MATRIZ

FORMAÇÃO E IGUALDADE

- 1. Seja $X = (x_{ij})$ uma matriz quadrada de ordem 2, onde i + j para i = j; 1 j para i > j e 1 se i < j. A soma dos seus elementos é igual a:
 - a. -1
 - b. 1
 - c. 6
 - d. 7
 - e. 8
- 2. Se M = $(a_{ij})_{3x2}$ é uma matriz tal que i^{j+1} , para i=j e j para $i\neq j$. Então, M é:
 - [1 2] 1 8 1 2
 - [1 1 1
 - b. 2 8 2
 - [2 2] 1 8 1 2]
 - 1 1 1 1 d.
 - 1 2 3 1 8 3
- 3. A matriz $A = (a_{ij})_{3x3}$ é definida de tal modo que $(-1)^{i+j}$ para i $\neq j$ e 0 se i = j. Então, A é igual a:
 - $\begin{bmatrix}
 0 & -1 & 1 \\
 -1 & 0 & -1 \\
 1 & -1 & 0
 \end{bmatrix}$
 - $\begin{cases}
 1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1
 \end{cases}$
 - $\begin{cases}
 0 & 1 & -1 \\
 1 & 0 & 1
 \end{cases}$
 - $\begin{bmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
 \end{bmatrix}$

$$\begin{pmatrix}
0 & -1 & -1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{pmatrix}$$

$$A = \begin{pmatrix} \frac{1}{16} & a^2 \\ -27 & \log_3 \left(\frac{1}{81} \right) \end{pmatrix}_e B = \begin{pmatrix} 2^b & 9 \\ a^3 & c \end{pmatrix}_{1, P_2}$$

Para que elas sejam iquais, deve-se ter:

- 4. Sejam as matrizes
 - a. a = -3 e b = -c = 4
 - b. a = 3 e b = c = -4
 - c. a = 3 e b = -c = 4
 - d. a = -3 e b = c = -4
 - e. $a = -3 e b = c^2 = 4$
- - a. Maior do que -1
 - b. Menor do que -1
 - c. Maior do que 1
 - d. Entre -1 e 1
 - e. Entre 0 e 3
- 6. A matriz transposta da matriz $A = (a_{ij})$, do tipo 3x2, onde $a_{ij} = 2i 3j$, é igual a:

$$\begin{pmatrix}
-1 & -1 & -3 \\
-4 & -2 & 0
\end{pmatrix}$$

$$\begin{bmatrix}
-1 & 1 & 3 \\
-4 & -2 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 3 \\ -4 & -2 & 0 \end{bmatrix}$$

$$\begin{pmatrix}
3 & 1 & -1 \\
0 & -2 & -4
\end{pmatrix}$$

$$\begin{array}{cccc}
 & 3 & -1 & 1 \\
 & 0 & 2 & -4
\end{array}$$

- 7. Considere a matriz $A=(a_{ij})_{3x4}$, na qual i j se i $\leq j$ e i . j se i > j . O elemento que pertence à 3° linha e à 2° coluna da matriz A^{t} , transposta de A, \acute{e} :
 - a. 4
 - b. 2
 - c. 1
 - d. -1
 - e. -2

8. Se uma matriz quadrada A é tal que $A^t = -A$, ela é chamada matriz anti-simétrica. Sabe-se que M é

iz quadrada A é tal que A^t = - A, ela é chamada matriz anti-simétrica. Sabe-se que M
$$M = \begin{pmatrix} 4+a & a_{12} & a_{13} \\ a & b+2 & a_{23} \\ b & c & 2c-8 \end{pmatrix}.$$
 Os termos a_{12} , a_{13} e a_{23} de M valem respectivamente:

anti-simétrica e:

- a. -4, -2 e 4
- b. 4, 2 e -4
- c. 4, -2 e -4
- d. 2, -4 e 2
- e. nda

$$A = \begin{pmatrix} 2 & -1 & 2y \\ x & 0 & z - 1 \\ 4 & 3 & 2 \end{pmatrix}_{\acute{e}}$$

9. Uma matriz quadrada A diz-se simétrica se $A = A^{t}$. Assim, se a matriz simétrica, então

x + y + z é igual a:

- a. -2
- b. -1
- c. 1
- d. 3
- e. 5

10. Se as matrizes $A = (a_{ij})$ e $B = (b_{ij})$ estão assim definidas: $a_{ij} = 1$ se i = j, $a_{ij} = 0$ se $i \neq j$, $b_{ij} = 1$ se i+j=4 e $b_{ij}=0$ se $i+j\neq 4$, onde $1\leq i$, $j\leq 3$, então a matriz A+B é:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1' \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

OPERAÇÕES

$$A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}, B = \begin{pmatrix} x & 6 \\ -1 & 2w \end{pmatrix}_e C = \begin{pmatrix} 4 & x+y \\ z+w & 3 \end{pmatrix}_e \text{ sendo } 3A = B + C, \text{ então:}$$

a.
$$X + y + z + w = 11$$

b.
$$X + y + z + w = 10$$

c.
$$X + y - z - w = 0$$

d.
$$X + y - y - w = -1$$

e.
$$X + y + z + w > 11$$

$$\begin{pmatrix} x^2 & y^3 \\ x^2 & y^2 \end{pmatrix} + \begin{pmatrix} 3x & -y \\ 4x & 2y \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 5 & -1 \end{pmatrix}_{x \text{ e y valem respectivamente:}}$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 0 \end{pmatrix}_{e} B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 0 \end{pmatrix}, \text{ se } A^{t} \text{ \'e a matriz transposta}$$

3. (SANTA CASA - SP) Dadas as matrizes de A, então (\mathbf{A}^{t} - B) é:

$$\begin{pmatrix}
1 & 3 & 5 \\
2 & 6 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 4 \\
1 & 2 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 2 \\
3 & 2 & 3
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 6 \\ 5 & 0 \end{pmatrix}$$
e.

