PRODUTO INTERNO

Definição

Considere V um espaço vetorial real. O **produto interno** sobre V é uma função

$$\langle \rangle : V \times V \to \mathbf{R}$$

 $(v,u) \mapsto \langle v,u \rangle$

que satisfaz as seguintes propriedades:

PI1. (Positiva Definida) Para todo, $v \in V, \langle v, v \rangle \ge 0$ e $\langle v, v \rangle = 0$ se e somente se $v = \mathbf{0}_V$

PI2. (Simétrica) Para quaisquer $v, u \in V, \langle v, u \rangle = \langle u, v \rangle$.

PI3. (Aditividade) Para quaisquer $v, u, w \in V, \langle v + u, w \rangle = \langle v, w \rangle + \langle u, w \rangle$.

PI4. (Homogeneidade) Para quaisquer $v, u \in V$ e para todo $k \in \mathbf{R}, \langle kv, u \rangle = k \langle v, u \rangle$.

Exemplos:

1) Produto usual, canônico ou Euclidiano no Rⁿ.

$$\langle (x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \rangle = \sum_{i=1}^n x_i y_i$$

2)
$$V: \mathbb{R}^2$$

 $\langle (x,y), (z,t) \rangle = \frac{1}{2}xz + 3yt$

3)
$$V: \mathbb{R}^3$$

 $\langle (x_1, y_1, z_1, x_2, y_2, z_2) = x_1 x_2 + 2y_1 y_2 + 5z_1 z_2$

Norma de um Vetor

Seja V um espaço vetorial munido de um produto interno. Define-se a função **norma** como sendo $\| \|: V \to \mathbf{R}$ tal que $\|v\| = \sqrt{\langle v, v \rangle}$. Assim, $\|v\|^2 = \langle v, v \rangle$.

Com esta definição, a norma de vetores depende do produto interno considerado.

Seja V um espaço vetorial munido de um produto interno. Um vetor $v \in V$ é denominado **vetor unitário** quando ||v|| = 1.

Seja um vetor $v \in V$, $v \neq \mathbf{0}_V$. O vetor $\frac{1}{\|v\|} \cdot v = \frac{v}{\|v\|} \in V$ é denominado **vetor normalizado**, e sempre

um vetor unitário, isto é, $\left\| \frac{v}{\|v\|} \right\| = 1$.

Distância entre dois Vetores

Seja V um espaço vetorial munido de um produto interno. Define-se a função **distância** $d: V \times V \to \mathbf{R}$ tal que d(v,u) = ||v-u||. Assim, $d(v,u) = ||v-u|| = \sqrt{\langle v-u, v-u \rangle}$, e $d(v,u)^2 = \langle v-u, v-u \rangle$.

Ângulo entre dois Vetores

Seja V um espaço vetorial munido com um produto interno. O **ângulo** θ **entre dois vetores** $v,u\in V$ é tal que $\cos\theta=\frac{\langle v,u\rangle}{\|v\|\|u\|}$ com $0\leq\theta\leq\pi$.

Ortogonalidade

Seja V um espaço vetorial munido de um produto interno. Dois vetores $v, u \in V$ são denominados **vetores ortogonais** quando $\langle v, u \rangle = 0$.

Notação: *v*⊥*u*

Seja V um espaço vetorial munido de um produto interno e o conjunto $A = \{v_1,...,v_n\} \subseteq V$.

O conjunto A é dito **conjunto ortogonal** quando $\langle v_i, v_j \rangle = 0$, para todo $i, j = 1, ..., n, i \neq j$.

Se em um conjunto ortogonal todos os vetores são unitários o conjunto é denomindado **conjunto ortonormal**.

Desta forma, se uma base do espaço vetorial for um conjunto ortogonal, será denominada **base ortogonal.** Uma base ortogonal formada por vetores unitários é chamada **base ortonormal**. Exemplo: O conjunto $\{(1,2,0),(2,-1,3),(-6,3,5)\}$ é ortogonal em relação ao produto interno usual.

Processo de Ortogonalização de Gram-Schmidt. Projeção de um Vetor sobre um Subespaço.

