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THE DELTA-METHOD, MULTINOMIAL DISTRIBUTIONS,
AND AN EXAMPLE: STANDARD ERROR OF LOG ODDS RATIOS

The delta-method gives a way that asymptotic normality can be preserved under
nonlinear, but differentiable, transformations. The method is well known; one version
of it is given in J. Rice, Mathematical Statistics and Data Analysis, 3d. ed., 2007, §4.6,
including second derivatives. Here, first a simple form of it using only a first derivative, for
functions of one variable, will be given. A multidimensional version is used in Section 3.7
of Mathematical Statistics, 18.466 course notes by R. Dudley, on the MIT OCW website.
For multinomial distributions, applications will be given to chi-squared statistics and odds
ratios.

Notations with O and o: if g > 0 then f = o(g) means that f/g → 0 either as x → +∞,
x → 0, or whatever condition is specified, while f = O(g) means that f/g stays bounded,
namely lim sup |f |/g < +∞ under a given limit condition. The same notations also apply
to sequences indexed by an integer n → ∞, e.g. an = o(bn) is used for bn > 0 and means
an/bn → 0.

There are corresponding notions “in probability:” if Un is a sequence of random
variables and an a sequence of constants > 0 then Un = Op(an) means that for every ε > 0
there is an M such that Pr(|Un|/an > M) < ε for all n. Un → 0 in probability means
that for every ε > 0, Pr(|Un| > ε) → 0 as n → ∞. Un = op(an) means that Un/an → 0
in probability.

Theorem. Let Yn be a sequence of real-valued random variables such that for some µ and
σ,

√
n(Yn − µ) converges in distribution as n → ∞ to N(0, σ2). Let f be a function from

R into R having a derivative f ′(µ) at µ. Then
√

n[f(Yn)− f(µ)] converges in distribution
as n → ∞ to N(0, f ′(µ)2σ2).

Remarks. In statistics, where µ is an unknown parameter, one will want f to be dif-
ferentiable at all possible µ (and preferably, for f ′ to be continuous, although that is not
needed in the proof). An example of Yn satisfying the conditions is: let X1, ..., Xn, ... be
i.i.d. random variables with finite mean µ and variance σ2, and let Yn be the sample mean
Yn = (X1 + · · · + Xn)/n.

Proof. We have Yn−µ = Op(1/
√

n) as n → ∞. Also, f(y) = f(µ)+f ′(µ)(y−µ)+o(|y−µ|)
as y → µ by definition of derivative. Thus

f(Yn) = f(µ) + f ′(µ)(Yn − µ) + op(|Yn − µ|),

so √
n[f(Yn) − f(µ)] = f ′(µ)

√
n(Yn − µ) +

√
nop(1/

√
n).

The last term is op(1), so the conclusion follows. ¤

Multinomial distributions. First let n = 1. For any set (event) A let 1A be its indicator
function, so that 1A(x) = 1 if x is in A and 0 otherwise. For a given probability P ,
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the covariance of two indicator functions is clearly given by Cov(1A, 1B) = P (A ∩ B) −
P (A)P (B). In two special cases, for A = B we get var(1A) = P (A) − P (A)2 = P (A)[1 −
P (A)], the known variance of a Bernoulli variable. If A and B are disjoint, i.e. A ∩ B is
empty, then Cov(1A, 1B) = −P (A)P (B).

Suppose on n = 1 trial there are k distinct possible outcomes A1, ..., Ak with proba-
bilities P (Ai) = pi for i = 1, ..., k. Define a k-dimensional random vector X = (x1, ..., xk)
such that xj = 1 if Aj occurs and xj = 0 otherwise, in other words xj = 1Aj

. Now sup-
pose X1, ..., Xn are n i.i.d. (independent and identically distributed) k-dimensional random
vectors each having the same distribution as X. Let Sn =

∑n

i=1
Xi = (n1, ..., nk). Then,

clearly, n1, ..., nk have a multinomial distribution for n trials with probabilities (p1, ..., pk).
When two independent real variables are added, their means and variances add. Sim-

ilarly, when independent vector-valued variables (U1, ..., Uk) and (V1, ..., Vk) are added,
their mean vectors are added and so are their covariance matrices, in other words for any
r, s = 1, ..., k,

Cov(Ur + Vr, Us + Vs) = Cov(Ur, Us) + Cov(Vr, Vs)

because the covariances of independent variables are 0. So, if we add n i.i.d. vector random
variables, specifically the X1, ..., Xn mentioned previously, the mean vector and covariance
matrix of their sum Sn are just n times the corresponding quantities for X1.

