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Interval-censored survival data, in which the event of interest is not observed exactly
but is only known to occur within some time interval, occur very frequently. In some
situations, event times might be censored into different, possibly overlapping intervals
of variable widths; however, in other situations, information is available for all units
at the same observed visit time. In the latter cases, interval-censored data are termed
grouped survival data. Here we present alternative approaches for analyzing interval-
censored data. We illustrate these techniques using a survival data set involving mango
tree lifetimes. This study is an example of grouped survival data.

Key Words: Accelerated failure time; Additive hazards; Cox model; Discrete model;
Imputation; Interval censoring.

1. INTRODUCTION

In some studies, survival response can be interval-censored, such that the event of inter-
est is not observed exactly but is only known to occur within some time intervals that may
overlap and vary in length. Often, interval-censored data are analyzed using imputation
methods, in which each event time interval is replaced by a single value and the analysis is
performed as though this value were the exact time event. Certainly, imputation has some
attractive features; for example, it allows standard analysis for continuous time-to-event
data. Midpoint imputation is one of the most widely used methods; however, its statistical
properties depend strongly on the width of the intervals. Law and Brookmeyer (1992), for
instance, noted that using midpoint imputation to estimate the regression parameter in a
proportional hazards model might result in a biased estimate if the intervals are wide and
varied. Moreover, the standard error of the estimator is underestimated, because midpoint
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imputation assumes that the failure times are exactly known, when in fact they are not
(Kim 2003). Rücker and Messerer (1988), Odell, Anderson, and D’Agostino (1992), and
Dorey, Little, and Schenker (1993) also noted that applying methods for standard time-to-
event data on the imputed times can lead to biased and misleading results. Other imputation
procedures have been discussed by Pan (1999, 2000) and Hsu et al. (2007), among others.

Other methods for the analysis of interval-censored data besides the imputation ap-
proach have been proposed. Analogs of the classical nonparametric estimator of Kaplan
and Meier (1958) were proposed by Peto (1973) and Turnbull (1976) to estimate the sur-
vival function for interval-censored data; however, these estimators do not allow for covari-
ates. Recently, Sen and Banerjee (2007) proposed confidence sets for the survival function.
Parametric and semiparametric regression models, such as the proportional hazards model
(Finkelstein 1986) and the accelerated failure time (AFT) model (Rabinowitz, Tsiatis, and
Aragon 1995), also have been proposed for interval-censored data, but these require some
specialized methods for estimation. Some of these methods are based on the EM algo-
rithm, considering that interval-censored data can be viewed as incomplete data (Goggins
et al. 1998; Betensky et al. 1999; Goetghebeur and Ryan 2000). Other methods are based
on a Bayesian approach, which has become increasingly popular (see, e.g., Sinha, Chen,
and Ghosh 1999). Recently, Komárek, Lesaffre, and Hilton (2005) suggested and imple-
mented in an R library a maximum likelihood-based approach for the AFT model that
exploits penalized smoothing of the baseline density of the error distribution. This method
provides estimates of both regression parameters and baseline density without making any
strong parametric assumptions. Lessafre, Komárek, and Declerck (2005) has provided an
overview of methods for interval-censored data, along with an example using the penalized
AFT model in an oral health study. In particular, for grouped data, in which event times
can be grouped into mutually exclusive intervals, methods based on discrete models are
usually recommended (Lawless 2002).

The aims of this article are (a) to describe different methodologies for handling interval-
censored data (particularly grouped survival data), presenting models not often used to an-
alyze this sort of data, such as the Aalen additive hazards model; (b) to compare imputation
and interval-censored approaches; and (c) to highlight the differences among different fit-
ted models in analyzing a grouped survival data set involving mango tree lifetimes. The ar-
ticle is organized as follows. Section 2 presents the mango tree data set. Section 3 describes
methods for analyzing interval-censored data, and Section 4 gives results and comparisons
from the analysis of the data set. Section 5 presents some concluding remarks.

2. THE DATA SET

The data set that we consider was first used by Colosimo, Chalita, and Demétrio (2000)
to illustrate a score test statistic proposed to discriminate between two discrete models for
grouped survival data. An experiment was conducted in a completely randomized block
design with five blocks and six treatments in a 6 × 7 factorial design involving six dif-
ferent scions (Extrema, Oliveira, Pahiri, Imperial, Carlota, and Bourbon) grafted on seven
different rootstocks (Espada, Extrema, Oliveira, Carlota, Bourbon, Coco, and Pahiri), for
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Table 1. Mango tree survival data.