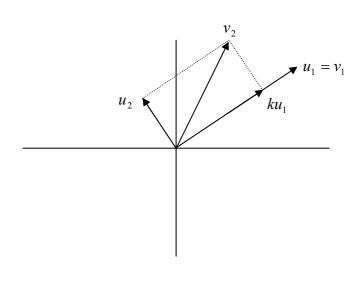
O **processo de ortogonalização de Gram-Schmidt** resolve o problema de a partir de uma base qualquer de um espaço vetorial, obter uma base ortogonal. O processo será apresentado para os espaços vetoriais do \mathbb{R}^2 e \mathbb{R}^3 , e, finalmente, generalizado.

• Processo para o espaço R²

Considere $A = \{v_1, v_2\}$ uma base de \mathbb{R}^2 .

Sejam $u_1 = v_1$ e $u_2 = v_2 - ku_1$.

Assim, $\langle u_2, u_1 \rangle = 0$ isto é, o vetor u_2 , obtido em função de v_1 e v_2 , é ortogonal ao vetor u_1 . Interpretação geométrica:



2

O escalar
$$k \in \mathbf{R}$$
 é tal que: $\langle u_2, u_1 \rangle = 0$
 $\langle v_2 - ku_1, u_1 \rangle = 0$
 $\langle v_2, u_1 \rangle - \langle ku_1, u_1 \rangle = 0$
 $\langle v_2, u_1 \rangle - \langle ku_1, u_1 \rangle = 0$
 $\langle v_2, u_1 \rangle - k \langle u_1, u_1 \rangle = 0 \therefore k = \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle}$

Logo, $B = \{u_1, u_2\}$ é uma base ortogonal com $u_1 = v_1$ e $u_2 = v_2 - ku_1 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$.

O vetor ku_1 é a **projeção ortogonal** do vetor v_2 no subespaço vetorial gerado pelo vetor u_1 .

$$proj_{[u_1]}v_2 = ku_1 = \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$$

Exemplo: Ortogonalizando a base {(1,2),(3,5)} pelo processo de Gram-Schmidt.

$$u_1 = v_1 = (1,2)$$

$$u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 = (3,5) - \frac{\langle (3,5), (1,2) \rangle}{\langle (1,2), (1,2) \rangle} (1,2) = (3,5) - \frac{13}{5} (1,2) = \left(\frac{2}{5}, -\frac{1}{5}\right)$$

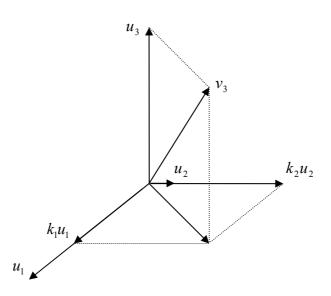
Assim o conjunto $\{(1,2), (\frac{2}{5}, \frac{1}{5})\}$ é uma base ortogonal do \mathbb{R}^2 .

O vetor $ku_1 = \frac{13}{5}(1,2) = \left(\frac{13}{5}, \frac{26}{5}\right)$ é a projeção ortogonal do vetor (3,5) no subespaço vetorial [(1,2)].

• Processo para o espaço R^3 Seja $A = \{v_1, v_2, v_3\}$ uma base do R^3 .

Sejam os vetores $u_1 = v_1$ e $u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$.

O vetor u_3 é obtido em função dos vetores v_1, v_2 e v_3 e ortogonal tanto ao vetor u_1 quanto ao vetor u_2 . Assim, $u_3 = v_3 - (k_1 \cdot u_1 + k_2 \cdot u_2)$ com $\langle u_3, u_1 \rangle = 0$ e $\langle u_3, u_2 \rangle = 0$. Interpretação geométrica para esta situação:



O escalar
$$k_1 \in \mathbf{R}$$
 é tal que: $\langle u_3, u_1 \rangle = 0$
$$\langle v_3 - (k_1 u_1 + k_2 u_2), u_1 \rangle = 0$$

$$\langle v_3 - k_1 u_1 - k_2 u_2, u_1 \rangle = 0$$

$$\langle v_3, u_1 \rangle - k_1 \langle u_1, u_1 \rangle - k_2 \langle u_2, u_1 \rangle = 0$$

$$\text{Mas, } u_1 \bot u_2 \therefore \langle u_2, u_1 \rangle = 0$$

$$\langle v_3, u_1 \rangle - k_1 \langle u_1, u_1 \rangle = 0 \therefore k_1 = \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle}$$