Let’s recall a few facts that were used in finding the asymptotic χ2(k−1) distribution
of the X2 statistic of a simple multinomial hypothesis H0: (n, p1, ..., pk) when H0 is true.
The known mean vector of the random (n1, ..., nk) is then E(n1, ..., nk) = n(p1, ..., pk) and
the variance var(nj) = npj(1 − pj) for j = 1, ..., k, which we know since nj is binomial
(n, pj). For r 6= s, we get the covariance Cov(nr, ns) = −nprps.

Let Yr = (nr − npr)/
√

npr for r = 1, ..., k. Then each Yr has mean 0 and variance
1 − pr. For r 6= s, Cov(Yr, Ys) = −√

prps. Thus the covariance matrix of Y = (Y1, ..., Yk)
is given by Crs = δrs −

√
prps where δrs = 1 for r = s and 0 otherwise (Kronecker delta).

Confidence intervals for odds ratios. Here we have a multinomial distribution with k = 4
categories, written in terms of a 2 × 2 table, with probabilities (p00, p01, p10, p11) and ob-
served numbers (n00, n01, n10, n11). The odds ratio is defined as ∆ = p00p11/(p01p10) and
the usual estimate of it, which is the maximum likelihood estimate under the full multi-
nomial model, is ∆̂ = n00n11/(n01n10). According to the independence or homogeneity
hypothesis H0: pij ≡ pi·p·j , we have ∆ = 1. But supposing H0 is rejected, then we’d like

to get not only the estimate ∆̂ but a confidence interval for ∆.
To reduce indices, let’s replace indices 00 by 1, 10 by 2, 01 by 3, and 11 by 4, so that

∆ becomes p1p4/(p2p3) and ∆̂ = n1n4/(n2n3). Let Zi = (ni − npi)/
√

n for i = 1, ..., 4, or
Zi =

√
piYi in terms of the Yi previously defined. We have Cov(Zr, Zs) = prδrs − prps for

any r, s = 1, ..., 4. As n becomes large, (Z1, ..., Z4) has approximately a normal distribution
with mean 0 and the same covariance. We have ni = npi +

√
nZi for i = 1, ..., 4. Then

ni

n
= pi

(

1 +
Zi

pi

√
n

)

.

Taking logs of both sides, and using the fact that log(1+x) ∼ x as x → 0 (with an error of
order x2, by a Taylor series with remainder) we get that log(ni/n) = log(pi)+Zi/(pi

√
n)+εi

where each εi = Op(1/n) as n → ∞.

2



If in the definition of ∆̂ we replace each ni by ni/n then it is unchanged. It follows
that

log(∆̂) = log(∆) +
1√
n

(

Z1

p1

+
Z4

p4

− Z2

p2

− Z3

p3

)

+ ε

with ε = Op(1/n). Thus, log(∆̂) is asymptotically normal with mean log(∆). For its
variance, we have a sum of four terms (plus a constant with 0 variance and terms of
smaller order, by the delta-method theorem; note that the derivative of the log function
at 1 is 1, so the f ′(µ)2 factor equals 1). We need to add the variances of these four terms,
which gives

4
∑

r=1

1 − pr

npr

=
1

n

(

−4 +

4
∑

r=1

1

pr

)

.

We also have to add covariance terms, each multiplied by 2. For each r 6= s we have
Cov(Zr, Zs) = −prps and so Cov(Zr/pr, Zs/ps) = −1. In the six covariances of the four
terms we have two coming from terms of the same sign, (1,4) and (2,3), and the other four
from terms of opposite sign. So the covariances contribute 2(2 − 4)(−1/n) = +4/n to the
total variance, and the asymptotic variance of log(∆̂) is

1

n

(

4
∑

r=1

1

pr

)

.

Here pr are the unknown probabilities, and we estimate each term npr by its MLE which
is the observed nr. Then taking the square root, we get that log(∆̂) is asymptotically
normal with mean log(∆) and standard deviation (standard error in this case) estimated
by

√

√

√

√

4
∑

r=1

1

nr

.

Based on the normal distribution, this gives us confidence intervals for log(∆) and then
exponentiating, for ∆ itself.

If any nij is small, for example less than 5, the normal approximation is questionable
and the standard error is large, so the estimate is uncertain. If all four nij are large, as
in the data for hospitalized Medicare patients, then the normal approximation should be
quite good.

Acknowledgment. Marcelo Alvisio pointed out the method of finding confidence intervals
for odds ratios via their logarithms (found on the Web) during the spring of 2006.
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