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Survival models involving frailties are commonly applied in studies where correlated event time data arise
due to natural or artificial clustering. In this paper we present an application of such models in the animal
breeding field. Specifically, a mixed survival model with a multivariate correlated frailty term is proposed
for the analysis of data from over 3611 Brazilian Nellore cattle. The primary aim is to evaluate parental
genetic effects on the trait length in days that their progeny need to gain a commercially specified standard
weight gain. This trait is not measured directly but can be estimated from growth data. Results point to
the importance of genetic effects and suggest that these models constitute a valuable data analysis tool for
beef cattle breeding.
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1. Introduction

Frailty was first introduced in survival analysis byVaupel et al. [35] in order to allow for unobserved
heterogeneity. In the univariate framework, frailty models are usually taken as an extension of
the proportional hazards model [5] in which both a frailty term and covariate effects are assumed
to act multiplicatively on the baseline hazard. The term including covariates allows for observed
heterogeneity, while the frailty term captures that part of the individual heterogeneity that refers
to unobserved risk factors. In multivariate or clustered survival data, the first approach developed
is based on the concept of shared frailty [4,17,29,36] in which a common random effect term
acts on the hazards of all individuals in a cluster. Shared frailty models are useful when it is
desired to explain correlations within groups or clusters of individuals (e.g. family, litter, clinic
or recurrent events from the same individual), but they have some limitations. All unobserved
risk factors are assumed to be the same within a cluster, which is not always reasonable, as more
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realistically we might expect individual-level heterogeneity also. These models have also not been
designed to incorporate complex genetic relationships found in family data of varying size and
structure.

To overcome these limitations, a correlated frailty approach has been developed and used in sev-
eral studies with bivariate survival data as, for instance, in twin studies (e.g. [18,19,21,22,38]). In
the correlated frailty model, unobserved risk factors are not assumed to be the same in each group
and frailty is allowed to be individual-specific exactly as in the univariate framework. However,
unlike the univariate case, in the correlated frailty model there is no assumption of independence
and one individual’s frailty is allowed to be associated with the frailty of another individual who
is related genetically. Ripatti and Palmgren [28] and Therneau et al. [34] extended correlated
frailty models to survival data on n individuals. In this case, frailties are usually assumed to
be random variables drawn from a multivariate normal distribution with an arbitrary covariance
structure. Pankratz et al. [24] applied this model to investigate the aggregation of breast cancer
within families. A correlated frailty model that incorporates both unobserved genetic and envi-
ronmental sources of frailty is also applied by Garibotti et al. [16] to data from a family-based
study of longevity.

Correlated frailty models have also been receiving increasing attention in animal breeding
programmes since it was found by animal geneticists and breeders that survival analysis can be
used for analyzing traits associated with longer productive life of livestock. After some analy-
ses using survival methods were published in the animal breeding field (e.g. [13,30,31]), some
computational tools have become available. Ducrocq and Söelkner [11,12], for instance, devel-
oped a package called the Survival Kit with animal breeding applications in mind. A Bayesian
estimation approach is used in this package as described by Ducrocq and Casella [10]. Pankratz
et al. [24] also implemented in the R software [27], a library called kinship [33] which con-
tains the function coxme for modeling survival data from large pedigrees. For estimation they
considered an approximate maximum likelihood approach. With the availability of such com-
putational tools, routine genetic evaluation of sires for longevity of their daughters based on
survival analysis was implemented in France, in Germany, in the Netherlands, and in other coun-
tries (e.g. [3,8,9,23,25,37]). Among others, dairy cattle breeds studied in such genetic evaluation
were Holstein, Braundvieh, Normande, and Simmental. There has been little use in beef cattle
breeding, an exception being Pereira et al. [26], who used survival analysis as a tool to investigate
the possibility of increasing sexual precocity in Nellore, a breed extensively used in Brazil as
beef cattle.

