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Abstract: The class Gp,x of weighted log-rank tests proposed by Fleming & Harrington [Fleming & 
Harrington (1991) Counting Processes and Survival Analysis , Wiley, New York] has been widely used in 
survival analysis and is nowadays, unquestionably, the established method to compare, nonparametrically, 
k different survival functions based on right-censored survival data. This paper extends the Gp,k class to 
interval-censored data. First we introduce a new general class of rank based tests, then we show the analogy 
to the above proposal of Fleming & Harrington. The asymptotic behaviour of the proposed tests is derived 
using an observed Fisher information approach and a permutation approach. Aiming to make this family of 
tests interpretable and useful for practitioners, we explain how to interpret different choices of weights and 
we apply it to data from a cohort of intravenous drug users at risk for HIV infection. The Canadian Journal 
of Statistics 40: 501-516; 2012 © 2012 Statistical Society of Canada 

Résumé : La classe Gp,x des tests log-rang pondérés proposée par Fleming et Harrington (1991) sont très 
largement utilisés en analyse de survie, et de nos jours, elle est une méthode non paramétrique qui a fait ses 
preuves pour comparer k fonctions de survie différentes pour les données de survie censurées à droite. Cet 
article généralise la classe Gp,x pour les données censurées par intervalles. Dans un premier temps, nous 
proposons une nouvelle classe de tests basés sur les rangs, et par la suite, nous faisons une analogie avec 
les tests de Fleming et Harrington (1991). Le comportement asymptotique des tests proposés est obtenu en 
utilisant l'approche de la quantité d'information de Fisher observé et une approche par permutation. Afin 
que les utilisateurs puissent interpréter cette famille de tests et qu'elles leur soient utiles, nous expliquons 
comment interpréter différents choix pour les poids et nous l'appliquons à un jeu de données sur le risque 
d'infection au VIH pour une cohorte d'utilisateurs de drogues intraveineuses. La revue canadienne de 
statistique 40: 501-516; 2012 © 2012 Société statistique du Canada 

1. INTRODUCTION 

Comparison of two or more distributions based on censored data is a topic which arises in most 
survival studies. While many tests have been proposed when the data are right-censored, research 
for interval-censored data is still ongoing and lacks a unified approach. Interval censoring often 
arises when individuals are inspected intermittently and the event of interest is only known to 
have occurred between two consecutive inspection times. Peto & Peto (1972) were among the first 
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authors to propose testing methods for interval-censored data. These authors extend the Wilcoxon 
test and the log-rank test to interval-censored data and use a permutation approach to avoid the 
difficulty of finding the distribution of the corresponding test statistics. Finkelstein (1986) derives 
the log-rank test as a score statistic of a proportional hazards model. Finkelstein assumes grouped 
continuous data and uses the Fisher information matrix to obtain the asymptotic distribution of the 
test statistic instead of the permutation distribution. There is a large literature on interval-censored 
data associated with the extension of the Wilcoxon and log-rank tests, see for instance Fay (1996, 
1999), Fay & Shih (1998), Zhao & Sun (2004), Sun, Zhao, & Zhao (2005), and Huang, Lee, 
6 Yu (2008). Other authors such as Lim & Sun (2003) discuss generalizations of the weighted 
Kaplan-Meier class developed by Pepe & Fleming (1989) for right-censored data. An extensive 
review of /¿-sample methods for interval-censored data can be found in Gómez, Calle, & Oller 
(2004) and in Sun (2006). 

A large number of /¿-sample methods have been proposed for right-censored data. A useful 
family of test statistics is the class of weighted log-rank statistics and, in particular, the Gp,k 
subfamily introduced by Fleming & Harrington (1991). For this subfamily, the weight function 
is chosen to be [5(r - )]p[l - §(t- )]À where S(t) is the Kaplan-Meier estimate of the survival 
function. The appropriate selection of the parameters p and k gives emphasis to early, middle or 
late hazard differences. The Gp,x family contains as special cases the log-rank statistic (p = 0 
and k = 0) as well as a statistic close to the Peto-Prentice extension of the Wilcoxon statistic 
(p = 1 and k = 0). Moreover, when k = 0, the corresponding subfamily is called the Gp family 
(for further details, see Lawless (2003)). 

In this paper we propose an extension, for interval-censored data, of the Gp,k family. Section 2 
formulates the problem and gives the basic notation. Section 3 introduces our proposal and shows 
that it is a natural extension of the Gp,k family for right-censored data. Section 4 derives the 
subclass Gp as a likelihood score procedure for discrete data. Section 5 describes the permutation 
approach to be used for inferential purposes. The paper continues with Section 6 where we report 
a simulation study which gives guidance on the behaviour of the Gp,x family of tests. In Section 
7 we apply the new family of tests to a real data set from an AIDS study. Section 8 provides a 
summary of the results presented in this paper. 

2. NOTATION 

Let T be the time to the event of interest. Assume that we have k groups of data, . . . , G ̂ 
with respective sample sizes . . . , r¿k' and define S(1), . . . , S ̂ to be the survival functions 
of T for each of these groups. Our goal is to test the hypothesis Ho : S(1) = • • • = S^k>} = S versus 
Ha : * for some j ^ f. If the data are interval-censored, the only information about the 
lifetime T is that it lies between two observed times, namely L and R , and we write T e (L, R]. 
In this paper we consider that the observed intervals are half open intervals. The methods we 
describe below are, however, easily modifiable if we observe closed intervals. The use of closed 
intervals would have the advantage that the uncensored observations would be included when 
L - R and would accommodate grouped data. However, the use of half open intervals is more 
common and appears in situations where the individuals are inspected intermittently. 