Visit year At risk Dead Alive Visit year At risk Dead Alive

1973 210 12 198 1986 156 13 143
1974 198 8 190 1987 143 16 127
1975 190 1 189 1988 127 28 99
1981 189 8 181 1989 99 10 89
1983 181 2 179 1990 89 27 62
1985 179 23 156 1992 62 6 56

a total of 210 experimental units. The aim of the experiment was to identify the scion–
rootstock combination most resistant to a disease of the mango tree, seca, caused by the
Ceratocystis fimbriata fungus. The experimental study began in 1971; the site was visited
12 times, in 1973, 1974, 1975, 1981, 1983, 1985–1990, and 1992, with the condition of
each experimental unit (alive or dead) recorded at each visit. The data are summarized in
Table 1.

In this study, our interest lies in determining the lifetimes of the six scions and seven
rootstocks and in identifying any interaction effect. These lifetimes are not exactly known,
however. For mango trees observed to be dead in 1973, for instance, all we know is that
the event occurred at some time between 1971 and 1973; thus these trees survived between
0 and 2 years. Similarly, mango trees that were alive in 1973 but observed to be dead in
1974 survived between 2 and 3 years, and so on. In addition, data are available for all
units in every visit, and because many mango trees die in the same time interval, many ties
are observed, which can be grouped into disjoint intervals. These types of data, known as
grouped survival data, represent a particular type of so-called “interval-censored” data.

3. METHODS FOR INTERVAL-CENSORED DATA

For the mango tree data, let ti denote the event time of interest for the ith tree (i =
1, . . . , n), which we do not observe directly. It is only known to belong to an interval
denoted by lower and upper time points, (�i, ui ). In addition, let xi be a vector of covariates
for the ith tree. Both left and right censoring can be expressed as special cases of interval
censoring where the observed time interval is (0, ui) for left-censored observations and
(�i,∞) for right-censored observations. Alternative approaches with different properties
can be used to analyze these types of data, as shown in Table 2.

3.1 BASIC METHODS

One of the first methods for estimating the survival function for continuous time-to-
event data was proposed by Kaplan and Meier (1958). Although this method is not ade-
quate for interval-censored data, it can be used when an imputation procedure is being con-
sidered. A key component of any imputation method for the analysis of interval-censored
survival data is the selection of a value, ti , for each interval-censored observation from an
appropriate distribution that satisfies �i < ti < ui . For example, considering the imputed
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Table 2. Properties associated with alternative approaches to analyzing interval-censored survival data.

Property Turnbull Cox Parametric AFT Discrete Aalen

Allows covariates � � � �
Allows time-dependent covariates � � �
Nonparametric type fit � � �
Allows overlapping intervals � � �
Allows time-varying effects � �

times ti (i = 1, . . . , n) as the midpoint of the intervals (�i, ui ), the Kaplan–Meier estimator
for the survival function, S(t) = 1 − F(t), is given by

Ŝ(t) =
∏

j : tj ≤t

(
1 − dj

nj

)
, (3.1)

where t1 < t2 < · · · < tk are the k ordered failure times, dj is the number of failures at tj ,
and nj is the number of individuals at risk on time tj , j = 1, . . . , k.

An analogous estimator for interval-censored data that has no closed form and is based
on an iterative procedure was proposed by Turnbull (1976). Because the failure times for
these data are not observed directly, Turnbull suggested considering a grid of times 0 =
τ0 < τ1 < · · · < τm, which includes all of the points �i and ui for i = 1, . . . , n. For the
ith individual, a weight αij (j = 1, . . . ,m) also is defined; this is an indicator of whether
the event occurring in the interval (�i, ui) could have occurred at τj as well. Taking these
weights and the initial estimate of S(τj ), Turnbull’s algorithm estimates both the number of
events, dj , occurring at τj and the number, nj , of individuals at risk at τj . The estimates,
dj and nj , are then used in (3.1) to update the estimate of the survival function, S(τj ).
This procedure is repeated until the survival function stabilizes. A detailed description of
the steps of Turnbull’s algorithm have been provided by Klein and Moeschberger (2003).
Code implemented in the R statistical environmental for this procedure has been provided
by Giolo (2004).