O escalar
$$k_2 \in \mathbf{R}$$
 é tal que: $\langle u_3, u_2 \rangle = 0$
 $\langle v_3 - (k_1 u_1 + k_2 u_2), u_2 \rangle = 0$
 $\langle v_3 - k_1 u_1 - k_2 u_2, u_2 \rangle = 0$
 $\langle v_3, u_2 \rangle - k_1 \langle u_1, u_2 \rangle - k_2 \langle u_2, u_2 \rangle = 0$
Mas, $u_1 \perp u_2 :: \langle u_1, u_2 \rangle = 0$
 $\langle v_3, u_2 \rangle - k_2 \langle u_2, u_2 \rangle = 0 :: k_2 = \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle}$

Então,
$$u_1 = v_1$$

$$u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$$

$$u_3 = v_3 - k_1 u_1 - k_2 u_2 = v_3 - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2$$

Logo, $B = \{u_1, u_2, u_3\}$ é uma base ortogonal do \mathbf{R}^3 , com $u_1 = v_1$, $u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$ e $u_3 = v_3 - k_1 u_1 - k_2 u_2 = v_3 - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2$.

O vetor $k_1u_1 + k_2u_2$ é a **projeção ortogonal** do vetor v_3 no subespaço vetorial gerado pelos vetores u_1 e u_2 .

$$proj_{[u_1,u_2]}v_3 = k_1u_1 + k_2u_2 = \frac{\langle u_3, u_1 \rangle}{\langle u_1, u_1 \rangle}u_1 + \frac{\langle u_3, u_2 \rangle}{\langle u_2, u_2 \rangle}u_2$$

Generalização

Seja $A = \{v_1, v_2, ..., v_n\}$ uma base de um espaço vetorial V n-dimensional munido de um produto interno.

Considere os vetores:

$$u_1 = v_1$$

$$u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1$$

$$u_3 = v_3 - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2$$

$$u_{n} = v_{n} - \frac{\langle v_{n}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle v_{n}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2} - \dots - \frac{\langle v_{n}, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle} u_{n-1}$$

Então $B = \{u_1, u_2, ..., u_n\}$ é uma base ortogonal de V.

 $\text{Como } \frac{1}{\|v\|} \cdot v = \frac{v}{\|v\|} \in V \text{ \'e um unit\'ario, o conjunto } C = \left\{ \frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, \dots, \frac{u_n}{\|u_n\|} \right\}, \text{ obtido da normalização}$

dos vetores da base ortogonal B, é denominado base ortonormal.

Complemento Ortogonal

Seja V um espaço vetorial munido de um produto interno e S um subespaço vetorial de V. O **complemento ortogonal de S** é o conjunto $S^{\perp} = \{v \in V \mid \langle v, s \rangle = 0, \text{ para todo } s \in S\}$.

Exemplos:

1)
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}$$
.

Encontrar um vetor ortogonal ao subespaço vetorial *S* significa encontrar um vetor ortogonal aos vetores de uma base de *S*.

Seja $\{(0,1,0),(0,0,1)\}$ uma base de S.

Assim,
$$S^{\perp} = \{(x, y, z) \in \mathbf{R}^3 \mid (x, y, z) \perp (0, 1, 0) \text{ e } (x, y, z) \perp (0, 0, 1)\}.$$

$$\langle (x, y, z), (0,1,0) \rangle = 0$$
 e $\langle (x, y, z), (0,0,1) \rangle = 0$:. $y = 0$ e $z = 0$.

Então,
$$S^{\perp} = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0 \text{ e } z = 0\}.$$

2)
$$S = \{(3y - z, y, z), y, z \in \mathbf{R}\}.$$

Uma base para $S \notin \{(3,1,0), (-1,0,1)\}$.

$$S^{\perp} = \{(x, y, z) \in \mathbf{R}^3 \mid \langle (x, y, z), (3,1,0) \rangle = 0 \text{ e } \langle (x, y, z), (-1,0,1) \rangle = 0 \}.$$

Assim,
$$\begin{cases} 3x + y = 0 \\ -x + z = 0 \end{cases}$$

$$S^{\perp} = \{(z, -3z, z), z \in \mathbf{R}\}.$$

Observe que, se S é um subespaço vetorial de V, seu complemento ortogonal S^\perp também é subespaço vetorial de V.

É importante ainda ressaltar que o único vetor comum a S e a S^{\perp} é o vetor nulo $\mathbf{0}_V$, Assim, $S \cap S^{\perp} = \{\mathbf{0}_V\}$.

O subespaço vetorial $S + S^{\perp}$ é na verdade o próprio espaço vetorial V.