Under the null hypothesis Ho and the assumption that the censoring process is noninformative 
(Oller, Gómez, & Calle, 2004, 2007 ; Lawless, 2004), the likelihood function for the pooled sample 
simplifies as follows: 

n 
Lik(S) = YÍ^-s^r¡)i, (D 

/= 1 
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2012 FLEMING AND HARRINGTON'S CLASS OF TESTS 503 

where n = H  h and (/i , n), . . . , ( ln , rn) are independent observations. Denote by C 
and 7 Z the sets £ = {/,, 1 < / < n) and 1Z = {r/, 1 </<«}. Following Peto (1973) and Turnbull 
(1976), we can derive all the distinct intervals such that their left and right end-points lie in 
C and 71, respectively, and they do not contain other members of C or 1Z. Let these intervals, 
known as Turnbull's intervals, be written in increasing order as (q i, p'], {qi, pi', . . . , ( qm , Pm' 
with qj < pj < qj+'. Then, the nonparametric maximum likelihood estimator S(t) of S(t) is 
unspecified in each ( qj , pj' and is well defined and constant between these intervals. 

There are several algorithms to determine S(t ), see Gómez et al. (2009) for an exhaustive 
description of them. If the EM algorithm is used, an estimate of the survival function for the ith 
individual, $,-(0, is obtained from Turnbull's overall survival S(t) truncated at the ith observed 
interval (Fay & Shih, 1998). That is, 

šili U v t) - S(r; ' v t) 
Siit) = ps((t, +00) I r,]) = 

U v t) - ' v t) 
(2) 

S(ii) - S(n) 

where P§ denotes the probability measure of T given by the survival function Š(t) and a v b 
stands for the maximum between a and b. The maximization step of the EM algorithm yields 
§(t) = §i(t). The survival function §¡(t) is unspecified inside Turnbull's intervals, as a 
consequence of the unspecification of S(t). The survival functions S(t) and §¡(t) play an important 
role in the test statistics we introduce next. In what follows, we consider §(t) to be one of the 
survival functions in the equivalence class of survival functions which assigns the same probability 
mass to Turnbull's intervals. This convention has no effect on the final value of the test statistics. 

3. THE WEIGHTED LOG-RANK CLASS G ̂ 

In this section we present our proposal for a class of weighted log-rank statistics to test Ho : = 
• • • = S ̂ versus Ha : / S ̂ ) for some j ^ /. The terms in the Gp'k class can be interpreted 
as a weighted sum of observed minus expected number of events under the null hypothesis of 
identical survival curves. This class is a natural extension to interval-censored data of the original 
GP'À family proposed by Fleming and Harrington for right-censored data. 

Throughout this section, for any step function F(t ) and fixed value ř, we denote a function 
increment as d F(t) = F(t) - F(t-) where as usual F(t-) = lim^ ř F(x). Note that d F(t) = 0 
except at points of discontinuity of F. 

Our proposed test statistic is a vector U = (ř/(1), . . . , U^)' with components 

r+OO nU) 
U0) = / p) d)]) - -i-d, , j = I, ... ,k (3) 

Jo n, 

where n(,j) = n^ŠU't~) is the (expected) number of individuals at risk at time t from group 
j; nt -n S(t- ) is the (expected) number for all groups together; and = -n^d§^'t) and 
dt = - nd§(t) stand for the estimated number of failures in the jth group and for all groups 
together, respectively. In the above expressions the survival function for the 7th group is estimated 
as 

5°)(í) = (4) 
i= 1 

where denotes the indicator function of the group G^' and §i(t) is the estimate of the survival 
function for the ith individual defined in Equation (2). The weights w{t'k, p), denoted from now 
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on as w(t) for ease of notation, are defined as 

+ -*->*+ M (5) 
S(t- ) - S(t) 

where p > 0, À > 0 and B{t' a,b) = xa~ Hi- x)b~~ 1 dx is an incomplete beta function. Asymp- 
totically, as d§(t) -> 0 and Š is nearly continuous at the point t, the weight function w(t) resembles 
the weights of the Fleming-Harrington family, that is, [§(t- )]p[l - S(t-)]x. This result will be 
proved in Proposition 1. 

The statistic U reduces to the log-rank and Wilcoxon-Peto test statistics originally proposed in 
Peto & Peto ( 1972) for choices of (p, À) = (0, 0) and (p, À) = ( 1 , 0), respectively. As for many of 
the usual nonparametric tests for the comparison of survival functions, we can study our proposed 
class of statistics from varying perspectives. We present below the U statistic as a sum, over all 
times, of weighted differences in the estimated hazards. In Section 3.2 we regard it as a linear 
scores form. 

3.1. Integrated Difference of Hazards Form 

Consider d H(t) = - dš(t)/š(t- )anddH^'t) = -d§^'t)/§^'t-)(j = 1, . . . , k) as estimators 
of the overall hazard function and the hazard function for the 7th group, respectively. Then, the 
jth component of U given in (3) is expressed equivalently as 

r+00 . _ 
UU) = / w(t)nY' [dH{j't)-áH(t)]. 

_ 
(6) 

Jo 

This formulation shows that this family is geared to detect an alternative hypothesis where the 
hazards between groups differ but do not cross. 

The interpretation of the weights given by (5) reproduces the interpretation of the weights 
in the original right-censored family. The choice of the weights w(t), that 

is, of the parameters À and p, is a relevant part of the Statistical Analysis Plan since different 
choices would provide answers to different departures from the null hypothesis. For instance, in a 
given clinical trial, if one would like to assess whether the effect of a treatment or therapy on the 
survival is stronger at the earlier phases of the therapy, we should choose À = 0, with increasing 
values of p emphasizing stronger early differences. If there were a clinical reason to believe that 
the effect of the therapy would be more pronounced towards the middle or the end of the follow-up 
period, it would make sense to choose p = À>0orp = 0 respectively, with increasing values 
of X emphasizing stronger middle or late differences. The choice of the weights has to be made 
prior to the examination of the data and taking into account that they should provide the greatest 
statistical power, which in turns depends on how it is believed the null is violated. 

