Capítulo 4 - Modelos de Regressão Paramétricos
data desmame;
input id tempo cens V3 V2 V7 V11 V4 V1 V6 V10 V8 V9 V5;
V13=V1*V3;
V14=V1*V4;
V16=V1*V6;
V34=V3*V4;
V36=V3*V6;
V38=V3*V8;
V46=V4*V6;
V48=V4*V8;
V68=V6*V8;
cards;
1 6 1 0 0 0 1 0 0 0 1 1 1 0
5 8 1 0 0 0 1 1 1 1 1 1 1 1
...
153 9 0 1 1 0 1 0 0 1 1 1 0 0
;
proc lifereg;
model tempo*cens(0)= /distribution=gamma;
run;
proc lifereg;
model tempo*cens(0)=V1 /distribution=gamma;
run;
proc lifereg;
model tempo*cens(0)=V2 /distribution=gamma;
run;
proc lifereg;
model tempo*cens(0)= V1 V2 V3 V4 V6 V8 V9 /distribution=gamma;
run;
proc lifereg;
model tempo*cens(0)= V2 V3 V4 V6 V8 V9 /distribution=gamma;
run;
proc lifereg;
model tempo*cens(0))= V3 V4 V6 V8/distribution=gamma;
run;
proc lifereg;
model tempo*cens(0)= V3 V4 V6 V8 V34/distribution=gamma;
run;
Capítulo 8 - Censura Intervalar e Dados Grupados
==========================================================
an = ano codificado (73 = 1; 74 = 2; ...; 92 = 13)
freq = frequencia (uma observacao por linha, logo freq = 1
==========================================================
options nonumber linesize=90 ps=500;
data mang;
input obs ano $ ti cens li ui copa $ cavalo $ bloco $ an $ freq ;
datalines;
1 85 14 1 12 14 1 1 3 6 1
2 85 14 1 12 14 1 1 4 6 1
3 88 17 1 16 17 1 1 5 9 1
4 90 19 1 18 19 1 1 1 11 1
5 92 21 0 21 . 1 1 2 13 1
6 85 14 1 12 14 1 2 3 6 1
7 85 14 1 12 14 1 2 4 6 1
8 85 14 1 12 14 1 2 5 6 1
9 88 17 1 16 17 1 2 1 9 1
10 88 17 1 16 17 1 2 2 9 1
11 88 17 1 16 17 1 3 5 9 1
12 89 18 1 17 18 1 3 1 10 1
13 90 19 1 18 19 1 3 4 11 1
14 92 21 0 21 . 1 3 3 13 1
15 92 21 0 21 . 1 3 2 13 1
16 81 10 1 4 10 1 4 4 4 1
17 88 17 1 16 17 1 4 1 9 1
18 88 17 1 16 17 1 4 5 9 1
19 92 21 0 21 . 1 4 2 13 1
20 92 21 0 21 . 1 4 3 13 1
21 73 2 1 0 2 1 5 1 1 1
22 85 14 1 12 14 1 5 3 6 1
23 88 17 1 16 17 1 5 5 9 1
24 90 19 1 18 19 1 5 4 11 1
25 92 21 0 21 . 1 5 2 13 1
26 81 10 1 4 10 1 6 4 4 1
27 87 16 1 15 16 1 6 5 8 1
28 89 18 1 17 18 1 6 1 10 1
29 90 19 1 18 19 1 6 2 11 1
30 90 19 1 18 19 1 6 3 11 1
31 73 2 1 0 2 1 7 5 1 1
32 87 16 1 15 16 1 7 4 8 1
33 90 19 1 18 19 1 7 3 11 1
34 92 21 0 21 . 1 7 2 13 1
35 92 21 0 21 . 1 7 1 13 1
36 89 18 1 17 18 2 1 5 10 1
37 90 19 1 18 19 2 1 4 11 1
38 92 21 0 21 . 2 1 3 13 1
39 92 21 0 21 . 2 1 2 13 1
40 92 21 0 21 . 2 1 1 13 1
41 87 16 1 15 16 2 2 4 8 1
42 88 17 1 16 17 2 2 1 9 1
43 90 19 1 18 19 2 2 5 11 1
44 92 21 0 21 . 2 2 2 13 1
45 92 21 0 21 . 2 2 3 13 1
46 92 21 0 21 . 2 3 1 13 1
47 92 21 0 21 . 2 3 2 13 1
48 92 21 0 21 . 2 3 3 13 1
49 92 21 0 21 . 2 3 4 13 1
50 92 21 0 21 . 2 3 5 13 1
51 81 10 1 4 10 2 4 3 4 1
52 88 17 1 16 17 2 4 5 9 1
53 89 18 1 17 18 2 4 1 10 1
54 90 19 1 18 19 2 4 2 11 1
55 92 21 1 19 21 2 4 4 12 1
56 73 2 1 0 2 2 5 1 1 1
