Aula 17

Integrais definidas e o Teorema Fundamental do Cálculo

17.1 A integral definida

Seja y = f(x) uma função contínua em um intervalo fechado [a,b].

Subdividamos o intervalo [a,b] através de n+1 pontos $x_0,x_1,x_2,\ldots,x_{n-1},x_n$, tais que

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

O conjunto de pontos $\wp = \{x_0 = a, x_1, x_2, \dots, x_{n-1}, x_n = b\}$ constitui uma subdivisão ou partição do intervalo [a, b].

Tomemos ainda pontos $c_1, c_2, c_3, \ldots, c_{n-1}, c_n$ em [a, b], tais que

$$c_{1} \in [x_{0}, x_{1}] = [a, x_{1}],$$

$$c_{2} \in [x_{1}, x_{2}],$$

$$\vdots$$

$$c_{i} \in [x_{i-1}, x_{i}],$$

$$\vdots$$

$$c_{n} \in [x_{n-1}, x_{n}].$$

Sejam

$$\Delta x_1 = x_1 - x_0$$

$$\Delta x_2 = x_2 - x_1$$

$$\vdots$$

$$\Delta x_i = x_i - x_{i-1}$$

$$\vdots$$

$$\Delta x_n = x_n - x_{n-1}$$

E formemos a soma

$$S = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \dots + f(c_n)\Delta x_n = \sum_{i=1}^n f(c_i)\Delta x_i.$$

Esta é uma soma integral de f, no intervalo [a,b], correspondente à partição \wp , e à escolha de pontos intermediários c_1,\ldots,c_n .

Note que, quando f(x)>0 em [a,b], a soma integral de f, $S=\sum\limits_{i=1}^n f(c_i)\Delta x_i$, é a soma das áreas de n retângulos, sendo o i-ésimo retângulo, para $1\leq i\leq n$, de base Δx_i e altura $f(c_i)$. Isto é ilustrado na figura 17.1.

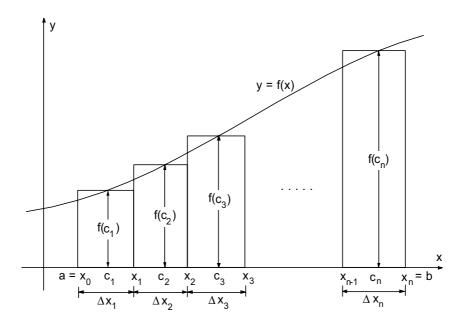


Figura 17.1.

Seja Δ o maior dos números $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$. Escrevemos

$$\Delta = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\} = \max \Delta x_i$$

Tal Δ é também chamado de *norma da partição* \wp .

É possível demonstrar que, quando consideramos uma sucessão de subdivisões $a=x_0 < x_1 < \cdots < x_n = b$, do intervalo [a,b], fazendo com que $\Delta = \max \Delta x_i$ tornese mais e mais próximo de zero (e o número n, de sub-intervalos, torne-se cada vez maior), as somas integrais S, correspondentes a essas subdivisões, vão tornando-se cada vez mais próximas de um número real γ , chamado integral definida de f, no intervalo [a,b] e denotado por $\int_a^b f$, ou por $\int_a^b f(x) \, dx$.

Em outras palavras, quando formamos uma seqüência de partições \wp_1 , \wp_2 , ..., \wp_k , ..., do intervalo [a,b], de normas respetivamente iguais a Δ_1 , Δ_2 , ..., Δ_k , ..., associando a cada partição um conjunto de pontos intermediários (os c_i 's), e forman-

do então uma seqüência de somas integrais $S_1,S_2,\ldots,S_k,\ldots$, sendo $\lim_{k\to+\infty}\Delta_k=0$, teremos $\lim_{k\to+\infty}S_k=\gamma=\int_a^bf$, para algum número real γ .