The disadvantage of these two estimators is that they do not allow the use of covariates.
In what follows, we explore a semiparametric model (Cox), two parametric AFT models
(Weibull and log-logistic), two discrete models (Cox and logistic), and the Aalen additive
hazards model. For all of these models, excluding the discrete models, we consider an
imputation method as well.

3.2 COX PROPORTIONAL HAZARDS MODEL

The Cox proportional hazards model specifies that the hazard and survival functions for
the ith individual with a given covariate vector xi are expressed as

λ(t;xi ) = λ0(t) exp(β1xi1 + · · · + βpxip) = λ0(t) exp(β ′xi ) (3.2)

and

S(t;xi ) = exp

{
−

∫ t

0
λ0(v) exp(β ′xi ) dv

}
= {S0(t)}exp(β ′xi ),



158 S. R. GIOLO, E. A. COLOSIMO, AND C. G. B. DEMÉTRIO

where λ0(·), called the baseline hazard function, is assumed to be unknown, S0(·) =
1 − F0(·) is the corresponding unknown baseline survival function, and β is the regres-
sion coefficient vector. In this model the hazard functions for different values of x are
assumed to be proportional, so that the regression coefficient βm (m = 1, . . . , p) describes
the change in the hazard on a logarithmic scale for a change in the corresponding covariate
xm of one unit, while all other covariates are kept fixed.

The likelihood contribution for the ith individual can be expressed as the difference of
the survivorship functions evaluated at the observed lower and upper time points, that is,
{S(�i;xi ) − S(ui;xi )}. Under the assumption of proportional hazards, S(�i;xi ) is equal to
{S0(�i)}exp(β ′xi ). The likelihood function is then proportional to

L =
n∏

i=1

{S(�i;xi ) − S(ui;xi )} =
n∏

i=1

[{S0(�i)}exp(β ′xi ) − {S0(ui)}exp(β ′xi )
]
. (3.3)

From a nonparametric standpoint, the likelihood function (3.3) is maximized by a dis-
crete distribution for S with mass points at a subset formed by the visit times. This set of
times induces a discrete distribution for S0, because no probability mass is associated with
the follow-up times outside of this set. Finkelstein (1986) proposed a modified Newton–
Raphson method for determining the maximum likelihood estimators. With this approach,
the number of unknown parameters could be very large for continuous time models without
grouping. This could create some numerical problems, especially for inverting the Hessian
matrix at each iteration of the method. Pan (1999a) overcame this drawback by propos-
ing an extension of the iterative convex minorant (ICM) algorithm, which uses only the
diagonal elements of the Hessian matrix. Confidence intervals for the estimates are ob-
tained using a bootstrap resampling method. The R library intcox (Henschel, Heiss, and
Mansmann 2004) can be used to fit this model using the ICM algorithm.

When using an imputation method to analyze the data is desired, the standard Cox model
for continuous survival data can be used. The partial likelihood suggested by Cox (1975)
then can serve as an estimation method for the proportional hazards model. This method
simply estimates the regression coefficients β , allowing the baseline hazard function λ0(t)

to be a nuisance parameter.
For observed or imputed times, an extension of the Cox model (3.2) can be used to

accommodate time-varying regression coefficients. This is expressed as

λ(t;xi (t)) = λ0(t) exp{β ′(t)xi (t)}, (3.4)

where β(t) = (β1(t), . . . , βp(t))′ is the vector of time-varying regression coefficients. For
situations in which time-varying effects are not needed for all covariates, an important
version of the model (3.4) studied by Martinussen and Scheike (2006) is

λ(t;xi (t), zi (t)) = λ0(t) exp{β ′(t)xi (t) + γ ′zi (t)}, (3.5)

where β(t) is a q-dimensional vector of time-varying regression coefficients and γ is an
r-dimensional vector of regression coefficients with q + r = p. According to Martinussen
and Scheike (2006), these two models, particularly model (3.4), may be difficult to fit for
small- to medium-sized data sets and for data sets with many ties.
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3.3 PARAMETRIC AFT MODEL

Let T be the random variable time to the event of interest. The standard way to describe

an AFT model is

log(T ) = β0 + β ′x + σν, (3.6)

where the random variable ν has a density from the location-scale family and σ is a scale

parameter. Then we have

T = exp(β0 + β ′x) exp(σν).