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 4 \end{pmatrix}_e B = \begin{pmatrix} 4 & 0 & -3 \\ -1 & -2 & 3 \end{pmatrix}, \text{ então, 3 A - 4B é igual a:}$$

$$\begin{array}{cccc}
 & 13 & -3 & 18 \\
4 & 17 & 0
\end{array}$$

$$\begin{pmatrix}
-13 & -3 & -18 \\
4 & 17 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-13 & -3 & 18 \\
4 & 17 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-13 & -3 & 18 \\
-4 & -17 & 0
\end{pmatrix}$$

e. Operação não definida

$$A = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$
 então a matriz X, 2x2 , tal que
$$\frac{X-A}{2} = \frac{B+X}{3} + C$$
, é igual a:

$$\begin{pmatrix}
28 & 1 \\
24 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
28 & 1 \\
23 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
28 & 1 \\
25 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
28 & 1 \\
30 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
28 & 1 \\
22 & 3
\end{pmatrix}$$

$$A = \begin{pmatrix} 25 \\ 12 \\ 13 \end{pmatrix}, B = \begin{pmatrix} 5 \\ -8 \\ 3 \end{pmatrix}_{e} C = \begin{pmatrix} -1 \\ 10 \\ -1 \end{pmatrix}_{então a matriz X, tal que A + B - C - X = 0}$$

$$\begin{pmatrix} 31 \\ -6 \\ 17 \end{pmatrix}$$

a.
$$\begin{bmatrix} -6 \\ 17 \end{bmatrix}$$

$$\begin{bmatrix} 17 \\ -6 \\ 31 \end{bmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -2 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

7. (FCC - SP) Calculando-se 2AB + b2, onde

$$\begin{pmatrix}
0 & 3 & 0 \\
2 & -6 & 3 \\
6 & -3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 3 & 0 \\
2 & -9 & 4 \\
6 & -5 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 3 & 0 \\
1 & -6 & 3 \\
3 & -3 & 0
\end{pmatrix}$$

e. nda

$$A = \begin{pmatrix} 2 & m \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} n \\ 1 \end{pmatrix}_e C = \begin{pmatrix} 4 \\ 0 \end{pmatrix}_e \text{ sabendo-se que AB} = C, \text{ podemos concluir que:}$$

8. (FGV - SP) Dadas as matrizes concluir que:

a.
$$M + n = 10$$

b.
$$M - n = 8$$

c.
$$M \cdot n = -48$$

d.
$$M/n = 3$$

e.
$$M^n = 144$$

$$A = \begin{pmatrix} 2 & x & 0 \\ y & 8 & 2 \\ 1 & 3 & 1 \end{pmatrix}_{e} B = \begin{pmatrix} 2 & 3 & y \\ 0 & 8 & 2 \\ x & 3 & x - 2 \end{pmatrix}_{\text{análise as afirmações}}$$

9. (ITA - SP) Dadas as matrizes reais

$$I.A = B \Leftrightarrow x = 3 e y = 0$$

II. A + B =
$$\begin{pmatrix} 4 & 5 & 1 \\ 1 & 16 & 4 \\ 3 & 6 & 1 \end{pmatrix} \Leftrightarrow_{\mathbf{X} = 2 \text{ e y}} =$$

$$A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} \Leftrightarrow x = 1$$

E conclua:

- a. Apenas a afirmação II é verdadeira
- b. Apenas a afirmação I é verdadeira
- c. As afirmações I e II são verdadeiras
- d. Todas as afirmações são falsas
- e. Apenas a afirmação I é falsa.

$$A = \begin{pmatrix} 1 & k \\ m & 2 \end{pmatrix}. \text{ Se} \qquad A^2 = \begin{pmatrix} 0 & \frac{3}{2} \\ -6 & 3 \end{pmatrix}, \text{ então m/k vale:}$$

- a. 4
- b. 2
- c. 0
- d. -2
- e. -4
- 11. (CEFET PR) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A . B . C
 - a. É matriz do tipo 4x2
 - b. É matriz do tipo 2x4
 - c. É matriz do tipo 3x4
 - d. É matriz do tipo 4x3
 - e. Não é definido.
- 12. (FGV SP) A matriz A é do tipo 5x7 e a matriz B, do tipo 7x5. Assinale a alternativa correta.
 - a. A matriz AB tem 49 elementos
 - b. A matriz BA tem 25 elementos
 - c. A matriz (AB)² tem 625 elementos
 - d. A matriz (BA)² tem 49 elementos
 - e. A matriz (AB) admite inversa

13. (OSEC - SP) Dadas as matrizes
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}_e B = \begin{pmatrix} 0 & 1 \\ 3 & 8 \end{pmatrix}_{então, calculando-se (A + B)^2, obtém-se:}$$

$$\begin{pmatrix}
1 & 0 \\
6 & 121
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 25 & 121 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 \\
4 & 8
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 60 \\
1 & 121
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1
\end{pmatrix}$$

$$\begin{array}{c}
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}_{e} N = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}_{então MN - NM \'e}$$

$$\begin{pmatrix}
2 & -2 \\
0 & -2
\end{pmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{array}{cc} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
4 & 2 \\
1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 2 \\
-1 & 0
\end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & -1 & 7 \end{pmatrix} e^{-B} = \begin{pmatrix} 1 & 3 \\ 0 & 4 \\ 2 & 2 \end{pmatrix}.$$
 A soma dos elementos da primeira linha de A. R é:

primeira linha de A . B é:

$$A = \begin{pmatrix} 3 & 2 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}_{e} B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}_{e}$$
 qual é o valor de A . 2B ?

$$\begin{bmatrix} 6 \\ -1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 14 \\ -2 \\ 3 \end{bmatrix}$$

17. (UFPR - PR) Resolvendo a equação
$$\begin{pmatrix} x & -4 \\ x^2 & y \end{pmatrix} \begin{pmatrix} x & 2 \\ y & 1 \end{pmatrix} = \begin{pmatrix} 13 & 2x - 4 \\ x^3 + y^2 & 8 \end{pmatrix}$$
 encontramos para valores de x e y, respectivamente:

a. 3; 2

$$\pm \sqrt{\frac{1}{2}}$$

c.
$$\pm \sqrt{5}$$
; -2

$$-\frac{7}{3}, \frac{4}{5}$$

e. 6;
$$\pm \sqrt{3}$$

18. (UFSC - SC) A somas dos valores de x e y que satisfazem à equação matricial
$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x & 2 \\ y & 1 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 3 & 9 \end{pmatrix}_{\acute{e}}$$
:

a. 1

$$A = \begin{pmatrix} 4 - 3x & 7 - x \\ 0 & -10 \\ -5 & -4 \end{pmatrix} \quad B = \begin{pmatrix} 3 & -4 \\ 5 & 0 \\ 2 & 2 \end{pmatrix} \quad C = \begin{pmatrix} X & X + 1 \\ 1 & X - 1 \end{pmatrix} \quad e$$