3.2. Linear Scores Form 
As an alternative, the statistic U given in (3) can also take the following linear form: 

n 
v = (7) 

(=i 
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2012 FLEMING AND HARRINGTON'S CLASS OF TESTS 505 

where z ; = af' . . . , a'®)' is a covariate vector of group indicators and c; is a score value 
associated with each individual defined for p, k > 0 as 

r š(ri)B('-š(rj);X+',p)-š(li)B('-š(li);X+',p) if ̂ 1 q 
d = < š(li)-š(n) 1 

(g) 
I -fl(l- $(/,-);* + l,p) if Sfa) = 0 

This linear formulation allows us to introduce the permutation distribution of the statistic U in 
Section 5. The following proposition gives the equivalence between the weighted log-rank form 
given by (5) and (6) and the above linear form given by Equations (7) and (8). The proof of this 
proposition is given in the Appendix. 

Proposition 1. A weighted log-rank test statistic U = (ř/(1), . . . , U^)' with components given 
by (6) has the following properties : 

(a) The statistic U can be represented in the linear form Y!?=i zici where the scores are given 
by 

r+oo r §(t- ) 
Q = 

I 
w{t) - dšj(t ) + 

) 
. (9) 

(b) For a weight function 

^ ^ ,dy(Š(t)) 

for y(t ) a dijferentiable nondecreasing function (y( 1 ) = 0), the c, scores given in ( 9) simplify 
10 tn r. _ SdiMSm-SínMŠW) 10 tn r. Cl _ 

Š(li)-Š(n) 
(c) For a given point t, the weight function (10) satisfies lim {w(t) - §(t)y'(§(t))} = 0, where 

di(0-^0 
y'(t) is the first derivative of y (t). 

(d) The function y(t) = - B(' - t' X + 1, p) yields the weights (5) and the scores (8). Moreover , 
for a given point t, the weights (5) satisfy lim {w(t) - [£(ř)]p[l - 3(0]M = 0. 

dš(t)-+0 

4. SCORE VECTORS UNDER DISCRETE OR GROUPED DATA 

For discrete or grouped continuous interval-censored data, Finkelstein (1986) and Fay (1996, 
1999) show that the log-rank and the Wilcoxon-Peto test statistics can be derived as the efficient 
score statistics for a proportional hazards model and for a proportional odds model, respectively. 
In this setup, several other score statistics can be derived from the linear transformation model 
studied in Fay (1996). 

When X = 0, the rank class Gp,x for interval-censored data is an extension of the so-called 
Gp family. The next theorem shows that the rank class subfamily Gp,° is a class of efficient score 
statistics in a linear transformation model. 

Proposition 2. Let g(T¿) = - i '!tß + be a linear transformation model with g being an 
unknown increasing function, z ; = . . . , o^)' and 6/ having survival function 
S€(t) = [1 + pexp(ř)]-1/p. Assume that the parameter p is known and the support for the 
observable data is finite , that is , L, R e {to, t' , . . . , tm }, where 0 = to < t' < • • • < tm < 
tm+l = -j-oo. Let the survival function for T¡ be S(t ' zjß, 0 ), where 0 = (ßj)rj= j is a vector 
of nuisance parameters such that 0j = g(tj). Consider the likelihood function Lik(ß , 0) = 
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- S(r¿ I z-j8, 0)} and let #o be the maximum likelihood estimator of the nui- 
sance parameters when ß = 0. Then , 

(a) Finding the nonparametric maximum likelihood estimator of the survival function from (1) is 
equivalent to obtaining the maximum likelihood estimator of the nuisance parameters because 
Sit) = [sit '^ß,e)]ß=O 0=öo. 

Moreover , if none of the parameters is on the boundary of the parameter space, that is, 
1 > §(t') > - - > §(tm) > 0, then: 

(b) The efficient score statistic -s g¡ven by (y) and (8) with X = 0. 
L 9P J ß=o,e=öQ 

The proof of this result is omitted because it is analogous to Fay (1996, 1999). We remark that 
for a general error survival function S€(t ), Fay (1996) shows that the efficient score statistic for a 
linear transformation model is given by (7) and 

_ S'( (S- 
1 
iših))) - S'e (S- 

1 
(š(r,))) 

Sil,)- Sin) 
(11) 

where S'((t) and S~lit) are respectively the first derivative and the inverse function of Sf(t). 
Statement (b) follows directly from (11) when we consider the survival function S€(t) = [1 + 
pexp(ř)]_1/p. 

Proposition 2 uses the "non standard" formulation g(7¿) = - z-/J + €¡ instead of g( T¿) = z-ß + 
€i because the former, together with S€(t) = [1 + pexp(t)]~l/p and g(t) = log ř, includes the well- 
known proportional hazards model (when p -> 0) and the proportional odds model (when p- 1). 
See Kalbfleisch & Prentice (2002) for a thorough discussion of the equivalence between linear 
transformation models and regression models. 

