates that 
the observed differences in the survival times between these groups are signifi- 
cant. Therefore, the CD4 cell counts in the immediate-therapy groups declined 
significatively more slowly than those of the deferred-therapy group. 
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ding to treatment group. 
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