Several distributions can be assumed for ν. Here we assume extreme-value and logistic

distributions, implying that T has Weibull and log-logistic distributions, respectively. For

the Weibull AFT model, the survival function for the ith individual with a given vector of

covariates xi is given as

S(t;xi ) = exp{−tγ exp(β0 + β ′xi )},
where γ = 1/σ is the Weibull shape parameter and β0 is the constant term. A nice feature

of the Weibull distribution is that it is the only distribution that can be formulated as either

an AFT model or a proportional hazards model. In the case where T has a log-logistic

distribution, the survival function is expressed as

S(t;xi ) = 1

1 + exp[{log(t) − (β0 + β ′xi )}/s] ,

where s = 1/σ is the shape parameter.

Under the AFT model, maximum likelihood estimates can be obtained using a

Newton–Raphson optimization procedure for the corresponding likelihood function, L =∏n
i=1{S(�i;xi ) − S(ui;xi )}. Using the convention that {S(�i;xi ) − S(ui;xi )} = f (�i;xi )

if �i = ui , we can accommodate exact failure times.

Note that the covariate effects in the hazard function for the Cox proportional hazards

model are given by (3.2), whereas those for the AFT model are

λ(t;xi ) = λ0
(
t exp{−(β0 + β ′xi )}

)
exp{−(β0 + β ′xi )},

where λ0(·) is the baseline hazard function. Thus, in contrast to the proportional hazards

formulation, in which the covariates just cause the instantaneous hazard value to be mul-

tiplied up or down, the AFT model makes the covariates act directly on the time scale

by accelerating or decelerating the hazard curve. Lesaffre, Komárek, and Declerck (2005)

have provided a nice comparison of the AFT and Cox proportional hazards models. An

important feature of the AFT model is that it does not have a nonparametric formula-

tion, because an estimation method for estimating the baseline hazard nonparametrically

is not available in this model. When considering an imputation method for analyzing the

interval-censored data using the AFT model (3.6), the maximum likelihood for continuous

time-to-event data can be used as an estimation method.
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3.4 DISCRETE MODELS FOR GROUPED DATA

The models proposed herein can be used in a general framework characterized by
interval-censored data. But in some situations, information is available for all units at the
same observed visit time. In this case, interval-censored data are termed grouped survival
data. Certain statistical methods have been designed especially for this particular case.

Suppose that the event times are grouped into k intervals, Ij = [aj−1, aj ), j = 1, . . . , k,
where 0 = a0 < a1 < · · · < ak = ∞, and assume that all censoring is done at the end
of the intervals. In addition, let Rj be the risk set at time aj−1, and let δij be 1 if the
lifetime of subject i ends within Ij and 0 otherwise. Assuming that pj (xi ) = P(ti ≤ aj |
ti ≥ aj−1;xi ), the probability of the ith subject’s death in Ij conditional on being alive at
aj−1, and the covariate values xi , the likelihood function is then given by

k∏
j=1

∏
i∈Rj

{pj (xi )}δij {1 − pj (xi )}(1−δij ), (3.7)

which is the likelihood function from a Bernoulli distribution with response δij and prob-
ability of success pj (xi ). The regression structure represented by the probability pj (xi )

could be modeled by adopting a proportional hazards model (Cox 1972) or a proportional
odds model (Collett 1991). The proportional hazards approach takes pj (xi ) of the form

pj (xi ) = 1 − γ
exp(β ′xi )

j , (3.8)

where γj = S0(aj )/S0(aj−1), j = 1, . . . , k, and S0(·) is the baseline survival function. In
contrast, the proportional odds approach takes pj (xi ) as

pj (xi ) = 1 − {1 + γj exp(β ′xi )}−1, (3.9)

where γj = pj (0)/{1 − pj (0)}, j = 1, . . . , k. Plugging the equations (3.8) and (3.9) into
the likelihood function (3.7) gives us proportional hazards and proportional odds models
for grouped survival data. Model (3.8) can be linearized by using a complementary log-log
transformation (i.e., log[− log{1 − pj (xi )}]), and model (3.9) can be linearized by using a
logistic transformation, such as log[pj (xi )/{1 − pj (xi )}]. Therefore, these models can be
fitted using standard methods for modeling binary data.

