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Preface

Overview

This book is an introductory textbook in probability and statistical inference.
No prior knowledge of either probability or statistics is required, although
prior exposure to an elementary precalculus course would prove beneficial in
the sense that the student would not see the basic concepts discussed here for
the first time.

The mathematical prerequisite is a year of calculus and familiarity with
the basic concepts and some results of linear algebra. Elementary differential
and integral calculus will suffice for the majority of the book. In some parts,
such as Chapters 4, 5, and 6, the concept of a multiple integral is used. Also,
in Chapter 6, the student is expected to be at least vaguely familiar with the
basic techniques of changing variables in a single or a multiple integral.

Chapter Descriptions

The material discussed in this book is enough for a one-year course in introduc-
tory probability and statistical inference. It consists of a total of 15 chapters.
Chapters 1 through 7 are devoted to probability, distributional theory, and
related topics. Chapters 9 through 14 discuss the standard topics of para-
metric statistical inference, namely point estimation, interval estimation, and
testing hypotheses. This is done first in a general setting and then in the special
models of linear regression and analysis of variance. Chapter 15 is devoted to
discussing selected topics from nonparametric inference.

Features

This book has a number of features that differentiate it from existing books.
First, the material is arranged in such a manner that Chapters 1 through 8 can
be used independently for an introductory course in probability. The desirable
duration for such a course would be a semester, although a quarter would

xi



xii Preface

also be long enough if some of the proofs were omitted. Chapters 1 though 7
would suffice for this purpose. The centrally placed Chapter 8 plays a twofold
role. First, it serves as a window into what statistical inference is all about
for those taking only the probability part of the course. Second, it paints a
fairly broad picture of the material discussed in considerable detail in the
subsequent chapters. Accordingly and purposely, no specific results are stated,
no examples are discussed, no exercises are included. All these things are done
in the chapters following it. As already mentioned, the sole objective here is
to take the reader through a brief orientation trip to statistical inference; to
indicate why statistical inference is needed in the first place, how the relevant
main problems are formulated, and how we go about resolving them.

The second differentiating feature of the book is the relatively large
number of examples discussed in detail. There are more than 220 such exam-
ples, not including scores of numerical examples and applications. The first
chapter alone is replete with 44 examples selected from a variety of applica-
tions. Their purpose is to impress upon the student the breadth of applications
of probability and statistics, to draw attention to the wide range of applica-
tions where probabilistic and statistical questions are pertinent. At this stage,
one could not possibly provide answers to the questions posed without the
methodology developed in the subsequent chapters. Answers to these ques-
tions are given in the form of examples and exercises throughout the remaining
chapters.

The book contains more than 560 exercises placed strategically at the ends
of sections. The exercises are closely related to the material discussed in the
respective sections, and they vary in the degree of difficulty. Detailed solutions
to all of them are available in the form of a Solutions Manual for the instructors
of the course, when this textbook is used. Brief answers to even-numbered
exercises are provided at the end of the book. Also included in the textbook
are approximately 60 figures that help illustrate some concepts and operations.

Still another desirable feature of this textbook is the effort made to mini-
mize the so-called arm waving. This is done by providing a substantial number
of proofs, without ever exceeding the mathematical prerequisites set. This
also helps ameliorate the not so unusual phenomenon of insulting students’
intelligence by holding them incapable of following basic reasoning.

Regardless of the effort made by the author of an introductory book in
probability and statistics to cover the largest possible number of areas where
probability and statistics apply, such a goal is unlikely to be attained. Conse-
quently, no such textbook will ever satisfy students who focus exclusively on
their own area of interest. It is also expected that this book will come as a
disappointment to students who are oriented more toward vocational training
rather than college or university education. This book is not meant to codify
answers to questions in the form of framed formulas and prescription recipes.
Rather, its purpose is to introduce the student to a thinking process and guide
her or him toward the answer sought to a posed question. To paraphrase a
Chinese saying, if you are taught how to fish, you eat all the time, whereas if
you are given a fish, you eat only once.
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On several occasions the reader is referred for proofs and more comprehen-
sive treatment of some topics to the book A Course in Mathematical Statis-

tics, 2nd edition (1997), Academic Press, by G.G. Roussas. This reference book
was originally written for the same audience as that of the present book. How-
ever, circumstances dictated the adjustment of the level of the reference book
to match the mathematical preparation of the anticipated audience.

On the practical side, a number of points of information are given here.
Thus, logx (logarithm of x), whenever it occurs, is always the natural logarithm
of x (the logarithm of x with base e), whether it is explicitly stated or not.

The rule followed in the use of decimal numbers is that we retain three
decimal digits, the last of which is rounded up to the next higher number, if
the fourth omitted decimal is greater or equal 5. An exemption to this rule is
made when the division is exact, and also when the numbers are read out of
tables. The book is supplied with an appendix consisting of excerpts of tables:
Binomial tables, Poisson tables, Normal tables, t-tables, Chi-Square tables,

and F-tables. The last table, Table 7, consists of a list of certain often-occurring
distributions along with some of their characteristics. The appendix is followed
by a list of some notation and abbreviations extensively used throughout the
book, and the body of the book is concluded with brief answers to the even-
numbered exercises.

In closing, a concerted effort has been made to minimize the number of
inevitable misprints and oversights in the book. We have no illusion, however,
that the book is free of them. This author would greatly appreciate being
informed of any errors; such errors will be corrected in a subsequent printing
of the book.
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Chapter 1

Some Motivating
Examples and Some

Fundamental
Concepts

This chapter consists of three sections. The first section is devoted to present-
ing a number of examples (25 to be precise), drawn from a broad spectrum
of human activities. Their purpose is to demonstrate the wide applicability of
probability and statistics. In the formulation of these examples, certain terms,
such as at random, average, data fit by a line, event, probability (estimated
probability, probability model), rate of success, sample, and sampling (sample
size), are used. These terms are presently to be understood in their everyday
sense, and will be defined precisely later on.

In the second section, some basic terminology and fundamental quantities
are introduced and are illustrated by means of examples. In the closing section,
the concept of a random variable is defined and is clarified through a number
of examples.

1.1 Some Motivating Examples

EXAMPLE 1 In a certain state of the Union, n landfills are classified according to their
concentration of three hazardous chemicals: arsenic, barium, and mercury.
Suppose that the concentration of each one of the three chemicals is charac-
terized as either high or low. Then some of the questions which can be posed
are as follows: (i) If a landfill is chosen at random from among the n, what
is the probability it is of a specific configuration? In particular, what is the
probability that it has: (a) High concentration of barium? (b) High concentra-
tion of mercury and low concentration of both arsenic and barium? (c) High

1



2 Chapter 1 Some Motivating Examples and Some Fundamental Concepts

concentration of any two of the chemicals and low concentration of the third?
(d) High concentration of any one of the chemicals and low concentration of
the other two? (ii) How can one check whether the proportions of the landfills
falling into each one of the eight possible configurations (regarding the levels
of concentration) agree with a priori stipulated numbers?