19. (UFGO - GO) Considere as matrizes

$$D = \begin{pmatrix} 0 & 10 \\ 10 & 5 \\ 1 & 4 \end{pmatrix}$$
. O valor de x para que se tenha A + BC = D é:

c. 2

- d. -2
- e. nda

- São tais que a sua soma é igual a
 - a. -3
 - b. -2
 - c. -1
 - d. 2
 - e. 3

$$X = \begin{pmatrix} a & -1 \\ 2 & a \end{pmatrix}_e Y = \begin{pmatrix} 2 & 4 \\ -8 & 2 \end{pmatrix}_{\text{onde } a \in \mathbb{R}. \text{ Se } X^2 = Y, \text{ então:}}$$

- a. A = 2
- b. A = -2
- c. A = 1/2
- d. A = -1/2
- e. Nda

$$A = \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}_e B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \text{ então a matriz X, de ordem 2, tal que A . X = B, \'e:}$$

- $\begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 \\
 0 & 1/3
 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 \\
 0 & 1/4
 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 \\
 0 & 1/5
 \end{pmatrix}$
- $\begin{pmatrix}
 1 & 0 \\
 0 & 1/6
 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 3 \end{pmatrix}_{e} B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ x & 0 & 2 \end{pmatrix}_{então, o \text{ valor de x tal que AB}} =$$

- 23. (PUC SP) Sendo as matrizes BA é:
 - a. -1
 - b. 0
 - c. 1

- d. problema é impossível
- e. nenhuma das respostas anteriores

$$A = \begin{pmatrix} 1 & 5 \\ 2 & 0 \\ -2 & 1 \end{pmatrix}_{e} B = \begin{pmatrix} 1 & 5 & 6 \\ 6 & 5 & 1 \end{pmatrix}_{e \text{ seja C}} = AB. A \text{ soma dos}$$

- 24. (FGV SP) Considere as matrizes elementos da 2ª coluna de C vale:
 - a. 35
 - b. 40
 - c. 45
 - d. 50
 - e. 55
- 25. (Mack SP) O número de matrizes $A=(a_{ij})_{2x2}$ onde $a_{ij}=x$ para i=j e $a_{ij}=y$ para $i\neq j$, tal que $A=A^{-1}$ é:
 - a. 0
 - b. 1
 - c. 2
 - d. 3
 - e. 4

26. (ITA - SP) Considere P a matriz inversa da matriz M, onde:
$$M = \begin{bmatrix} 1/3 & 0 \\ 1/7 & 1 \end{bmatrix}$$
. A soma dos elementos da diagonal principal ma matriz P é:

- a. 9/4
- b. 4/9
- c. 5/9
- d. 4
- e. -1/9
- $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}_{\text{pela matriz}} I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{\text{\'e} \text{ igual a:}}$ 27. (UECE CE) O produto da inversa da matriz

$$\begin{pmatrix}
-2 & 1 \\
-1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -1 \\
1 & -1
\end{pmatrix}$$

$$\begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

e. nda

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

- 28. (ITA SP) Seja A a matriz 3x3 dada por então a soma dos elementos de B vale:
 - a. 1
 - b. 2
 - c. 5
 - d. 0
 - e. -2

SISTEMAS LINEARES

- 1. A soma dos quadrados das soluções do sistema $\begin{cases} 2x + 3y = 1 \\ 3x + 2y = 9 \end{cases}$
 - a. 34
 - b. 16
 - c. 4
 - d. 64
 - e. 25

$$\begin{cases} x + y + z = 6 \\ 4x + 2y - z = 5 \\ x + 3y + 2z = 13 \end{cases}$$

- 2. (UFRN) A solução do sistema $\begin{cases} x + 3y + 2z = 1 \end{cases}$
 - a. (-2, 7, 1)
 - b. (4-3,5)
 - c. (0, 1, 5)
 - d. (2, 3, 1)
 - e. (1,2,3)

$$\begin{cases} x + 2y + z = 16 \\ 2x + y + z = 15 \end{cases}$$

- 3. (UFRN) Se a, b, e c são as soluções do sistema (x+y+2z=1), então a . b . c vale
 - a. 60
 - b. 70
 - c. 80

- d. 90
- e. 100

$$\begin{cases} 2x - 5y + 9z = -7 \\ -4x - 3y + 8z = -12 \\ 7x + 4y - 9z = 21 \end{cases}$$
 então temos:

- - a. y = 1/5
 - b. x = -1/65
 - c. y = -2/65
 - d. y = 4
 - e. y = 3

$$\begin{cases} x + y + 3z = 2 \\ 3x - z = -9 \\ 3y + 2z = -9 \end{cases}$$
, podemos afirmar que x . y . z é:

- - a. -4
 - b. -30
 - c. -15
 - d. 30
 - e. 15
- $\begin{cases} ax + y = a^2 \\ x + y = 2a 1_{\triangle}. \end{cases}$ 6. Sendo a ≠ 1 o valor de y - x no sistema
 - a. 1
 - b. -1
 - c. 0
 - d. a
 - e. 1-a
- $\begin{cases} ax + by = 2ab \\ bx + ay = a^2 + b^2 \end{cases}$ é: 7. Sendo |a| ≠ |b| o par (x, y) solução do sistema
 - a. (a,b)
 - b. (-b, a)
 - c. (a, -b)
 - d. (b, a)
 - e. (-b, -a)

$$\begin{cases} x = 2y \\ 2y = 3z \\ x + y + z = 11 \\ \text{vemos que x + 2y + 3z vale:} \end{cases}$$

- 8. (CESGRANRIO) Resolvendo o sistema
 - a. 22
 - b. 18
 - c. 12
 - d. 11
 - e. 6

$$\begin{cases} x + 2y + 3z = 14 \\ 4x + 5y + 6z = 32 \\ 7x + 8y + 9z = a \end{cases}$$
 formam, nessa ordem,

- 9. (MACK SP) Os valores de x , y e z solução do sistema uma PA de razão 1. O valor de a é:
 - a. 0
 - b. 10
 - c. 50
 - d. 55
 - e. 60
- $\begin{cases} x + 2y = 10 \\ x y = 4 \end{cases}$ 10. O valor de x/y no sistema
 - a. 1
 - b. 2
 - c. 3
 - d. 4
 - e. 6

$$\begin{cases} x+y+2z=8\\ x-2y+3z=7\\ 2x+3y+z=11 \end{cases}$$
 11. O valor de $\frac{x+y}{z}$ no sistema