De modo mais simplificado, a integral definida de f, de a até b (ou no intervalo [a,b]) é o número real

$$\gamma = \int_{a}^{b} f(x) dx = \lim_{\Delta \to 0} S = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

Observação 17.1 Se f(x) > 0 no intervalo [a, b], quando $\max \Delta x_i \to 0$, o número k, de sub-intervalos tende a ∞ .

Os retângulos ilustrados na figura 17.1 tornam-se cada vez mais estreitos e numerosos à medida em que $\max \Delta x_i$ torna-se mais e mais próximo de 0.

Neste caso, $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$ definirá a área compreendida entre a curva y = f(x), o eixo x, e as retas verticais x = a, x = b.

Sumarizando,

Se f(x) > 0 em [a, b], temos

$$\int_a^b f(x)\,dx = (\text{\'area sob o gr\'afico de }f\text{, de }x=a \text{ at\'e }x=b)$$

Observação 17.2 Por outro lado, se f(x) < 0 para todo $x \in [a,b]$, teremos $\int_a^b f(x) \, dx = -A$, sendo A a área (positiva) da região plana compreendida entre o eixo x, o gráfico de f, e as retas x = a e x = b.

Note que, neste caso, feita uma subdivisão $a=x_0 < x_1 < x_2 < \cdots < x_n = b$, e escolhidos os pontos c_1, c_2, \ldots, c_n , com $c_i \in [x_{i-1}, x_i]$, para $i=1, 2, \ldots, n$, teremos

$$\sum_{i=1}^{n} f(c_i) \Delta x_i < 0$$

pois $f(c_i) < 0$ para cada i, e $\Delta x_i > 0$ para cada i.

Observação 17.3 Se o gráfico de f, no intervalo [a,b], é como o gráfico esboçado na figura 17.2, então, sendo A_1 , A_2 , A_3 e A_4 as áreas (positivas) indicadas na figura, teremos

$$\int_{a}^{b} f(x) dx = A_1 - A_2 + A_3 - A_4$$

Observação 17.4 Pode-se demonstrar que se f é contínua em [a,b], o limite $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i = \int_a^b f \text{ não depende das sucessivas subdivisões } a = x_0 < x_1 < \cdots < x_n = b$, e nem das sucessivas escolhas de pontos c_1, c_2, \ldots, c_n , com $c_i \in [x_{i-1}, x_i]$ para cada i.

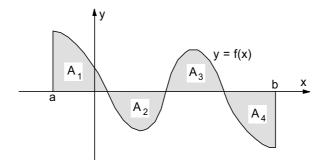


Figura 17.2. $\int_a^b f = A_1 - A_2 + A_3 - A_4$.

Observação 17.5 Se, para uma função g, definida em [a,b], não necessariamente contínua, existir o limite $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n g(c_i) \Delta x_i$ (x_i 's e c_i 's tal como antes), dizemos que g é integrável em [a,b], e definimos, tal como antes,

$$\int_{a}^{b} g(x) dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} g(c_i) \Delta x_i$$

Exemplo 17.1 Sendo $f(x)=x^2$, calcular $\int_0^1 f(x)\,dx$, ou seja, determinar a área compreendida entre a parábola $y=x^2$ e o eixo x, no intervalo $0\leq x\leq 1$.

Para calcular a integral pedida, vamos primeiramente subdividir o intervalo [0,1] em n sub-intervalos de comprimentos iguais a $\Delta x = 1/n$, ou seja, tomaremos

$$x_0 = 0$$
, $x_1 = 1/n$, $x_2 = 2/n$, ..., $x_{n-1} = (n-1)/n$ e $x_n = n/n = 1$.

Neste caso, $\Delta x_1 = \Delta x_2 = \cdots = \Delta x_n = 1/n$.

Tomaremos ainda $c_i = x_i = i/n$, para i = 1, 2, ..., n.

