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Spain

Abstract: Interval censoring is encountered in many practical situations when the event of interest
cannot be observed and it is only known to have occurred within a time window. The theory for
the analysis of interval-censored data has been developed over the past three decades and several
reviews have been written. However, it is still a common practice in medical and reliability studies
to simplify the interval censoring structure of the data into a more standard right censoring situation
by, for instance, imputing the midpoint of the censoring interval. The availability of software for right
censoring might well be the main reason for this simplifying practice. In contrast, several methods
have been developed to deal with interval-censored data and the corresponding algorithms to make the
procedures feasible are scattered across the statistical software or remain behind the personal computers
of many researchers. The purpose of this tutorial is to present, in a pedagogical and unified manner,
the methodology and the available software for analyzing interval-censored data. The paper covers
frequentist non-parametric, parametric and semiparametric estimating approaches, non-parametric
tests for comparing survival curves and a section on simulation of interval-censored data. The methods
and the software are described using the data from a dental study.
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1 Introduction

Most statistical methods developed for the analysis of survival data assume that
the event which defines the start of the survival is known and allows the event E
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that determines failure and hence the survival time, to be right censored. In many
situations, however, the event of interest E cannot be observed and it is only known
to have occurred within two times, say L and R. In this set-up, we say that the time
T to E is interval censored.

Interval-censored data is an actively researched area which can be encountered
nowadays in a large number of situations. More than 600 papers (according to the
Web of Science’s search on 17 October 2008) have been published since Peto’s pioneer
paper in 1973 analyzing girls’ sexual maturity development. Among those, more than
150 have appeared in the last 3 years and although most of them may be classified
under the area of Statistics and Probability, a great number belong to many other
areas within medical studies such as Oncology, Immunology, Infectious Diseases,
Transplantation, as well as in Mathematical and Computational Biology, Computer
Science, Electrical Engineering, Environmental Sciences, Veterinary Sciences, Food
Science, among others. These papers have focused on the different types of interval-
censored mechanisms, in deriving theoretical properties for the survival function or
hazard function estimators, in dealing with regression problems where either the
response or one covariate is interval censored, and mainly in addressing scientific
questions where one of the features in the data is their incompleteness due to an
interval censoring mechanism.

The theory for the analysis of interval-censored data has been developed over
the past three decades and several reviews have been written. The first two reviews
written by Huang and Wellner (1997) and Lindsey and Ryan (1998) have been a
keystone but are outdated by many of the interval-censored methods. Two recent
reviews are by Gómez et al. (2004) and Lesaffre et al. (2005) who attempt to collect
and unify methods of analysis for lifetime data when part of the data is interval
censored. The former emphasizes the nature and the consequences of the censoring
mechanism and states the assumptions on the inspection process so that the survival
function is estimable, whereas the latter places emphasis on the use of accelerated
failure time models. However, both of them need to be updated to include the major
contributions on software of the last 4 years. The recent comprehensive book by
Sun (2006) is intended for a technical audience with a thorough background in
statistics and in computational methods. Sun’s book addresses statistical issues and
describes statistical methods for the analysis of singly and doubly interval-censored
survival data arising from AIDS, cancer and other disease studies, though it lacks
more detailed and hands-on examples with indications on how to use the available
software to analyze interval-censored data. More details and extensions of what our
paper covers can be found in the first six chapters of Sun’s book.

The purpose of this tutorial is to present, in a pedagogical and unified manner, the
methodology to analyze univariate interval-censored lifetime data together with the
available software to do so. As already mentioned, the literature on interval-censored
data is so extensive that a comprehensive description of all the methodologies is not
feasible. Instead we have picked a number of methods based on the availability of
free software for applying them to real data. The paper is organized as follows. This
section is completed with the presentation of several motivating examples and the
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dental study that will be used throughout the paper to illustrate the methodologies
(Sections 1.1 and 1.2); the description of different formulations of interval censoring
(Section 1.3); the notation is introduced in Section 1.4 together with a discussion
of the non-informative and identifiability assumptions and, finally, Section 1.5 is
devoted to the available software for interval censoring. Section 2 is devoted to
non-parametric methods for interval censoring, describing in detail the expectation–
maximization (EM) self-consistency algorithm and the software for the EM and EM–
iterative convex minorant (ICM) algorithms. Section 3 presents a general framework
of hypothesis testing for comparing survival curves extending the Fleming and Har-
rington family of tests. Section 4 includes parametric and semiparametric regression
models. We discuss the log-linear representation of parametric survival models and
the available methods for analyzing interval-censored data under a semiparametric
proportional hazards model. The alternative approach based on a semiparametric
accelerated failure time model is addressed by Komárek and Lesaffre (2009) in the
paper following this one in this same volume. We have included a section on simula-
tion (Section 5) where we discuss how to generate non-informative interval-censored
data. Section 6 overviews, not exhaustively, several issues not considered in this
paper. The paper closes with two appendices covering the available libraries in the R
package to analyze interval-censored data and with a succinct review on commercial
statistical software which can deal with interval-censored data.

1.1 Motivating illustrations

We have chosen five papers to exemplify different interval censoring mechanisms.
One of the first applied papers to deal with the interval censoring problem was by De
Gruttola and Lagakos (1989) who estimated the chronological time to HIV infection
among haemophiliacs receiving contaminated blood factor between 1978 and 1988.
The data were collected at the Hospitals Kremlin Bicêtres and Coeur des Yvelines
in France where blood samples were periodically collected and stored and retrospec-
tively tested to determine a time interval during which the infection occurred. The
infection was only known to be between the times specified by the last negative and
the first positive assessment, yielding, hence, interval-censored observations.

Interval-censored data are quite usual in longitudinal studies where subjects are
not monitored continuously but scheduled to be inspected at certain times. In these
cases, the time to the event of interest is observed within consecutive visits. One such
study is described in Leung et al. (1997) when analyzing the time from employment to
the development of asthmatic symptoms (wheezing and dyspnoea) among aluminum
potroom workers from a respiratory health study in the Nordic countries between
1986 and 1989. The study endpoint here is only determined by periodical health
examinations and hence is interval censored.

In a retrospective study aimed to estimate the elapsed time to HIV infection since
entering the intravenous drug users risk group, Gómez et al. (2000) and Langohr et al.
(2004) analyze the data on 306 intravenous drug users who were admitted to the
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Hospital Germans Trias i Pujol in Badalona, Spain, for a desintoxication treatment
between 1987 and 1995. The time to HIV infection since the start of injecting drugs
is interval censored since for some patients we only have one date for the latest
negative test and another in which she/he is HIV-positive, and these two dates define
the interval where the HIV infection has occurred. For others, we have only one test
indicating whether the patient is HIV-negative or HIV-positive and in those cases, a
semi-interval of seroconversion can be defined.

Interval censoring is found, as well, in non-medical studies, for instance in a
demographic panel survey on social, geographical and wealth mobility in the 19th
and 20th centuries in France where the use of retrospective surveys and popula-
tion registry data permits to estimate the distribution of migrations or job changes
over time. Courgeau and Najim (1996) analyze these data taking into account their
interval-censored nature due to the fact that residential or occupational mobility is
only known between two censuses or family events.

In shelf-life studies, the probability of consumers accepting or rejecting a product
beyond a certain storage time is of interest. Hough et al. (2003) use the storage times
of the product together with whether the consumer accepts or rejects the product at
this time to define censoring intervals based on which the distribution function for
the time to rejection is estimated.

1.2 The Signal Tandmobiel� study

Throughout the tutorial, we will use the data from the Signal Tandmobiel� study.
This is a longitudinal prospective oral health study conducted in Flanders (Belgium)
from 1996 to 2001. A cohort of 4430 randomly sampled schoolchildren (2297 boys
and 2133 girls) who attended the first year of the primary school at the beginning of
the study was annually dental examined by one of 16 trained dentists. The original
data set consists of at most six dental observations for each child including time of
tooth emergence, caries experience and data on dietary and oral hygiene habits. For
details of the study design and research methods see Vanobbergen et al. (2000). From
a methodological viewpoint, this data set has already been presented in Bogaerts and
Lesaffre (2004) and in Komárek and Lesaffre (2006, 2007, 2008), among others.

In this paper, we will restrict the analysis to the emergence time distribution of
the permanent upper left first premolars (teeth 24 in European dental notation).
We define T24 as the age (in years) of emergence of permanent tooth 24. Baseline
information includes also gender: 0 = boy (52%), 1 = girl (48%) and dmf which
stands for the status of the primary predecessor of this tooth: 0 (57%) if the primary
predecessor was sound, 1 (43%) if it was decayed, missing due to caries or filled. For
the purpose of the illustration, we have excluded 44 cases for which the variable dmf
is missing. The age of emergence of permanent tooth 24 is both interval censored
(2775, 63%) as well as right censored (1611, 37%), being the length of the intervals
between 0.4 and 4.5 years with a mean time of 0.95 year. The distribution of the cen-
soring times looks alike between boys and girls and whether the primary predecessor
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of the permanent first premolar was sound or decayed. As suggested in Komárek and
Lesaffre (2009), since permanent teeth do not emerge before the age of 5, the origin
time for all analyses is set at 5 years and Ti − 5 is taken instead of Ti throughout.

We will describe the times to emergence by means of the non-parametric maximum
likelihood estimator (NPMLE) of the distribution function in Section 2.4 and we will
investigate whether the rate of emergence of these teeth is similar for boys and girls
in Section 3.3. The question on the impact of gender and dmf on the emergence time
of T24 will be answered both via a parametric regression analysis in Section 4.1.2 and
under the assumptions of a proportional hazards model in Section 4.2.1.

The same data set is being analyzed in Komárek and Lesaffre (2009), who extend
the analysis to include remaining permanent first premolars (teeth 14, 34, 44). In their
paper, multivariate analyses by means of flexible accelerated failure time models are
considered.