- a. 1
- b. 2
- c. 3
- d. 4

$$\begin{cases} 2x + 3y - 4z = 12 \\ 4x + 5y + 7z = 7 \\ -2x + y - 3z = 3 \\ \text{e:} \end{cases}$$

- 12. O valor de x + y + z no sistema
 - a. 0
 - b. 1
 - c. 2
 - d. 3
 - e. 4

$$\begin{cases} x + y - z = -1 \\ x - y - z = 5 \end{cases}$$
ma
$$\begin{cases} x + z = 6 \\ e \end{cases}$$

- 13. O valor de $x^2 + y^2 + z^2$ no sistema
 - a. 29
 - b. 11
 - c. 20
 - d. 25
 - e. 13

$$\begin{cases} 2x + y = 5 \\ x + 2z = 11 \\ 2y + z = 2 \\ \text{é:} \end{cases}$$

- a. 7
- b. 1/2
- c. 1
- d. -7
- e. -1

$$\begin{cases} 3x + 2y + z = -2 \\ 4y - 2z = -10 \\ 6x - y + 3z = 4 \end{cases}$$
 e:

- a. 0
- b. 1
- c. 2
- d. -1
- e. -2

$$\begin{cases} x + y - z = -1 \\ x - y - z = 5 \end{cases}$$

$$x + z = 6$$
 entage

- a. 27
- b. 3
- c. 0
- d. -2
- e. 4

$$\begin{cases} x + 4z = -7 \\ x - 3y = -8 \end{cases}$$
Se
$$\begin{cases} y + z = 1 \\ y + z = 1 \end{cases}$$
, então x + y + z é igual a:

- a. -2
- b. -1
- c. 0
- d. 1
- e. 2

SISTEMAS LINEARES

DISCUSSÃO

$$\begin{cases} x - y - z = 0 \\ 2x + y - z = 5 \\ 3x + 3y - z = 10 \end{cases}$$
, é

- 1. O sistema
 - a. indeterminado com uma variável livre
 - b. indeterminado com duas variáveis livres
 - c. homogêneo
 - d. impossível

$$\begin{cases} x + 2y = 20 \\ 2x + 3y = 30 \\ x + y = 15 \end{cases}$$

- 2. O sistema (
 - a. impossível
 - b. indeterminado
 - c. [determinado]
 - d. par (10, 5) é solução do sistema
 - e. par (15, 0) é solução do sistema

$$\begin{cases} x + 3y - 2z = 3 \\ 2x + 4y + 3z = 5 \\ 5x + 11y + 4z = 10 \end{cases}$$
. Podemos afirmar corretamente que:

- 3. Considere o sistema
 - a. sistema é incompatível
 - b. sistema é compatível determinado
 - c. $S = \{ (4, 1, 2) \}$ é solução do sistema
 - d. sistema possui exatamente três soluções
 - e. sistema é compatível indeterminado

$$\begin{cases} x+y=1\\ x-2y=-5\\ e \end{cases} ax-by=5$$
4. (UEL - PR) Se os sistemas
$$\begin{cases} x+y=1\\ x-2y=-5\\ e \end{cases} ay-bx=-1$$
 são equivalentes, então a^2+b^2 é igual a:

- a. ·
- b. 4
- c. 5
- d. 9
- e. 10

$$\begin{cases} 3x + y = 3 \\ 5x + 3y = 1 \\ x - 4y = 7 \end{cases}$$
 temos au

- 5. (FGV SP) Resolvendo o sistema de equações $\left(x-4y=7\right)$
 - a. x = 1 e y = 0
 - b. é impossível
 - c. é indeterminado
 - d. x = 3 e y = -1
 - e. é indeterminado

$$\begin{cases} x - 2y + z = 1 \\ 2x + y - z = 2 \\ x + 3y - 2z = 1 \\ \text{obtém-se:} \end{cases}$$

- 6. (PUC SP) Estudando-se o seguinte sistema
 - a. sistema é possível, determinado e admite uma única solução x = 1, y = 0 e z = 0
 - b. sistema é impossível
 - c. sistema é possível, porem indeterminado com uma incógnita arbitrária
 - d. sistema é possível, porem indeterminado com duas incógnita arbitrária
 - e. sistema é indeterminado com uma incógnita arbitrária, sendo (0, 1, 3) uma solução

$$\begin{cases} x - y = 1 \\ y - z = 2 \\ z - x = 3 \end{cases}$$

- 7. (CESGRANRIO) O número de soluções do sistema
 - a. maior do que 3
 - b. 3
 - c. 2
 - d. 1
 - e. 0

$$\begin{cases} 2x + y + z = 5 \\ -2x + y + z = 1 \\ 2 + 5y + 5z = 17 \end{cases}$$

8. (UFScar - SP) O sistema linear 2 + 5y + 5z = 17 admite uma infinidade de soluções. Seja $z = x^2$ 🗲 0) um valor arbitrário. Então, a solução (x,y,z) do sistema acima é:

a.
$$(2, 2 - i^2, i^2)$$

- b. (1, 22-3, 23)
- c. (1, 3 12, 12)
- d. (2, ¹²-2, ¹²)
- e. (3, ¹², ¹².)
- $\begin{cases} kx+y=0\\ x-ty=-3 \end{cases}$ equivalente ao sistema definido pela equação matricial
- $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$ se os valores de k e t são respectivamente:
 - a. 1 e 2
 - b. -1 e 3
 - c. 2 e -1
 - d. -1 e -2

$$\begin{cases} x + y - z + t = 0 \\ x - y + z - t = 2 \\ -x + y + z - t = -4 \\ x - y - z - t = -4 \end{cases}$$

10. (FGV - SP) Seja (a, b, c, d) a solução do sistema linear . c vale:

- a. 0
- b. 12
- c. -12
- d. 24
- e. -24

$$\begin{cases} ax + 5y = 5 \\ bx + y = 0 \end{cases}$$
 11. (ALFENAS - MG) O sistema de equações

- - a. a = 5b
 - b. 5.a.b≠0
 - c. a + 5b = 0
 - d. a 5b ≠ 0
 - e. 5.a.b = 0

. O sistema de equações
$$\begin{cases} bx + y = b \\ \text{terá infinitas soluções s} \end{cases}$$