Portanto, $S \oplus S^{\perp} = V$.

Pelo Teorema da Dimensão, $\dim V = \dim(S \oplus S^{\perp}) = \dim S + \dim S^{\perp}$.

Exercícios

- 1) Verifique que funções $\langle \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definidas abaixo são produtos internos.
 - a) $\langle (x, y), (z, t) \rangle = 2xz + 3yt$
 - b) $\langle (x, y), (z, t) \rangle = xz yt$
 - c) $\langle (x, y), (z, t) \rangle = 4xz$
 - d) $\langle (x, y), (z, t) \rangle = xz + yt + 1$
 - e) $\langle (x, y), (z, t) \rangle = 2x^2z + y^2t$
 - f) $\langle (x, y), (z, t) \rangle = x^2 z + y^2 t$
 - g) $\langle (x, y), (z, t) \rangle = x^2 z^2 + y^2 t^2$
 - h) $\langle (x,y),(z,t)\rangle = k_1 l_1 k_2 l_2$ onde $A = \{v_1, v_2\}$ é uma base qualquer do espaço vetorial \mathbb{R}^2 , $(x,y) = k_1 \cdot v_1 + k_2 \cdot v_2$ e $(z,t) = l_1 \cdot v_1 + l_2 \cdot v_2$.
 - i) $\langle (x, y), (z, t) \rangle = xz 2xt 2yz + 5yt$
- 2) Calcule a norma de (1,-5,2) considerando:
 - a) o produto interno usual no \mathbb{R}^3 .
 - b) $\langle (x, y, z), (w, r, t) \rangle = \frac{1}{2} xw + yr + 3zt$.
- 3) Calcule $\|(2,1)\|$ em relação ao:
 - a) produto interno usual.
 - b) $\langle (x, y), (z, t) \rangle = 3xz + 4yt$.
- 4) Considere o espaço vetorial \mathbf{R}^3 munido do produto interno usual. Determine $k \in \mathbf{R}$ tal que $\|(6,k,-1)\| = \sqrt{41}$.
- 5) Mostre que $\left\| \frac{v}{\|v\|} \right\| = 1$ para todo $v \in V$.
- 6) Sejam $u, v \in V$ um espaço vetorial euclidiano tais que ||v|| = 3 e ||u|| = 5. Determine $k \in \mathbb{R}$ de modo que $\langle v + k \cdot u, v k \cdot u \rangle = 0$.
- 7) Seja \mathbb{R}^2 munido do produto interno usual e v = (1,2) e u = (3,5).
 - a) interprete geometricamente v + u, v u e u v.
 - b) calcule d(v,u) e d(u,v).
- 8) Seja o espaço vetorial \mathbf{R}^2 com produto interno usual. Seja que ||v|| = 3, ||u|| = 4 e $||v + u|| = 2\sqrt{5}$. Indique o ângulo entre v e u.
- 9) Verifique se os vetores (2,-3) e (3,2) são ortogonais em relação aos seguintes produtos internos no **R**²:
 - a) $\langle (x, y), (z, t) \rangle = xz + yt$
 - b) $\langle (x, y), (z, t) \rangle = 4xz + 3yt$

- 10) Se v e u são vetores ortogonais então $||v+u||^2 = ||v||^2 + ||u||^2$? Justifique. (Generalização do Teorema de Pitágoras)
- 11) Normalize o conjunto $\{(1,2,0),(2,-1,3),(-6,3,5)\}$.
- 12) Verifique se as bases abaixo são ortogonais no \mathbb{R}^2 e no \mathbb{R}^3 , respectivamente, para o produto interno usual.
 - a) $\{(1,2),(3,5)\}$