Another interesting issue is whether or not the Gp,x family when À ̂  0 is a class of score 
statistics for discrete data under the linear transformation model. From Equations (8) and (11), it 
follows that the survival function of the error term S€ would have to be a solution of the following 
differential equation, 

S(iSf{ 
(ř)) = -g(l - f, X + 1, p), (12) 

which, except for the special case À = 0, does not have, in general, an analytic solution. 
The asymptotic behaviour of a score vector V under discrete interval-censored data follows 

from maximum likelihood theory. Since in this case the number of parameters is finite, under the 
null hypothesis Hq the random variable UV~Uf is asymptotically chi-squared with k - 1 degrees 
of freedom, where V~ is the generalized inverse of the observed Fisher's information V. The 
explicit formula for V is not presented here but it can be provided upon request. 

In practice, however, score tests cannot be applied with interval-censored data because the 
parameter estimates come near to the parameter boundary. To avoid this problem, it is common 
to use a permutation approach. The next section presents the main aspects of this approach. 

5. PERMUTATION DISTRIBUTION 
In comparison with the likelihood method given above, the permutation approach is straightfor- 
ward and applies for discrete as well as for continuous data. A permutation test remains valid even 
if the assumed model does not hold. In this case, however, the test might not be asymptotically 
efficient. The main assumption to apply a permutation test is that the underlying censoring pro- 
cess has to be identical across groups. Although this restriction is not necessary in the previous 
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2012 FLEMING AND HARRINGTON'S CLASS OF TESTS 507 

likelihood approach, it is also necessary with other methods such as the multiple imputation 
methods proposed in Zhao & Sun (2004) and Huang, Lee, & Yu (2008) or the asymptotic method 
proposed in Sun, Zhao, & Zhao (2005). 

The permutation approach can be applied easily to the linear form of the score statistic U given 
by (7). The idea behind the permutation approach is that if the null hypothesis is true, the labels on 
the scores c¿ are exchangeable. The permutation distribution of U is then obtained by permuting 
the labels and recomputing the test statistic for all the possible rearranged labels. The permutation 
distribution can be computed exactly when the sample size is small. When n is large, a version of 
the Central Limit theorem for exchangeable random variables (Sen, 2006) can be applied yielding a 
normal approximation with permutation expectation E(U) = nčž and variance-co variance matrix 
^0 = (E"=i ci - n'c 2) (E"=|(z'zí - žž')), where č = ± £"= , c,- and ž = i Yü=' z< are 
the sample means. 

In our situation c = 0 and, consequently, E(U) = 0. Moreover, we consider z/ as a ̂ -vector of 
group indicator functions, so the permutation test is based on the Mahalanobis distance U'VqU = 

"r1 2 i w^(č^)2, where is the generalized inverse of Vo and ^ i ci°^P • Ci 
The statistic U' Vq U follows a xl_ ' distribution, for n large enough, and the null hypothesis would 
be rejected for large values of U'V^U. In the sequel we consider either discrete or continuous 
data and we use the normal approximation of the permutation distribution of U. 

The permutation approach is, in fact, a conditional approach since the distribution of the 
test statistic is computed conditioned on the observed intervals. It is not obvious whether the 
permutation approach gives power properties similar to an unconditional approach. With right- 
censored data, Heimann & Neuhaus (1998) show that the permutation version of the log-rank 
test and the unconditional version are asymptotically equivalent even under unequal censoring. 
With interval-censored data, the comparison of the asymptotic behaviour of the permutation 
distribution of U with an unconditional distribution, for instance the likelihood distribution, 
deserves further attention. With case II interval-censored data, that is, the particular situation 
where the observable data are determined by two inspection times, Sun, Zhao, & Zhao (2005) give 
an asymptotic unconditional distribution of ¿7. A careful look at the estimation of the asymptotic 
variance given by these authors shows that it coincides with the permutation variance given above 
except for the use of the fraction £ instead of Thus, for case II interval-censored data, the 
conditional distribution of U given by the permutation approach is asymptotically equivalent to 
the unconditional distribution given by Sun, Zhao, & Zhao (2005). 

6. SIMULATION STUDY 

A large simulation study has been carried out to assess the performance of the Gp,x family 
of tests given in Section 3 (from now on "OG") and to validate, in terms of their power, the 
interpretation of the weight function given by (5). Throughout, we use the normal approximation 
of the permutation distribution presented in Section 5. By means of the simulation study we also 
compare OG with other existing extensions of the Gp,x family. We have computed the power 
of the class of test statistics given by Sun, Zhao, & Zhao (2005) and by Sun (2006). We first 
summarize these two classes of tests. 

The class of tests given in Sun, Zhao, & Zhao (2005) (from now on "S05") can be written 
either as a linear form in terms of scores, as in Equation (7), or as a weighted log-rank test (6) 
with weight function (10) derived from 

y(t) = log(í)íp(l - t)x. (13) 

The Sun, Zhao, & Zhao (2005) class reduces to the log-rank test proposed in Peto & Peto ( 1972) for 
p = 0 and À = 0. For values p ̂  0 or À ̂  0, S05 ' s family differs from the OG family and does not 
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include the Wilcoxon-Peto test statistic. Furthermore, since for any pair of values (p, k) such as 
p 0, À == 0 or p = X ̂  0 the function (13) is not necessarily nondecreasing, the corresponding 
weights could be negative and hence, the interpretation of them would be troublesome. The results 
given below for S05 are based on the normal approximation of the permutation distribution which, 
as we discuss in Section 5, is equivalent to the asymptotic distribution proposed in Sun, Zhao, & 
Zhao (2005). 