Survival models are therefore widely defined in dairy cattle for longevity breeding. However,
a complication is that exact times to events of interest are not usually recorded. They are only
known to occur within some time intervals that may overlap and vary in length. A way of dealing
with this data would be to consider the time to event as interval-censored data. There are, however,
methodological and computational difficulties related to this approach, particularly regarding the
multidimensional integral involved in the likelihood, which makes it impractical for large data sets
and complex genetic relationships as investigated here. Hence, in this work a genetic evaluation
of Nellore sires based on length in days T that their progeny need to gain a specified weight gain
from birth is performed by adopting a two-stage analysis. At the first stage we model the available
intermittent growth data to estimate T . These estimates are then used in the second stage for the
genetic evaluation using correlated frailty models. The aim is the possibility of decreasing this
length in days by selection of sires so as to reduce costs. An application on Brazilian Nellore
cattle forms the basis of the paper.

The structure of the paper is as follows: Section 2 contains details on the data set; Section 3
describes the mixed survival model and also the estimation procedure used for fitting the model
to the data; Section 4 gives results from the analysis performed. A brief discussion ends the paper
in Section 5.
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2. The data

The data and pedigree information used in our work were supplied by the Brazilian GenSys
Consultores Associados S.C. Ltda. Nellore is a Zebu breed from India that has become predomi-
nant in Brazil due to easy care, adaptability, and economic production under an intensive system.
The records analyzed were from 3611 progeny of 24 Nellore sires and 3116 dams born during
spring in a single herd between 1996 and 1997. The number of progeny per sire varied from 16
to 337 as can be seen in Table 1. The number per dam varied from 1 to 2 where 84% of them had
1 progeny.

All 3611 progeny were followed up from birth to approximately 2.5 years after they were born. In
this follow-up period the weight of each progeny was taken six times, at intervals of approximately
3–5 months. The first weight was taken at birth. Table 2 shows descriptive statistics for the weights
recorded over time. We see the growth rate falling as the animals mature but note the continuing
increase in variability with age.

In addition to the weight, information recorded for each progeny included: sex, reproduction
(natural or artificial), progeny birth year, and age of the dam at progeny birth, which varied from
2 to 16 years with mean and median equal to 5.5 and 4, respectively. Approximately 65% of the
progeny were female and about 92% were generated by natural reproduction. About 46% of them
were born in 1996, and 54% in 1997.

As weaned calves that have gained 160 kg from birth is a well-defined marketing unit in Brazil,
we have interest in comparing sires based on length in days that their progeny need to gain this
commercially specified weight gain. This will be considered the response time of interest in this
paper. The exact time that each progeny takes to gain 160 kg is however, not precisely known
since weight is taken only periodically. Thus, to estimate response time we fitted at the first stage,
a logistic growth curve model for each progeny. Under this model, the weight of progeny i at time
t is expressed as

Wi (t) = Ai

1 + bi exp(−ki t)
+ εi, (1)

Table 1. Number of progeny generated per each one of the 24 Nellore sires.

Sire Progeny Sire Progeny Sire Progeny Sire Progeny Sire Progeny

1 79 6 296 11 37 16 142 21 61
2 43 7 159 12 235 17 153 22 31
3 99 8 220 13 200 18 135 23 36
4 16 9 165 14 252 19 251 24 27
5 260 10 208 15 169 20 337

Table 2. Descriptive statistics for weights recorded over time on 3611 progeny.