1.3 Interval censoring types

Different censoring mechanisms give rise to interval-censored data of varying nature
and the methods and the theoretical developments behind these are also different
and not necessarily interchangeable. Basically, we refer to interval-censored data to
those situations where instead of observing the actual value of a random variable T ,
we only observe a window (L , R] where T has occurred. The practical use of closed
or half-open intervals depends on the way the observations were collected. The
continuous nature of the variables would induce us to think that such a precision
is not important, but in fact different interpretations lead to different likelihood
functions, which in turn imply different non-parametric estimates (Ng, 2002) and the
theoretical challenges posed by these types of censoring are of a very distinct nature.
Turnbull’s (1976) pioneer paper considered closed intervals. The advantage of closed
intervals is that they incorporate both uncensored exact observations (when L = R)
as well as group data which might appear when the inspection times are measured in a
rather rough scale (for instance in years). However, since half-open intervals are more
common and appear in situations where the individuals are inspected intermittently,
we will mainly focus on the inference and analysis based on the observation of half-
open intervals as in (L , R]. The methods explained in this tutorial could be easily
adapted to closed intervals.

Since several types of interval-censored data can be seen in practice and their
corresponding censoring mechanism is formalized in different ways, we next list the
most relevant cases.

Case I interval-censored data or current status data: T is only known to be larger
or smaller than an observed monitoring time, C . In this case, the study subject is
observed only once producing either a left- or a right-censored observation. This
type of data is encountered, for instance, in animal tumourigenicity experiments
where animals die or are sacrificed at predetermined time intervals and are examined
for the presence or absence of a tumour. If the tumours are irreversible, the observed
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death times (natural and sacrifices) provide left- and right-censored observations on
the time until tumour onset; that is, if the animal dies at time t and if the tumour is
present we have the interval (0, t], while if the tumour is absent we have the interval
(t,∞] (Gómez and Van Ryzin, 1992).

Case II interval-censored data: In experiments with two monitoring times, U and
V with U < V , the survival time of interest T is only known to be before the first
monitoring time (T ≤ U ), between the two monitoring times (U < T ≤ V ), or after the
second monitoring time (T > V ). A situation that might be encountered sometimes is a
mixed one where the observed intervals are complemented by some exact observation.
Yu et al., (2000) generalize the case II model, so that exact observations are as well
allowed.

Case K interval-censored data: In longitudinal studies with periodic follow-up and
K monitoring times M1, M2, · · · , MK , the event of interest is only observed between
two consecutive inspecting times Ml, Ml+1 and the observed data reduce to the interval
(Ml, Ml+1]. This censoring scheme corresponds to a natural extension of case I and
case II mechanisms and is discussed and extended in Schick and Yu (2000). These
authors generalize the model so that the number of monitoring times K is random.

1.4 Notation, observable data, non-informativity and identifiability
assumptions

We assume that the positive random variable T , the time until the event of interest
E , is governed by a right continuous distribution function W (t) = Prob(T ≤ t) with
survival function S(t) and support SW = {t ≥ 0 : dW (t) > 0}.

A model for interval-censored data is described by the joint distribution FL ,R,T
between the random variable T and the observables (L , R), with range {(l, r, t) :
0 ≤ l < t ≤ r < ∞}, that is, under the constraint that Prob(T ∈ (L , R]) = 1.
The marginal laws are denoted by dW (t) and d FL ,R(l, r ), the latter represents the
contribution to the likelihood of an individual with observed interval (l, r ] and is the
proper basis for inference.

The main assumption we use throughout all the paper is that censoring occurs
non-informatively in the following sense: the conditional distribution of T given L
and R satisfies:

d FT |L ,R(t |l, r ) =
dW (t)

P(T ∈ (l, r ])
1l{t∈(l,r ]}(t), (1.1)

that is, the only information provided by the censoring interval (l, r ] about the
survival time t is that the interval contains t (Self and Grossman, 1986). The intu-
ition behind the non-informative assumption is clarified by the equivalent notion of
coarsening at random (Heitjan and Rubin, 1991) which establishes that given any
two specific values t and t ′ of T consistent with the observables, they always pro-
vide the same information, that is, on the set {(l, r ) : t ∈ (l, r ] and t ′ ∈ (l, r ]},
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d FL ,R|T (l, r |t) = d FL ,R|T (l, r |t ′). It is also worth noting that an alternative non-
informative condition stating that the observables (l, r ) are not influenced by the
specific value of T in (l, r ], that is,

d FL ,R|T (l, r |t) =
d FL ,R(l, r )

P(T ∈ (l, r ])
1l{t∈(l,r ]}(l, r ), (1.2)

is also equivalent to (1.1). The non-informative assumption is relevant and not always
fulfilled. We refer the reader to Oller et al. (2004) for a sound explanation with
illustrative examples of this concept.

The likelihood function is of paramount importance in making inferences, thus
its appropriateness is worth a discussion. In a study with n subjects, their potential
times to E , say T1, T2, . . . , Tn, are not observed and the observable data set is then
D = {(l1, r1], . . . , (ln, rn]}. The contribution to the likelihood of the ith individual
with observed interval (li , ri ] is given by d FL ,R(li , ri ) = Prob(L ∈ dli , R ∈ dri , T ∈
(li , ri ]), hence the overall likelihood is given by

L O

(
S(·)|D

)
=

n∏
i=1

d FL ,R(li , ri ) =
n∏

i=1

Prob(L ∈ dli , R ∈ dri , li < T ≤ ri ).

However, the interval censoring problem has been generally treated via the so-called
simplified likelihood function defined as

L
(

S(·)|D
)

=
n∏

i=1

∫
{t :t∈(li ,ri ]}

dW (t) =
n∏

i=1

[S(li ) − S(ri )]. (1.3)

This likelihood considers the observed intervals as being fixed in advance and ignores
their randomness. There are two situations where the censoring process can be
ignored and the simplified likelihood be used for inferences: the censorship model
holds either the non-informative assumption or the constant-sum assumption (see
Oller et al., 2004). The non-informative assumption implies that the censoring pro-
cess does not affect the survival process. For instance, in longitudinal studies with
periodic follow-up, this assumption holds when the monitoring times are indepen-
dent of T . The constant-sum property is a slightly weaker assumption and in this
situation the censoring process may affect survival but does not alter the results of
non-parametric inference.

Another important issue concerns the identifiability of the model. Given a cen-
sorship model FT,L ,R, we say that W is non-identifiable when there exists another
censorship model having different lifetime distribution but sharing the same lifetime
support SW and the same distribution for the observables FL ,R. Oller et al. (2007)
give a constructive way of obtaining censorship models with W being non-identifiable.
The authors also show that to ensure complete identifiability of W , the constant-sum
assumption is necessary but not sufficient. Under the constant-sum assumption, there
are specific situations in which it is possible to ensure complete identifiability, for
instance, when uncensored data are allowed for the whole support of the lifetime
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variable, i.e., when d FL ,R(t, t) > 0 for any t ∈ SW . This identifiability assumption is
rather mild and it is typically satisfied in applications with right-censored data. We
could assure the identifiability of W , for instance, in those situations where each indi-
vidual is inspected a countable number of times by means of an inspection process
independent of T if the support of L or R covers SW = (0, +∞).

1.5 Software for interval censoring

Most of the available statistical software support survival analysis methods for right-
censored data. However, few of them are ready to incorporate interval-censored data
and those which are have different capabilities. As far as we know, SAS (SAS Institute
Inc.) and STATA (StataCorp LP) incorporate functions to estimate the survival func-
tion non-parametrically and to run parametric regression analysis. Neither of these
is ready to incorporate semiparametric and flexible accelerated failure time analy-
sis. By contrast, the commercial statistical software SPSS (SPSS Inc.), in its present
version 17, does not offer functions to deal with interval-censored data. We address
the reader to Appendix B for a description of the capabilities of these commercial
software packages.

The commercial software S-PLUS (TIBCO Software Inc.) and, especially, the free
software R from the R Development Core Team (2008) are nowadays the most
complete sources for survival analysis with interval-censored data. In recent years,
the R software has become more and more popular among statisticians not only
because of its free availability but also because it offers the same statistical proce-
dures as any other commercial software. Many statisticians worldwide contribute
continuously with specific packages to extend R’s possibilities for statistical analyses.
In Appendix A, different R packages to analyze interval-censored data are presented
and several of the capabilities of S-PLUS are briefly described (see Appendix B.1).

For the reasons mentioned above, we have chosen to present and illustrate our
analyses with R. These illustrations can be found at the end of each of the following
sections and the reader is encouraged to reproduce them. To do so, one needs R
and the data set (tooth24.RData) which can be downloaded from the follow-
ing website: http://www-eio.upc.es/grass/. Knowledge on R is helpful but
not indispensable and if it is not available yet on the computer, it can be installed
following the instructions on the web pages of the R Project for Statistical Comput-
ing: http://www.r-project.org/. Once R is installed successfully, the data set
can be opened by double clicking on tooth24.RData and the instructions can be
copied from our illustrations.

2 Non-parametric estimation of the survival function

The most basic approach for analyzing interval-censored survival data is the non-
parametric estimation of the survival function. Without the need of any modelling
assumption, the estimated curves can be easily interpreted in a similar way as the
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Kaplan–Meier curves for right censoring. This is usually the first analysis performed
on a survival time with interval censoring and can be the basis for further parametric
or semiparametric analysis.

In a study of n individuals with interval-censored observations and non-informative
censoring, as defined in (1.1), inferences can be based on the above simplified likeli-
hood function (see (1.3)), i.e.,

L
(

S(·)|D
)

=
n∏

i=1

Prob{li < Ti ≤ ri} =
n∏

i=1

[S(li ) − S(ri )] ,

where D = {(li , ri ], i = 1, . . . , n}.
The goal is to find a monotonically decreasing function Ŝn(t) which maximizes

the likelihood function L
(

S(·)|D
)
. There are different algorithms for obtaining the

NPMLE of the survival function under interval censoring which are described in
Sections 2.1 and 2.2.

2.1 Self-consistency algorithm

One of the most popular methods to obtain a non-parametric estimator for the
survival function under interval censoring is the use of self-consistency or Turnbull’s
algorithm (Turnbull, 1976). Turnbull extended the ideas of Peto (1973) to a more
general problem, the analysis of arbitrarily grouped, censored and truncated data and
proposed to obtain the non-parametric estimator of the survival function through
the self-consistency equations.