EXAMPLE 2 Suppose a disease is present in 100p1% (0 < p1 < 1) of a population. A diag-
nostic test is available but is yet to be perfected. The test shows 100p2% false
positives (0 < p2 < 1) and 100p3% false negatives (0 < p3 < 1). That is, for a
patient not having the disease, the test shows positive (+) with probability p2

and negative (−) with probability 1 − p2. For a patient having the disease, the
test shows “−” with probability p3 and “+” with probability 1− p3. A person is
chosen at random from the target population, and let D be the event that the
person is diseased and N be the event that the person is not diseased. Then, it
is clear that some important questions are as follows: In terms of p1, p2, and
p3: (i) Determine the probabilities of the following configurations: D and +,
D and −, N and +, N and −. (ii) Also, determine the probability that a person
will test + or the probability the person will test −. (iii) If the person chosen
tests +, what is the probability that he/she is diseased? What is the probability
that he/she is diseased, if the person tests −?

EXAMPLE 3 In the circuit drawn below, suppose that switch i = 1, . . . , 5 turns on with prob-
ability pi and independently of the remaining switches. What is the probability
of having current transferred from point A to point B?

A B

1 2

5

4 3

EXAMPLE 4 A travel insurance policy pays $1,000 to a customer in case of a loss due to
theft or damage on a 5-day trip. If the risk of such a loss is assessed to be 1 in
200, what is a fair premium for this policy?

EXAMPLE 5 Jones claims to have extrasensory perception (ESP). In order to test the claim,
a psychologist shows Jones five cards that carry different pictures. Then Jones
is blindfolded and the psychologist selects one card and asks Jones to identify
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the picture. This process is repeated n times. Suppose, in reality, that Jones
has no ESP but responds by sheer guesses.

(i) Decide on a suitable probability model describing the number of correct
responses. (ii) What is the probability that at most n/5 responses are correct?
(iii) What is the probability that at least n/2 responses are correct?

EXAMPLE 6 A government agency wishes to assess the prevailing rate of unemployment
in a particular county. It is felt that this assessment can be done quickly and
effectively by sampling a small fraction n, say, of the labor force in the county.
The obvious questions to be considered here are: (i) What is a suitable prob-
ability model describing the number of unemployed? (ii) What is an estimate
of the rate of unemployment?

EXAMPLE 7 Suppose that, for a particular cancer, chemotherapy provides a 5-year survival
rate of 80% if the disease could be detected at an early stage. Suppose further
that n patients, diagnosed to have this form of cancer at an early stage, are just
starting the chemotherapy. Finally, let X be the number of patients among the
n who survive 5 years.

Then the following are some of the relevant questions which can be asked:
(i) What are the possible values of X, and what are the probabilities that each
one of these values is taken on? (ii) What is the probability that X takes values
between two specified numbers a and b, say? (iii) What is the average number
of patients to survive 5 years, and what is the variation around this average?

EXAMPLE 8 An advertisement manager for a radio station claims that over 100p% (0 < p <

1) of all young adults in the city listen to a weekend music program. To establish
this conjecture, a random sample of size n is taken from among the target
population and those who listen to the weekend music program are counted.

(i) Decide on a suitable probability model describing the number of young
adults who listen to the weekend music program. (ii) On the basis of the
collected data, check whether the claim made is supported or not. (iii) How
large a sample size n should be taken to ensure that the estimated average and
the true proportion do not differ in absolute value by more than a specified
number with prescribed (high) probability?

EXAMPLE 9 When the output of a production process is stable at an acceptable standard,
it is said to be “in control.” Suppose that a production process has been in
control for some time and that the proportion of defectives has been p. As
a means of monitoring the process, the production staff will sample n items.
Occurrence of k or more defectives will be considered strong evidence for “out
of control.”

(i) Decide on a suitable probability model describing the number X of defec-
tives; what are the possible values of X, and what is the probability that each of
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these values is taken on? (ii) On the basis of the data collected, check whether
or not the process is out of control. (iii) How large a sample size n should be
taken to ensure that the estimated proportion of defectives will not differ in
absolute value from the true proportion of defectives by more than a specified
quantity with prescribed (high) probability?

EXAMPLE 10 An electronic scanner is believed to be more efficient in determining flaws in
a material than a mechanical testing method which detects 100p% (0 < p < 1)
of the flawed specimens. To determine its success rate, n specimens with
flaws are tested by the electronic scanner.

(i) Decide on a suitable probability model describing the number X of the
flawed specimens correctly detected by the electronic scanner; what are the
possible values of X, and what is the probability that each one of these values
is taken on? (ii) Suppose that the electronic scanner detects correctly k out of
nflawed specimens. Check whether or not the rate of success of the electronic
scanner is higher than that of the mechanical device.

EXAMPLE 11 At a given road intersection, suppose that X is the number of cars passing by
until an observer spots a particular make of a car (e.g., a Mercedes).

Then some of the questions one may ask are as follows: (i) What are the
possible values of X? (ii) What is the probability that each one of these values
is taken on? (iii) How many cars would the observer expect to observe until
the first Mercedes appears?

EXAMPLE 12 A city health department wishes to determine whether the mean bacteria count
per unit volume of water at a lake beach is within the safety level of 200. A
researcher collected nwater samples of unit volume and recorded the bacteria
counts.

Relevant questions here are: (i) What is the appropriate probability model
describing the number X of bacteria in a unit volume of water; what are the
possible values of X, and what is the probability that each one of these values is
taken on? (ii) Do the data collected indicate that there is no cause for concern?

EXAMPLE 13 Consider an aptitude test administered to aircraft pilot trainees, which requires
a series of operations to be performed in quick succession.

Relevant questions here are: (i) What is the appropriate probability model for
the time required to complete the test? (ii) What is the probability that the test
is completed in no less than t1 minutes, say? (iii) What is the percentage of
candidates passing the test, if the test is to be completed within t2 minutes, say?

EXAMPLE 14 Measurements of the acidity (pH) of rain samples were recorded at n sites in
an industrial region.
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(i) Decide on a suitable probability model describing the number X of the
acidity of rain measured. (ii) On the basis of the measurements taken, provide
an estimate of the average acidity of rain in that region.

EXAMPLE 15 To study the growth of pine trees at an early state, a nursery worker records n

measurements of the heights of 1-year-old red pine seedlings.

(i) Decide on a suitable probability model describing the heights X of the pine
seedlings. (ii) On the basis of the n measurements taken, determine average
height of the pine seedlings. (iii) Also, check whether these measurements
support the stipulation that the average height is a specified number.