Weight (kg)

Progeny age Mean Minimum Maximum Median Standard deviation

Birth 30.36 18 46 30 3.31
3–5 months 83.12 43 157 82 13.32
5–9 months 172.00 100 243 171 22.04
10–13 months 293.20 202 474 290 34.13
14–22 months 360.00 270 543 357 34.91
24–30 months 421.20 346 634 417 35.19
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where Ai is the asymptotic weight for progeny i, commonly interpreted as the mature weight; the
parameter bi is a constant that adjusts for situations where W(0) are not equal to 0; ki is a function
of the ratio of maximum growth rate to mature size, commonly referred to as maturing index [14];
and εi are random errors assumed independent and normally distributed with mean zero. To take
into account the heterogeneity of the variance throughout the growth curve suggested from Table 2,
we considered the variance following the same nonlinear function employed to describe the data,
as proposed by Blasco et al. [1]. Similarly to these authors, we performed some exploratory
analyses (not shown) and then concluded that the evolution of the variance could be represented
following a logistic law, that is,

σ 2
e (t) = a0

1 + b0 exp(−k0 t)
. (2)

The overall goodness of fit of model (1) was evaluated by the correlation coefficient between the
observed and predicted values.

From Equation (1), the response times ti (i = 1, . . . , n) to gain 160 kg can be then obtained by

ti = log(wi × b̂i ) − log(Âi − wi)

k̂i

, Âi > wi, (3)

where wi is the weight at birth for progeny i + 160 kg and n = 3611. Figure 1 displays a his-
togram of the time estimates obtained by using a Bayesian approach [32]. Priors assumed for
θik (k = 1, 2, 3) where θi1 = log(Ai), θi2 = log(bi), and θi3 = log(−ki) were N(μk, τk) with
μk ∼ N(0, 10−4) and τk ∼ �(10−3, 10−3), where σ 2

k = 1/τk and �(k, λ) denotes a gamma
distribution with mean k/α and variance k/α2. For the variance (2) priors for θ1 = log(a0),
θ2 = log(b0), and θ3 = log(−k0) were assumed to be similar to those reported for θik (k = 1, 2, 3).
The posterior mean of the parameters were obtained by carrying out a chain of 20,000 iterations
after discarding the first 5000.

A correlation coefficient between the observed and predicted values of 0.954 suggested a
satisfactory overall goodness of fit of model (1). Time estimates shown in Figure 1 will be then
considered as the response of interest in the survival model presented next. Note that no progeny
is expected to gain 160 kg before 167 days. Also, there are no censored data since all progeny
have gained at least 160 kg in the follow-up period (Table 2). Table 3 shows the first five lines of
the Nellore cattle data available for the second stage of the analysis.

Time in days to gain 160 kg
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Figure 1. Histogram of the time to gain 160 kg estimated from logistic curves.
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Table 3. First five lines of the Nellore cattle data where pby is the progeny birth year, agd is the age of the
dam at progeny birth, and ti is the posterior mean of the time to gain 160 kg obtained from logistic growth
curves.

Progeny Sire Dam Sex pby Agd ti 95% confidence interval of ti

1 1 1 Male 1997 11 224.0 (208.3, 241.3)
2 1 2 Female 1997 10 221.8 (206.8, 238.2)
3 1 3 Male 1997 9 214.0 (200.1, 229.8)
4 1 4 Male 1997 12 205.5 (192.5, 220.1)
5 1 5 Female 1996 6 234.5 (218.3, 252.6)

3. Survival mixed model

We now outline the correlated frailty model to be applied to the Brazilian Nellore cattle data
described in Section 2. Letting xij be a vector of measured covariates, we assume that the hazard
function at time t of an animal i (i = 1, . . . , nj ), which is progeny of sire j (j = 1, . . . , q) can
be expressed as

λij(t) = λ0(t) exp{β′xij + ωij}, (4)

where λ0(t) is the baseline hazard function, which can be left completely unspecified (Cox model)
or may follow a parametric distribution (e.g. Weibull), β is a vector of unknown regression
coefficients, and ω = {ωij} is a vector of unobserved frailties with ωij representing the per-progeny
random effect.