3.5 ADDITIVE HAZARDS MODEL

The nonparametric Aalen additive hazards model is an alternative approach to handling
interval-censored data that can be used when an imputation method is considered. This
model is based on assuming that the covariates act in an additive manner, instead of mul-
tiplicatively, on an unknown baseline hazard rate. As in the multiplicative hazards model,
in the additive model of Aalen (1989) we have an event time with a distribution depend-
ing on a vector of (possibly time-dependent) covariates, xi (t) = (xi1(t), . . . , xip(t))′. Thus,
for individual i, the conditional hazard rate at time t , given xi (t), is a linear combination
expressed as

λ(t | xi (t)) = β0(t) +
p∑

k=1

βk(t)xik(t), (3.10)



DIFFERENT APPROACHES FOR MODELING GROUPED SURVIVAL DATA 161

where the regression risk coefficients βk(t), k = 1, . . . , p, are unknown functions that are
to be estimated and are allowed to be functions of time, so that the effect of a covariate may
vary over time. Because directly estimating βk(t), k = 0,1, . . . , p, is difficult, estimating
the cumulative risk function, defined as

Bk(t) =
∫ t

0
βk(u)du, k = 0,1, . . . , p,

is suggested. A least squares technique is used to find the estimates of Bk(t) and the stan-
dard errors of these functions. Defining a n× (p + 1) design matrix, X(t ), with the ith row
given by Xi (t) = (1,xi (t)

′) if the ith individual is a member of the risk set at time t or
with Xi (t) containing only 0’s if the ith individual is not in the risk set at time t , the least
squares estimate of the vector B(t) = (B0(t),B1(t), . . . ,Bp(t))′ is

B̂(t) =
∑
ti≤t

Z(ti)I(ti), (3.11)

where t1 < t2 < · · · are the ordered event times, I(ti ) is a n × 1 vector with the ith ele-
ment equal to 1 if the subject i dies at time t and 0 otherwise, and Z(ti) is defined by
{X′(ti)X(ti)}−1X′(ti). The estimator (3.11) exists only up to the time at which X′(ti)X(ti)

becomes singular, denoted here by τ . The covariance matrix estimator of B̂(t) is

v̂ar(B̂(t)) =
∑
ti≤t

Z(ti)ID(ti)Z′(ti),

where ID(ti) is a diagonal matrix with diagonal elements equal to I(ti).
To test the hypothesis of no regression effects for one or more covariates, Aalen (1993)

described a test in which a (p+1)×(p+1) matrix of weights W(t) with diagonal elements
W0(t),W1(t), . . . ,Wp(t) is needed. This matrix puts weights on the observed follow-up
time similar to the weighted least squares procedure. Possible candidates are Wk(t) equal
to the number of individuals at risk at time t and Wk(t) = constant for k = 0,1, . . . , p. (For
more information, see Aalen 1993 or Lee and Weissfeld 1998.) The test statistic vector
U = (U0,U1, . . . ,Up)′ is then expressed as

U =
∑
ti≤τ

W(ti)Z(ti )I(ti),

and the covariance matrix of U is given by

V =
∑
ti≤τ

W(ti ){Z(ti)ID(ti)Z′(ti)}′W(ti).

Then the hypothesis H0 :βk(t) = 0 for all t ≤ τ and all k ∈ k, where k is a subset of
{0,1, . . . , p}, can be tested using Q = U′

kV−1
k Uk, where Uk is the subvector of U corre-

sponding to elements in k and Vk the corresponding subcovariance matrix. Under H0, Q

has a chi-squared distribution.
The cumulative regression functions, B̂k(t), and their respective 95% confidence inter-

vals obtained by

B̂k(t) ± 1.96
√

v̂ar{B̂k(t)}, k = 0,1, . . . , p,
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when plotted against t , provide a useful tool for evaluating the cumulative excess of risk
over time.

There is no special estimation procedure for the Aalen model that includes interval-
censored data. But because of this model’s nonparametric structure, the same results are
obtained for any imputation method used in the analysis of grouped survival data, because
the intervals are disjoint and the estimation method is based only on the failure time ranks.