12. O sistema de equações

a.
$$a = 5 e b = -1$$

- b. a + b = 6
- c. $a \cdot b = 6$
- d. $5 \cdot a \cdot b = 10$
- e. b = 5 a

13. (FMU - SP) O sistema linear
$$\begin{cases} ax + by = 5 \\ \text{tem solução única para} \end{cases}$$

- a. todo a ≠0 e b ≠0
 - b. b ≠ 2 a
 - c. b ≠ a
 - d. toda a ∈IR e b ∈IR
 - e. todo a > 0 e b > 0

- 14. (FGV SP) Determinando os valores de a e b, a fim de que o sistema indeterminado, o produto a . b é:
 - a. 12
 - b. 24
 - c. 18
 - d. 6
 - e. 36
- $\begin{cases} x + ky = 1 \\ 4x + 5y = 2 \end{cases}$ seja impossível, o valor de k deve ser: 15. (PUC - RS) Para que o sistema
 - a. 1/5
 - b. 1/4
 - c. 1/3
 - d. 4/5
 - e. 5/4

$$\begin{cases} x - z = 0 \\ kx + y + 3z = 0 \end{cases}$$
$$x + ky + 3z = 1$$

- 16. (PUC SP) O valor de k tal que o sistema $\begin{cases} x + ky + 3z = 1 \\ \text{admite solução única é:} \end{cases}$
 - a. k ≠ 1 e k ≠ -4
 - b. k ≠ 1 e k ≠ 3
 - c. k = -1 e k = 4
 - d. k ≠ 1 e k ≠ -2
 - e. k ≠ 1 e k ≠ -3

$$\begin{cases} x + ay - 2z = 0 \\ x + y + z = 1 \end{cases}$$

$$x - y - z = 3$$

- 17. (FUVEST _ SP) O sistema linear não admite solução se a for igual a:
 - a. 0
 - b. 1
 - c. -1
 - d. 2
 - e. -2

$$\begin{cases} kx - 2y = -3 \\ x + y = 2 \end{cases}$$

- 2x-3y=-1 é possível e determinado se, e somente se, k for igual a: 18. (UEL - PR) O sistema
 - a. 3
 - b. 2
 - c. 1
 - d. -1
 - e. -2

$$\begin{cases} x + y = -3 \\ 2x - y = 6 \\ x + 2y = m \end{cases}$$

- 19. (UEL PR) O sistema
 - a. admite infinitas soluções, se m ≠ 1
 - b. é indeterminado, para todo m ∈IR
 - c. não admite soluções
 - d. é possível e determinado, se m ≠ 7
 - e. tem solução única, se m = -7

$$\begin{cases} 3x + ay + 4z = 0 \\ x + y + 3z = -5 \end{cases}$$
$$2x - 3y + z = b$$

20. (PUC - SP) Os valores reais de a e b, para que o sistema indeterminado, são:

a.
$$a = -2 e b \neq 5$$

b.
$$a \neq -2 e b = 5$$

e.
$$a = -2 e b = 5$$

$$\begin{cases} 3x - 2y = 1 \\ x + 3y = 2 \\ 2x - ay = -1 \end{cases}$$

- 21. (FATEC SP) Para que o sistema 2x ay = -1 seja compatível, a deve ser igual a:
 - a. -5
 - b. 5
 - c. -6
 - d. 6

$$\begin{cases} x + y = 5 \\ 3x - 2y = k \\ x + by = 5 \end{cases}$$

- 22. (FGV SP) Para que o sistema $\begin{cases} x + ky = 0 \\ y = 0 \end{cases}$ onde k é um número real, uma das afirmações seguintes é correta:
 - a. se k = 0, o sistema é indeterminado
 - b. se k = 1 ou k = 15, o sistema é impossível
 - c. se k ≠ 0, o sistema é indeterminado
 - d. se k ≠ 0, sistema é impossível
 - e. se k = 1 ou k = 15, o sistema é determinado
- 23. (UNESP SP) Para que os valores reais de p e q o sistema não admite solução?

$$3x + py + 4z = 0$$

$$2x - 3y + z = q$$

- a. p = -2 e q = 5
- b. $p > -2 e q \neq 4$
- c. p = q = 1
- d. p = -2 e q = 5
- e. p = 2 e q = 5
- 24. (UNIUBE) O sistema linear de equações incógnitas x e y $\begin{cases} 4x + ay = 10 \\ \text{não admite solução se} \end{cases}$
 - a. a [≠]6 e k [≠]5
 - b. a ≠ 6 e k ≠ -5
 - c. a ≠ 6 e k ≠ -5
 - d. a = 6 e k = 5
 - e. a6ek ≠ 5.
- 25. (CEFET PR) O sistema $\begin{cases} 2x 7y = 1 \\ \text{de incógnitas x e y } \neq 0 \end{cases}$
 - a. impossível, para todo k real diferente de -21
 - b. possível e indeterminado, para todo k real diferente de -63
 - c. possível e determinado, para todo k diferente e -21
 - d. possível e indeterminado, para todo k real diferente de -3
 - e. possível e determinado, para todo k real diferente de -1 e -63

$$\begin{cases} ax + y + 2c = 4 \\ x + 2y + 3c = 7 \end{cases}$$

$$y + c = 3$$
Ele é dito possível e indeterminado:

- 26. (UEPG PR) Dado o sistema linear
 - a. Somente para a = 2
 - b. Somente para a = -1
 - c. Somente para a = 0
 - d. Para ∀a real
 - e. Somente para a = 1

SISTEMAS LINEARES

HOMOGÊNEOS

$$\begin{cases} 2x + 5y - 3z = 0 \\ 4x + 10y - 6z = 0 \\ \text{\'e} \end{cases}$$

- a. Determinado
 - b. Determinado apresentando alem da solução trivial a solução (1, 2, 4)
 - c. Indeterminado com uma variável livre
 - d. Indeterminado com duas variáveis livres
 - e. Impossível

$$\begin{cases} x + y = 0 \\ 2x + 3y = 0 \\ 5x + 6y = 0 \end{cases}$$

- 2. O sistema
 - a. Determinado
 - b. Indeterminado com uma variável livre
 - c. Indeterminado com os pares ordenados sendo dois números simétricos
 - d. Indeterminado como os pares ordenados sendo dois números recíprocos
 - e. Impossível

$$\begin{cases} kx+y=0\\ x+4ky=0\\ \text{nas variáveis x e y admite apenas a solução trivial se, e somente se:} \end{cases}$$

b.
$$k^{\neq} - 1/2 e k^{\neq} 1/2$$

c.
$$k \neq 0 e k = -1$$

d.
$$k = 1/2$$

e.
$$k = -1/2$$

4. (UC – MG) O valor de m para que o sistema
$$\begin{cases} 4x + y = 0 \\ \text{seja indeterminado } \end{cases}$$

$$\begin{cases} x + y + z = 0 \\ x + 2y + mz = 0 \end{cases}$$

$$x + 4y + m^2z = 0$$
admitirá apenas a solução trivial se :