Chapter 4 of Sun (2006) proposes a generalization of the weighted log-rank test statistic. This 
approach is a resampling method based on M imputed right-censored samples. From the original 
interval-censored sample, M right-censored samples are generated in the following way: first, 
for each interval-censored observation, an exact failure time is generated at random from the 
estimated survival function §i(t) given in (2); second, the right observations are preserved. The 
methodology consists in computing the Fleming and Harrington statistic Um and the martingale 
variance Vm for every imputed sample of right-censored data (ra = 1 , . . . , Af ). In our simulation 
study we are using the test statistic tJfV~"D , where tJ - ^ Ylm= i an(* ̂ ~ + 

{} + if) W-i Em=i ~ fy fa"1 ~ Ü)' • Under the null hypothesis, ÌJfV~tJ (from now on 

"S06") is approximately x2 with k - 1 degrees of freedom. The simulation results reported below 
for this proposal are based on M - 20. We obtained similar results for larger values of M . We 
note that S06 slightly differs from the statistic considered in Sun (2006) but this is a minor change 
done for practical purposes, and the statistic considered here is common in multiple imputation 
approaches (Pan, 2000). 

The censoring mechanism for T has been simulated mimicking a longitudinal study where 
there is a periodical follow-up with scheduled visits, see Schick & Yu' s model (2000). Specifically, 
for an individual /, we consider a set of examination times [Yai, a = 1, . . . , r,} which are the 
sum of the inter-follow-up times, Ya¡ = Ylb=' &i- The inter-follow-up times are independent and 
identically distributed as an exponential distribution (£(&;) = ¡i). For each individual, the number 
of examination times satisfies r ; = sup {a > 1 : J2b=' S *} where r represents the length of 
the study. The parameters ß and r control the length of the observed intervals and the percentage 
of right-censored observations, respectively. In the present simulation study, we have considered 
¡1 = 2 and r = 14. We did compare the three methods (OG, S05, and S06) for different values of 
r and their behaviour was similar to the results reported below for r = 14. All the scenarios are 
based on 1,000 replications. The resulting average percentage of right-censored observations is 
about 30% for those scenarios in Subsection 6.1 and 20% for those in Section 6.2. 

We simulated a large number of scenarios where the null hypothesis was true and in all cases 
the nominal significance level a = 0.05 was roughly reached by the statistics OG and S05. The 
empirical significance level was near 0.05 for scenarios with small sample sizes (for instance 
scenarios of two or three groups and sample size 50 for each group) and for large percentages 
of right-censored data (from 30% to 50%). However, in most of these scenarios the empirical 
significance level of the statistic S06 was clearly below the nominal level of 0.05. We do not 
present the results here but they can be provided upon request. 

6.1. Accelerated Failure Time Models 
Since the OG family is a class of score statistics only for discrete data, in this section we study 
whether the OG statistics perform as efficient score tests when both the failure and the censoring 
times are continuous. We have simulated T from an accelerated failure time (AFT) model with 
error distribution S€(t) holding Equation (12). The survival function for each group is given by 

J< 11(0 = s, 
("> 8<'>-'°g«',>) 

sC)(1) = s< 
/log(') - Iog<or2) 

j 
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where s^s*t 
^ = - B(' - t' X + 1, p) and S6(0) = j. This last condition ensures that in all the 

scenarios the two groups have medians equal to a' and «2, respectively. We have generated 10 
different scenarios for several values of (p, X) which we describe next. 

• Scenario 1 is a proportional hazards model with p = 0,X = 0(a' = 5.8, «2 = 8.8 and ß = 0.9). 
• In Scenarios 2, 3, and 4 we have considered X = 0 and p = 1, 2, 3 (a' = 5.5, 5.7, 5.7, a?2 = 

8.5, 8.5, 8.3 and ß = 0.6, 0.4, 0.3, respectively); we remark that Scenario 2 is a proportional 
odds model. 

• In Scenarios 5, 6, and 7 we have considered p = X = 1,2,3 (a' =5.2,5.5,5.1, ai = 
8.4, 8.5, 8.3 and ß = 0.2, 0.04, 0.01, respectively). 

• Finally, in Scenarios 8, 9, and 10 we have considered p = 0 and X = 1 , 2, 3 (a' = 9. 1 , 9.3, 9.4, 
a2 = 10.4, 10.2, 10.1 and ß = 0.14, 0.06, 0.03, respectively). 

Table 1 gives the empirical powers for several parameterizations of the three proposals OG, S05, 
and S06. We have considered two groups with sample sizes n = n = 100. 

Table 1 shows that, indeed, our proposal (OG) performs as expected in accordance with an 
efficient score test statistic. That is, the highest powers are achieved in the diagonal of the table 
(when the parameterization (p, X) of the test statistics coincides with the parameterization (p, X) 
of the AFT model). When we compare OG with S06 (Sun, 2006) and S05 (Sun, Zhao, & Zhao, 
2005), the statistic OG achieves the highest power in all scenarios except in Scenario 8. Test 
statistics OG and S05 behave similarly in Scenarios 8, 9, and 10 when p - 0 and X is equal to 
1, 2, and 3, respectively. This behaviour is confirmed in other simulation results not presented 
here. 

We also observe that the power of OG decreases when the test parameters and the AFT model 
parameters move away. For instance, under a proportional hazards model (Scenario 1), the power 
of the test statistics decreases as p or X increases and the weight function is emphasizing early, 
middle or late hazards differences. Under a proportional odds model (Scenario 2) the hazard 
functions show early differences and the test statistics have higher power when X - 0 and p is 
close to 1 and have lower power when p = 0 and X increases. 