Ducrocq and Casella [10] describe how it is usual in quantitative genetics to assume the vector
of frailties ω follows a multivariate normal distribution with mean 0 and covariance matrix �. To
evaluate the influences of unobserved genetic contribution to time to gain 160 kg, this covariance
matrix is given by � = 2�σ 2

g , where σ 2
g represents the shared polygenic effect influences. The

block diagonal matrix 2�, where each block has dimensions nj × nj , is the so-called relationship
matrix that captures the shared polygenic factors between genetically related family members.
Element φii ′ of 2� expresses the degree of genetic resemblance between pair (i, i ′) of progeny
from sire j , i.e. the elements {φii ′ } represent the expected proportion of the genome that is shared
by each pair of progeny. The elements {φii ′ } take values 1 on the diagonal, 0 for pairs which are
not genetically related, 0.5 for first-degree relatives (e.g. sibling pairs), 0.25 for second-degree
relatives (e.g. uncle/nephew), 0.125 for third-degree relatives (e.g. first cousins), and so forth.
Thus, for i, i ′ = 1, . . . , nj ,

φii ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i not genetically related with i ′,

1 if i = i ′,(
1

2

)r

if i �= i ′ and genetically related, r = 1, 2, . . .

with r denoting the degree of relationship between progeny i and i ′.
In order to evaluate simultaneously the influences of unobserved genetic and shared family

environmental contributions to time to gain 160 kg, the covariance matrix � can be decomposed
into two components, � = 2�σ 2

g + �σ 2
f , where σ 2

g and σ 2
f represent the shared polygenic effect

and the shared family environmental influences, respectively. Here, � is also a block diagonal
matrix that incorporates the degree of shared environment among progeny of sire j in which
each block is a matrix of dimensions nj × nj . If, for instance, there is an indication of similar
environmental influences shared among progeny of sire j , � can be assumed as a block diagonal
matrix in which each block is a matrix whose elements are all equal to 1. For other alternatives
for � see, for instance, Yip et al. [39].
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624 S.R. Giolo and C.G.B. Demétrio

The conditional survival function for model (4) is expressed as

Sij(t |ωij) = exp

{
−

∫ t

0
λ0(v) exp{β′xij + ωij}dv

}

= [S0(t)]exp{β′xij + ωij}, (5)

where S0(t) = exp{− ∫ t

0 λ0(v) dv} is the baseline survival function. We also define H0(t) =∫ t

0 λ0(v)dv, the cumulative baseline hazard function usually estimated by the Breslow’s esti-
mator [2]. Measured covariates considered in the model were: progeny sex, progeny birth year,
and age of the dam at progeny birth.

Assuming that the random effects of all progeny of all the sires follow a multivariate normal
distribution with mean zero and covariance matrix �, maximization of the partial likelihood (PL)
given by

L =
∫

PL(β, g)
1√

2π |�| exp

{
−1

2
g′�−1g

}
dg, (6)

where PL is the Cox partial likelihood [6], is performed as described by Pankratz et al. [24] who
used Laplace approximation as suggested by Ripatti and Palmgren [28] in order to overcome the
intractable multidimensional integral in Equation (6).

From the breeder’s perspective, functions of the genetic parameter σ 2
g are of particular interest,

especially the heritability. This measures the proportion, on a suitable scale, of the total variability
of the trait caused by genetic differences among the animals on which the measurements were
taken. Although for the mixed-effects Cox model (4) it is not possible to obtain direct heritability
estimates as in the variance components model, since there is no random error variance compo-
nent, the polygenic variance component obtained from model (4) may be interpreted as measures
of familial aggregation. Information concerning hazard ratios associated with the disease that
corresponds to the random effect is obtained by exponentiation of the square root of the poly-
genic variance component. Hazard ratios associated with the covariates can also be obtained by
exponentiation of each regression coefficient.

Diagnostic methods for assessing the fit of model (4) are not quite easy to define given that the
definition of residual is not as clear-cut for this model. Additional studies are therefore needed
for this purpose. However, as the validity of model (4) relies heavily on the assumption of pro-
portional hazards, we used a graphical technique [20] as an exploratory method to investigate the
acceptability of this assumption. Based on this technique, each covariate is stratified into k disjoint
strata. Stratified Cox models, in which a distinct baseline hazard function λ0j (t) is assumed for
each stratum, are then fitted for each covariate to obtain the estimated cumulative baseline hazard
for each stratum j , that is, Ĥ0j (t), j = 1, . . . , k. Indications that the assumption holds are sug-
gested if for each covariate the log cumulative baseline hazards ln[Ĥ01(t)], . . . , ln[Ĥ0k(t)] plotted
against t show no gross departure of parallel curves.