5. (FGV - SP) O sistema linear

a.
$$m = 1$$

c.
$$m = 1$$
 ou $m = 2$

$$\begin{cases} x + y + z = 0 \\ kx + 3y + 4z = 0 \end{cases}$$

$$x + ky + 3z = 0$$
indetermine

6. (UFRS) A soma dos valores de k, que tomam o sistema

- a. -7
- b. -2
- c. 2
- d. 7
- e. 10

$$\begin{cases} 2x + y + 3z = 0 \\ 3x - 2y + z = 0 \\ x - 3y - 2z = 0 \end{cases}$$

7. (UFRS) O conjunto solução do sistema

a.
$$\{(1,1,-1)\}$$

- b. constituído apenas pela solução trivial
- c. vazio
- d. finito, mas constituído por mais uma solução

$$\begin{cases} x + y = 0 \\ x + z = 0 \end{cases}$$

$$\begin{cases} x + mz = 0 \\ \text{é indeterminado para} \end{cases}$$

- 8. (FUVEST SP) O sistema linear
 - a. Todo m real
 - b. Nenhum m real
 - c. m = 1
 - d. m = -1
 - e. m = 0

$$\begin{cases} x + ay + z = 0 \\ ax + y + az = 0 \end{cases}$$

$$x + ay + z = 0$$
assinale a alternativa correta:

- 9. (UFSCar SP) Dado o sistema linear
 - a. sistema admite uma infinidade de soluções para qualquer a real.
 - b. sistema não admite solução se a = 1
 - c. sistema admite uma única solução se a = 3
 - d. sistema admite somente a solução trivial
 - e. sistema admite uma única solução se a = 1

$$\begin{cases} 4x + y + 2z = 0 \\ 3y + 2z = 0 \end{cases}$$
10. (PUC – SP) Qualquer solução (x, y, z) do sistema linear é proporcional as

- - a. (0,0,0)
 - b. (4,4,4)
 - c. (-4, 8, 1)
 - d. (0, 3, 2)
 - e. (1,2,-3)

11. (FGV – SP) O sistema
$$\begin{cases} a & x + 2ay = b \\ 2ax + y = c \\ \text{é homogêneo e determinado se, e somente se:} \end{cases}$$

- a. a = b = c = 0
 - b. $a \neq 4 e b = c = 0$
 - c. a # 0 e a # 4 e b # 0 e c # 0
 - d. $a \neq 0 e a \neq 4 e b = c$
 - e. $a \neq 0 e a \neq 4 e b = c = 0$.

$$I = \begin{cases} 2x - 3y + 5z = 0 \\ -x + 2y - 3z = 0 \\ x - y + 2z = 0 \end{cases}$$

$$II = \begin{cases} -2x + 3y - 5z = 0 \\ x - 2y + 3z = 0 \end{cases}$$
são tais que:

- 12. (UNESP SP) Os sistemas lineares
 - a. Existe uma solução de I que não é solução de II
 - b. Existe uma solução de II que não é solução de I
 - c. Não tem solução comum
 - d. (a, b, c) é solução dos dois para a, b, c reais.
 - e. São equivalentes

$$\begin{cases} ax - y + z = 0 \\ 2x + 2y - 3z = 0 \\ 3x + y - 2z = 0 \end{cases}$$
é:

- 13. (UEPG PR) O sistema linear
 - a. possível e determinado somente para a = 1
 - b. impossível para qualquer valor de a (a ∈IR)
 - c. possível e indeterminado somente para a = 1
 - d. possível e indeterminado para qualquer valor de a (a ∈IR).
 - e. impossível somente para a = 1

COEFICIENTE ANGULAR

EQUAÇÃO DA RETA

- 1. A equação da reta que contém as bissetrizes do 1° e 3 ° quadrantes é:
 - a. y = 2x
 - b. y = -x
 - c. y = x
 - d. y = x/2
 - e. x = 3y
- 2. A equação da reta que contém as bissetrizes do 2° e 4° quadrantes é :
 - a. y = 2x
 - b. y = -x
 - c. y = x
 - d. y = x/2
 - e. x = 3y
- 3. A equação da reta que passa pela origem e pelo ponto A (2, 5) é:
 - a. y = 2x

b.	\/	_	5x/2
υ.	У	_	JAZ

c.
$$y = x/2$$

d.
$$y = x/5$$

e.
$$y + x = 0$$

4. O coeficiente angular da reta que forma com o eixo das abscissas um ângulo de 30° é:

a.
$$\sqrt{3}/3$$

b.
$$\sqrt{3}$$

d.
$$-\sqrt{3}/3$$

e.
$$\pm \sqrt{3}/3$$

5. A reta que passa pelos pontos A (1, 2) e B (-1, 6) intercepta o eixo das abscissas no ponto:

- a. (1,0)
- b. (2,0)
- c. (0,2)
- d. (-2, 0)
- e. (-1,0)

6. A reta que passa pelos pontos A (2, -1) e B (3, 5) intercepta o eixo das ordenadas no ponto:

- a. (0, 17)
- b. (0, -17)
- c. (0, 13)
- d. (0, -13)
- e. (0,-31)