The search of the NPMLE of the survival function under interval censoring
requires the definition of a set of intervals, the so-called Turnbull intervals, denoted
by I = {(q1, p1], (q2, p2], . . . , (qm, pm]}. These intervals are obtained from the set
of all left and right interval endpoints in such a way that q j is a left endpoint, p j

is a right endpoint and there is no other left or right endpoint between q j and p j .
Turnbull proved that a maximum likelihood estimator of the survival function under
interval censoring concentrates its mass on this set of intervals. Specifically, he stated
that the search of the non-parametric MLE of S should be performed within the class
of survival curves which are constant outside the set of Turnbull intervals and that
the estimated survival curve is unspecified within each (q j , p j ].

From these results and denoting by w j = Prob{q j < T ≤ p j} = S(q j ) − S(p j )
the weight of the jth Turnbull’s interval, j = 1, . . . , m, maximization of L

(
S(·)|D

)
for obtaining the NPMLE of the survival function reduces to maximization of the
following likelihood function:

LT (w1, . . . , wm) =
n∏

i=1

( m∑
j=1

αi
jw j

)
, (2.1)

Statistical Modelling 2009; 9(4): 259–297



268 Guadalupe Gómez et al.

where αi
j = 1l{(q j , p j ] ⊆ (Li , Ri ]} indicates whether or not the interval (q j , p j ] is

contained in (li , ri ] and the parameters are subject to the constraints w j ≥ 0 and∑m
j=1 w j = 1.
The NPMLE for the survival function is a decreasing step function with gaps inbe-

tween corresponding to the unidentifiability of the function within each Turnbull’s
interval (q j , p j ]. Specifically, the NPMLE for S(t), based on D, is given by

Ŝn(t) =

{
1, if t ≤ q1,

1 − (ŵ1 + · · · + ŵ j ), if p j ≤ t ≤ q j+1, 1 ≤ j ≤ m − 1,
0, if t ≥ pm,

and is not specified within (q j , p j ], for 1 ≤ j ≤ m. We illustrate the construction of
Turnbull intervals and the likelihood function in the following example.

Example: Given a set of six individuals with censoring intervals {(li , ri ], 1 ≤ i ≤
6} = {(4, 7], (3, 5], (0, 2], (1, 4], (6, 9], (8, 10]}, the corresponding Turnbull intervals
are given by I = {(q1, p1] = (1, 2], (q2, p2] = (3, 4], (q3, p3] = (4, 5], (q4, p4] =
(6, 7], (q5, p5] = (8, 9]}. The likelihood corresponding to this data set is given by

LT (w1, w2, w3, w4, w5) =
6∏

i=1

[
S(r j ) − S(l j )

]
=

6∏
i=1

⎛⎝ 5∑
j=1

αi
jw j

⎞⎠
= (w3 + w4)(w2 + w3)(w1)(w1 + w2)(w4 + w5)(w5),

and the point (ŵ1,ŵ2,ŵ3,ŵ4,ŵ5) = (1/3, 0, 1/3, 0, 1/3) is the maximizing solution.
Turnbull’s approach for maximizing the likelihood LT (w1, . . . , wm) is based on the

solution of the self-consistent equations and is a special case of the EM algorithm.
A self-consistent estimator of (w1, . . . , wm) can be obtained as the solution of the
following simultaneous equations

ŵ j =
1
n

n∑
i=1

αi
j∑m

l=1 αi
l ŵl

ŵ j , 1 ≤ j ≤ m,

where the dependence on the sample size n of the weights ŵ j has been omitted
for notational simplicity. Turnbull stated the equivalence between the self-consistent
estimator and the NPMLE. Specifically, he proved that (i) any NPMLE (ŵ1, . . . , ŵm)
satisfies the self-consistent equations and (i i) conversely, the solution (ŵ1, . . . , ŵm) of
the self-consistent equations is the NPMLE of (w1, . . . , wm) provided that the Kuhn–
Tucker conditions are fulfilled. The beauty of Turnbull’s EM algorithm resides in
its simplicity and intuitive behaviour; however, its convergence can be very slow for
relatively large sample sizes. More efficient algorithms, such as the ICM proposed by
Groeneboom and Wellner (1992) and the EM-ICM developed by Wellner and Zahn
(1997), have been proposed as alternatives and are explained in Section 2.2. Another
reformulation of the ICM is proposed by Pan (1999) and it is succinctly covered in
4.2.
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2.2 ICM and EM–ICM algorithms

Groeneboom and Wellner (1992) proposed more efficient optimization techniques
to obtain the NPMLE of the distribution function under interval censoring using an
ICM algorithm which is a special case of the generalized gradient projection opti-
mization method. This method combines a Newton–Raphson scheme with isotonic
least squares regression that guarantees that the new estimate at each step of the
iterative process is a proper distribution function. Wellner and Zhan (1997) pro-
posed a hybrid algorithm that combines the self-consistency algorithm and the ICM
algorithm, named EM–ICM. Each step in the EM–ICM algorithm performs the ICM
algorithm and uses the current ICM estimate to obtain a new EM estimate. Both
ICM and EM–ICM converge in fewer iterations than the EM algorithm, but this
advantage does not always result in shorter computational times. The main advan-
tage of ICM and EM–ICM is that their global convergence is guaranteed while the
solution of the self-consistency algorithm is not necessarily the NPMLE.

2.3 Asymptotic behaviour of the NPMLE

The study of the asymptotic properties of the NPMLE of the survival function under
interval censoring is much more complicated than under exact and right censoring
due, on one hand, to the ‘poor’ amount of information that an interval could entail;
second, because often the number of parameters to be estimated increases with sample
size and hence standard likelihood theory fails, and third, because the NPMLE cannot
be expressed in terms of a counting process and martingale theory cannot be applied.
Groeneboom and Wellner (1992), under the assumptions that S(t) is continuous and
that the support of S(t) is contained in the union of the supports of L and R, prove
the uniform strong consistency of the NPMLE and show that the estimator of S(t)
obtained at the first step of the ICM algorithm converges to S(t) at the

√
n log n

rate and that its asymptotic distribution is not normal. The reader is addressed to
Groeneboom and Wellner (1992), and the following papers of these authors, for a
thorough discussion.

In what follows, we summarize the required main assumptions to assure uni-
form consistency and

√
n convergence rate together with an asymptotical normal

distribution. In the restricted, but very common case II situation, in which the inspec-
tion times are discrete random variables but the theoretical survival function S(t) is
continuous—this includes those studies with a periodic longitudinal follow-up and
with a fixed number of scheduled visits—Yu et al. (1998) prove that:

(i) Ŝn(t) is strongly consistent at each point in the set A of all possible values
of L and R. If A is finite or dense in [0,∞), then Ŝn(t) is uniformly strongly
consistent, i.e., limn→∞ supt∈A |Ŝn(t) − S(t)| = 0, almost surely.
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(ii) If A = {a1, a2, · · · , am} contains finitely many elements and 0< S(b)< S(a)<1
for all a, b ∈ A such that a < b, then

√
n{Ŝn(a1) − S(a1), Ŝn(a2) − S(a2), · · · , Ŝn(am) − S(am)}

is asymptotically normal with mean 0 and explicit asymptotic variance which
can be consistently estimated by the observed information matrix.

(iii) Special consideration has to be given to the estimates of the parameters w j

in equation (2.1) since they could approach the boundary of the parameter
space, that is, the value ŵ j could be close to zero. In this situation, the inverse
of the matrix I (ŵ1, . . . , ŵm) where I (ŵ1, . . . , ŵm) = (−∂2 log LT (w1, . . . , wm)/
∂(ŵ1, . . . , ŵm)∂(ŵ1, . . . , ŵm)′), cannot be obtained.

Whenever we have enough exact failure times together with censoring intervals,
S(t) is continuous and strictly decreasing and A contains finitely many elements,
Huang (1999) proves that

√
n{Ŝn(t0) − S(t0)} converges to a Gaussian process in

D[0,∞) (the class of bounded right continuous functions with left limits on [0,∞),
equipped with the supremum norm) with mean 0 and a variance which achieves the
information lower bound for the estimation of S(t). In general, in order that the
NPMLE Ŝn(t) be uniformly consistent, the theoretical distribution function S(t) has
to be continuous and its support has to be contained in the support of the inspection
times.

2.4 Illustration: Signal Tandmobiel� data

In this section, we illustrate the use of several functions of the R package Icens
(see also Appendix A.1) to compute and plot the NPMLE for the survival and the
distribution function based on the dental interval-censored data set presented in
Section 1.2. Recall that we are interested in the emergence times of permanent tooth
24 in Belgian school children and whether they depend on sex and the status of the
primary predecessor of that tooth. Since this tooth does not emerge before age 5, we
set this age as the origin time.

Let us first have a look at our dataset stored in the dataframe tooth24 which
contains the data of a total of 4386 children. That is, for the following illustrations, we
take into account only those children with complete information in all the variables
considered.

> str(tooth24)
’data.frame’: 4386 obs. of 5 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ left :Class ’labelled’ atomic [1:4386] 2.7 2.4 4.5 5.9 4.1 ...
.. ..-attr(*, "label")= chr "Lower limit of tooth emergence"
.. ..-attr(*, "units")= chr "Years since age 5"
$ right:Class ’labelled’ atomic [1:4386] 3.5 3.4 5.5 999 5 4.5 ...
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.. ..-attr(*, "label")= chr "Upper limit of tooth emergence"

.. ..-attr(*, "units")= chr "Years since age 5"
$ sex :Class ’labelled’ atomic [1:4386] 1 0 1 1 1 0 0 1 1 1 ...
.. ..-attr(*, "label")= chr "Gender"
.. ..-attr(*, "levels")= chr [1:2] "Boys" "Girls"
$ dmf :Class ’labelled’ atomic [1:4386] 1 1 0 0 1 1 1 1 1 0 ...
.. ..-attr(*, "label")= chr "Status of primary predecessor"
.. ..-attr(*, "levels")= chr [1:2] "Sound" "Decayed, missing,
+ or filled"
-attr(*, "comment")= chr "Data on tooth 24 of 4386 children in
+ Flanders"

As the variable labels indicate, the variables left and right form the observed
intervals which contain the unkown times of tooth emergence. Note that in the case
of the 1611 right-censored observations, the value of right is set to an arbitrary
value (999) beyond the maximum value of the variablesleft andright. The reason
is that the functions of package Icens require real values for both the lower and
upper limits of the interval-censored survival time. As mentioned in Section 1.2, 52%
of the children are boys and the proportion of a sound primary predecessor is 57%.