b)
$$\left\{ \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \right\}$$

- 13) Encontre um vetor unitário no \mathbb{R}^3 que seja ortogonal aos vetores (1,-1,0) e (2,-1,1).
- 14) Seja V um espaço vetorial euclidiano. Mostre que se $v, u \in V$ são ortogonais e tais que ||v|| = ||u|| = 1 então $||v u|| = \sqrt{2}$.
- 15) Ortogonalize a base $\{(1,1,2),(1,2,0),(0,-1,1)\}\$ do \mathbb{R}^3 .
- 16) O conjunto $A = \{(1,0,2), (0,1,1)\}$ é uma base de um subespaço vetorial do \mathbb{R}^3 . Obtenha uma base ortogonal B a partir de A.
- 17) Encontre a projeção ortogonal do vetor (1,1,-1) no subespaço vetorial [B] do exercício anterior.
- 18) Seja $S = \{(3y z, y, z), y, z \in \mathbb{R}\}$ um subespaço vetorial do \mathbb{R}^3 . Indique S^{\perp} , $S \cap S^{\perp}$ e $S + S^{\perp}$.
- 19) A partir da base $\{(1,3),(2,5)\}$ indique duas bases ortonormais do \mathbb{R}^2 .
- 20) Ortogonalize pelo processo de Gram-Schmidt as seguintes bases do R³.
 - a) $\{(1,1,1),(-1,1,0),(1,2,1)\}$
 - b) $\{(1,0,0),(3,7,-2),(0,4,1)\}$
- 21) Seja o espaço vetorial \mathbb{R}^3 munido do produto interno usual e seja S o subespaço vetorial gerado pela base ortogonal $B = \{(0,1,0), (-4,0,3)\}$. Determine a projeção do vetor (1,1,1) no subespaço S.
- 22) Seja o espaço vetorial \mathbb{R}^3 com o produto interno $\langle (x,y,z),(w,t,r)\rangle = xw + 2yt + 3zr$. Utilize o processo de Gram-Schmidt para transformar a base $\{(1,1,1),(1,1,0),(1,0,0)\}$ numa base ortogonal.
- 23) Seja o espaço vetorial \mathbb{R}^3 munido do produto interno usual e $A = \{(1,2,-3,),(2,-4,2)\}$. Determine:
 - a) o subespaço vetorial S gerado pelo conjunto A.
 - b) o subespaço vetorial S^{\perp} .
- 24) Considere o subespaço vetorial $S = \{(x, y, z) \in \mathbb{R}^3 \mid x z = 0\}$ com o produto interno $\langle (x, y, z), (w, t, r) \rangle = 2xw + 3yt + 4zr$. Determine S^{\perp} , uma base e sua dimensão.

- 25) Considere o espaço vetorial $Mat_n(\mathbf{R})$ com as operações usuais. Verifique se a função $\langle A, B \rangle = tr(A \cdot B^t)$ define um produto interno.
- 26) Considere o espaço vetorial das funções contínuas no intervalo $[a,b] \subseteq \mathbf{R}$ com as operações usuais. Verifique se a função $\langle f(x), g(x) \rangle = \int_a^b f(x)g(x)dx$ é um produto interno.

Respostas

- 2) a) $\sqrt{30}$ b) $\sqrt{\frac{75}{2}}$
- 3) a) $\sqrt{5}$ b) 4
- 4) $a = \pm 2$
- 6) $a = \pm \frac{3}{5}$
- 7) $d(v,u) = d(u,v) = \sqrt{13}$
- 8) $\theta = \arccos(-\frac{5}{24})$
- 11) $\left\{ \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right), \left(\frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right), \left(-\frac{6}{\sqrt{70}}, \frac{3}{\sqrt{70}}, \frac{5}{\sqrt{70}} \right) \right\}$
- 13) $\left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}\right)$
- 15) $\{(1,1,2),(\frac{1}{2},\frac{3}{2},-1),(\frac{4}{21},-\frac{2}{21},-\frac{1}{21})\}$

16)
$$\{(1,0,2),(-\frac{2}{5},1,\frac{1}{5})\}$$

17)
$$proj_{[B']}v = \left(-\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right)$$

18) a) Sim b)
$$\{\mathbf{0}_{V}\}$$
 c) \mathbf{R}^{3}

19)
$$\{(1,1,1),(\frac{1}{2},\frac{1}{2},-\frac{1}{2}),(\frac{2}{3},-\frac{1}{3},0)\}$$

20) a)
$$\{(1,1,1),(-1,1,0),(\frac{1}{6},\frac{1}{6},-\frac{2}{6})\}$$

b)
$$\{(1,0,0),(0,7,-2),(0,\frac{30}{53},\frac{105}{53})\}$$

21)
$$proj_{[B]}v = \left(\frac{4}{25}, 1, -\frac{3}{25}\right)$$

22)
$$\{(1,1,1),(\frac{1}{2},\frac{1}{2},-\frac{1}{2}),(\frac{2}{3},-\frac{1}{3},0)\}$$

23) a)
$$S = \{(x, y, z) \in \mathbf{R}^3 \mid x + y + z = 0\}$$

b)
$$S^{\perp} = \{(z, z, z), z \in \mathbf{R}\}$$

24)
$$S^{\perp} = \{(-2z, 0, z), z \in \mathbf{R}\}$$

Apêndice D – Teoremas

Seja V um espaço vetorial munido de um produto interno. Para quaisquer $v,u,w\in V$ e $k,k_1,k_2\in \mathbf{R}$.