Teremos a soma integral

$$S = \sum_{i=1}^{n} f(c_i) \Delta x_i = \sum_{i=1}^{n} f(i/n) \cdot \frac{1}{n}$$
$$= \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 \cdot \frac{1}{n} = \sum_{i=1}^{n} \frac{i^2}{n^3}$$
$$= \frac{1}{n^3} \sum_{i=1}^{n} i^2 = \frac{1^2 + 2^2 + \dots + n^2}{n^3}$$

Pode ser demonstrado que $1^2+2^2+\cdots+n^2=\frac{1}{6}n(n+1)(2n+1)$, fato que usaremos aqui.

Assim, como $\Delta x \to 0$ se e somente se $n \to \infty$, temos

$$\int_0^1 f(x) dx = \int_0^1 x^2 dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$$
$$= \lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}$$
$$= \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{2}{6} = \frac{1}{3}$$

A área procurada é igual a 1/3 (de unidade de área).

Proposição 17.1 Se f é contínua no intervalo [a,b], sendo m e M os valores máximo e mínimo de f, respectivamente, no intervalo [a,b], então

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

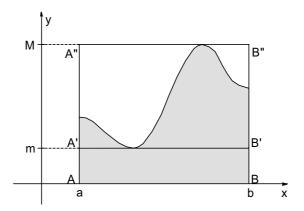


Figura 17.3. $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Abaixo, faremos uma demonstração da proposição 17.1. Antes porém, daremos uma interpretação geométrica dessa proposição, no caso em que f>0 em [a,b]. Da figura 17.3, em que m e M são, respectivamente, os valores mínimo e máximo de f(x) para $x\in [a,b]$, temos

área $ABB'A' \leq ($ área sob o gráfico de f, no intervalo $[a,b]) \leq$ área ABB''A''.

Daí,

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Demonstração da proposição 17.1. Tomando-se uma subdivisão qualquer de [a, b],

$$a = x_0 < x_1 < \dots < x_n = b$$

e tomando-se pontos $c_i \in [x_{i-1}, x_i]$, para $i = 1, 2, \ldots, n$, temos

$$\sum_{i=1}^{n} f(c_i) \Delta x_i \le \sum_{i=1}^{n} M \Delta x_i$$

pois $f(c_i) \leq M$, e $\Delta x_i > 0$, para cada i. Daí,

$$\sum_{i=1}^{n} f(c_i) \Delta x_i \le \sum_{i=1}^{n} M \Delta x_i = M \sum_{i=1}^{n} \Delta x_i = M(b-a)$$

pois

$$\sum_{i=1}^{n} \Delta x_i = \Delta x_1 + \Delta x_2 + \dots + \Delta x_n = b - a$$

Logo,

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i \le M(b-a)$$

e portanto

$$\int_{a}^{b} f(x) \, dx \le M(b - a)$$

Analogamente, deduzimos que $\int_a^b f(x) dx \ge m(b-a)$.

Assumiremos sem demonstração as seguintes propriedades.

Proposição 17.2 Se f e g são contínuas em [a,b], então, sendo k uma constante e

1.
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

2. $\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx$
3. $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$

2.
$$\int_a^b k \cdot f(x) \, dx = k \cdot \int_a^b f(x) \, dx$$

3.
$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

4. se
$$f(x) \leq g(x)$$
, para todo $x \in [a,b]$, então $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$

Observação 17.6 Sendo f contínua em [a,b], são adotadas as seguintes convenções (definições).

(i)
$$\int_a^a f(x) dx = 0$$

(ii)
$$\int_b^a f(x) dx = -\int_a^b f(x) dx$$

Adotadas essas convenções, a proposição 17.2, acima enunciada, continua verdadeira qualquer que seja a ordem dos limites de integração a, b e c, podendo ainda dois deles (ou os três) coincidirem.

Teorema 17.1 (Teorema do valor médio para integrais) Se f é contínua no intervalo [a, b], existe $c \in [a, b]$ tal que

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a)$$

Adiante faremos a demonstração deste teorema. Uma interpretação geométrica do teorema do valor médio para integrais, no caso em que f(x)>0 em [a,b], é feita na figura 17.4.