6.2. Piecewise Exponential Models 
In this section the goal is to validate the interpretation of the weight function in the OG class and 
to introduce a guideline to choose adequate parameters. We have simulated scenarios where the 
two hazard functions for each group differ in three different ways: An Early times situation where 
the hazards differ at early times, a Middle times situation for hazards differing at times around 
the median and a Late times situation for late time hazard differences. In order to reproduce these 
situations, T has been simulated from a piecewise constant hazard function as follows: for a 
fixed set of points 0 = Jto < Jti <•••<* b < Xb+' = +oo, the hazard function for group G(y) 

(j = 1, 2) is constant within the interval [xa-', xa), that is, h^'t) = h'P when xa-' < t < xa 
(a = 1, . . . , b + 1). In all the scenarios we have applied a parameter configuration such that the 
median of the pooled sample (Me) is 5, that is, S( 5) = ^ where S(t) = ^S^'t) + ^S^2't). In 
the sequel, the jth decile of the pooled survival function is denoted by Dj. We have considered 
sample sizes = 150. 

For the Early times situation we take b = 1 and consider hazard differences (h'1^ ̂ h^) 
until the point x ' and equal hazards (h^ = h^) thereafter. For the Middle times situation we take 
b = 2 and consider only differences between x' and *2 (^2^ ^ = = ^3^ = 
We distinguish between symmetric and asymmetric middle scenarios. We remark that the degree 
of symmetry does not depend on the distances *1 - Me and Me - X2 (Me = 5), but it depends on 
the distances S(jti) - 0.5 and 0.5 - S(x 2). For the Late times situation we take b = 1 and consider 
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Table 1: Empirical powers for the three (p, A)-families under accelerated failure time models: OG stands 
for the class presented in Section 3, S05 stands for the class in Sun, Zhao, & Zhao (2005) and S06 stands 

for the class in Sun (2006). 

Scenarios ( p , X) 

No. (p,X) Method (0,0) (1,0) (2,0) (3,0) (1,1) (2,2) (3,3) (0,1) (0,2) (0,3) 

1 (0,0) OG 0.842 0.779 0.674 0.589 0.805 0.746 0.710 0.725 0.602 0.494 
505 0.842 0.541 0.233 0.125 0.707 0.505 0.351 0.753 0.656 0.547 
506 0.835 0.746 0.614 0.513 0.761 0.696 0.654 0.710 0.603 0.503 

2 (1,0) OG 0.762 0.829 0.820 0.777 0.660 0.612 0.571 0.470 0.266 0.172 
505 0.762 0.760 0.501 0.341 0.743 0.643 0.513 0.519 0.317 0.211 
506 0.756 0.794 0.746 0.686 0.599 0.525 0.473 0.438 0.262 0.170 

3 (2,0) OG 0.714 0.829 0.838 0.825 0.530 0.447 0.401 0.290 0.156 0.100 
505 0.714 0.812 0.676 0.504 0.707 0.605 0.526 0.346 0.175 0.124 
506 0.708 0.786 0.775 0.737 0.452 0.355 0.296 0.261 0.147 0.096 

4 (3,0) OG 0.624 0.808 0.851 0.866 0.401 0.312 0.274 0.209 0.097 0.077 
505 0.624 0.851 0.785 0.668 0.646 0.551 0.466 0.247 0.126 0.080 
506 0.619 0.772 0.793 0.769 0.323 0.231 0.180 0.189 0.094 0.073 

5 (1, 1) OG 0.808 0.705 0.549 0.420 0.835 0.833 0.821 0.774 0.644 0.523 
505 0.808 0.377 0.095 0.040 0.741 0.572 0.427 0.803 0.705 0.593 
5 06 0.806 0.671 0.480 0.328 0.815 0.802 0.772 0.761 0.642 0.523 

6 (2,2) OG 0.761 0.619 0.429 0.305 0.816 0.812 0.806 0.731 0.568 0.445 
505 0.761 0.276 0.059 0.054 0.705 0.551 0.427 0.765 0.645 0.531 
506 0.750 0.584 0.358 0.216 0.781 0.777 0.763 0.720 0.581 0.452 

7 (3,3) OG 0.712 0.563 0.383 0.258 0.797 0.821 0.827 0.706 0.571 0.425 
505 0.712 0.227 0.058 0.063 0.688 0.554 0.432 0.737 0.638 0.522 
506 0.714 0.529 0.309 0.164 0.775 0.784 0.780 0.698 0.570 0.432 

8 (0, 1) OG 0.759 0.404 0.209 0.130 0.770 0.746 0.718 0.873 0.855 0.791 
505 0.759 0.097 0.049 0.068 0.367 0.187 0.135 0.867 0.877 0.847 
506 0.672 0.350 0.174 0.103 0.700 0.659 0.607 0.823 0.793 0.734 

9 (0,2) OG 0.588 0.237 0.106 0.083 0.602 0.573 0.546 0.824 0.855 0.826 
505 0.588 0.058 0.058 0.067 0.198 0.107 0.068 0.804 0.854 0.853 
506 0.499 0.193 0.087 0.060 0.512 0.492 0.461 0.750 0.797 0.778 

10 (0,3) OG 0.418 0.160 0.082 0.064 0.454 0.430 0.398 0.760 0.827 0.833 
505 0.418 0.064 0.076 0.090 0.126 0.069 0.056 0.699 0.802 0.830 
506 0.335 0.131 0.070 0.049 0.388 0.359 0.345 0.646 0.759 0.792 

The scenarios are based on the parameters (p, X) of the error distribution. The results are based on two groups 
with sample sizes = n(2) = 100 and 1,000 replications. 

aRemark: Scenarios 1 and 2 are a proportional hazards model and a proportional odds model, respectively. 
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Figure 1: Early, middle and late hazard differences in the two sample piecewise exponential models. 
The values x' and jc2 denote the cut points. Dj is the yth decile of the pooled survival function S(t) = 

'S0)(t)+ {Sa't) (Me = Ds = 5). 

equal hazards (h'^ = h'2>) until x' and hazard differences (h^ Ý h^) thereafter. Figure 1 gives 
the hazards configuration in these situations. 