EXAMPLE 16 It is claimed that a new treatment is more effective than the standard treatment
for prolonging the lives of terminal cancer patients. The standard treatment
has been in use for a long time, and from records in medical journals the mean
survival period is known to have a certain numerical value (in years). The
new treatment is administered to n patients, and their duration of survival is
recorded.

(i) Decide on suitable probability models describing the survival times X and
Y under the old and the new treatments, respectively. (ii) On the basis of the
existing journal information and the data gathered, check whether or not the
claim made is supported.

EXAMPLE 17 A medical researcher wishes to determine whether a pill has the undesirable
side effect of reducing the blood pressure of the user. The study requires
recording the initial blood pressures of n college-age women. After the use of
the pill regularly for 6 months, their blood pressures are again recorded.

(i) Decide on suitable probability models describing the blood pressures, ini-
tially and after the 6-month period. (ii) Do the observed data support the claim
that the use of the pill reduces blood pressure?

EXAMPLE 18 It is known that human blood is classified in four types denoted by A, B, AB,
and O. Suppose that the blood of n persons who have volunteered to donate
blood at a plasma center has been classified in these four categories. Then a
number of questions can be posed; some of them are:

(i) What is the appropriate probability model to describe the distribution of
the blood types of the n persons into the four types? (ii) What is the esti-
mated probability that a person, chosen at random from among the n, has
a specified blood type (e.g., O)? (iii) What are the proportions of the n per-
sons falling into each one of the four categories? (iv) How can one check
whether the observed proportions are in agreement with a priori stipulated
numbers?
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EXAMPLE 19 The following record shows a classification of 41,208 births in Wisconsin
(courtesy of Professor Jerome Klotz). Set up a suitable probability model and
check whether or not the births are uniformly distributed over all 12 months
of the year.

Jan. 3,478 July 3,476
Feb. 3,333 Aug. 3,495
March 3,771 Sept. 3,490
April 3,542 Oct. 3,331
May 3,479 Nov. 3,188
June 3,304 Dec. 3,321

Total 41,208

EXAMPLE 20 To compare the effectiveness of two diets A and B, 150 infants were included
in a study. Diet A was given to 80 randomly selected infants and diet B was
given to the other 70 infants. At a later time, the health of each infant was
observed and classified into one of the three categories: “excellent,” “average,”
and “poor.” The frequency counts are tabulated as follows:

HEALTH UNDER TWO DIFFERENT DIETS

Excellent Average Poor Sample Size

Diet A 37 24 19 80
Diet B 17 33 20 70

Total 54 57 39 150

Set up a suitable probability model for this situation, and, on the basis of the
observed data, compare the effectiveness of the two diets.

EXAMPLE 21 Osteoporosis (loss of bone minerals) is a common cause of broken bones in
the elderly. A researcher on aging conjectures that bone mineral loss can be
reduced by regular physical therapy or by certain kinds of physical activity. A
study is conducted on nelderly subjects of approximately the same age divided
into control, physical therapy, and physical activity groups. After a suitable
period of time, the nature of change in bone mineral content is observed.

Set up a suitable probability model for the situation under consideration, and
check whether or not the observed data indicate that the change in bone
mineral varies for different groups.

CHANGE IN BONE MINERAL

Appreciable Little Appreciable

Loss Change Increase Total

Control 38 15 7 60
Therapy 22 32 16 70
Activity 15 30 25 70

Total 75 77 48 200
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EXAMPLE 22 In the following table, the data x = undergraduate GPA and y = score in the
Graduate Management Aptitude Test (GMAT) are recorded.

DATA OF UNDERGRADUATE GPA (x)

AND GMAT SCORE (y)

x y x y x y

3.63 447 2.36 399 2.80 444
3.59 588 2.36 482 3.13 416
3.30 563 2.66 420 3.01 471
3.40 553 2.68 414 2.79 490
3.50 572 2.48 533 2.89 431
3.78 591 2.46 509 2.91 446
3.44 692 2.63 504 2.75 546
3.48 528 2.44 336 2.73 467
3.47 552 2.13 408 3.12 463
3.35 520 2.41 469 3.08 440
3.39 543 2.55 538 3.03 419

3.00 509

(i) Draw a scatter plot of the pairs (x, y). (ii) On the basis of part (i), set up
a reasonable model for the representation of the pairs (x, y). (iii) Indicate
roughly how this model can be used to predict a GMAT score on the basis of
the corresponding GPA score.

EXAMPLE 23 In an experiment designed to determine the relationship between the doses
of a compost fertilizer x and the yield y of a crop, n values of x and y are
observed. On the basis of prior experience, it is reasonable to assume that the
pairs (x, y) are fitted by a straight line, which can be determined by certain
summary values of the data. Later on, it will be seen how this is specifically
done and also how this model can be used for various purposes, including that
of predicting a value of y on the basis of a given value of x.

EXAMPLE 24 In an effort to improve the quality of recording tapes, the effects of four kinds
of coatings A, B, C, and D on the reproducing quality of sound are compared.
Twenty two measurements of sound distortions are given in the following table.

SOUND DISTORTIONS OBTAINED

WITH FOUR TYPES OF COATINGS

Coating Observations

A 10, 15, 8, 12, 15
B 14, 18, 21, 15
C 17, 16, 14, 15, 17, 15, 18
D 12, 15, 17, 15, 16, 15

In connection with these data, several questions may be posed (and will be
posed later on). The most immediate of them all is the question of whether
or not the data support the existence of any significant difference among the
average distortions obtained using the four coatings.
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EXAMPLE 25 Charles Darwin performed an experiment to determine whether self-fertilized
and cross-fertilized plants have different growth rates. Pairs of Zea mays

plants, one self- and the other cross-fertilized, were planted in pots, and their
heights were measured after a specified period of time. The data Darwin ob-
tained were:

PLANT HEIGHT (IN 1/8 INCHES)

Pair Cross- Self- Pair Cross- Self-

1 188 139 9 146 132
2 96 163 10 173 144
3 168 160 11 186 130
4 176 160 12 168 144
5 153 147 13 177 102
6 172 149 14 184 124
7 177 149 15 96 144
8 163 122

Source: Darwin, C., “The Effects of Cross- and Self-Fertilization
in the Vegetable Kingdom,” D. Appleton and Co., New York, 1902.

These data lead to many questions, the most immediate being whether cross-
fertilized plants have a higher growth rate than self-fertilized plants. This ex-
ample will be revisited later on.