Teo51.
$$\langle v, k \cdot u \rangle = k \langle v, u \rangle$$

Teo 52.
$$\langle v, u + w \rangle = \langle v, u \rangle + \langle v, w \rangle$$

Teo 53.
$$\langle k_1 \cdot v, k_2 \cdot u \rangle = k_1 k_2 \langle v, u \rangle$$

Teo 54.
$$\langle v, \mathbf{0}_v \rangle = 0$$

dem.:
$$\langle v, \mathbf{0}_{V} \rangle = 0 + \langle v, \mathbf{0}_{V} \rangle$$
 (1)

$$\langle v, \mathbf{0}_{V} \rangle = \langle v, \mathbf{0}_{V} + \mathbf{0}_{V} \rangle = \langle v, \mathbf{0}_{V} \rangle + \langle v, \mathbf{0}_{V} \rangle \tag{2}$$

De (1) e (2):
$$0 + \langle v, \mathbf{0}_V \rangle = \langle v, \mathbf{0}_V \rangle + \langle v, \mathbf{0}_V \rangle$$
.

Pela Lei do Corte para adição em \mathbf{R} , $\langle v, \mathbf{0}_{v} \rangle = 0$.

Teo55. Se para todo $u \in V$, $u \neq \mathbf{0}_V$, $\langle v, u \rangle = 0$ então $v = \mathbf{0}_V$.

dem.: (RAA) Seja $v \neq \mathbf{0}_{v}$.

Considere v = u.

Assim, $\langle v, u \rangle = \langle v, v \rangle > 0$.

Mas, $\langle v, u \rangle = 0$. Contradição.

Logo, $v = \mathbf{0}_{v}$.

Teo 56. Se para todo $u \in V, u \neq \mathbf{0}_V, \langle v, u \rangle = \langle w, u \rangle$ então v = w.

Teo 57.
$$\langle v - u, w \rangle = \langle v, w \rangle - \langle u, w \rangle$$
.

Teo58. $||v|| \ge 0$ e ||v|| = 0 se e somente se $v = \mathbf{0}_V$.

Teo 59. $||k \cdot v|| = |k| \cdot ||v||$.

Teo60. **Designaldade de Cauchy-Schwarz**: $|\langle v, u \rangle| \le ||v|| ||u||$.

dem.: Se $v = \mathbf{0}_V$ ou $u = \mathbf{0}_V$ então $\|\langle v, \mathbf{0}_V \rangle\| = \|\mathbf{0}_V\| = 0 = \|v\|$.

Considere $v \neq \mathbf{0}_V$, $u \neq \mathbf{0}_V$ e $w = v + k \cdot u$.

$$\langle w, w \rangle = \langle v + k \cdot u, v + k \cdot u \rangle > 0$$
$$\langle v + k \cdot u, v + k \cdot u \rangle = \langle v, v \rangle + \langle v, k \cdot u \rangle + \langle k \cdot u, v \rangle + \langle k \cdot u, k \cdot u \rangle = 0$$

$$\langle v, v \rangle + k \langle v, u \rangle + k \langle u, v \rangle + k^2 \langle u, u \rangle = \langle v, v \rangle + k \langle v, u \rangle + k \langle v, u \rangle + k^2 \langle u, u \rangle =$$

$$\langle v, v \rangle + 2k \langle v, u \rangle + k^2 \langle u, u \rangle = ||v||^2 + 2k \langle v, u \rangle + k^2 ||u||^2 =$$

Assim,
$$\langle v + k \cdot u, v + k \cdot u \rangle = ||u||^2 k^2 + 2 \langle v, u \rangle k + ||v||^2 > 0$$
.