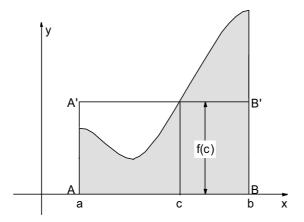


Figura 17.4. Teorema do valor médio para integrais: $\int_a^b f =$ (área sob o gráfico de f) = (área ABB'A') = f(c)(b-a).

Para demonstrarmos o teorema do valor médio para integrais, usaremos o Teorema do valor intermediário.

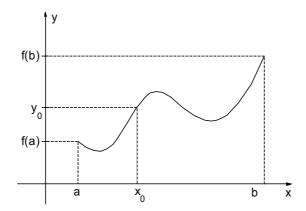


Figura 17.5. Para cada y_0 , tal que $f(a) \leq y_0 \leq f(b)$, existe $x_0 \in [a,b]$ tal que $f(x_0) = y_0$.

Teorema 17.2 (Teorema do valor intermediário) Seja f uma função contínua no intervalo [a,b]. Para cada y_0 , tal que $f(a) \leq y_0 \leq f(b)$, existe $x_0 \in [a,b]$ tal que $f(x_0) = y_0$.

Ilustramos geometricamente o teorema do valor intermediário na figura 17.5.

Como consequência do teorema do valor intermediário, temos o *teorema do anulamento*, já explorado na aula 7, à página 66:

(Teorema do anulamento) Sendo a < b, e f contínua em [a,b], se f(a) < 0 e f(b) > 0 (ou se f(a) > 0 e f(b) < 0), então a função f possui uma raiz no intervalo [a,b].

Demonstração. Como f(a) < 0 < f(b), pelo teorema do valor intermediário, existe $x_0 \in [a,b]$ tal que $f(x_0) = 0$.

Demonstração do teorema 17.1. Sendo f contínua no intervalo [a,b], pelo teorema de Weierstrass, página 69, aula 8, existem $m,M\in\mathbb{R}$ tais que $m=\min\{f(x)\mid x\in[a,b]\}$ e $M=\max\{f(x)\mid x\in[a,b]\}$. Além disso, existem pontos $x_1,x_2\in[a,b]$ tais que $f(x_1)=m$ e $f(x_2)=M$.

Pela proposição 17.1,

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Daí,

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M$$

Sendo $\alpha=\frac{1}{b-a}\int_a^b f(x)\,dx$, como $f(x_1)=m\leq \alpha\leq M=f(x_2)$, pelo teorema do valor intermediário, existe $c\in [a,b]$ (c entre x_1 e x_2) tal que $f(c)=\alpha$. Logo,

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

e portanto

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

17.2 O teorema fundamental do cálculo

Teorema 17.3 (Teorema fundamental do cálculo, primeira versão) Seja uma função contínua no intervalo [a,b]. Para cada $x \in [a,b]$, seja

$$\varphi(x) = \int_{a}^{x} f(t) dt$$

Então

$$\varphi'(x) = f(x), \quad \forall x \in [a, b]$$

Uma das consequências imediatas do teorema fundamental do cálculo é que

Toda função contínua f, em um intervalo [a,b], possui uma primitiva (ou anti-derivada) em [a,b], sendo ela a função φ , definida por $\varphi(x) = \int_a^x f(t) dt$, para cada $x \in [a,b]$.

Demonstração do teorema fundamental do cálculo, primeira versão.

Para x em [a, b], e $\Delta x \neq 0$, com $x + \Delta x$ em [a, b], temos

$$\Delta \varphi = \varphi(x + \Delta x) - \varphi(x) = \int_{a}^{x + \Delta x} f(t) dt - \int_{a}^{x} f(t) dt$$
$$= \int_{a}^{x + \Delta x} f(t) dt + \int_{x}^{a} f(t) dt = \int_{x}^{x + \Delta x} f(t) dt$$

(Veja figuras 17.6a e 17.6b.)