4. Results and discussion

Table 4 shows the main parameters estimated from Cox mixed survival model (4) considering three
covariance matrix. First, it was taken � = �σ 2

f for evaluating only the influences of unobserved
shared family environmental contributions to time to gain 160 kg. The second covariance matrix
considered was � = 2�σ 2

g which allows us to evaluate only the influences of unobserved genetic
contribution. Finally, it was taken � = 2�σ 2

g + �σ 2
f for evaluating both of these influences

simultaneously. Since all progeny share the same climate, pasture and other factors, it was assumed
that progeny of the same sire shared similar environmental influences. Hence, all elements of each
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Table 4. Parameter estimates and their respective 95% confidence intervals where pby is the progeny birth
year and agd is the age of the dam at progeny birth.

Coefficient estimates Variance components

Matrix � Sex pby Agd Agd2 σ 2
f σ 2

g

1σ 2
f 1.82 0.28 0.06 −0.003 0.077 –

(1.73, 1.90) (0.08, 0.48) (0.00, 0.12) (−0.007, 0.001) (0.01, 0.20)

2�σ 2
g 2.18 0.30 0.07 −0.004 – 0.368

(2.08, 2.28) (0.12, 0.47) (0.06, 0.10) (−0.007, −0.001) (0.12, 0.81)

2�σ 2
g + 1σ 2

f 2.24 0.30 0.07 −0.004 0.017 0.458
(2.13, 2.34) (0.19, 0.40) (0.03, 0.11) (−0.008, −0.001) (0.0, 0.03) (0.16, 0.92)

block of the matrix � were assumed to be equal to 1. Covariates included in the model were sex,
progeny birth year, and age of the dam at progeny birth. As progeny from youngest and also oldest
dams are expected to have slower growth rate, age of the dam at progeny birth was considered
as having a second-order polynomial effect. Estimates of the variance components σ 2

f and σ 2
g are

therefore adjusted for such terms in the model. Because it is very hard to obtain the standard errors
(SE) for the variance components, confidence intervals are obtained by profiling the likelihood [7].
All computations were done by using the library kinship [27,33].

As mentioned in Section 3, hazard ratios can be obtained by exponentiation of each regression
coefficient. Hence, from model which, for instance, incorporated both polygenic and environmen-
tal effects, we have for the covariate sex that exp(2.24) = 9.39 with 95% confidence interval (CI)
of (8.41, 10.38). Therefore, the hazard of obtaining the desirable gain of weight in a shorter period
of time is estimated to be much greater among males than among females progeny. Evidence of
a sex effect is then observed with faster growth for males. Similarly, the hazard of obtaining the
desirable gain of weight in a shorter period of time is estimated to be 35% (CI95%, 21−49%)
greater among progeny births in 1997 than among those births in 1996. Note that the proportional
hazards assumption is suggested from Figure 2 since no gross departure of parallel curves are
observed for the covariates in the survival model.
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Figure 2. Log cumulative baseline hazards ln(Ĥ0j (t)), j = 1, . . . , k, versus t for the covariates (a) sex into
k = 2 strata, (b) progeny birth year into k = 2 strata, and (c) age of the dam at progeny birth into k = 4
strata ([2, 4), [4, 5), [5, 6) and ≥ 6 years).
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Information regarding hazard ratios associated with the random effects, in which our main
interests are focused, can also be obtained by exponentiation of the square root of the
variance components. From estimates shown in Table 4 for these components, it can be
observed higher estimates associated with the polygenic effect σ 2

g . There is, therefore, evi-
dence that polygenic factors play a greater role than shared family environment factors in
explaining the variation in the time to gain the desirable weight. The estimate of the poly-
genic variance component equal to 0.458 (CI95%, 0.16 − 0.92) suggests a significant degree
of heritability associated with the time to gain 160 kg and shows that the progeny hazard of
obtaining this weight gain in a shorter period of time due to polygenic effects are on aver-
age exp(