1.2 Some Fundamental Concepts

One of the most basic concepts in probability and statistics is that of a random

experiment. Although a more precise definition is possible, we will restrict
ourselves here to understanding a random experiment as a procedure which
is carried out under a certain set of conditions; it can be repeated any number
of times under the same set of conditions, and upon the completion of the
procedure certain results are observed. The results obtained are denoted by s

and are called sample points. The set of all possible sample points is denoted
by S and is called a sample space. Subsets of S are called events and are
denoted by capital letters A, B, C, etc. An event consisting of one sample point
only, {s}, is called a simple event and composite otherwise. An event A occurs

(or happens) if the outcome of the random experiment (that is, the sample
point s) belongs in A, s ∈ A; A does not occur (or does not happen) if s /∈ A.
The event S always occurs and is called the sure or certain event. On the
other hand, the event Ø never happens and is called the impossible event. Of
course, the relation A ⊆ B between two events A and B means that the event
B occurs whenever A does, but not necessarily the opposite. (See Figure 1.1
for the Venn diagram depicting the relation A ⊆ B.) The events A and B are
equal if both A ⊆ B and B ⊆ A.

Some random experiments are given in the following along with corre-
sponding sample spaces and some events.
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A

s1 • B

• s2

S

Figure 1.1

A ⊆ B; in Fact,
A ⊂ B, Because
s2 ∈ B, But s2 �∈ A

EXAMPLE 26 Tossing three distinct coins once.

Then, with H and T standing for “heads” and “tails,” respectively, a sample
space is:

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

The event A = “no more than 1 H occurs” is given by:

A = {TTT, HTT, THT, TTH}.

EXAMPLE 27 Rolling once two distinct dice.

Then a sample space is:

S = {(1, 1), (1, 2), . . . , (1, 6), . . . , (6, 1), (6, 2), . . . , (6, 6)},

and the event B = “the sum of numbers on the upper faces is ≤ 5” is:

B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}.

EXAMPLE 28 Drawing a card from a well-shuffled standard deck of 52 cards. Denoting by
C, D, H, and S clubs, diamonds, hearts, and spades, respectively, by J, Q, K

Jack, Queen, and King, and using 1 for aces, the sample space is given by:

S = {1C , . . . , 1S, . . . , 10C , . . . , 10S, . . . , KC , . . . , KS}.

An event A may be described by: A = “red and face card,” so that

A = {JD , JH , QD , QH , KD , KH}.

EXAMPLE 29 Drawing (without replacement) two balls from an urn containing mnumbered
black balls and n numbered red balls.
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Then, in obvious notation, a sample space here is:

S = {b1b2, . . . , b1bm, . . . , bmb1, . . . , bmbm−1,

b1r1, . . . , b1rn, . . . , bmr1, . . . , bmrn,

r1b1, . . . , r1bm, . . . , rnb1, . . . , rnbm,

r1r2, . . . , r1rn, . . . , rnr1, . . . , rnrn−1}.

An event A may be the following: A = “the sum of the numbers on the balls
does not exceed 4.” Then

A = {b1b2, b1b3, b2b1, b3b1, b1r1, b1r2, b1r3,

b2r1, b2r2, b3r1, r1b1, r1b2, r1b3, r2b1,

r2b2, r3b1, r1r2, r1r3, r2r1, r3r1} (assuming that m, n ≥ 3).

EXAMPLE 30 Recording the gender of children of two-children families.

With b and g standing for boy and girl, and with the first letter on the left
denoting the older child, a sample space is: S = {bb, bg, gb, gg}. An event B

may be: B = “children of both genders.” Then B = {bg, gb}.

EXAMPLE 31 Ranking five horses in a horse race.

Then the suitable sample spaceS consists of 120 sample points, corresponding
to the 120 permutations of the numbers 1, 2, 3, 4, 5. (We exclude ties.) The event
A = “horse #3 comes second” consists of the 24 sample points, where 3 always
occurs in the second place.

EXAMPLE 32 Tossing a coin repeatedly until H appears for the first time.

The suitable sample space here is:

S = {H, TH, TTH, . . . , TT . . . TH, . . .}.
Then the event A = “the 1st H does not occur before the 10th tossing” is given
by:

A = { T . . . T︸ ︷︷ ︸
9

H, T . . . T︸ ︷︷ ︸
10

H, . . .
}
.

EXAMPLE 33 Recording the number of telephone calls served by a certain telephone ex-
change center within a specified period of time.

Clearly, the sample space here is: S = {0, 1, . . . , C}, where C is a suitably
large number associated with the capacity of the center. For mathematical
convenience, we often take S to consist of all nonnegative integers; that is,
S = {0, 1, . . .}.
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EXAMPLE 34 Recording the number of traffic accidents which occurred in a specified loca-
tion within a certain period of time.

As in the previous example, S = {0, 1, . . . , M} for a suitable number M . If M

is sufficiently large, then S is taken to be: S = {0, 1, . . .}.

EXAMPLE 35 Recording the number of particles emitted by a certain radioactive source
within a specified period of time.

As in the previous two examples, S is taken to be: S = {0, 1, . . . , M}, where M

is often a large number, and then as before S is modified to be: S = {0, 1, . . .}.

EXAMPLE 36 Recording the lifetime of an electronic device, or of an electrical appliance,
etc.

Here S is the interval (0, T) for some reasonable value of T ; that is, S = (0, T).
Sometimes, for justifiable reasons, we take, S = (0, ∞).

EXAMPLE 37 Recording the distance from the bull’s eye of the point where a dart, aiming at
the bull’s eye, actually hits the plane. Here it is clear that S = (0, ∞).

EXAMPLE 38 Measuring the dosage of a certain medication, administered to a patient, until
a positive reaction is observed.

Here S = (0, D) for some suitable D (not rendering the medication lethal!).

EXAMPLE 39 Recording the yearly income of a target population.

If the incomes are measured in $ and cents, the outcomes are fractional num-
bers in an interval [0, M] for some reasonable M . Again, for reasons similar to
those cited in Example 36, S is often taken to be S = [0, ∞).

EXAMPLE 40 Waiting until the time the Dow–Jones Industrial Average index reaches or
surpasses a specified level.

Here, with reasonable qualifications, we may chose to take S = (0, ∞).

Examples 1–25, suitably interpreted, may also serve as further illustrations of
random experiments. All examples described previously will be revisited on
various occasions.

For instance, in Example 1 and in self-explanatory notation, a suitable sample
space is:

S = {Ah Bh Mh, Ah Bh M�, Ah B�Mh, A�Bh Mh, Ah B�M�,

A�Bh M�, A�B�Mh, A�B�M�}.
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Then the events A = “no chemical occurs at high level” and B = “at least two
chemicals occur at high levels” are given by:

A = {A�B�M�}, B = {Ah Bh M�, Ah B�Mh, A�Bh Mh, Ah Bh Mh}.
In Example 2, a patient is classified according to the result of the test, giving
rise to the following sample space:

S = {D+, D−, N+, N−},
where D and N stand for the events “patient has the disease” and “patient
does not have the disease,” respectively. Then the event A = “false diagnosis
of test” is given by: A = {D−, N+}.

In Example 5, the suitable probability model is the so-called binomial model.
The sample space S is the set of 2n points, each point consisting of a sequence
of n S’s and F ’s, S standing for success (on behalf of Jones) and F standing for
failure. Then the questions posed can be answered easily.