4. RESULTS AND DISCUSSION

In this section we use the models presented in Section 3 to analyze the mango tree
data set described in Section 2. The full model formulation for β ′x was blocks + scions +
stocks + scions ∗ stocks, where scions ∗ stocks represents the interaction term between
scions and rootstocks. In addition, the age effect was included for the discrete models.
Only the results for scions and blocks are shown, because the other factors (stocks and in-
teraction) were not significant in any of the models. Survival function estimates comparing
significant scion differences are presented for each model. Results considering the data as
interval-censored are given in Section 4.1, and those for the midpoint imputation are given
in Section 4.2. The R statistical environment (R Development Core Team 2008) was used
for all analyses.

4.1 ESTIMATES CONSIDERING THE DATA AS INTERVAL-CENSORED

Table 3 gives parameter estimates and the p-values of the Wald-type tests (Cox and
Hinkley 1974) for the Cox proportional hazards model and two parametric AFT models
(Weibull and log-logistic), fitted by considering the data to be interval-censored. For these
models, Figures 1 and 2(a) present the estimated survival probability for each scion. These
curves are based on the first block, but the curves for all blocks are similar.

Table 3. Parameter estimates of the Cox, Weibull, and log-logistic AFT models fitted by considering the mango
tree data set as interval-censored, and the corresponding bootstrap confidence intervals for the Cox
model parameters.

Cox Weibull AFT log logistic AFT

95% bootstrap
Parameter Estimate confidence intervals Estimate p-value Estimate p-value

β0 3.027 <0.001 2.955 <0.001
β1: Block 2 −0.023 (−0.618, 0.567) −0.012 0.924 −0.100 0.517
β2: Block 3 0.011 (−0.493, 0.549) −0.021 0.865 −0.014 0.924
β3: Block 4 0.566 (0.135, 1.046) −0.237 0.039 −0.219 0.126
β4: Block 5 0.568 (0.090, 1.155) −0.245 0.036 −0.289 0.051
β5: Scion 2: Oliveira −0.621 (−0.873,−0.736) 0.218 0.097 0.204 0.204
β6: Scion 3: Pahiri −0.070 (−0.628, 0.522) −0.030 0.811 −0.227 0.199
β7: Scion 4: Imperial −0.319 (−0.831, 0.267) 0.113 0.375 0.097 0.535
β8: Scion 5: Carlota −0.423 (−1.098, 0.266) 0.154 0.238 0.074 0.646
β9: Scion 6: Bourbon 0.694 (0.302, 1.193) −0.201 0.083 −0.151 0.306
log(1/γ ) −0.797 <0.001
log(s) −0.918 <0.001
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Figure 1. Survival probabilities estimated from the (a) Weibull AFT model and (b) log-logistic AFT model
considering the mango tree data as interval-censored.

As shown in Table 3, estimated fitted values were consistent for all models, indicating
that Extrema differs from Oliveira and Bourbon. According to Figures 1 and 2(a), Oliveira
was the most disease-resistant scion variety studied, exhibiting the highest probability of
survival over time. Based on the Cox and Weibull AFT models, Bourbon was the most
susceptible scion variety, exhibiting the lowest survival probabilities. The log-logistic AFT
model indicated that Pahiri and Bourbon were the most susceptible varieties, and the other
scion varieties were of intermediate susceptibility.

Table 4 gives the parameter estimates for the two fitted discrete models, along with
age-effect estimates. The results of block and scion effects are in agreement with those
presented in Table 3. Figures 3(a) and (b) show survival probabilities estimated from dis-
crete proportional hazards and discrete proportional odds models in the context of grouped
data. From these graphs, we can see that both models yielded similar results. Conclusions

Figure 2. Survival probabilities estimated from the Cox proportional hazards model considering (a) the mango
tree data as interval-censored and (b) the midpoint imputation.

http://pubs.amstat.org/action/showImage?doi=10.1198/jabes.2009.0010&iName=master.img-000.png&w=357&h=163
http://pubs.amstat.org/action/showImage?doi=10.1198/jabes.2009.0010&iName=master.img-001.png&w=356&h=161
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Table 4. Results obtained from the discrete models fitted by considering the mango tree data as grouped data
(disjoint intervals) with γ ∗

r = log(γr ) representing the r th age effect.