√
0.458) ≈ 1.967. Hence, there are progeny which have hazard of gaining 160 kg

in a shorter period of time 96.7% higher than the overall average hazard for the entire sam-
ple. From this result we have therefore evidence of large genetic effects in growth rate of
progeny.

In the animal breeding field the random effect ωij is referred to as the genetic value of the
progeny i from sire j . Figure 3 shows these progeny genetic values per sire obtained from
the model which includes both polygenic and environmental random effects. Sires with mean
genetic value of their progeny significantly greater than zero can be identified from the figure. For
example, progeny from sires 2, 9, 10, 19, and 24 seem to have a proven performance than progeny
from other sires regarding the time to reach the desirable gain of weight. Further selectivity
in sires may provide therefore the potential to decrease the length in days to gain the required
weight.

For illustration purposes we take two sires amongst the 24 in the study, sire 10 with high
progeny genetic mean value (0.89), and sire 4 with low progeny genetic mean value (−1.07).
Estimated mean survival curves, expressed in Equation (5), for progeny of these two sires are
displayed in Figure 4. Note from the male survival curves at time t = 190 days (vertical line in
the plots) that Ŝ(190) ≈ 0.009 for sire 10 and 0.516 for sire 4. This means that only about 1% of
male progeny from sire 10 have not gained the desired weight at such time as against 52% from
sire 4. Corresponding values for female progeny, with slower growth rate, are 60.6% and 93.2%.
Thus the effect of high and low genetic values is clearly observed.

If we consider that one objective in cattle breeding programmes is to develop methods of
identifying sires with best performance based on animals generated by them, sire selection based
on their progeny genetic mean values could help breeders to more quickly produce animals with
the required weight for the market.
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Figure 3. Progeny genetic values ωij per sire obtained from mixed Cox model with polygenic and
environmental random effects, and mean genetic value by sire.
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Figure 4. Mean survival curves estimated from Cox model for progeny from sires 4 and 10 by sex, progeny
birth year 1996 (reference category), and mean age of the dam at progeny birth (5.5 yrs).

5. Conclusions and remarks

In this paper we have used mixed survival models to investigate the possibility of decreasing the
time to event, i.e. the length in days that progeny take to gain 160 kg from birth, by selection of
sires. Since in practice measures of weight cannot be made daily, it follows that this exact time is
commonly unknown. For example, in the application considered here, the weight of progeny was
taken six times. A way of dealing only with this routinely recorded data would be to consider the
time to event as interval-censored data. As there are, however, methodological and computational
difficulties related to this approach, we have first estimated the response time by considering
the logistic growth curve, which has been shown to be appropriate to describe Nellore cattle
growth [15], and then we fitted a correlated frailty model designed to incorporate genetic rela-
tionship between progeny. In this model we assumed the vector of random effects following a
multivariate normal distribution. Because in some cases this assumption might not be reason-
able, some additional efforts remain needed and would be useful to extend this model for other
distributions.

Overall, our results suggest that use of statistical analyses which consider survival traits and
which can have a significant impact on costs should be encouraged in the animal breeding field.
In this direction, survival models can be seen as a valuable tool that can help breeders to evaluate
and subsequently improve their system of production. From the Nellore cattle data analyzed in
this work, results indicate that the length in days that progeny take to gain a specified weight gain
from birth can be decreased by selection of sires. Sires in which the mean genetic value of their
progeny are higher are desirable in the sense that they can generate progeny reaching the desired
weight gain in shorter periods of time with consequent reduced costs and a possibly significant
impact on profitability.
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