The simulation study has allowed us to learn about the behaviour of the OG family under 
different alternatives. Table 2 presents some of the results. We now summarize and highlight the 
main findings: 
• In scenarios with early hazard differences, the highest powers of the OG statistic are reached 

with X = 0. When x' < Me { Pure early scenario), the highest power of OG is achieved with 
p = 2. Whenever x' > Me , that is, the early pattern is mixed with middle and late hazard 
differences {Mixed early scenario), the highest power of OG is achieved with p equal to 1 and 
the power decreases as p increases. 

• In scenarios with middle hazard differences, the highest powers of the OG statistic are reached 
with the parameters p and X being equal. In general, the power of OG is higher for larger values 
of p = X and a value of p close to 3 is enough to reach a substantial improvement of the power. 

• In scenarios with late hazard differences, the highest powers of the OG statistic are reached 
with p = 0. When x' > Me { Pure late scenario), the highest power of OG is achieved with 
X = 3. When the late pattern is mixed with middle and early hazard differences {Mixed late 
scenario), the highest power of OG is achieved with X equal to 1 and the power decreases as X 
increases. 

In view of these findings, we recommend to use the family of statistics OG with parameter- 
izations (p, 0), (p, p) or (0, X) for testing against alternatives which set out early, middle or late 
hazard differences, respectively. 

Finally, we have compared the behaviour of the three existing statistics OG, S05, and S06. 
Note that in Sun, Zhao, & Zhao (2005) the authors do not discuss the behaviour of their test 
statistics in terms of the hazard differences. Anyhow, for early hazard differences the statistic 
OG performs noticeably better than S05 when p^0 and X = 0 (we observe that in 9 of the 10 
cases the power of OG is higher). Likewise, for middle hazard differences the statistic OG also 
performs noticeably better that S05 when p = X / 0 (we observe that in 13 of the 15 cases the 
power of OG is higher). For late hazard differences, the statistic S05 performs slightly better than 
OG when p = 0 and À ̂0 (we observe that in 6 of the 10 cases the power of S05 is higher). Our 
simulation study reveals, as well, that, as compared to S06, OG has higher power for early and 
middle scenarios and similar power for late scenarios. 

7. ILLUSTRATION 
In this section we analyse the data corresponding to a cohort of injecting drug users (IDU) 
attending the Germans Trias i Pujol detoxification unit (Badalona, Spain) between February 1987 
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Table 2: Empirical powers for the three (p, À)-families under piecewise exponential models: OG stands 
for the class presented in Section 3, S05 stands for the class in Sun, Zhao, & Zhao (2005) and S06 stands 

for the class in Sun (2006). 

(p. *) 

Early scenarios Method (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (1,1) (0,1) 

Pure early OG 0.631 0.805 0.835 0.819 0.812 0.800 0.456 0.210 
xi = 3.75 % D4 S05 0.631 0.829 0.751 0.577 0.401 0.281 0.696 0.258 

S06 0.629 0.744 0.754 0.724 0.681 0.619 0.351 0.183 
Mixed early OG 0.933 0.965 0.962 0.942 0.915 0.884 0.898 0.664 
X, = 6.75 % De S05 0.933 0.943 0.705 0.393 0.233 0.142 0.962 0.742 

S06 0.929 0.954 0.931 0.876 0.801 0.723 0.859 0.637 

Middle scenarios Method (0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (1,0) (0,1) 

Left asymmetric OG 0.461 0.557 0.600 0.626 0.638 0.643 0.393 0.432 
xx = 2.5 « D3 S05 0.461 0.574 0.556 0.516 0.485 0.438 0.203 0.465 
x2 = 6.75 % Z)6 S06 0.440 0.512 0.539 0.533 0.524 0.526 0.332 0.411 

Symmetric OG 0.669 0.802 0.830 0.852 0.859 0.855 0.525 0.676 
jc, = 2.5 % D3 S05 0.669 0.731 0.639 0.526 0.426 0.341 0.203 0.717 
x2 = 8.75 « Dj S06 0.654 0.783 0.803 0.801 0.797 0.787 0.458 0.670 

Right asymmetric OG 0.420 0.522 0.580 0.604 0.622 0.628 0.278 0.500 
X] = 3.75 % Z)4 S05 0.420 0.382 0.272 0.197 0.150 0.126 0.092 0.515 
JC2 = 8.75 ̂Z)7 S06 0.391 0.505 0.536 0.546 0.539 0.539 0.217 0.496 

Late scenarios Method (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (1,1) (1,0) 

Pure late OG 0.238 0.440 0.534 0.561 0.553 0.541 0.242 0.098 
jtj = 6.75 « D6 S05 0.238 0.403 0.497 0.548 0.565 0.565 0.071 0.045 

S06 0.213 0.427 0.525 0.549 0.539 0.507 0.230 0.072 
Mixed late OG 0.662 0.838 0.830 0.795 0.746 0.690 0.756 0.355 
xx = 3.75 « D4 S05 0.662 0.832 0.848 0.814 0.787 0.744 0.406 0.072 

S06 0.634 0.837 0.815 0.780 0.730 0.667 0.740 0.302 

Early scenarios are based on b = 1, h'1^ = 0.1, /ij2) = 0.1866 and = hOp = 0.1352, 0.1341 respec- 
tively; middle scenarios are based on b = 2, =0.1, = 0.1866 and h'1^ = h (2) = = 
0.1363, 0.1363, 0.1375 respectively; late scenarios are based on b = 1, h ̂ = 0.1, = 0.1866 and = 
/ij2) = 0.1386, 0.1375 respectively. The results are based on two groups with sample sizes «(1) = nS2) = 150 
and 1000 replications. 

a Remark: Dj is the jth decile of the pooled survival function S(t) = 55(1)(0 + j5(2)(ř). 

and November 1997. The details of this study can be found in Gómez et al. (2000). We are 
interested in the elapsed time 7' measured in months, between intravenous drug initiation and 
seroconversion (HIV infection). The analysis of such data distinguishes four calendar periods 
according to the date for starting intravenous drug use: Period 1 (PI) contains those patients who 
started IDU before 1981, Period 2 (P2) includes IDU patients who started the addiction between 
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Figure 2: Elapsed time to seroconversion since starting intravenous drug use for men entering at risk 
either in calendar period P2 ( n(]) = 300), P3 (n{2) = 240), or P4 (w(3) = 73). 