7. A reta que passa pela origem do sistema cartesiano e pelo ponto P (2, 3) é:

a.
$$2x - 3y = 0$$

b.
$$3x - 2y = 0$$

c.
$$y = 2x$$

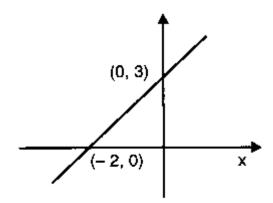
d.
$$y = 3x$$

e.
$$y = 2/3 x$$

8. Uma equação da reta que intercepta os eixos coordenados nos pontos (0, 3) e (-1, 0) é:

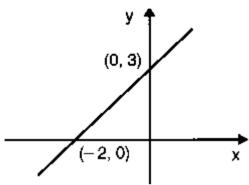
a.
$$y = -3x$$

b.
$$y = -3x + 3$$


c.
$$y = -3x - 1$$

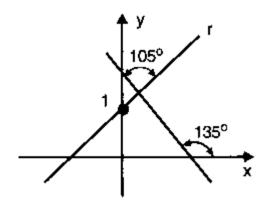
d.
$$y = 3x + 3$$

e.
$$y = x + 1$$


- 9. Uma equação de reta que intercepta a bissetriz do primeiro quadrante, num ponto cuja abscissa é 2 e tem uma inclinação de 135° é:
 - a. x y 4 = 0
 - b. x + y 4 = 0
 - c. x y + 4 = 0
 - d. x + y + 4 = 0
 - e. x + y = 0
- 10. Uma equação de reta que passa pelos pontos (3, 4) e (3, 7) é:
 - a. x = 3
 - b. y = 3
 - c. y x = 3
 - d. y = -3x
 - e. y = 3x
- 11. Dados os ponto A (1, 1), B (3, 0) e C (-1, 2) podemos afirmar que :
 - a. Os pontos estão alinhados
 - b. os pontos formam um triângulo retângulo
 - c. os pontos formam um triângulo de área igual a 6
 - d. os pontos pertencem a uma reta de coeficientes angular -2
 - e. os pontos formam um triângulo isósceles.
- 12. A equação da reta que é paralela à reta suporte das bissetrizes dos quadrantes impares e passa pelo ponto (2, 3) é:
 - a. x + y + 1 = 0
 - b. x y 1 = 0
 - c. x + y 1 = 0
 - d. x y + 1 = 0
 - e. x y 2 = 0
- 13. Sejam as retas r: y = 6 e s: a reta que passa pela origem do sistema cartesiano e pelo ponto (3, 9). A área do triângulo formado por essas retas e pelo eixo das ordenadas é:
 - a. 12
 - b. 10
 - c. 8
 - d. 6
 - e. 4
- 14. A equação da reta que passa pela origem e pelo vértice da parábola $y = x^2 6x + 4$ é
 - a. 3x + 5y = 0
 - b. 5x + 3y = 0
 - c. 5x 3y = 0

- d. 3x 5y = 0
- e. x + y 15 = 0
- 15. O valor de m para que a reta de equação m.x + y 2 = 0 passe pelo ponto A (1, -8) é:
 - a. 10
 - b. -10
 - c. 6
 - d. -6
 - e. -1/8
- 16. Os pontos (a, 1) e (2, b) estão sobre a reta x + 2y = 0. A distância entre eles vale:
 - a. $2^{\sqrt{5}}$
 - b. $\sqrt{6}$
 - $\sqrt{10}$
 - d. 2
 - e. nda
- 17. (PUC SP) As retas 2x + 3y = 11 e x 3y = 1 passam pelo ponto (a, b). Então a + b vale:
 - a. 4
 - b. 5
 - c. 6
 - d. -4
 - e. 3
- 18. (FGV SP) A equação da reta na figura abaixo é:
 - a. 3x + 2y = 6
 - b. 3x 2y = 6
 - c. 2x + 3y = 6
 - d. -3x + 2y = 6
 - e. -2x + 3y = 6

19. (UEL - PR) Seja a função y = mx + t representada no gráfico a seguir, os valores de m e t são respectivamente:


- a. -3/2 e -3
- b. -3/2 e 3
- c. 3/2 e 3
- d. 3 e -6
- e. 3 e 6

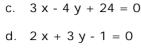
20. (FM ITAJUBA-MG) O valor de m de modo que a reta de equação 2m - 5y + 1 = 0 tenha coeficiente angular igual a $4 \in \mathbb{R}$

- a. 20
- b. 5
- c. -10
- d. 10
- e. -20

21. (FGV - SP) Considere o gráfico:

A equação da reta r é:

a.
$$y = \sqrt{3}x + 1$$


b.
$$y = x + 1$$

c.
$$3y - \sqrt{3}x = 3$$

d.
$$3y + \sqrt{3}x = 1$$

e.
$$y + x = 1$$

22. (UFPR) O ponto P (-4, 3) é o ponto médio do segmento da reta AB, cujas extremidades estão sobre os eixos coordenados. Qual será a equação da reta AB ?
a. $x + y + 1 = 0$
b. $x - y + 7 = 0$

e.
$$3x + 2y + 6 = 0$$

23. O ponto de intersecção das retas (r) x+y-5=0 e (s) 2x - y - 7 = 0 é:

- a. (1,4)
- b. (4,1)
- c. (12,7)
- d. (-4, 9)
- e. (-1, 6)

24. A equação da reta que passa pela intersecção das retas x + y - 3 = 0 e 2x - y + 5 = 0 e tem coeficiente angular igual a 3/4 é:

a.
$$12x + 9y - 50 = 0$$

b.
$$12y - 9x = 0$$

c.
$$12y + 9x + 50 = 0$$

d.
$$12y - 9x - 50 = 0$$

e. nda

25. O valor de K, para a reta kx - 4y + 2k = 0 passe no ponto de intersecção das retas 2x - y + 3 = 0 e x + y - 9 = 0 é:

- a. 7
- b. 2
- c. 9
- d. 5
- e. -7

26. (AMAM) Qual a equação da reta que passa pelo ponto P (1, 2) e forma um ângulo de 45° com o sentido positivo do eixo x ?

a.
$$y = x - 1$$

b.
$$y = 2x + 1$$

c.
$$y = 1 - x$$

d.
$$y = x + 1$$

e.
$$y = 1 - 2x$$

27. (FUVEST - SP) Sejam os pontos A (1, 1), B (2,2) e C (3, 1). A altura do triângulo ABC pelo vértice A tem equação:

$$a. y = x$$

b.
$$y = x + 1$$

c.
$$y = 2x - 1$$

d.
$$y = 2x + 1$$

e.
$$10y = 9x + 1$$

28. (CESCEM. SP) As retas 2x - y + 3 = 0 e x - 2y + 6 = 0 interceptam-se :

- a. sobre o eixo das ordenadas;
- b. no ponto (-6, 0)
- c. sobre o eixo das abscissas
- d. na origem dos eixos coordenados.
- e. no ponto (1,5)