In order to use the functions of package Icens, the package needs to be installed
once in the computer and then has to be loaded at the beginning of every R session
(see also Appendix A):

> install.packages("Icens") # only necessary if not installed yet
> library(Icens)

The application of function MLEintvl yields Turnbull intervals within which the
distribution function is a constant function. In the following, we show part of the
output obtained, where 999, actually, stands for infinity. Note that MLEintvl
is applied within function with() which permits to identify variables left and
right of dataframe tooth24.

> with(tooth24,MLEintvl(cbind(left,right)))
[,1] [,2]

[1,] 2.5 2.6
[2,] 2.6 2.7
[3,] 2.7 2.8
[4,] 2.8 2.9
[5,] 2.9 3.0
: : :

[48,] 7.2 7.3
[49,] 7.3 7.4
[50,] 7.4 999.0
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These intervals are useful to construct a matrix with the values of the NPMLE
obtained by any of the available algorithms. To do so, we store the intervals in object
TBintvls, apply both the EM–ICM and the EM algorithm to our data and assign
their results to objects EMICMest and EMest, respectively:

> TBintvls<-with(tooth24,MLEintvl(cbind(left,right)))
> EMICMest<-with(tooth24,EMICM(cbind(left,right)))
> EMest<-with(tooth24,EM(cbind(left,right)))
Warning message:
In EM(cbind(left, right)) : EM may have failed to converge

Both functions return a list with several details of the NPMLE: whereas EMICM
stores the NPMLE of the distribution function in the elementsigma, the functionEM
stores the estimates of the probabilities w j = Prob(q j < T ≤ p j ) in the element pf.
Hence, to obtain Ŵn(t) = 1 − Ŝn(t) (see below the commands to plot the estimator
of the survival function and an illustration in Figure 1), we have to apply the R
function cumsum which calculates the cumulative sums for each element of a vector.
Doing so we can see that both algorithms yield similar values despite the warning
message which appeared applying function EM. To achieve convergence with that
function, one can change, for example, the default value of 500 iterations with option
maxiter.

> cbind(TBintvls,EMICM=round(EMICMest$sigma,4),
+ EM=round(cumsum(EMest$pf),4))

EMICM EM
[1,] 2.5 2.6 0.0050 0.0050
[2,] 2.6 2.7 0.0108 0.0108
[3,] 2.7 2.8 0.0118 0.0118
[4,] 2.8 2.9 0.0130 0.0130
[5,] 2.9 3.0 0.0130 0.0130
: : : : :

[29,] 5.3 5.4 0.4904 0.4901
[30,] 5.4 5.5 0.5121 0.5122
: : : : :

[48,] 7.2 7.3 0.9453 0.9440
[49,] 7.3 7.4 0.9595 0.9610
[50,] 7.4 999.0 1.0000 1.0000

According to the output, the probability that tooth 24 has emerged by age 5 + 3 =
8 years is equal to 0.0130 and the estimated median time of tooth emergence
is a value between 5 + 5.4 = 10.4 and 5 + 5.5 = 10.5 years. We can also see
that the probability for tooth emergence before age 5 + 7.4 = 12.4 years is equal
to 0.9595.
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Figure 1 Survival function of emergence times of permanent tooth 24

To get a first idea of whether tooth 24 emerges earlier in boys or girls, we represent
the NPMLE of the survival function S(t) graphically for both sexes. Therefore, we
apply function EMICM to both subsets and draw the resulting NPMLE with function
plot.icsurv. Therein, we use the optiontype="lc" to assign the probability w j

of every Turnbull’s interval (q j , p j ] to the left endpoint q j and the optionsurv=TRUE
to draw the survival function (instead of the distribution function). The resulting
survival functions are defined for every t > 0. The result is shown in Figure 1 which
shows earlier emergence times in girls compared to boys. In Section 4.1.2, we will
check, by means of an accelerated failure time model, whether these differences do
also hold when adjusting for variable dmf.

The commands to draw Figure 1 are the following:

> EMICMboys<-with(subset(tooth24,sex==0),EMICM(cbind(left,right)))
> EMICMgirls<-with(subset(tooth24,sex==1),EMICM(cbind(left,right)))
> x11(width=10,height=6)
> par(font=2,font.lab=2,font.axis=2,lwd=3,las=1,cex=1.5)
> plot.icsurv(EMICMboys,type="lc",surv=TRUE,xlim=c(0,8),main="",
+ xlab="Years from age 5")
> plot.icsurv(EMICMgirls,type="lc",surv=TRUE,lty=3,new=F)
> legend(’bottomleft’,c(’Boys’,’Girls’),lty=c(1,3),lwd=3)

Note that function x11() opens a new graphical window; several graphical param-
eters are defined within function par(). We remark as well that while executing
the previous command plot.icsurv(EMICMgirls,· · ·) a straight line appeared
in the top right corner of the plot. In Figure 1, we have, subsequently, deleted that
line.

Statistical Modelling 2009; 9(4): 259–297



274 Guadalupe Gómez et al.

3 Comparison of survival curves

Some test statistics for comparing curves under interval censoring, which extend
known test statistics for right-censored data, have been proposed; see Sun (2006) for
a comprehensive exposition. They can be divided into rank-based and survival-based
comparison procedures. Rank-based tests rely on the integrated weighted difference
between the estimated hazard functions in the different groups and include extensions
of the log-rank and the Wilcoxon tests and, more generally, of any test statistic in
the class of weighted log-rank tests (Gómez and Oller, 2008; Huang et al., 2008).
These statistics are appropriate to detect ordered hazards alternatives and fail to
detect crossing hazards. On the other hand, survival-based procedures rely on the
integrated weighted differences between the estimated survival functions in the groups
and are as well appropriate to detect ordered survivals but inappropriate to detect
crossing survivals (Fang et al., 2002; Lim and Sun, 2003; Yuen et al., 2006).

Deriving the asymptotic behaviour of test statistics based on interval-censored
data is more difficult than for right censoring because the counting process theory
does not apply. This difficulty is faced up either with resampling methods or by
standard inference methods which require additional assumptions for the censoring
mechanism. Resampling methods include permutation, multiple imputation and
bootstrap procedures. Fay and Shih (1998) and Gómez and Oller (2008) consider
permutation tests, Pan (2000) and Huang et al. (2008) use multiple imputation, while
Yuen et al. (2006) approach the inference problem via bootstrap methods. Methods
using standard likelihood theory, as it has been already discussed in Section 2.3,
require that the inspection times are discrete random variables and that the estimated
parameters are not on the boundary of the parameter space (Fay, 1996, 1999; Gómez
and Oller, 2008).

In this section, we focus on the new family of tests developed by Gómez and Oller
(2008). This family includes the log-rank and the Wilcoxon–Peto test proposed by
Peto and Peto (1972) and extends the unquestionable most popular Fleming and
Harrington family of tests for right-censored data. We use a permutation approach,
valid for either discrete or continuous data, instead of the Fisher’s information-based
approach.

3.1 Weighted log-rank tests

The k-sample comparison problem corresponds to testing the null hypothesis of
identical survival functions between groups against the alternative of some groups
having a different survival curve. That is, we test the hypothesis H0 : S1 = · · · = Sk
against Ha : Sl �= Sl′ for some l �= l ′, where S1, . . . , Sk are the survival functions of
T under each one of k groups G1, . . . , Gk . Let N1, . . . , Nk be the sample sizes in
each group (n = N1 + · · · + Nk) and let α

(l)
i be the indicator function (i = 1, . . . , n

and l = 1, . . . , k) which is equal to 1 if the individual i belongs to group Gl and 0
otherwise.
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Let Ŝ(t) be Turnbull’s estimator for the survival function based on the pooled
sample for the k groups. We now define an estimate of the survival function for the
ith individual, Ŝi (t), as the pooled survival Ŝ(t) truncated at the ith observed interval,
as follows:

Ŝi (t) = ProbŜ((t, +∞) | (li , ri ]) =
Ŝ(li ∨ t) − Ŝ(ri ∨ t)

Ŝ(li ) − Ŝ(ri )
,

where PŜ denotes the probability measure of T given by the pooled survival function
Ŝ(t) and l ∨ r stands for the maximum value between l and r . These individual
estimators satisfy Ŝ(t) = 1

n

∑n
i=1 Ŝi (t).

The average of these estimates for individuals in group Gl is an estimate of the
survival function for each group and is denoted by

Ŝ(l)(t) =
1
Nl

n∑
i=1

α
(l)
i Ŝi (t). (3.1)

Recall that Ŝ(t) is unspecified in each Turnbull’s interval (q1, p1], . . . , (qm, pm]. In
the sequel of this section, we identify each Turnbull’s interval (q j , p j ] with the right
endpoint p j and assign the probability PŜ

(
(q j , p j ]

)
to p j . We also define p0 = 0.

Let d j = n
[
Ŝ(p j−1) − Ŝ(p j )

]
be the estimated total number of events at p j and

n j = n Ŝ(p j−1) be the estimated total number at risk just prior to p j . Let dl j =
Nl

[
Ŝ(l)(p j−1) − Ŝ(l)(p j )

]
and nl j = Nl Ŝ(l)(p j−1) be the corresponding estimates in

group l. Then, as defined in Fay (1999), a weighted log-rank test statistic for interval-
censored data takes the form

U =
(
U1, . . . , Uk

)′
, (3.2)

where

Ul =
m∑

j=1

Ul j =
m∑

j=1

v j

[
dl j −

nl j

n j
d j

]
and v j is a weighting function. As with the Fleming–Harrington family for right-
censored data, the statistic U can be seen as a weighted sum of the differences between
observed and expected deaths, U =

∑m
j=1 v j

[
O j − E j

]
, where O j =

(
d1 j , . . . , dkj

)
,

E j =
(n1 j

n j
d j , . . . ,

nkj

n j
d j

)
and d j =

∑k
l=1 dl j and n j =

∑k
l=1 nl j .