Examples 6 through 10 can be discussed in the same framework as that of
Example 5 with obvious modifications in notation.

In Example 11, a suitable sample space is:

S = {M, Mc M, Mc Mc M, . . . , Mc · · · Mc M, . . .},
where M stands for the passing by of a Mercedes car. Then the events A and
B, where A = “Mercedes was the 5th car passed by” and B = “Mercedes was
spotted after the first 3 cars passed by” are given by:

A = {Mc Mc Mc Mc M} and B = {Mc Mc Mc M, Mc Mc Mc Mc M, . . .}.
In Example 12, a suitable sample space is: S = {0, 1, . . . , M} for an appropri-
ately large (integer) M ; for mathematical convenience, S is often taken to be:
S = {0, 1, 2, . . .}.

In Example 13, a suitable sample space is: S = (0, T) for some reasonable
value of T . In such cases, if T is very large, mathematical convenience dictates
replacement of the previous sample space by: S = (0, ∞).

Examples 14 and 15 can be treated in the same framework as Example 13 with
obvious modifications in notation.

In Example 18, a suitable sample space S is the set of 4n points, each point
consisting of a sequence of n symbols A, B, AB, and O . The underlying prob-
ability model is the so-called multinomial model, and the questions posed can
be discussed by available methodology. Actually, there is no need even to refer
to the sample space S. All one has to do is to consider the outcomes in the n

trials and then classify the n outcomes into four categories A, B, AB, and O .
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Example 19 fits into the same framework as that of Example 18. Here the
suitable S consists of 1241,208 points, each point being a sequence of symbols
representing the 12 months. As in the previous example, there is no need,
however, even to refer to this sample space. Example 20 is also of the same type.

In many cases, questions posed can be discussed without reference to any
explicit sample space. This is the case, for instance, in Examples 16–17 and
21–25.

In the examples discussed previously, we have seen sample spaces consisting
of finitely many sample points (Examples 26–31), sample spaces consisting of
countably infinite many points (for example, as many as the positive integers)
(Example 32 and also Examples 33–35 if we replace C and M by ∞ for mathe-
matical convenience), and sample spaces consisting of as many sample points
as there are in a nondegenerate finite or infinite interval in the real line, which
interval may also be the entire real line (Examples 36–40). Sample spaces with
countably many points (i.e., either finitely many or countably infinite many)
are referred to as discrete sample spaces. Sample spaces with sample points
as many as the numbers in a nondegenerate finite or infinite interval in the real
line � = (−∞, ∞) are referred to as continuous sample spaces.

Returning now to events, when one is dealing with them, one may perform
the same operations as those with sets. Thus, the complement of the event A,
denoted by Ac, is the event defined by: Ac = {s ∈ S; s /∈ A}. The event Ac is
presented by the Venn diagram in Figure 1.2. So Ac occurs whenever A does
not, and vice versa.

S

A

Ac

Figure 1.2

Ac Is the Shaded
Region

The union of the events A1, . . . , An, denoted by A1 ∪ . . .∪ An or
⋃n

j=1 Aj , is the
event defined by

⋃n

j=1 Aj = {s ∈ S; s ∈ Aj , for at least one j = 1, . . . , n}. So
the event

⋃n

j=1 Aj occurs whenever at least one of Aj , j = 1, . . . , noccurs. For
n = 2, A1 ∪ A2 is presented in Figure 1.3. The definition extends to an infinite
number of events. Thus, for countably infinite many events Aj , j = 1, 2, . . . ,
one has

⋃∞
j=1 Aj = {s ∈ S; s ∈ Aj , for at least one j = 1, 2, . . .}.

The intersection of the events Aj , j = 1, . . . , n is the event denoted by
A1 ∩ · · · ∩ An or

⋂n

j=1 Aj and is defined by
⋂n

j=1 Aj = {s ∈ S; s ∈ Aj , for

all j = 1, . . . , n}. Thus,
⋂n

j=1 Aj occurs whenever all Aj , J = 1, . . . , n
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A1 A2

S

Figure 1.3

A1 ∪ A2 Is the
Shaded Region

A1 A2

S

Figure 1.4

A1 ∩ A2 Is the
Shaded Region

occur simultaneously. For n = 2, A1 ∩ A2 is presented in Figure 1.4. This
definition extends to an infinite number of events. Thus, for countably infi-
nite many events Aj , j = 1, 2, . . . , one has

⋂∞
j=1 Aj = {s ∈ S; s ∈ Aj , for all

j = 1, 2, . . .}.

If A1 ∩ A2 = Ø, the events A1 and A2 are called disjoint (see Figure 1.5).
The events Aj , j = 1, 2, . . . , are said to be mutually or pairwise disjoint, if
Ai ∩ Aj = Ø whenever i �= j.

A1 A2

S

Figure 1.5

A1 and A2 Are
Disjoint; That Is
Ai ∩ Aj = Ø

The differences A1 − A2 and A2 − A1 are the events defined by A1 − A2 =
{s ∈ S; s ∈ A1, s /∈ A2}, A2 − A1 = {s ∈ S; s ∈ A2, s /∈ A1} (see Figure 1.6).

From the definition of the preceding operations, the following properties fol-
low immediately, and they are listed here for reference.

1. Sc = Ø, Øc = S, (Ac)c = A.
2. S ∪ A = S, Ø ∪ A = A, A ∪ Ac = S, A ∪ A = A.
3. S ∩ A = A, Ø ∩ A = Ø, A ∩ Ac = Ø, A ∩ A = A.
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A1 A2

S

Figure 1.6

A1 − A2 Is � � � � ,
A2 − A1 Is \\\\

The previous statements are all obvious, as is the following: Ø ⊆ A for every
event A in S. Also,

4. A1 ∪ (A2 ∪ A3) = (A1 ∪ A2) ∪ A3

A1 ∩ (A2 ∩ A3) = (A1 ∩ A2) ∩ A3

}
(associative laws)

5. A1 ∪ A2 = A2 ∪ A1

A1 ∩ A2 = A2 ∩ A1

}
(commutative laws)

6. A ∩ (∪ j Aj) = ∪ j(A ∩ Aj)
A ∪ (∩ j Aj) = ∩ j(A ∪ Aj)

}
(distributive laws)

In the last relations, as well as elsewhere, when the range of the index j is
not indicated explicitly, it is assumed to be a finite set, such as {1, . . . , n}, or a
countably infinite set, such as {1, 2, . . .}.

For the purpose of demonstrating some of the set-theoretic operations just
defined, let us consider some further concrete examples.