57 74 3 1 2 3 2 5 2 2 1
58 74 3 1 2 3 2 5 3 2 1
59 88 17 1 16 17 2 5 4 9 1
60 92 21 0 21 . 2 5 5 13 1
61 83 12 1 10 12 2 6 5 5 1
62 90 19 1 18 19 2 6 1 11 1
63 90 19 1 18 19 2 6 4 11 1
64 92 21 0 21 . 2 6 2 13 1
65 92 21 0 21 . 2 6 3 13 1
66 88 17 1 16 17 2 7 2 9 1
67 88 17 1 16 17 2 7 5 9 1
68 90 19 1 18 19 2 7 3 11 1
69 90 19 1 18 19 2 7 4 11 1
70 92 21 0 21 . 2 7 1 13 1
71 73 2 1 0 2 3 1 5 1 1
72 89 18 1 17 18 3 1 4 10 1
73 92 21 0 21 . 3 1 3 13 1
74 92 21 0 21 . 3 1 2 13 1
75 92 21 0 21 . 3 1 1 13 1
76 74 3 1 2 3 3 2 4 2 1
77 74 3 1 2 3 3 2 5 2 1
78 88 17 1 16 17 3 2 2 9 1
79 92 21 0 21 . 3 2 1 13 1
80 92 21 0 21 . 3 2 3 13 1
81 73 2 1 0 2 3 3 3 1 1
82 73 2 1 0 2 3 3 5 1 1
83 88 17 1 16 17 3 3 4 9 1
84 92 21 0 21 . 3 3 2 13 1
85 92 21 0 21 . 3 3 1 13 1
86 74 3 1 2 3 3 4 5 2 1
87 75 4 1 3 4 3 4 3 3 1
88 87 16 1 15 16 3 4 4 8 1
89 90 19 1 18 19 3 4 1 11 1
90 92 21 0 21 . 3 4 2 13 1
91 74 3 1 2 3 3 5 2 2 1
92 74 3 1 2 3 3 5 4 2 1
93 87 16 1 15 16 3 5 5 8 1
94 90 19 1 18 19 3 5 3 11 1
95 92 21 0 21 . 3 5 1 13 1
96 73 2 1 0 2 3 6 1 1 1
97 86 15 1 14 15 3 6 3 7 1
98 90 19 1 18 19 3 6 4 11 1
99 90 19 1 18 19 3 6 5 11 1
100 92 21 0 21 . 3 6 2 13 1
101 73 2 1 0 2 3 7 2 1 1
102 81 10 1 4 10 3 7 5 4 1
103 90 19 1 18 19 3 7 1 11 1
104 90 19 1 18 19 3 7 4 11 1
105 92 21 1 19 21 3 7 3 12 1
106 88 17 1 16 17 4 1 5 9 1
107 90 19 1 18 19 4 1 3 11 1
108 92 21 0 21 . 4 1 4 13 1
109 92 21 0 21 . 4 1 2 13 1
110 92 21 0 21 . 4 1 1 13 1
111 73 2 1 0 2 4 2 2 1 1
112 86 15 1 14 15 4 2 1 7 1
113 86 15 1 14 15 4 2 4 7 1
114 92 21 0 21 . 4 2 3 13 1
115 92 21 0 21 . 4 2 5 13 1
116 86 15 1 14 15 4 3 1 7 1
117 88 17 1 16 17 4 3 3 9 1
118 88 17 1 16 17 4 3 4 9 1
119 90 19 1 18 19 4 3 2 11 1
120 92 21 1 19 21 4 3 5 12 1
121 81 10 1 4 10 4 4 2 4 1
122 85 14 1 12 14 4 4 5 6 1
123 87 16 1 15 16 4 4 4 8 1
124 92 21 0 21 . 4 4 1 13 1
125 92 21 0 21 . 4 4 3 13 1
126 73 2 1 0 2 4 5 2 1 1
127 81 10 1 4 10 4 5 4 4 1
128 85 14 1 12 14 4 5 5 6 1
129 92 21 0 21 . 4 5 1 13 1
130 92 21 0 21 . 4 5 3 13 1
131 87 16 1 15 16 4 6 2 8 1
132 90 19 1 18 19 4 6 4 11 1
133 90 19 1 18 19 4 6 5 11 1
134 92 21 1 19 21 4 6 3 12 1
135 92 21 1 19 21 4 6 1 12 1
136 87 16 1 15 16 4 7 4 8 1
137 87 16 1 15 16 4 7 5 8 1
138 89 18 1 17 18 4 7 3 10 1
139 92 21 0 21 . 4 7 1 13 1
140 92 21 0 21 . 4 7 2 13 1
141 73 2 1 0 2 5 1 5 1 1
142 85 14 1 12 14 5 1 1 6 1
143 89 18 1 17 18 5 1 2 10 1
144 90 19 1 18 19 5 1 3 11 1
145 92 21 0 21 . 5 1 4 13 1
146 85 14 1 12 14 5 2 2 6 1
147 85 14 1 12 14 5 2 4 6 1
148 89 18 1 17 18 5 2 3 10 1
149 92 21 0 21 . 5 2 1 13 1
150 92 21 0 21 . 5 2 5 13 1
151 86 15 1 14 15 5 3 1 7 1
152 86 15 1 14 15 5 3 2 7 1
153 88 17 1 16 17 5 3 4 9 1
154 92 21 0 21 . 5 3 3 13 1
155 92 21 0 21 . 5 3 5 13 1