Proportional odds model Proportional hazards model

Parameter Estimate p-value Estimate p-value

γ ∗
1 −3.089 <0.001 −3.086 <0.001

γ ∗
2 −3.471 <0.001 −3.449 <0.001

γ ∗
3 −5.563 <0.001 −5.508 <0.001

γ ∗
4 −3.427 <0.001 −3.401 <0.001

γ ∗
5 −4.806 <0.001 −4.751 <0.001

γ ∗
6 −2.171 <0.001 −2.201 <0.001

γ ∗
7 −2.609 <0.001 −2.630 <0.001

γ ∗
8 −2.276 <0.001 −2.280 <0.001

γ ∗
9 −1.349 <0.001 −1.433 <0.001

γ ∗
10 −2.186 <0.001 −2.217 <0.001

γ ∗
11 −0.782 0.029 −0.916 0.004

γ ∗
12 −2.093 <0.001 −2.104 <0.001

β1: Block 2 −0.001 0.999 −0.025 0.927
β2: Block 3 0.013 0.965 0.012 0.965
β3: Block 4 0.615 0.028 0.576 0.023
β4: Block 5 0.630 0.026 0.577 0.025
β5: Scion 2: Oliveira −0.653 0.040 −0.629 0.030
β6: Scion 3: Pahiri −0.033 0.914 −0.072 0.796
β7: Scion 4: Imperial −0.304 0.324 −0.324 0.251
β8: Scion 5: Carlota −0.384 0.227 −0.432 0.141
β9: Scion 6: Bourbon 0.768 0.009 0.711 0.006

regarding the most resistant and most susceptible scion varieties are the same as those

obtained from the Cox proportional hazards and Weibull AFT models.

Figure 3. Survival probabilities estimated from the discrete proportional hazards model (a) and the discrete
proportional odds model (b) for the mango tree data set.
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We could not check the adequacy of the fitted models, because, as far as we know, no
statistical techniques are available for this purpose.

4.2 ESTIMATES CONSIDERING THE MIDPOINT IMPUTATION

Table 5 gives parameter estimates for the same models as in Table 3 as well as for the
Aalen model (3.10), now considering the midpoint imputation in the analysis of the mango
tree data. In general, the results are very similar, especially when the corresponding values
are compared in Tables 3 and 5. The survival curve estimates for Cox proportional hazards
and both parametric AFT models in Table 5 are shown in Figures 2(b) and 4.

To compare the six scions of the mango tree data set, we obtained the estimated cumu-
lative rates and their respective 95% confidence intervals from the Aalen additive hazards
model, as shown in Figure 5. Figure 5(a) shows that the risk of the Extrema variety in-
creased over time, becoming more accentuated from 14 years on. Figure 5(b) compares the
cumulative excess of risk for Oliveira and Extrema. Apparently there was no excess risk
from 0 to 14 years, because the slopes are close to zero for this period. After that, the risk
decreased, demonstrating that Oliveira is more resistant than Extrema. Figure 5(c) shows
a slightly increased risk for Pahiri compared with Extrema. Figures 5(d) and (e) show no
excess risk for either Imperial and Carlota compared with Extrema. Finally, the excess risk
for Bourbon compared with Extrema increased from 14 years on. Thus, as affirmed by the
Aalen additive model, Oliveira is the most resistant scion variety, and Bourbon is the most
susceptible scion variety.

To evaluate the adequacy of the fitted models, we obtained the Schoenfeld residuals
(Therneau and Grambsch 2000) for the Cox model (3.2). No violation was detected in
the residuals (not shown), and thus the model can be considered adequate for the imputed
data set. The residual plots for the Weibull and log-logistic AFT models presented in Fig-
ures 4(b) and (d) show evidence that these models are inadequate, because no straight

Table 5. Results from Cox, Weibull, and log-logistic AFT and Aalen models fitted by considering the midpoint
imputation for analyzing the mango tree data set.