EXAMPLE 41 Consider the sample space S = {s1, s2, s3, s4, s5, s6, s7, s8} and define the events
A1, A2, and A3 as follows: A1 = {s1, s2, s3}, A2 = {s2, s3, s4, s5}, A3 = {s3, s4,
s5, s8}. Then observe that:

Ac
1 = {s4, s5, s6, s7, s8}, Ac

2 = {s1, s6, s7, s8}, Ac
3 = {s1, s2, s6, s7};

A1 ∪ A2 = {s1, s2, s3, s4, s5}, A1 ∪ A3 = {s1, s2, s3, s4, s5, s8},
A2 ∪ A3 = {s2, s3, s4, s5, s8}, A1 ∪ A2 ∪ A3 = {s1, s2, s3, s4, s5, s8};
A1 ∩ A2 = {s2, s3}, A1 ∩ A3 = {s3}, A1 ∩ A2 ∩ A3 = {s3};
A1 − A2 = {s1}, A2 − A1 = {s4, s5}, A1 − A3 = {s1, s2},
A3 − A1 = {s4, s5, s8}, A2 − A3 = {s2}, A3 − A2 = {s8};
(Ac

1)c = {s1, s2, s3}(=A1),
(
Ac

2

)c = {s2, s3, s4, s5}(=A2),(
Ac

3

)c = {s3, s4, s5, s8}(=A3).

An identity and DeMorgan’s laws stated subsequently are of significant impor-
tance. Their justifications are left as exercises (see Exercises 2.14 and 2.15).

An identity ∪ j Aj = A1 ∪ (Ac
1 ∩ A2

) ∪ (Ac
1 ∩ Ac

2 ∩ A3
) ∪ . . .

EXAMPLE 42 From Example 41, we have:

A1 = {s1, s2, s3}, Ac
1 ∩ A2 = {s4, s5}, Ac

1 ∩ Ac
2 ∩ A3 = {s8},
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Note that A1, Ac
1 ∩ A2, Ac

1 ∩ Ac
2 ∩ A3 are pairwise disjoint. Now A1 ∪ (Ac

1 ∩ A2)∪
(Ac

1 ∩ Ac
2 ∩ A3) = {s1, s2, s3, s4, s5, s8}, which is equal to A1 ∪ A2 ∪ A3; that is,

A1 ∪ A2 ∪ A3 = A1 ∪ (Ac
1 ∩ A2

) ∪ (Ac
1 ∩ Ac

2 ∩ A3
)

as the preceding identity states.

The significance of the identity is that the events on the right-hand side are
pairwise disjoint, whereas the original events Aj , j ≥ 1, need not be so.

DeMorgan’s laws (∪ j Aj)c = ∩ j Ac
j , (∩ j Aj)c = ∪ j Ac

j.

EXAMPLE 43 Again from Example 41, one has:

(A1 ∪ A2)c = {s6, s7, s8}, Ac
1 ∩ Ac

2 = {s6, s7, s8};
(A1 ∪ A2 ∪ A3)c = {s6, s7}, Ac

1 ∩ Ac
2 ∩ Ac

3 = {s6, s7};
(A1 ∩ A2)c = {s1, s4, s5, s6, s7, s8}, Ac

1 ∪ Ac
2 = {s1, s4, s5, s6, s7, s8};

(A1 ∩ A2 ∩ A3)c = {s1, s2, s4, s5, s6, s7, s8},
Ac

1 ∪ Ac
2 ∪ Ac

3 = {s1, s2, s4, s5, s6, s7, s8},
so that

(A1 ∪ A2)c = Ac
1 ∩ Ac

2, (A1 ∪ A2 ∪ A3)c = Ac
1 ∩ Ac

2 ∩ Ac
3, as DeMorgan’s

(A1 ∩ A2)c = Ac
1 ∪ Ac

2, (A1 ∩ A2 ∩ A3)c = Ac
1 ∪ Ac

2 ∪ Ac
3, laws state.

As a further demonstration of how complements, unions, and intersections of
sets are used for the expression of new sets, consider the following example.

EXAMPLE 44 In terms of the events A1, A2, and A3 (in some sample space S) and, perhaps,
their complements, unions, and intersections, express the following events:

Di = “Ai does not occur,” i = 1, 2, 3, so that D1 = Ac
1, D2 = Ac

2, D3 = Ac
3;

E = “all A1, A2, A3 occur,” so that E = A1 ∩ A2 ∩ A3;

F = “none of A1, A2, A3 occurs,” so that F = Ac
1 ∩ Ac

2 ∩ Ac
3;

G = “at least one of A1, A2, A3 occurs,” so that G = A1 ∪ A2 ∪ A3;

H = “exactly two of A1, A2, A3 occur,” so that H = (A1 ∩ A2 ∩ Ac
3

) ∪(
A1 ∩ Ac

2 ∩ A3
) ∪ (Ac

1 ∩ A2 ∩ A3
)
;

I = “exactly one of A1, A2, A3 occurs,” so that I = (A1 ∩ Ac
2 ∩ Ac

3

) ∪(
Ac

1 ∩ A2 ∩ Ac
3

) ∪ (Ac
1 ∩ Ac

2 ∩ A3
)
.

It also follows that:

G = “exactly one of A1, A2, A3 occurs” ∪ “exactly two of A1, A2, A3 occur” ∪
“all A1, A2, A3 occur”

= I ∪ H ∪ E.

This section is concluded with the concept of a monotone sequence of events.
Namely, the sequence of events {An}, n ≥ 1, is said to be monotone, if either
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A1 ⊆ A2 ⊆ . . . (increasing) or A1 ⊇ A2 ⊇ . . . (decreasing). In case of an
increasing sequence, the union

⋃∞
j=1 Aj is called the limit of the sequence, and

in case of a decreasing sequence, the intersection
⋂∞

j=1 Aj is called its limit.

The concept of the limit is also defined, under certain conditions, for non-
monotone sequences of events, but we are not going to enter into it here. The
interested reader is referred to Definition 1, page 5, of the book A Course in

Mathematical Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas.

Exercises

2.1 An airport limousine departs from a certain airport with three passengers
to be delivered in any one of three hotels denoted by H1, H2, H3. Let
(x1, x2, x3) denote the number of passengers left at hotels H1, H2, and
H3, respectively.
(i) Write out the sample space S of all possible deliveries.

(ii) Consider the events A, B, C , and D, defined as follows, and express
them in terms of sample points.
A = “one passenger in each hotel,”
B = “all passengers in H1,”
C = “all passengers in one hotel,”
D = “at least two passengers in H1,”
E = “fewer passengers in H1 than in any one of H2 or H3.”

2.2 A machine dispenses balls which are either red or black or green. Suppose
we operate the machine three successive times and record the color of
the balls dispensed, to be denoted by r, b, and g for the respective colors.
(i) Write out an appropriate sample space S for this experiment.

(ii) Consider the events A, B, and C , defined as follows, and express
them by means of sample points.
A = “all three colors appear,”
B = “only two colors appear,”
C = “at least two colors appear.”