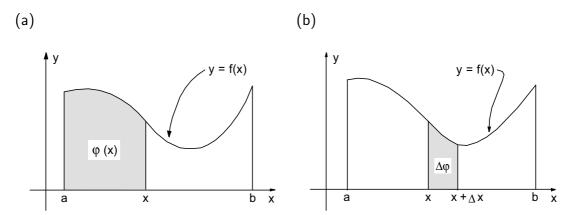


Figura 17.6. (a) Interpretação geométrica de $\varphi(x)$, $x \in [a,b]$. (b) Interpretação geométrica de $\Delta \varphi$, para $\Delta x > 0$.

Pelo teorema do valor médio para integrais, existe w entre x e $x+\Delta x$ tal que

$$\int_{T}^{x+\Delta x} f(t) dt = f(w) \cdot [(x + \Delta x) - x]$$

Assim sendo,

$$\Delta \varphi = \varphi(x + \Delta x) - \varphi(x) = f(w)\Delta x$$

o que implica

$$\frac{\Delta \varphi}{\Delta x} = f(w), \quad \text{para algum } w \text{ entre } x \text{ e } x + \Delta x$$

Temos $w \to x$ quando $\Delta x \to 0$. Como f é contínua,

$$\varphi'(x) = \lim_{\Delta x \to 0} \frac{\Delta \varphi}{\Delta x} = \lim_{\Delta x \to 0} f(w) = \lim_{w \to x} f(w) = f(x)$$

Como conseqüência do teorema fundamental do cálculo, primeira versão, temos a sua segunda versão, também chamada *fórmula de Newton-Leibniz*. Ele estabelece uma conexão surpreendente entre as integrais indefinidas e as integrais definidas.

Teorema 17.4 (Teorema fundamental do cálculo, segunda versão) $Sendo\ f$ uma função contínua no intervalo [a,b],

se
$$\int f(x) dx = F(x) + C$$
 então $\int_a^b f(x) dx = F(b) - F(a)$

Demonstração. Pelo teorema fundamental do cálculo, primeira versão, temos que a função $\varphi(x)=\int_a^x f(t)\,dt,\ a\leq x\leq b$, é uma primitiva de f(x) no intervalo [a,b], ou seja, $\varphi'(x)=f(x)$.

Se $\int f(x) dx = F(x) + C$, temos também F'(x) = f(x). Logo, pela proposição 15.1 existe uma constante k tal que

$$\varphi(x) = F(x) + k$$
, para todo $x \in [a, b]$

Agora, $\varphi(a)=\int_a^a f(t)\,dt=0.$ Logo, F(a)+k=0, de onde então k=-F(a).

Assim sendo,

$$\int_{a}^{x} f(t) dt = \varphi(x) = F(x) - F(a)$$

Quando x = b, temos

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

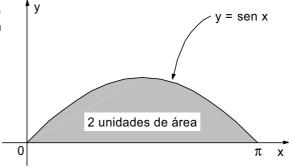
É costume denotar $[F(x)]_a^b = F(x)|_a^b = F(b) - F(a)$. Ou seja, sendo $\int f(x) \, dx = F(x) + C$, temos $\int_a^b f(x) \, dx = F(x)|_a^b = F(b) - F(a)$.

Exemplo 17.2 Calcular a área compreendida entre a curva $y = \sin x$ e o eixo x, para $0 \le x \le \pi$.

Solução.

Como $\sin x \geq 0$ quando $0 \leq x \leq \pi$, temos que a área procurada é dada pela integral $A = \int_0^\pi \sin x \, dx$.

Temos $\int \sin x \, dx = -\cos x + C$.



Logo, $A = \int_0^\pi \sin x \, dx = [-\cos x]_0^\pi = (-\cos \pi) - (-\cos 0) = 1 + 1 = 2$ (unidades de área).