Um polinômio do 2º grau em k com coeficiente de maior grau $\|u\|^2$ positivo, possui discriminante negativo ou nulo.

$$(2\langle v, u \rangle)^{2} - 4\|u\|^{2}\|v\|^{2} \leq 0 : 4\langle v, u \rangle^{2} - 4\|u\|^{2}\|v\|^{2} \leq 0 : \langle v, u \rangle^{2} - \|u\|^{2}\|v\|^{2} \leq 0 : \langle v, u \rangle^{2} \leq \|u\|^{2}\|v\|^{2}$$

$$Logo, |\langle v, u \rangle| \leq \|v\| \|u\|$$

Corolário 60: $\langle v, u \rangle^2 \le \langle v, v \rangle \langle u, u \rangle$, isto é, $\langle v, u \rangle^2 \le ||u||^2 ||v||^2$.

Teo61. **Designaldade Triangular**: $||v + u|| \le ||v|| + ||u||$.

dem.:
$$||v + u||^2 = \langle v + u, v + u \rangle = \langle v, v \rangle + 2\langle v, u \rangle + \langle u, u \rangle$$

$$\langle v, v \rangle + 2 \langle v, u \rangle + \langle u, u \rangle \le \langle v, v \rangle + 2 \|v\| \|u\| + \langle u, u \rangle$$

$$\langle v, v \rangle + 2||v|| ||u|| + \langle u, u \rangle = ||v||^2 + 2||v|| ||u|| + ||u||^2 = (||v|| + ||u||)^2$$

Assim,
$$||v + u||^2 \le (||v|| + ||u||)^2$$
.

Logo,
$$||v + u|| \le ||v|| + ||u||$$
.

Teo62. i) $d(v,u) \ge 0$ e d(v,u) = 0 se e somente se v = u

- ii) d(v,u) = d(u,v)
- iii) $d(v,u) \le d(v,w) + d(w,u)$

Teo 63. $\mathbf{0}_{v} \perp v$.

Teo64. Se $v \perp u$ então $u \perp v$.

Teo65. Se $v \perp u$, para todo $u \in V, u \neq \mathbf{0}_V$ então $v = \mathbf{0}_V$.

Teo66. Se $v \perp w$ e $u \perp w$ então $v + u \perp w$.

Teo 67. Se $v \perp u$ então $k \cdot v \perp u$.

Teo68. (Generalização do Teorema de Pitágoras) Se $v \perp u$ então $||v + u||^2 = ||v||^2 + ||u||^2$.

- Teo69. Se $\{v_1,...,v_r\}$ é um conjunto ortogonal de vetores não nulos então $\{v_1,...,v_r\}$ é um conjunto linearmente independente.
- Teo
70. Sejam $S \leq V$, $\{v_1,...,v_r\}$ uma base de S e $v \in V$ tal que para todo i=1,...,r, $v \perp v_i$ então para todo $s \in S$, $v \perp s$.
- Teo
71. Sejam $\{v_1, \dots, v_n\}$ uma base ortonormal de V
e $v \in V$. Então $v = \langle v, v_1 \rangle \cdot v_1 + \dots + \langle v, v_n \rangle \cdot v_n$.
- Teo72. (Processo de Ortogonalização de Gram-Schmidt) Sejam $\{v_1,...,v_r\} \subseteq V$ um conjunto de vetores linearmente independente. Existe um conjunto ortogonal (ortonormal) $\{u_1,...,u_r\} \subseteq V$ que é uma base do subespaço gerado pelo conjunto $\{v_1,...,v_r\}$.

Teo 73. $S^{\perp} \neq \emptyset$.

Teo74. $S^{\perp} \leq V$.

Teo 75. $(S^{\perp})^{\perp} = S$

Teo 76. $S \cap S^{\perp} = \{ \mathbf{0}_{\nu} \}$.

Teo 77. $V = S \oplus S^{\perp}$

Corolário 77: $\dim S + \dim S^{\perp} = \dim V$

- Teo78. Seja V um \mathbf{R} -espaço vetorial munido de um produto interno e um dado vetor $u \in V$. A função $f_u: V \to \mathbf{R}$ tal que $f(v) = \langle u, v \rangle$ é um funcional.
- Teo79. Seja V um **R**-espaço vetorial munido de um produto interno. A função $T:V\to V^*$ tal que $T(v)=f_v$ é uma transformação linear.
- Teo80. Sejam V um \mathbf{R} -espaço vetorial munido de um produto interno e $f:V\to\mathbf{R}$ um funcional. Então existe um único vetor $v\in V$ tal que f(u)=< v,u>, para todo $u\in V$, isto é, a função $T:V\to V^*$ tal que $T(v)=f_v$ é um isomorfismo.

Corolário 80. Se $\dim V = n$ então $\dim V^* = n$.