1981 and 1985, the third period P3 is for patients who started IDU between 1986 and 1991 and 
finally P4 includes all those patients starting IDU in 1992 or later. In this illustration we only 
analyse the data for the last three periods P2, P3, and P4, as in Gómez et al. (2000). In PI most 
of the patients began the use of intravenous drugs earlier than 1978, when HIV infection was 
extremely unlikely; furthermore the elapsed time between intravenous drug initiation and HIV 
infection is bounded below by at least 5 years, due to the fact that HIV seropositivity could not 
be determined before 1985. 

In our first analysis we focus on men and compare the elapsed time to seroconversion for 
periods P2, P3, and P4. The estimates of the survival functions given in Equation (4) have been 
applied to these data and the plot is shown in Figure 2. The different calendar periods represent 
different stages in the individuals' knowledge of the HIV epidemic as well as different health 
policies. The effect of the patients' behaviour as a result of the health policies is not expected to 
be seen at earlier times after the initiation of intravenous drugs but rather later on. For this reason 
we are particularly interested in exploring the differences after 3 or 4 years, hence in detecting 
middle hazard differences. To this end we use the statistic U and we choose parameters p = 3 
and X = 3. We obtain U = (0.22, -0.19, -0.03) with P-value 0.022. We remark here that the 
statistic S05 with the same parameters p = 3 and X = 3 would yield a P-value of 0.163 and would 
not have shown the marked differences. Also a log-rank statistic, with P-value 0.089, would not 
have shown the differences. 

The second analysis takes into account the age at which patients started to use drugs, since 
it is very likely that this could be a risk factor for HIV infection. We centre this analysis in 
period P3. The median and mean age for starting IDU in this period is 20 and 20.8 years, respec- 
tively. According to these measures, we split the 240 patients in P3 into two groups: individuals 
younger than or exactly 21 years old and individuals older than 21 years. Figure 3 shows the 
estimated survival functions considering the two age groups in period P3. Due to sexual risk 
habits, the younger group is expected to show differences from the older group at earlier times 
after the initiation of intravenous drugs. For this reason we choose parameters p = 1 and X = 0 
which emphasize early hazard differences. We obtain U = (8.36, -8.36) and a statistically sig- 
nificant difference with P-value 0.043. In this case the statistic S05 with parameters p = 1 and 
X = 0 and the log-rank would yield a P- value equal to 0.035 and 0.061, respectively. The statis- 
tic S05 would therefore identify differences between the two groups while the log-rank would 
not. 
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Figure 3: Elapsed time to seroconversion since starting intravenous drug use for individuals younger than 
21 (n{]) = 192) and individuals older than 21 (rc(2) = 114) entering at risk in calendar period P3. 

8. DISCUSSION 
This paper proposes a new class of test statistics for interval-censored data which extends the Gp,À 
family given in Fleming & Harrington (1991) for right-censored data. The proposed weighted 
log-rank test corresponds to the efficient score test if the data are discrete and performs in ac- 
cordance with an efficient score test statistic for continuous data. The weight functions for the 
proposed family can be chosen to emphasize either early, middle or late hazards differences in 
an equivalent way as the weights of the Fleming and Harrington family do for right-censored 
data. Furthermore, a strategy is developed to choose the parameters p and X of the family for each 
different situation. 

In this paper we handle right-censored observations as interval-censored observations with 
right endpoints being equal to -f-oo. Other methodologies like Sun (2006)' s family distinguish 
between interval-censored and right-censored observations and define a statistic which can be 
accommodated by the weighted log-rank statistic in the case of right-censored data. The question 
here is whether there is any benefit in treating differently interval and right-censored data. Our 
simulation study does not show this possible benefit. 

Finally, the simulation study demonstrates that our proposed family of test statistics has a 
better power behaviour than the families of Sun, Zhao, & Zhao (2005) and Sun (2006), specially 
when there are early and middle hazard differences. 
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APPENDIX 

Proof of Proposition 1. We prove only the result given in (b). The remaining results are almost 
immediate. 
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Replacing the weight function w(t) = §(t- in Equation (9) gives 

ci = [Si(t-)dS(t) - $(t-)dSi(t)] = ji+0° [Ši(t-)Š(t) - S(t-)Si(t)] 

= 
£°° [5i(í-)5(0 - í/(05(0 + Si(t)$(t) - S(t-)Si(t)] 

= 
/+0° [^(0d^) - S(0dS<(0] • 

Since 5,- is a truncation of Š at the observed interval r/], then 

c, . 
[ 

dHi(O) + 
/" 

- 
jf 

MA'» 

, X 5(r,){K(5(r,)) - y(S(/,-))} š(h)y(šm - S(r,)y(S(r,)) = Kte) - K1) , X  
SffiFšw 

 =  
šffiPšw 

 ' 

This completes the proof of ( b ). M 
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