Several weighted log-rank statistics can be derived as score test statistics in discrete
interval-censored data models. Under a discrete linear transformation model, Gómez
and Oller (2008) obtain an extension of the Gρ,λ family originally proposed in
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Fleming and Harrington (1991) for right-censored data. The weighting function is

v
ρ,λ
j = Ŝ(p j−1)

B(1 − Ŝ(p j ); λ + 1, ρ) − B(1 − Ŝ(p j−1); λ + 1, ρ)

Ŝ(p j−1) − Ŝ(p j )
,

where B(t, a, b) =
∫ t

0 xa−1(1 − x)b−1 dx is an incomplete beta function. When ρ →
0 and λ = 0, or ρ = 1 and λ = 0, the test statistics reduce, respectively, to the
extension of the log-rank and Wilcoxon test statistics given by Peto and Peto (1972).

Since v
ρ,λ
j →

(
Ŝ(p j−1)

)ρ(
1 − Ŝ(p j−1)

)λ
as Ŝ(p j−1)

Ŝ(p j )
→ 1, these weights have a similar

interpretation as the weights in the original family. A straightforward manipulation
gives

Ul =
m∑

j=1

v j nl j

[
ĥ(l)(p j ) − ĥ(p j )

]
,

where ĥ(l)(p j ) = dl j

nl j
and ĥ(p j ) = d j

n j
are estimates of the hazard functions under

the lth group and the pooled sample, respectively. This result shows that U is an
integrated weighted difference between estimated hazard functions in the groups.
When λ = 0, early hazard differences are emphasized stronger as ρ increases. When
ρ = 0, late hazard differences are emphasized stronger as λ increases. Finally, when
ρ = λ, hazard differences around the overall median are emphasized stronger as ρ and
λ increase.

3.2 Asymptotic permutation distribution

To determine an asymptotic distribution of the weighted log-rank statistic, the most
straightforward way of doing so is to use a permutation approach. A permutation test
applies for discrete as well as continuous interval-censored data. The main assump-
tion which needs a permutation test is that the underlying censoring distribution is
non-informative and identical across groups.

For the permutation approach, it is more convenient to write U in a linear form
with a term for each individual. As shown in Gómez and Oller (2008), the Gρ,λ

family of test statistics can be written as

U =
n∑

i=1

zi ci ,

where

ci =
Ŝ(ri )B(1 − Ŝ(ri ); λ + 1, ρ) − Ŝ(li )B(1 − Ŝ(li ); λ + 1, ρ)

Ŝ(li ) − Ŝ(ri )
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and zi =
(
α

(1)
i , α

(2)
i , . . . , α

(k)
i

) ′
is a k-vector of group indicators associated with the ith

observation. Note that this linear form of the statistic U only depends on the observed
intervals (li , ri ] and does not depend on the Turnbull’s intervals (q j , p j ]. This means
that not specifying Ŝ(t) inside the Turnbull intervals does not have consequences
in the computation of U . With this form we do not need to assign the probability
PŜ

(
(q j , p j ]

)
to the right endpoint p j .

The idea behind the permutation approach is that if the null hypothesis is true,
the labels on the scores ci are exchangeable. The permutation distribution of U is
then obtained by permuting the labels and recomputing the test statistic for all the
possible rearranged labels. This permutation distribution can be computed exactly
when the sample size is small. When n is large, a version of the central limit theorem
for exchangeable random variables allows a normal approximation with expectation
E(U) = nc̄z̄′ and variance–covariance matrix V0 = 1

n−1(
∑n

i=1 c2
i − nc̄2)(

∑n
i=1(ziz′i −

z̄z̄′)). In our situation, c̄ = 0 and, consequently, E(U) = 0. The permutation test is
then based on the Mahalanobis distance U ′V −

0 U , where V −
0 is the generalized inverse

of V0. We would reject the null hypothesis if U ′V −
0 U is an extreme value from a χ2

k−1
distribution.

3.3 Illustration: Signal Tandmobiel� data

As far as we know, there is no R package available which implements k-sample
methods with interval-censored data. In this section, we describe in detail how to
implement the methodology presented above. We use functions of the R package and
the package Icens as well as the output of the function PGM.

The implementation of the weighted log-rank test statistics is illustrated analyzing
the differences between boys (sex==0) and girls (sex==1) with respect to the
emergence time of permanent tooth 24.

First, we show how to compute the survival functions Ŝ(1)(t) and Ŝ(2)(t) for boys
and girls, respectively. To do that, we estimate the overall survival function by means
of the function PGM.

> library(Icens)
> attach(tooth24)
> svf <- PGM(cbind(left,right))

The returned object svf contains several useful components. The component svf.
sigma is the NPMLE of the cumulative distribution function W (t). The component
svf$clmat is a matrix with m = 50 rows and n = 4386 columns, which contains
the indicators αi

j = 1l{(q j , p j ] ⊆ (Li , Ri ]} (i = 1, . . . , 4386, j = 1, . . . , 50) stating
whether or not Turnbull’s interval (q j , p j ] is contained in the observed interval
(li , ri ]. Turnbull intervals are given in the matrixsvf$intmap and their probabilities
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Ŝ(q j ) − Ŝ(p j ) in the vector svf$pf. From svf$clmat and svf$pf, we compute
the probabilities PŜi ((q j , p j ]),

> p <- svf$pf*svf$clmat
> ptrunc <- t(t(p)/colSums(p))

The survival functions Ŝ(1)(t) and Ŝ(2)(t) given in equation (3.1) are then obtained as
follows:

> pboys<-rowMeans(ptrunc[,sex==0])
> svfboys <- 1-cumsum(pboys)

> pgirls<-rowMeans(ptrunc[,sex==1])
> svfgirls <- 1-cumsum(pgirls)

A plot of these two survival functions can be generated by a generic function for
plotting R objects. The survival plot for the emergence time of permanent tooth 24
for boys and girls is given in Figure 1.

Table 1 gives an outline of the required calculations in the weighted log-rank
test statistic formulation given in (3.2). We consider the parameters ρ and λ equal
to (0, 0), (1, 0), (0, 1) and (1, 1). We only give the component U1 corresponding to
boys because in a two-sample problem U2 = −U1. The results show that: (i) when
(ρ, λ) = (0, 0) the differences O j − E j are weighted similarly (see column v

0,0
j );

(i i) when (ρ, λ) = (1, 0) the weights decrease; (i i i) when (ρ, λ) = (0, 1) the weights
increase; (iv) when (ρ, λ) = (1, 1) the weights increase up to the interval (5.4, 5.5]
which contains the median and decrease afterwards.

Table 1 Calculation of the weighted log-rank statistic for Signal Tandmobiel R© data

qj pj dj nj d1j n1j v0,0
j v1,0

j v0,1
j v1,1

j U0,0
1j U1,0

1j U0,1
1j U1,1

1j

2.5 2.6 18.9 4386.0 8.0 2278.0 1.0 1.0 0.0 0.0 −1.8 −1.8 −0.0 −0.0
2.6 2.7 20.5 4367.1 9.5 2270.0 1.0 1.0 0.0 0.0 −1.1 −1.1 −0.0 −0.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 5.4 148.5 2244.8 76.0 1370.2 1.0 0.6 0.5 0.3 −7.5 −4.0 −3.4 −1.9
5.4 5.5 133.6 2296.3 69.4 1294.2 1.0 0.5 0.5 0.3 −6.0 −3.1 −3.0 −1.5
5.5 5.6 108.3 2162.7 56.2 1224.8 1.0 0.5 0.5 0.3 −5.3 −2.5 −2.7 −1.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 7.3 105.9 332.5 64.7 203.9 1.2 0.1 1.1 0.1 −0.4 −0.0 −0.4 −0.0
7.3 7.4 109.2 226.5 66.5 139.2 1.4 0.1 1.3 0.0 −0.8 −0.0 −0.7 −0.0
7.4 ∞ 117.3 117.3 72.7 72.7 0.0 0.0 0.0 0.0 0.0 0.0

Total: 4386 2278 −210.9 −136.3 −74.6 −35.5
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The values d j , n j , d1 j and n1 j are computed as follows:

> d <- svf$pf*length(left)
> n <- (1-svf$sigma+svf$pf)*length(left)
> dboys <- pboys*sum(sex==0)
> nboys <- (svfboys+pboys)*sum(sex==0)

Regarding the computation of the weighting functions, the code below gives v
0,0
j ,

> rho <- 0
> lambda <- 0
> v00 <- pbeta(svf$sigma,lambda+1,rho+10ˆ-15)-

pbeta(svf$sigma-svf$pf,lambda+1,rho+10ˆ-15)
> v00 <- (1-svf$sigma+svf$pf)*v00/svf$pf
> v00[1] <- pbeta(svf$sigma[1],lambda+1,rho+10ˆ-15)/svf$pf[1]
> v00 <- v00*gamma(lambda+1)*gamma(rho+10ˆ-15)/gamma(lambda+rho+1)
> v00[is.na(v00)] <- 0

When a Turnbull’s interval (q j , p j ] has null probability mass, the corresponding v
0,0
j

gives a missing value which has to be changed to 0. Another problem which appears
is that the last weight v0,0

m is equal to ∞. In practice, we can ignore this weight
because in this case the observed and expected number of deaths coincide, Om = Em .

Now, we give the basic code to implement the permutation approach. First, we
compute the pooled survival function evaluated at each observed interval, that is,
Ŝ(ri ) and Ŝ(li ) for i = 1, . . . , 4386.

> svfright <- 1-svf$sigma[max.col(t(svf$clmat),ties.method="last")]
> svfright[right>=svf$intmap[2,length(svf$pf)]] <- 0
> svfleft <- svfright+colSums(p)
> svfleft[left<=svf$intmap[1,1]] <- 1

The code to compute the score values ci with ρ = 0 and λ = 0 is shown below:

> rho <- 0
> lambda <- 0
> ci <- svfright*pbeta(1-svfright,lambda+1,rho+10ˆ-15)-

svfleft*pbeta(1-svfleft,lambda+1,rho+10ˆ-15)
> ci <- ci*gamma(lambda+1)*gamma(rho+10ˆ-15)/gamma(lambda+rho+1)
> ci <- ci/(svfleft-svfright)

The test statistic U =
∑n

i=1 zi ci and the Mahalanobis distance U ′V −
0 U can be com-

puted as follows:
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> library(MASS)
> zi <- 1*cbind(sex==0,sex==1)
> u <- t(ci)%*%zi
> m <- t(length(left)*mean(ci)*colMeans(zi))
> V <- var(ci)*((t(zi)%*%zi)-length(left)*

(t(t(colMeans(zi)))%*%t(colMeans(zi))))
> distM <- c((u-m)%*%ginv(V)%*%t(u-m))

Although the theoretical value of E(U) is 0, we have to compute it since due to
numerical precision the value obtained is not exactly zero. Note that we have to
load the package MASS to compute the generalized inverse V −

0 . The values of the
Mahalanobis distances for different choices of the parameters ((0, 0), (1, 0), (0, 1)
and (1, 1)) are, respectively, 67.2, 70.4, 36.6 and 50.3, much larger than 6.63, the
0.99 quantile of the χ2 distribution with one degree of freedom. Thus, although
the curves for girls and boys are fairly close, we have found statistically significant
differences between the survival curves of boys and girls for any of the weighting
functions.