17.2.1 Integração definida, com mudança de variável

Veremos agora que, quando fazemos mudança de variável (integração por substituição), no caso de uma integral definida, podemos finalizar os cálculos com a nova variável introduzida, sem necessidade de retornar à variável original. Para tal, ao realizarmos a mudança de variável, trocamos adequadamente os limites de integração.

Suponhamos que y=f(x) define uma função contínua em um intervalo I, com $a,b\in I$, e que $x=\varphi(t)$ é uma função de t derivável em um certo intervalo $J\subset\mathbb{R}$, satisfazendo

- 1. $f(\varphi(t)) \in I$ quando $t \in J$.
- 2. $\varphi(\alpha) = a$, $\varphi(\beta) = b$, para certos $\alpha, \beta \in J$;
- 3. $\varphi'(t)$ é contínua em J;

Sendo F(x) uma primitiva de f(x) em I, temos $\int f(x) \, dx = F(x) + C$, e como vimos, tomando $x = \varphi(t)$, teremos $dx = \varphi'(t) \, dt$, e

$$\int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C.$$

Então, Pelo teorema fundamental do cálculo,

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a) = F(\varphi(\beta)) - F(\varphi(\alpha))$$
$$= F(\varphi(t))|_{\alpha}^{\beta} = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$

Exemplo 17.3 *Calcular* $\int_{-1}^{1} x \sqrt{1 + x^2} \, dx$.

Fazendo $u=1+x^2$, calculamos $\int x\sqrt{1+x^2}\,dx=\frac{1}{3}\sqrt{1+x^2}+C$.

Pelo teorema fundamental do cálculo,

$$\int_{-1}^{1} x\sqrt{1+x^2} \, dx = \frac{1}{3}\sqrt{1+x^2} \Big|_{-1}^{1} = \frac{\sqrt{8}}{3} - \frac{\sqrt{8}}{3} = 0.$$

Por outro lado, poderíamos ter trocado os limites de integração, ao realizar a mudança de variável. O resultado seria:

para
$$x=-1,\ u=2;$$
 e para $x=1,\ u=2$ (!). Então
$$\int_{-1}^1 x \sqrt{1+x^2}\,dx = \int_2^2 \sqrt{u} \cdot \tfrac{1}{2} du = 0.$$

Exemplo 17.4 Calcular a área delimitada pela circunferência de equação $x^2 + y^2 = a^2$.

Para calcular a área A desse círculo, basta calcular a área sob o semi-círculo $y=\sqrt{a^2-x^2}$, acima do eixo x, entre os pontos x=-a e x=a, ou seja, calcular

$$A/2 = \int_{-a}^{a} \sqrt{a^2 - x^2} \, dx$$

Faremos a substituição $x=a \sin t$, $-\pi/2 \le t \le \pi/2$.

Para
$$t = -\pi/2$$
, $x = -a$; para $t = \pi/2$, $x = a$.

Teremos então $dx=a\cos t\,dt$, $a^2-x^2=a^2\cos^2 t$ e, como $\cos t\geq 0$ no intervalo $[-\pi/2,\pi/2]$, $\sqrt{a^2-x^2}=a\cos t$.

Logo,
$$\int_{-a}^{a} \sqrt{a^2 - x^2} dx = \int_{-\pi/2}^{\pi/2} a^2 \cos^2 t dt$$
.

Temos $\cos^2 t + \sin^2 t = 1$ e $\cos^2 t - \sin^2 t = \cos 2t$, logo $\cos^2 t = \frac{1}{2}(1 + \cos 2t)$.