Cox Weibull AFT log logistic AFT Aalen (at τ = 18.5)

Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value

β0 3.032 <0.001 2.961 <0.001 1.166 <0.001
β1: Block 2 −0.002 0.990 −0.013 0.916 −0.106 0.513 −0.116 0.964
β2: Block 3 0.012 0.960 −0.022 0.863 −0.015 0.920 −0.042 0.821
β3: Block 4 0.503 0.048 −0.245 0.041 −0.229 0.128 0.606 0.079
β4: Block 5 0.514 0.046 −0.253 0.037 −0.301 0.052 0.494 0.111
β5: Scion 2: Oliveira −0.551 0.060 0.224 0.102 0.210 0.213 −0.607 0.038
β6: Scion 3: Pahiri −0.028 0.920 −0.034 0.797 −0.241 0.194 −0.238 0.790
β7: Scion 4: Imperial −0.256 0.360 0.116 0.382 0.100 0.543 −0.469 0.220
β8: Scion 5: Carlota −0.325 0.260 0.158 0.245 0.077 0.646 −0.563 0.238
β9: Scion 6: Bourbon 0.614 0.018 −0.204 0.092 −0.150 0.330 1.419 0.015
log(1/γ ) −0.758 <0.001
log(s) −0.866 <0.001
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Figure 4. Survival probabilities estimated from the Weibull AFT model (a) and log-logistic AFT model (c)
considering the midpoint imputation, and residual plots for the Weibull AFT model (b) and the log-logistic AFT
model (d).

lines can be seen. A residual analysis (not shown) of the Aalen additive model (3.10) pro-
vided evidence of this model’s suitabilty for analyzing the mango tree data. Klein and
Moeschberger (2003) have provided details of this residual analysis.

In general, the estimated survival curves obtained from both discrete models in the con-
text of grouped data were very similar to those obtained from the Cox proportional hazards
model. These results were not observed for the two parametric AFT models when the data
were considered either as interval-censored or imputed. The parametric survival curves for
these models decreased more rapidly than those from the other models. Therefore, Cox
proportional hazards (3.2), Aalen additive hazards (3.10), and both discrete models (3.8)
and (3.9) are adequate for analyzing the mango tree data set. Based on our data, we con-
clude that, independent of the block, Oliveira was the most resistant scion variety to the
disease under study and Bourbon was the most susceptible variety. All other scion varieties
exhibited intermediate resistance.

5. CONCLUDING REMARKS

Table 6 summarizes the four classes of models considered in this article for analyzing a
grouped survival data set. From this table, it can be seen that the Aalen model can be used
when an imputation method is considered and the discrete models are formulated only for
grouped survival data.
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Figure 5. Estimated cumulative regression functions for t ≤ 18.5 years (bold lines) and respective 95% confi-
dence intervals (thin lines) obtained by fitting the Aalen additive hazards model for the mango tree data set using
the midpoint imputation.

Although imputation seems to be a common practice among statistical users, some cau-
tion is needed. Imputation might result in biased estimates, especially if the intervals are
wide and a large proportion of ties fall into just a few intervals. Some features of impu-
tation make it attractive, however. For instance, many software programs and techniques
for evaluating model adequacy are available. For the mango tree data, the results obtained
when the midpoint imputation was used were very similar to those obtained when the data
were considered to be grouped, indicating that the midpoint imputation worked well. Im-
putation likely can be justified because the intervals were not too wide for these data, as
shown in Table 1.

An important issue related to the parametric AFT models considered in this article is
their adequacy. These models are completely parametric and thus are subject to biased
estimates if their assumptions are not satisfied. The Cox proportional hazards model is
more robust, but still requires verification of the proportional hazards assumption. The

Table 6. Models and approaches considered in the mango tree data.

Approach Cox Parametric AFT Discrete Aalen

Imputation method � � �
Grouped data � � �

http://pubs.amstat.org/action/showImage?doi=10.1198/jabes.2009.0010&iName=master.img-004.png&w=356&h=246
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results obtained from the Cox and AFT models differed for the mango tree data analyzed
here. Graphical residual analysis performed for these models in the imputed data approach
demonstrated that the AFT models did not provide reasonable fits to the data.

The discrete models considered in this article can be used only when the data set is
grouped. Both of these models gave very similar results for the mango tree data set. Their
results also were similar to those obtained by fitting the Cox model, considering the data as
either grouped or imputed. Finally, the additive hazards model, which is not often used for
analyzing grouped data, appears to be an interesting alternative for handling these types of
data. The main advantage of this model is that the unknown risk coefficients are allowed
to be functions of time, so that the effect of a covariate may vary over time. This feature
can be seen for the mango tree data set in Figure 5. Because of this model’s nonparametric
nature, estimates from it are robust to the choice of imputation values in the presence of
grouped data.
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