4 Regression models

4.1 Parametric regression models

The parametric approach for analyzing interval-censored data is computationally
straightforward. A variety of parametric models can be used (Lindsey, 1998) to obtain
smooth representations of both the hazard and the survival functions. Maximum
likelihood methods can then be applied to provide useful and meaningful parameter-
based quantities.

Under the non-informative censoring assumption (see Section 1.1), standard like-
lihood inference and usual large sample properties apply. Hence, for a study of n
individuals, if censoring occurs non-informatively, inferences can be based on the
likelihood function

L(θ |D) =
n∏

i=1

Li (θ) =
n∏

i=1

∫ ri

li

w(u; θ, Zi ) du =
n∏

i=1

[
S(li ; θ, Zi ) − S(ri ; θ, Zi )

]
,

where θ = (θ1, . . . , θp) is the vector of the unknown model parameters, Zi is the
covariate vector of subject i and S(t ; θ, Zi ) and w(t ; θ, Zi ) are the survival and density
functions, respectively. The expression of both functions depends on the error term
distribution of the model chosen for the analyses (see Section 4.1.1).

The maximum likelihood estimator, θ̂n, of the unknown parameter vector θ can
be obtained as the solution of the score equation U (θ) = 0 by using any numerical
algorithm such as the Newton–Raphson algorithm, where U (θ) =

∑n
i=1 ∂Li (θ)/∂θ .
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Under some regularity conditions, the obtained estimator is unique and consistent.
The asymptotic distribution of θ̂n can be approximated by a multivariate normal
distribution with mean θ and covariance matrix I−1(θ), where I (θ) is the observed
information matrix, namely I (θ) = −

∑n
i=1 ∂2Li (θ)/∂θ∂θ ′.

The parametric approach is appealing because of its simplicity but its disadvantage
is that all the inferences depend upon the assumption of a model which is difficult
to assess based on an interval-censored sample, with the risk of deriving inconsis-
tent estimators for the parameters of interest leading to inaccurate conclusions. Ren
(2003) proposes a goodness-of-fit method, called the leveraged bootstrap and Calle
and Gómez (2008) propose a sampling-based chi-squared test.

4.1.1 Log-linear representation of parametric survival models

Most commonly used survival models can be expressed as a log-linear model, which is
equivalent to the accelerated failure time model. The advantage of this representation
is that most standard statistical packages such as SAS, S-PLUS or R are able to fit
log-linear models in the presence of interval-censored data. The general expression
is in terms of the natural logarithm of the survival time T :

Y = log(T ) = μ + β ′Zi + σ E, (4.1)

where E is the error term distribution. Common choices for T are the Weibull,
the log-logistic and the log-normal model and in these cases the error E follows an
extreme value, a logistic and a normal distribution, respectively. The acceleration
factor, exp(β ′Z ), in the log-linear models is such that the pth quantile tp(z) for
the population with Z = z is proportional to the pth quantile tp(0) for the baseline
population, i.e., tp(z) = tp(0) exp(β ′z). If we choose the Weibull model, we are picking
the only log-linear model that can as well be interpreted as a proportional hazards
model (see Section 4.2) and therefore its parameters can be interpreted as relative
risks. For instance, when comparing a subject with covariate vector Z = z to another
with Z = 0 the relative risk is R R = exp(−β′z

σ
). By contrast, if we choose the log-

logistic model, we are in fact under a proportional odds model. With this model, the
term exp(−β′z

σ
) can be interpreted as the relative odds of a subject with covariate

vector Z = z compared to another with Z = 0. Recently, Sparling et al. (2006)
proposed a general family of parametric regression models for interval-censored
survival data that accommodates both fixed and time-dependent covariates.

4.1.2 Illustration: Signal Tandmobiel� data

Herein, we illustrate the use of function survreg of the package survival (see
also Appendix A) to analyze the differences between boys and girls with respect to
the emergence time of permanent tooth 24. In order to do so, we first have to load
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the package survival:

> library(survival)

The use of functionsurvreg requires to create a so-calledSurv object, which com-
bines all those vectors containing information on the survival times and its censoring
status. With ‘pure’ interval-censored data (not containing exact observations), a vec-
tor indicating the censoring status is not necessary. Hence, with our data, the Surv
object can be defined as follows:

> sur24<-with(tooth24,Surv(left,right,type="interval2"))
> dim(sur24)
[1] 4386 3
> sur24[1:5]
[1] [2.7, 3.5] [2.4, 3.4] [4.5, 5.5] [5.9, 999.0] [4.1, 5.0]

The object sur24 contains the observed intervals of emergence times of permanent
tooth 24 of 4386 children, five of which are shown above. Recall that we are mod-
elling Ti − 5 instead of Ti . Hence, the values [2.7, 3.5] in sur24 correspond to 7.7
and 8.5 years of age. The value 999 indicates a right-censored observation, that is,
tooth 24 of child 4 had not emerged yet by its last dental examination at the age of
5 + 5.9 = 10.9 years.

Note that unlike function Icens (in Section 2.4), function Surv allows right-
censored observations to be defined as such. If one wants to do so, a vector indicating
the type of censoring has to be defined being 0 the indicator for right- and 3 the
indicator for interval-censored data. In the sequel, a new censoring variable (cens)
is added to dataframe tooth24 and then included in function Surv:

> tooth24$cens<-with(tooth24,ifelse(right==999,0,3))
> sur24b<-with(tooth24,Surv(left,right,cens,type="interval"))
> dim(sur24b)
[1] 4386 3
> sur24b[1:5]
[1] [2.7, 3.5] [2.4, 3.4] [4.5, 5.5] 5.9+ [4.1, 5.0]

As it can be seen, there is now a slight difference in presenting right-censored data.
In order to fit model (4.1) including both sex and dmf (see Section 1.2) as covari-

ates, we may use either one of theSurv objects. For the model, we choose a Weibull
distribution, store the model fit in object weimod and have a close look at the
estimated parameters.

> weimod<-survreg(sur24˜sex+dmf,data=tooth24,dist="weibull")
> summary(weimod)
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Call:
survreg(formula = sur24 ˜ sex + dmf, data = tooth24)

Value Std. Error z p
(Intercept) 1.8439 0.00627 294.11 0.00e+00
sex -0.0607 0.00723 -8.40 4.61e-17
dmf -0.0633 0.00724 -8.74 2.32e-18
Log(scale) -1.6796 0.01587 -105.81 0.00e+00

Scale= 0.186

Weibull distribution
Loglik(model)= -5523.9 Loglik(intercept only)= -5597

Chisq= 146.23 on 2 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 9
n= 4386

According to the results, both variables are highly significant. The negative sign of
both parameter estimates indicates, on average, shorter times until tooth emergence
for the categories with label 1, that is, girls and children with a decayed, filled or
missing (due to caries) primary predecessor of permanent tooth 24. We can interpret
the estimated parameters in terms of the relative risk. For example, comparing girls
and boys of the same age and with the same value of variable dmf, the instant risk
of tooth emergence in girls is R R = exp { − (−0.0607/0.186)} = 1.386 times the
instant risk in boys. The corresponding acceleration factor is exp(−0.0607) = 0.941.
That is, the median time (from age 5) until tooth emergence in girls is 0.941 times
the median time in boys.

If we would like to fit the model under different parametric assumptions, we
could change option dist, for example, to dist="loglogistic" or dist=
"lognormal".

As explained in Appendix A, the generic function predict permits model-based
prediction, such as the estimation of the distribution’s quantiles. For example, the
following R code can be used to estimate the median times until tooth emergence in
each of the four groups considered in the model:

> (new<-data.frame(sex=rep(0:1,2),dmf=rep(0:1,each=2)))
sex dmf

1 0 0
2 1 0
3 0 1
4 1 1

> Median<-round(predict(weimod,newdata=new,type=’quantile’,p=0.5),
2)+5

> data.frame(new,Median)
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sex dmf Median
1 0 0 10.90
2 1 0 10.56
3 0 1 10.54
4 1 1 10.22

We see that the estimated median emergence time of tooth 24 is lowest (10.22 years)
in girls with a decayed, filled or missing (due to caries) primary predecessor of that
tooth and highest among boys with dmf=0.

Function predict may also be used to draw the model-based distribution func-
tions in each group. This can be accomplished with the following R commands,
which produce Figure 2.

> pred<-predict(weimod,newdata=new,type=’quantile’,p=c(0:999/1000))
> x11(width=10,height=6)
> par(font=2,font.lab=2,font.axis=2,las=1,lwd=3,cex=1.5)
> plot(pred[1,],c(0:999/1000),type="l",xlab = "Years from age 5",
+ ylab = "Probability")
> lines(pred[2,],c(0:999/1000),type="l",col=2)
> lines(pred[3,],c(0:999/1000),type="l",lty=2)
> lines(pred[4,],c(0:999/1000),type="l",col=2,lty=2)
> legend("topleft",c(’Boy: dmf=0’,’Girl: dmf=0’,’Boy: dmf=1’,
+ ’Girl: dmf=1’), text.width=strwidth(’Boy: dmf=0 ’),
+ lty=c(1,1,2,2),col=c(1,2,1,2),lwd=3)
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Figure 2 Model-based distribution functions of emergence times of permanent tooth 24 under the Weibull
model
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4.2 Cox proportional hazards model

The Cox proportional hazards model is the most widely used method for the analysis
of right-censored survival data and it is available in all the major statistical software
packages. The model itself is semiparametric in nature though general, in the sense
that it establishes the relationship between the survival times and the covariates
by means of an unspecified baseline hazard function and the exponential of a linear
form of the covariates. The statistical inference, being based on the observables, has to
acknowledge the different types of censoring. The theory underlying the proportional
hazards model for right censoring is well established, not only for the main basic
model but also for its many extensions and as said, is widely implemented. The
theory for the interval censoring case is, however, not yet at the same theoretical
level, with some unresolved issues and lacking an unified approach, partly because
many methods rely on the ranks of the exact and right-censored observations and
these cannot be identified for interval-censored data.