Assim,

$$\int_{-a}^{a} \sqrt{a^2 - x^2} \, dx = \int_{-\pi/2}^{\pi/2} a^2 \cos^2 t \, dt$$

$$= \frac{a^2}{2} \int_{-\pi/2}^{\pi/2} (1 + \cos 2t) \, dt$$

$$= \frac{a^2}{2} \left[t + \frac{1}{2} \sin 2t \right]_{-\pi/2}^{\pi/2}$$

$$= \frac{a^2}{2} \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi \right] - \frac{a^2}{2} \left[-\frac{\pi}{2} + \frac{1}{2} \sin(-\pi) \right] = \frac{\pi a^2}{2}$$

E portanto a área do círculo é $A=\pi a^2$.

17.2.2 Integração definida, por partes

Suponhamos que u=u(x) e v=v(x) são funções deriváveis no intervalo [a,b], com as derivadas u'(x) e v'(x) contínuas em [a,b].

Temos $(u \cdot v)' = u' \cdot v + u \cdot v' = uv' + vu'$, e então

$$\int_{a}^{b} [u(x)v(x)]' dx = \int_{a}^{b} u(x)v'(x) dx + \int_{a}^{b} v(x)u'(x) dx.$$

Pelo teorema fundamental do cálculo, $\int_a^b [u(x)v(x)]' dx = u(x)v(x)|_a^b$. Portanto

$$\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) \, dx.$$

Em notação abreviada,

$$\int_a^b u \, dv = \left. uv \right|_a^b - \int_a^b v \, du$$

17.3 Problemas

Calcule as integrais definidas listadas abaixo.

- 1. $\int_{-1}^{1} \frac{dx}{1+x^2}$. Resposta. $\pi/2$.
- 2. $\int_0^{\sqrt{2}/2} \frac{dx}{\sqrt{1-x^2}}$. Resposta. $\pi/4$.
- 3. $\int_0^{\pi/3} \operatorname{tg} x \, dx$. Resposta. $\ln 2$.
- 4. $\int_1^x \frac{dt}{t}$. Resposta. $\ln x$.
- 5. $\int_0^x \sin t \, dt$. Resposta. $1 \cos x$.
- 6. $\int_0^{\pi/2} \sin x \cos^2 x \, dx$. Resposta. 1/3.
- 7. $\int_0^{\pi/2} \frac{dx}{3+2\cos x}$. Resposta. $\frac{\pi}{2\sqrt{5}}$. Sugestão. Use a identidade $\cos x = \frac{1-\operatorname{tg}^2\frac{x}{2}}{1+\operatorname{tg}^2\frac{x}{2}}$, faça $u = \operatorname{tg}\frac{x}{2}$, e $\frac{x}{2} = \operatorname{arc}\operatorname{tg}u$.
- 8. $\int_{1}^{4} \frac{x \, dx}{\sqrt{2+4x}}$. Resposta. $3\sqrt{2}/2$.
- 9. $\int_{-1}^{1} \frac{dx}{(1+x^2)^2}$. Resposta. $\frac{\pi}{4} + \frac{1}{2}$. Sugestão. Faça $x = \operatorname{tg} u$.
- 10. $\int_1^5 \frac{\sqrt{x-1}}{x} dx$. Resposta. $4 2 \arctan 2$.
- 11. $\int_0^{\pi/2} \frac{\cos x \, dx}{6 5 \sin x + \sin^2 x}$. Resposta. $\ln \frac{4}{3}$.
- 12. Calcule a integral $\int_0^t \sqrt{a^2-x^2}\,dx$ ($0 \le t \le a$), sem usar antiderivadas, interpretando-a como área sob a curva (semi-círculo) $y=\sqrt{a^2-x^2}$, e acima do eixo x, no intervalo [0,t] (figura 17.7).

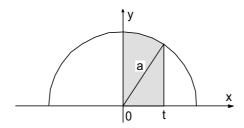


Figura 17.7.

Resposta. $\frac{t}{2}\sqrt{a^2-t^2}+\frac{a^2}{2} \arcsin \frac{t}{a}$. Sugestão. Subdivida a área a ser calculada em duas regiões, como sugere a figura.