2.3 A university library has five copies of a textbook to be used in a certain
class. Of these copies, numbers 1 through 3 are of the 1st edition, and
numbers 4 and 5 are of the 2nd edition. Two of these copies are chosen
at random to be placed on a 2-hour reserve.
(i) Write out an appropriate sample space S.

(ii) Consider the events A, B, C , and D, defined as follows, and express
them in terms of sample points.
A = “both books are of the 1st edition,”
B = “both books are of the 2nd edition,”
C = “one book of each edition,”
D = “no book is of the 2nd edition.”
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2.4 A large automobile dealership sells three brands of American cars, de-
noted by a1, a2, a3; two brands of Asian cars, denoted by b1, b2; and one
brand of a European car, denoted by c. We observe the cars sold in two
consecutive sales. Then:
(i) Write out an appropriate sample space for this experiment.

(ii) Express the events defined as follows in terms of sample points:

A = “American brands in both sales,”

B = “American brand in the first sale and Asian brand in the second
sale,”

C = “American brand in one sale and Asian brand in the other sale,”

D = “European brand in one sale and Asian brand in the other sale.”

2.5 Of two gas stations I and II located at a certain intersection, I has five gas
pumps and II has six gas pumps. On a given time of a day, observe the
numbers x and y of pumps in use in stations I and II, respectively.
(i) Write out the sample space S for this experiment.

(ii) Consider the events A, B, C , and D, defined as follows, and express
them in terms of sample points.

A = “three pumps are in use in station I,”

B = “the number of pumps in use in both stations is the same,”

C = “the number of pumps in use in station II is larger than that in
station I,”

D = “the total number of pumps in use in both stations is not greater
than 4.”

2.6 At a certain busy airport, denote by A, B, C , and D the events defined as
follows:
A = “at least 5 planes are waiting to land,”
B = “at most 3 planes are waiting to land,”
C = “at most 2 planes are waiting to land,”
D = “exactly 2 planes are waiting to land.”
In terms of the events A, B, C , and D and, perhaps, their complements,

express the following events:
E = “at most 4 planes are waiting to land,”
F = “at most 1 plane is waiting to land,”
G = “exactly 3 planes are waiting to land,”
H = “exactly 4 planes are waiting to land,”
I = “at least 4 planes are waiting to land.”

2.7 Let S = {(x, y) ∈ �2; − 3 ≤ x ≤ 3, 0 ≤ y ≤ 4, x and y integers}, and
define the events A, B, C , and D as follows:

A = {(x, y) ∈ S; x = y}, B = {(x, y) ∈ S; x = −y},
C = {(x, y) ∈ S; x2 = y2}, D = {(x, y) ∈ S; x2 + y2 ≤ 5}.

List the members of the events just defined.
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2.8 In terms of the events A1, A2, A3 in a sample space S and, perhaps, their
complements, express the following events:
(i) B0 = {s ∈ S; s belongs to none of A1, A2, A3},

(ii) B1 = {s ∈ S; s belongs to exactly one of A1, A2, A3},
(iii) B2 = {s ∈ S; s belongs to exactly two of A1, A2, A3},
(iv) B3 = {s ∈ S; s belongs to all of A1, A2, A3},
(v) C = {s ∈ S; s belongs to at most two of A1, A2, A3},

(vi) D = {s ∈ S; s belongs to at least one of A1, A2, A3}.
2.9 If for three events A, B, and C it happens that either A ∪ B ∪ C = A or

A ∩ B ∩ C = A, what conclusions can you draw?

2.10 Show that A is the impossible event (that is, A = Ø), if and only if
(A ∩ Bc) ∪ (Ac ∩ B) = B for every event B.

2.11 Let A, B, and C be arbitrary events in S. Determine whether each of the
following statements is correct or incorrect.
(i) (A − B) ∪ B = (A ∩ Bc) ∪ B = B,

(ii) (A ∪ B) − A = (A ∪ B) ∩ Ac = B,
(iii) (A ∩ B) ∩ (A − B) = (A ∩ B) ∩ (A ∩ Bc) = Ø,
(iv) (A ∪ B) ∩ (B ∪ C) ∩ (C ∪ A) = (A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A).

2.12 For any three events A, B, and C in a sample space S show that the
transitive property, A ⊆ B and B ⊆ C , implies that A ⊆ C holds.

2.13 Establish the distributive laws, namely A ∩ (∪ j Aj) = ∪ j(A ∩ Aj) and
A ∪ (∩ j Aj) = ∩ j(A ∪ Aj).

2.14 Establish the identity:

∪ j Aj = A1 ∪ (Ac
1 ∩ A2

) ∪ (Ac
1 ∩ Ac

2 ∩ A3
) ∪ · · ·

2.15 Establish DeMorgan’s laws, namely

(∪ j Aj)c = ∩ j Ac
j and (∩ j Aj)c = ∪ j Ac

j.

2.16 Let S = � and, for n = 1, 2, . . . , define the events An and Bn by:

An =
{

x ∈ �; − 5 + 1
n

< x < 20 − 1
n

}
, Bn

{
x ∈ �; 0 < x < 7 + 3

n

}
.

(i) Show that the sequence {An} is increasing and the sequence {Bn} is
decreasing.

(ii) Identify the limits, lim
n→∞ An =⋃∞

n=1 An and lim
n→∞ Bn =⋂∞

n=1 Bn.

1.3 Random Variables

For every random experiment, there is at least one sample space appropri-
ate for the random experiment under consideration. In many cases, however,
much of the work can be done without reference to an explicit sample space. In-
stead, what are used extensively are random variables and their distributions.
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Those quantities will be studied extensively in subsequent chapters. What is
done in this section is the introduction of the concept of a random variable.

Formally, a random variable, to be shortened to r.v., is simply a function
defined on a sample space S and taking values in the real line � = (−∞, ∞).
Random variables are denoted by capital letters, such as X, Y, Z, with or with-
out subscripts. Thus, the value of the r.v. X at the sample point s is X(s), and
the set of all values of X, that is, the range of X, is usually denoted by X(S).
The only difference between a r.v. and a function in the usual calculus sense
is that the domain of a r.v. is a sample space S, which may be an abstract set,
unlike the usual concept of a function, whose domain is a subset of � or of a
Euclidean space of higher dimension. The usage of the term “random variable”
employed here rather than that of a function may be explained by the fact that
a r.v. is associated with the outcomes of a random experiment. Thus, one may
argue that X(s) is not known until the random experiment is actually carried
out and s becomes available. Of course, on the same sample space, one may
define many distinct r.v.’s.