Most of the first methods to cope with the proportional hazards models are based
on the EM algorithm and an approximate likelihood function (Finkelstein, 1986 and
Goetghebeur and Ryan, 2000, among others). Other authors deal with the problem
via multiple imputation of the unobserved survival times (Satten, 1996; Goggins
et al., 1998; Pan, 2000) while Kooperberg and Clarkson (1997) and Betensky et al.
(2002) propose a non-parametric smoothing of the baseline hazard via regression
splines. See Lesaffre et al. (2005) for an extensive review of several approaches to
fit a proportional hazards model when data are interval censored. Lastly, it is worth
mentioning a very recent paper written by Zhang and Davidian (2008) proposing
a general framework for semiparametric regression analysis of different patterns of
censoring data including the proportional hazards model and interval-censored data.
This method is, so far, only available as a SAS macro.

In an attempt to provide in this tutorial an implemented and friendly use of the
proportional hazards model for interval-censored data, surprisingly, we have found
only one method available. It is the one proposed by Pan (1999) which is implemented
in the R packageintcox developed by Henschel et al. (2007). Pan’s approach (1999)
reformulates the ICM algorithm proposed by Groeneboom and Wellner (1992) as a
generalized gradient projection method and it is a reasonably fast algorithm allowing
the use of a large sample size. For the purpose of this tutorial, we will only give the
details of Pan’s (1999) approach and its implementation in R given in the package
intcox. Theintcox package, however, is not complete since it fails to directly pro-
vide standard errors for the estimated regression parameters, proposing bootstrap to
do so.

The proportional hazards model is most often stated in terms of the hazard
function of the random variable T as follows:

λ(t |Z) = λ0(t) exp{β ′Z} = λ0(t) exp{β1 Z1 + β2 Z2 + . . . + βp Z p},

where Z stands for the covariate vector and λ0(t) for the unknown baseline hazard
function and where we see that the relative hazard exp{β ′Z} acts as a factor on the
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hazard function. The simplified likelihood function (see expression 1.3) based on the
observed data D = {((li , ri ], Zi), i = 1, · · · , n} becomes

L(S0, β|D) =
n∏

i=1

{
S0(li )

exp{β′Zi} − S0(ri )
exp{β′Zi}

}
, (4.2)

where S0(t) corresponds to the baseline survival function.
Pan obtains the non-parametric maximum likelihood estimate of β along with that

of the baseline survival function S0(t) by assuming that S0(t) is piecewise constant
and extending the ICM algorithm. Pan’s algorithm parameterizes L(S0, β|D) in terms
of the cumulative hazard function 
0(t) because it is more convenient since there is
no upper bound on 
0(t) and hence no constraints are needed. Simulation studies
have shown a slight positive bias in the estimated regression coefficients.

4.2.1 Illustration: Signal Tandmobiel� data

We want now to examine the emergence times of permanent tooth 24 with the
proportional hazards model using the same covariates as before. Hence, as a first
step, we have to load the package intcox (see also Appendix A.2):

> install.packages("intcox") # only necessary if not installed
yet

> library(intcox)

The authors of package intcox recommend to identify right-censored data by a
missing value (NA), that is why we first define a new variable, rightNA, with the
same right endpoints as vector right, but with NA instead of 999. After that step,
we fit the Cox model with both covariates and obtain the estimates shown below:

> tooth24$rightNA<-with(tooth24,ifelse(right==999,NA,right))
> coxmod<-intcox(Surv(left,rightNA,type="interval2")˜sex+dmf,
tooth24)

> coxmod
Call:
intcox(formula = Surv(left, rightNA, type = "interval2") ˜ sex +

dmf, data = tooth24)

coef exp(coef) se(coef) z p
sex 0.288 1.33 NA NA NA
dmf 0.316 1.37 NA NA NA

Compared with the log-linear model, the interpretation of the sign of the parameters
in the Cox model is just the other way around: both positive signs imply a higher
risk and hence, earlier times of tooth emergence among girls and children with a
decayed, filled or missing (due to caries) primary predecessor of permanent tooth 24,
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respectively. The magnitude of the corresponding relative risks is given by exp(β̂).
For example, according to this model, comparing girls and boys of the same age and
with the same value of variable dmf, the relative risk is exp(0.288) = 1.33, similar to
the result of the log-linear model (1.386) assuming a Weibull distribution.

As said in Section 4.2, the estimation of the model parameters is not complete:
standard errors are not computed and therefore no values for Z and p are provided.
The same happens, for example, with the values of the likelihood ratio test; see
Henschel et al. (2007) for the reasons. Hence, applying the function summary does
not really provide more information on the model fit:

> summary(coxmod)
Call:
intcox(formula = Surv(left, rightNA, type = "interval2") ˜ sex +

dmf, data = tooth24)

n= 4386
coef exp(coef) se(coef) z p

sex 0.288 1.33 NA NA NA
dmf 0.316 1.37 NA NA NA

exp(coef) exp(-coef) lower .95 upper .95
sex 1.33 0.750 NA NA
dmf 1.37 0.729 NA NA

Rsquare= NA (max possible= 0.913 )
Likelihood ratio test= NA on 2 df, p=NA
Wald test = NA on 2 df, p=NA
Score (logrank) test = NA on 2 df, p=NA

As suggested by the package’s authors, we computed bootstrap intervals to check
whether the association between emergence times and both covariates is significant
at a 5% significance level. With 1000 replications, we obtained the following 95%
confidence intervals for both parameters: [0.21, 0.367] (sex) and [0.236, 0.391] (dmf)
which confirm a significant association between these variables and emergence times
of permanent tooth 24. An estimation of the baseline hazard function λ0 can be
obtained by means of the command coxmod$lamda0.

5 Simulating interval-censored data

Simulating data is an important part of research and, often, a relevant part in explor-
ing the small and moderate behaviour of the estimators as well as a natural way of
comparing statistical procedures under different scenarios. We address here how to
generate interval-censored data so that the simulated data are non-informative with
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respect to the main time variable of interest in the sense described in (1.2). In the
paper by Lawless and Babineau (2006), the reader can find a thorough discussion of
how to generate interval-censored data.

Let T be a failure time random variable following a specific distribution W (t).
We want to generate censoring intervals (L , R] from FL ,R(l, r ) such that censor-
ing occurs non-informatively, that is, the conditional distribution of L and R given
T satisfies equation (1.2). For a given sample size n of potential times (Ti , Li , Ri ),
(i = 1, · · · , n), we start generating T1, · · · , Tn from W (t) following standard proce-
dures. The methods below describe three different ways of generating (L1, R1), · · · ,
(Ln, Rn).

(i) The censoring mechanism of T could mimic a longitudinal study in which there
is a periodical follow-up with scheduled visits, taking into account that patients
might miss some of their appointments. We assume that there are M potential
inspection times a j ( j = 0, 1, · · · , M), for instance a j = j . The probability
that patients attend each of these scheduled visits is p. For an individual i , the
observed censoring interval (Li , Ri ] is constructed by defining Ri as the first
visit at which the event of interest is observed and Li as the previous visit. That
is, Li = max{a j : a j < Ti ; δi

j = 1} and Ri = min{a j : a j ≥ Ti ; δi
j = 1}, where δi

j

is the indicator of whether the visit at time a j occurred (δi
j = 1) or was missed

(δi
j = 0). Different values of p lead to different lengths of intervals, for instance,

p = 0.3 would imply that 70% of the visits are missed, which would lead to
wide intervals of observation for T . In Calle and Gómez (2005), M was taken
to be 10 and the distribution of T was taken to be a discrete exponential with
values 1, 2, · · · , 10 and defined in the following way: T = [T ∗] + 1 for T ∗ < 10
and T = 10 for T ∗ > 10, in which T ∗ has an exponential distribution of mean
8 and [t] denotes the greatest integer less than or equal to t .

(ii) Another way of mimicking a longitudinal study, with periodical follow-up and
scheduled visits, is following Schick and Yu’s model (2000). In this case and
for every individual i , consider a set of examination times {Yai , a = 1, . . . , τi}
which are the sum of independent and identically distributed inter-follow-up
times, Yai =

∑a−1
b=1 ξbi . For each individual, the number of examination times

satisfies that τi = sup{a ≥ 1 :
∑a−1

b=1 ξbi ≤ τ} where τ represents the length of
the study. The observed intervals are defined by Li = max{Yai : Yai < Ti} and
Ri = min{Yai : Yai ≥ Ti}. The parameters E(ξbi ) = μ and τ provide a control
of the length of the observed intervals and the percentage of right-censored
observations, respectively.

(iii) It can be shown that the naive way of simulating intervals by defining Li =
Ti − U (1)

i and Ri = Ti + U (2)
i where U (1) and U (2) are independent continuous

variables with uniform distribution in the interval (0, c) does not satisfy the
non-informativity condition (1.2). One way to go around this method is by
constructing L∗

i = max(Ti−U (1)
i , Ti +U (2)

i −c) and R∗
i = min(Ti +U (2)

i , Ti−U (1)
i +c)
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which can be shown that satisfies the non-informative condition. Zhang (2009)
is using this approach, with c = 1, in the paper following this in this same
volume.

6 Discussion

The aim of the present paper was to present the fundamentals for interval-censored
data in a unified manner together with the available software to perform analyses
with such data. Although we did not try to do an exhaustive review, some further
topics that could not be covered in this paper but could be relevant for the analysis
of particular data sets are briefly discussed next and some references are given.

We can encounter in practice other interval-censored mechanisms such as those
yielding current status data, doubly censored data or panel count data which require
specific methodology and software. The reader is addressed to Sun (2006) who
discusses ad hoc methods in Chapters 5, 8 and 9, respectively.