POSIÇÕES RELATIVAS DE DUAS RETAS

1. (UEPG - PR) - Para que as retas 2.x + m.y - 10 = 0 e m.x + 8.y + 5 = 0 sejam paralelas, o valor de m deve ser:

2. (CEFET) - A reta 7.x - y + 7 = 0 determina um segmento sobre os eixos coordenados. Qual a mediatriz desse segmento?

a.
$$x + y - 25 = 0$$

b.
$$7y + x = 0$$

c.
$$x + 7y - 24 = 0$$

d.
$$7x + y + 7 = 0$$

e.
$$x + 7y = 0$$

$$\frac{x}{x} + y = 1 \quad x + \frac{y}{x} = 1$$

 $\frac{x}{m} + y = 1 \qquad x + \frac{y}{p} = 1$ 3. (CESCEA) - As retas $\frac{x}{m}$ e $\frac{x}{p}$ são paralelas se:

a.
$$p + m = 0$$

b.
$$m = -p$$

c.
$$p = m$$

d.
$$p/m = 1$$

e.
$$p.m = 1$$

4. (PUC - SP) As retas (m-2)x + 3y -1 = 0 e x + my + 2 = 0 são paralelas, somente se:

a.
$$m = 3$$

b.
$$m = -1$$

c.
$$m = 1$$

- d. m = 2
- e. m = 3 ou m = -1

5. (UEPG-PR) A equação da mediatriz do segmento cujas extremidades são as intersecções da reta x - 3y - 6 = 0 com os eixos coordenados é:

a.
$$3x - y - 8 = 0$$

b.
$$3x - y + 8 = 0$$

c.
$$3x + y + 8 = 0$$

d.
$$3x + y - 8 = 0$$

e. nda

6. (UFPR) As equações das retas que passam pelo ponto (3, -5) e são uma paralela e outra perpendicular à reta 2x - y + 3 = 0 são :

a.
$$2x-y - 11 = 0 e x + 2y + 7 = 0$$

b.
$$2x + y - 11 = 0 e x + 2y + 7 = 0$$

c.
$$2x + y + 11 = 0 e x + 2y + 7 = 0$$

d.
$$2x + y - 11 = 0 e x - 2y - 7 = 0$$

e. nda

7. (CESCEM - SP) Para que a reta x - 3y + 15 = 0 seja paralela a reta determinada pelos pontos A (a, b) e B (-1, 2), o valor de a é:

a.
$$-3b + 5$$

$$d. -3b + 7$$

8. (UEL - PR) Determine a equação da reta que passa pelo ponto de intercessão das retas (r) 2x + y - 3 = 0 (s) 4x - 3y + 5 = 0

a.
$$x - 3y + 2 = 0$$

b.
$$x - 3y - 4 = 0$$

c.
$$3x + y - 4 = 0$$

d.
$$3x + y - 2 = 0$$

e.
$$x - y + 1 = 0$$

9. A equação da reta suporte da altura relativa ao lado BC do triângulo ABC, de vértices A (1, 1), B (-1, 2) e C (3, 6) \acute{e} :

a.
$$x + y = 0$$

b.
$$x + y - 2 = 0$$

c.
$$x - y + 2 = 0$$

d.
$$x + y - 2 + 0$$

e.
$$x - y - 2 = 0$$

10. A soma das coordenadas do circuncentro do triângulo ABC, de vértices A (1, 1), B (-1, 3) e C (3, 7) é:
a. 2
b. 3
c. 4
d. 5
e. 6
11. (ITA - SP) Dadas as retas r_1 : $x + 2y - 5 = 0$, r_2 : $x - y - 2 = 0$ e r_3 : $x - 2y - 1 = 0$ podemos afirmar que:
a. são 2 a 2 paralelas
b. r_1 e r_2 são paralelas
c. r_1 é perpendicular a r_3
d. r_2 perpendicular a r_3
e. as três retas são concorrentes num mesmo ponto
12 (CEFET) Qual é o ponto simétrico do ponto P (2, 3) em relação a reta x - y - 3 = 0 ? a. (4, -3)
b. (6, -1) e (4, -3)
c. (6, -1)
d. (2, -3)
e. (0,1)
13. (CEFET) O valor de m para a qual a reta $x + y/m = 0$ e $2x - 2y + 1 = 0$ são perpendiculares é:
a1/2
b1
c. 1
d. 1/2
e2
14. (FUVEST - SP) São dados os pontos A (1, 1) e B (9, 3). A mediatriz do segmento AB encontra o eixo dos y no ponto de ordenada igual a :
a. 20
b. 21
c. 22
d. 23
e. 24
15. (CEFET) Determine a equação da reta que passa pelo ponto (0, -1) e é paralela à bissetriz dos quadrantes ímpares:
a. $x + y = -1$

b. x - 2y = 2

c.
$$x + 2y = -2$$

d.
$$x - y = 1$$

e.
$$x - y = -1$$

GABARITO

MATRIZ FORMAÇÃO E IGUALDADE

01	02	03	04	05	06	07	08	09	10
D	A	A	D	В	В	D	В	E	D

MATRIZ – OPERAÇÕES

01	02	03	04	05	06	07	08	09	10
В	D	C	C	В	A	В	C	A	E
11	12	13	14	15	16	17	18	19	20
В	D	A	A	E	В	C	В	C	E
21	22	23	24	25	26	27	28		
В	A	В	A	E	D	D	В		

SISTEMAS LINEARES

~ -~ -	2-0-1-1-1-0-1-1-1-1-0															
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
A	E	A	D	D	A	D	В	C	C	В	C	A	D	В	E	E

SISTEMAS LINEARES DISCUSSÃO

		_															
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
A	A	A	E	В	C	E	C	C	\mathbf{E}	D	В	В	A	E	A	E	D

SISTEMAS LINEARES HOMOGÊNEOS

01	02	03	04	05	06	07	08	09	10	11	12	13
D	A	В	E	В	D	E	C	A	E	E	E	C

GA COEFICIENTE ANGULAR / EQUAÇÃO DA RETA

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
C	В	В	E	В	D	В	D	В	A	A	C	D	В	A	A	В	D
19	20	21	22	23	24	25	26	27	28								
C	D	C	C	В	D	Α	D	Α	Α								

GA POSIÇÕES RELATIVAS ENTRE RETAS

ĺ	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
	C	C	E	E	D	A	C	C	В	E	\mathbf{E}	A	C	C	D