156 81 10 1 4 10 5 4 5 4 1
157 85 14 1 12 14 5 4 2 6 1
158 86 15 1 14 15 5 4 3 7 1
159 87 16 1 15 16 5 4 4 8 1
160 92 21 0 21 . 5 4 1 13 1
161 73 2 1 0 2 5 5 2 1 1
162 86 15 1 14 15 5 5 1 7 1
163 89 18 1 17 18 5 5 5 10 1
164 92 21 0 21 . 5 5 3 13 1
165 92 21 0 21 . 5 5 4 13 1
166 86 15 1 14 15 5 6 1 7 1
167 88 17 1 16 17 5 6 4 9 1
168 92 21 1 19 21 5 6 5 12 1
169 92 21 0 21 . 5 6 2 13 1
170 92 21 0 21 . 5 6 3 13 1
171 74 3 1 2 3 5 7 2 2 1
172 88 17 1 16 17 5 7 3 9 1
173 92 21 0 21 . 5 7 1 13 1
174 92 21 0 21 . 5 7 4 13 1
175 92 21 0 21 . 5 7 5 13 1
176 85 14 1 12 14 6 1 2 6 1
177 86 15 1 14 15 6 1 1 7 1
178 87 16 1 15 16 6 1 4 8 1
179 88 17 1 16 17 6 1 5 9 1
180 89 18 1 17 18 6 1 3 10 1
181 85 14 1 12 14 6 2 1 6 1
182 85 14 1 12 14 6 2 3 6 1
183 85 14 1 12 14 6 2 5 6 1
184 86 15 1 14 15 6 2 2 7 1
185 90 19 1 18 19 6 2 4 11 1
186 85 14 1 12 14 6 3 4 6 1
187 87 16 1 15 16 6 3 5 8 1
188 88 17 1 16 17 6 3 3 9 1
189 88 17 1 16 17 6 3 2 9 1
190 88 17 1 16 17 6 3 1 9 1
191 85 14 1 12 14 6 4 1 6 1
192 86 15 1 14 15 6 4 3 7 1
193 87 16 1 15 16 6 4 2 8 1
194 88 17 1 16 17 6 4 4 9 1
195 88 17 1 16 17 6 4 5 9 1
196 83 12 1 10 12 6 5 4 5 1
197 85 14 1 12 14 6 5 1 6 1
198 85 14 1 12 14 6 5 2 6 1
199 85 14 1 12 14 6 5 3 6 1
200 85 14 1 12 14 6 5 5 6 1
201 85 14 1 12 14 6 6 2 6 1
202 87 16 1 15 16 6 6 4 8 1
203 87 16 1 15 16 6 6 1 8 1
204 88 17 1 16 17 6 6 3 9 1
205 90 19 1 18 19 6 6 5 11 1
206 81 10 1 4 10 6 7 4 4 1
207 86 15 1 14 15 6 7 3 7 1
208 87 16 1 15 16 6 7 5 8 1
209 88 17 1 16 17 6 7 1 9 1
210 90 19 1 18 19 6 7 2 11 1
;
run;
/*proc print data=mang; */
/* run;*/
data dadmang;
retain interv1-interv12 0;
array dd[12] interv1-interv12;
set mang;
if an = 13 then do interv=1 to 12;
y=0; dd[interv]=1;
output;
dd[interv]=0;
end;
else do interv=1 to an;
if interv=an then y=1;
else y=0;
dd[interv]=1;
output;
dd[interv]=0;
end;
/*proc print data=dadmang;*/
/*run;*/
/*Modelo de Cox */
proc logistic data=intervs descending outest=est1;
class bloco copa cavalo /param=reference ref=first;
model y= interv1-interv12 bloco copa cavalo copa*cavalo/ noint link=cloglog
technique=newton;
freq freq;
run;
proc logistic data=intervs descending outest=est1;
class bloco copa cavalo /param=reference ref=first;
model y= interv1-interv12 bloco copa cavalo /noint link=cloglog
technique=newton;
freq freq;
run;
proc logistic data=intervs descending outest=est1;
class bloco copa / param=reference ref=first;
model y= interv1-interv12 bloco copa /noint link=cloglog
technique=newton;
freq freq;
run;
/*Modelo logistico*/
proc logistic data=intervs descending outest=est1;
class bloco copa / param=reference ref=first;
model y= interv1-interv12 bloco copa /noint link=logit
technique=newton;
freq freq;
run;