Interval censoring is not exclusive of a response endpoint in a regression model
but may also be found when a time variable is used as an explanatory covariate. For
instance, in the randomized clinical trial ACTG359 for HIV-infected patients, delays
in initiating treatment led to concerns that patients who had failed indinavir several
months previously, might be different from those who had just recently failed. The
effect of the waiting time from indinavir failure to enrollment—which is interval
censored because viral load levels are monitored periodically on the log viral load
levels at the time of enrollment was of great interest (Gómez et al., 2003). Other
instances are described in Goggins et al. (1999) and Tian and Lagakos (2006) when
estimating the effect of a binary time-varying covariate on failure times when the
change time of the covariate is interval censored, or in Langohr et al. (2004) who
modelled the latency time of AIDS in injection drug users as a function of time from
first injection drug use to (interval-censored) HIV infection.

There has been a large number of contributions dealing with the interval-censored
problem from a Bayesian viewpoint. See Sinha et al. (1999), Gómez et al. (2000),
Gómez et al. (2004), among others.

Interval censoring is an active area of both methodological and applied research
and the unresolved issues are still plenty. In particular, important topics such as
goodness-of-fit tests and regression diagnostics as well as residuals in regression
analysis are not well developed yet. Some useful references are Ren (2003), Topp and
Gómez (2004), Lawless and Babineau (2006) and Calle and Gómez (2008).

Concerning hypothesis testing, we have presented a family of tests for testing
k identical survival functions under the assumption that the underlying censoring
distributions are identical across groups. It will be of practical interest to develop
tests for situations when this assumption does not hold, which, to the best of our
knowledge, have not been addressed yet.

From a practical point of view, the effort of gathering together all the available
routines for interval censoring in this tutorial has made clear that quite a lot remains
to be done before interval-censored data can be routinely analyzed in all their extent.
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In many situations, even if there are methods derived, the computational aspects are
not developed or are not easily available. We hope that this tutorial will facilitate
the use of the different functions currently available for interval censoring in R. We
have chosen this software for the illustrations and as a connecting thread because it
provides a wide range of functions for interval-censored data and, as a free and open
source software, it is under constant development by many statisticians worldwide.
Hence, any substantial methodological development on interval-censored data will
surely find its way quickly to R. In order that the reader will have the possibility to
repeat our analyses with the same data. The data used in this tutorial, as well as the
functions for the k-sample problem, can be downloaded from the following website:
http://www-eio.upc.es/grass/.
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Appendices

Appendix A: R packages for interval-censored data

R’s main package for survival analysis is the package survival (Therneau and
Lumley, 2009). It comprises most of the functions for standard methods in survival
analysis such as the Kaplan–Meier estimator, several non-parametric tests, as well
as the accelerated failure time model and the proportional hazards model. To work
with the package’s functions, one has to load the package at the beginning of an R
session:

> library(survival)
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Functions in package survival do mainly work with right censored, but not with
interval-censored data. An exception is function survreg which accomplishes the
accelerated failure time model. This function allows for several parametric choices
such as the exponential, the Weibull, the log-logistic or the log-normal distribution.
Several generic R functions are available for survreg. For instance, in order to
obtain details on the model fit we can invoke the function summary; to compute
different types of model residuals we haveresiduals or to make predictions based
on the model we can use predict. Their use is shown in Section 4.1.2.

However, if one wants to compute Turnbull’s estimator or to fit the proportional
hazards model, the functions of the R packagesIcens andintcox, respectively, are
required. In contrast with package survival, both packages need to be installed
once on the computer. This can easily be done executing the following command
and choosing one of the available CRAN mirrors from the list which appears after
execution:

> install.packages(c("Icens","intcox"))

As with other packages, if one wants to use their functions, one has to load them
at the beginning of any R session by means of the command library. In the
sequel, both packages as well as some others offering functions for interval-censored
data will briefly be presented. More information on packages developed for survival
analysis may be found on the web page ‘CRAN Task View: Survival Analysis’:
http://cran.r-project.org/web/views/Survival.html.

A.1 Package Icens

The R package Icens of Gentleman and Vandal (2008) (can be downloaded
from http://cran.r-project.org/web/packages/Icens/index.html)
provides different algorithms to compute the NPMLE of the distribution function
under interval censoring including the self-consistency algorithm (EM) and the EM-
ICM algorithm. The most relevant functions are:

EM: Implementation of the EM algorithm developed by Turnbull (1976).

EMICM: Implementation of the hybrid EM–ICM estimator of the distribution func-
tion proposed by Wellner and Zahn (1997).

PGM: Estimation of the NPMLE obtained by using projected gradient methods.
It is a particular case of the methods described in Wu (1978).

A graphical representation of the NPMLE can be obtained by applying function
plot.icsurv to any of these functions. Another useful function is MLEintvl
which computes Turnbull intervals for a given set of interval-censored data. It is
important to note that all these functions require the interval-censored data to be
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stored into a two-column matrix, one column containing the lower, the other the
upper limit of the censoring interval. Confidence intervals of the NPMLE are not
provided. Its use is illustrated in Section 2.4.

A.2 Package intcox

Package intcox developed by Henschel et al. (2007) implements Pan’s (1999)
approach (can be downloaded from http://cran.r-project.org/web/
packages/intcox/vignettes/intcox.pdf). It consists, basically, of one func-
tion with the same name which fits the proportional hazards model with interval-
censored data. It provides the estimation of the model parameters as well as the
estimation of the baseline hazard function. As with function survreg, its main
argument is a Surv object (see Section 4.1.2). However, standard errors of the
model parameters are not provided and the authors suggest the use of bootstrap
intervals instead. We illustrate that in Section 4.2.1.

A.3 Packages smoothSurv and bayesSurv

For a detailed overview of Komárek’s R package smoothSurv and bayesSurv,
developed for the use of an accelerated failure time model with flexible error dis-
tributions, we refer the reader to the paper by Komárek and Lesaffre (2009). The
last version of smoothSurv available on CRAN is 0.3-12 and the author’s web is
http://www.karlin.mff.cuni.cz/∼komarek/.

A.4 Packages Epi and Design

The R packages Epi of Carstensen et al. (2008) and Harrell, (2008) are not specific
for survival analysis but do comprise some interesting and nice features. The former is
mainly thought for demographical and epidemiological analyses. Among many other
functions, it also contains a function called Icens which accomplishes the fit of a
regression model to interval-censored data assuming ‘a piecewise constant baseline
rate in intervals specified by the argument breaks, and for the covariates either a
multiplicative relative risk function (default) or an additive excess risk function’.

On the other hand, Design is a package for ‘Regression modeling, testing, esti-
mation, validation, graphics, prediction and typesetting by storing enhanced model
design attributes in the fit’. For example, it is possible to fit the accelerated failure
time model with interval-censored data using function psm. It furnishes basically the
same results as function survreg, but has the nice feature that model-based esti-
mates for survival probabilities can then be obtained for given times using function
survest.
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Appendix B: Analyses of interval-censored data with other software

Herein, we briefly present some functions offered by other statistical software pack-
ages for the analyses of interval-censored data, in particular the commercial software
packages S-PLUS (TIBCO Software Inc.; http://www.insightful.com/
products/splus/default.asp), SAS (SAS Institute Inc.; http://www.sas.
com) and STATA (StataCorp LP; http://www.stata.com). By contrast, as men-
tioned previously in Section 1.5, the commercial software SPSS (SPSS Inc.; http://
www.spss.com), in its current version 17.0, can only handle right-censored data.

B.1 S-PLUS

Since S-PLUS uses the same programming language as R, namely S, most of R’s func-
tions are also available under S-PLUS and work in the same way. However, when
it comes to interval-censored data, its functions are different from R. To compute
Turnbull’s estimator of the survival function, one has to use a function with a some-
what misleading name:kaplanMeier. Its main argument, the observed intervals, is
not defined by function Surv as in R, but by a function called censor which works
in the same way. As equivalent to the R functionsurvreg, which fits the accelerated
failure time model, two different functions may be used in S-PLUS: survReg and
censorReg. Both work with interval-censored data, however, the latter function
has a wider range of options. Among others, a threshold value may be specified and
the generic function plot may be applied to produce several figures which can be
helpful to judge the goodness-of-fit of the model. As far as we know, the proportional
hazards model with interval-censored data is not available under S-PLUS.

B.2 SAS

The basic SAS functions for survival analysis are PROC LIFETEST, PROC LIFEREG
and PROC PHREG for non-parametric, parametric and semi parametric analyses,
respectively. Whereas the accelerated failure time model can be fitted with interval-
censored data using PROC LIFEREG, the other two procedures do not handle these
kind of data. Turnbull’s estimator, however, can be computed in the presence of
interval-censored data using the ICE macro. As mentioned in Section 4.2, there is
a SAS macro written by Zhang and Davidian (2008) which enables the fit of the
proportional hazards model. An alternative to PROC LIFEREG is PROC RELIABIL-
ITY, which allows to ‘. . . construct probability plots and fitted life distributions with
left-, right- and interval-censored lifetime data’ as well as to ‘fit regression models,
including accelerated life test models, to combinations of left-, right- and interval-
censored data’ (SAS Help and Documentation). For further information, see also
Allison (1997) or Cantor (2003).
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B.3 STATA

In STATA, once the data have been declared survival time data by means of the
function stset, one can apply different survival analysis functions for different
kinds of analyses. The basic functions are sts for the non-parametric estimation of
the survival function, streg for the fit of a parametric survival model and stcox
which fits the proportional hazards model. As far as we know, there are no specific
STATA modules for Turnbull’s estimator and the Cox model with interval-censored
data, but, others exist to fit a parametric survival model. On the one hand, STATA
module INTCENS (Griffin, 2005) performs interval-censored survival analysis:

This program fits various distributions by maximum likelihood to non-
negative data which can be left-, right- or interval-censored or point
data. The supported distributions are exponential, Weibull, Gompertz,
log-logistic, log-normal, 2 and 3 parameter gamma, inverse Gaussian and
an extension of the inverse Gaussian which is the time to reach a certain
point for a Wiener process with random drift.

On the other hand, there is the module STPM which fits flexible parametric models
for survival time data. According to Royston (2001), this module ‘fits spline-based
distributional models to right-, left- or interval-censored survival data’. It supports
different link functions.
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Komárek A and Lesaffre E (2007) Bayesian
accelerated failure time model for
correlated censored data with a normal
mixture as an error distribution. Statistica
Sinica, 17, 549–69.
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