In reference to Example 26, instead of the sample space S exhibited there,
one may be interested in the number of heads appearing each time the exper-
iment is carried out. This leads to the definition of the r.v. X by: X(s) = # of
H’s in s. Thus, X(HHH) = 3, X(HHT) = X(HTH) = X(THH) = 2, X(HTT) =
X(THT) = X(TTH) = 1, and X(TTT) = 0, so that X(S) = {0, 1, 2, 3}. The nota-
tion (X ≤ 1) stands for the event {s ∈ S; X(s) ≤ 1} = {TTT, HTT, THT, TTH}.
In the general case and for B ⊆ �, the notation (X ∈ B) stands for the event
A in the sample space S defined by: A = {s ∈ S; X(s) ∈ B}. It is also denoted
by X−1(B).

In reference to Example 27, a r.v. X of interest may be defined by X(s) =
sum of the numbers in the pair s. Thus, X((1, 1)) = 2, X((1, 2)) = X((2, 1)) =
3, . . . , X((6, 6)) = 12, and X(S) = {2, 3, . . . , 12}. Also, X−1({7}) = {s ∈ S;
X(s) = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Similarly for Examples
28–31.

In reference to Example 32, a natural r.v. X is defined to denote the num-
ber of tosses needed until the first head occurs. Thus, X(H) = 1, X(T H) =
2, . . . , X(T . . . T︸ ︷︷ ︸

n−1

H) = n, . . . , so that X(S) = {1, 2, . . .}. Also, (X > 5) =

(X ≥ 6) = {TTTTTH, TTTTTTH, . . .}.
In reference to Example 33, an obvious r.v. X is: X(s) = s, s = 0, 1, . . . ,

and similarly for Examples 34–35.
In reference to Example 36, a r.v. X of interest is X(s) = s, s ∈ S, and

similarly for Examples 37–40.
Also, in reference to Example 5, an obvious r.v. X may be defined as fol-

lows: X(s) = # of S’s in s. Then, clearly, X(S) = {0, 1, . . . , n}. Similarly for
Examples 6–10.

In reference to Example 11, a r.v. X may be defined thus: X(s) = the position
of M in s. Then, clearly, X(S) = {1, 2, . . .}.

In reference to Example 18, the r.v.’s of obvious interests are: XA = # of
those persons, out of n, having blood type A, and similarly for XB, XAB, XO .
Similarly for Examples 19 and 20.
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From the preceding examples, two kinds of r.v.’s emerge: random vari-
ables which take on countably many values, such as those defined in conjunc-
tion with Examples 26–31 and 32–35, and r.v.’s which take on all values in a
nondegenerate (finite or not) interval in �. Such are r.v.’s defined in conjunc-
tion with Examples 36–40. Random variables of the former kind are called
discrete r.v.’s (or r.v.’s of the discrete type), and r.v.’s of the latter type are
called continuous r.v.’s (or r.v.’s of the continuous type).

More generally, a r.v. X is called discrete (or of the discrete type), if X takes
on countably many values; i.e., either finitely many values such as x1, . . . , xn,
or countably infinite many values such as x0, x1, . . . or x1, x2, . . . . On the other
hand, X is called continuous (or of the continuous type) if X takes all values
in a proper interval I ⊆ �. Although there are other kinds of r.v.’s, in this book
we will restrict ourselves to discrete and continuous r.v.’s as just defined.

The study of r.v.’s is one of the main objectives of this book.

Exercises

3.1 In reference to Exercise 2.1, define the r.v.’s Xi, i = 1, 2, 3 as follows:
Xi = # of passengers delivered to hotel Hi.
Determine the values of each Xi, i = 1, 2, 3, and specify the values of the
sum X1 + X2 + X3.

3.2 In reference to Exercise 2.2, define the r.v.’s X and Y as follows: X = # of
red balls dispensed, Y = # of balls other than red dispensed.
Determine the values of X and Y , and specify the values of the sum X +Y .

3.3 In reference to Exercise 2.5, define the r.v.’s X and Y as follows: X = # of
pumps in use in station I, Y = # of pumps in use in station II.
Determine the values of X and Y , and also of the sum X + Y .

3.4 In reference to Exercise 2.7, define the r.v. X by: X((x, y)) = x + y.
Determine the values of X, as well as the following events: (X ≤ 2),
(3 < X ≤ 5), (X > 6).

3.5 Consider a year with 365 days, which are numbered serially from 1 to 365.
Ten of those numbers are chosen at random and without replacement,
and let X be the r.v. denoting the largest number drawn.
Determine the values of X.

3.6 A four-sided die has the numbers 1 through 4 written on its sides, one on
each side. If the die is rolled twice:
(i) Write out a suitable sample space S.

(ii) If X is the r.v. denoting the sum of numbers appearing, determine the
values of X.

(iii) Determine the events: (X ≤ 3), (2 ≤ X < 5), (X > 8).

3.7 From a certain target population, n individuals are chosen at random
and their blood types are determined. Let X1, X2, X3, and X4 be the r.v.’s
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denoting the number of individuals having blood types A, B, AB, and O,
respectively.
Determine the values of each one of these r.v.’s, as well as the values of
the sum X1 + X2 + X3 + X4.

3.8 A bus is expected to arrive at a specified bus stop any time between 8:00
and 8:15 a.m., and let X be the r.v. denoting the actual time of arrival of
the bus.
(i) Determine the suitable sample space S for the experiment of observ-

ing the arrival of the bus.
(ii) What are the values of the r.v. X?

(iii) Determine the event: “The bus arrives within 5 minutes before the
expiration of the expected time of arrival.”



Chapter 2

The Concept
of Probability

and Basic Results

This chapter consists of five sections. The first section is devoted to the def-
inition of the concept of probability. We start with the simplest case, where
complete symmetry occurs, proceed with the definition by means of relative
frequency, and conclude with the axiomatic definition of probability. The defin-
ing properties of probability are illustrated by way of examples. Also, a number
of basic properties, resulting from the definition, are stated and justified. Some
of them are illustrated by means of examples. The section is concluded with
two theorems, which are stated but not proved.

In the second section, the distribution of a r.v. is introduced. Also, the
distribution function and the probability density function of a r.v. are defined,
and we explain how they determine the distribution of the r.v.

The concept of the conditional probability of an event, given another event,
is taken up in the following section. Its definition is given, and its significance
is demonstrated through a number of examples. This section is concluded
with three theorems, formulated in terms of conditional probabilities. Through
these theorems, conditional probabilities greatly simplify calculation of other-
wise complicated probabilities.

In the fourth section, the independence of two events is defined, and we
also indicate how it carries over to any finite number of events. A result
(Theorem 6) is stated which is often used by many authors without its use
even being acknowledged. The section is concluded with an indication of how
independence extends to random experiments. The definition of independence
of r.v.’s is deferred to another chapter (Chapter 5).

In the final section of the chapter, the so-called fundamental principle
of counting is discussed; combinations and permutations are then obtained
as applications of this principle. Several illustrative examples are also
provided.

23
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2.1 Definition of Probability and Some Basic Results

When a random experiment is entertained, one of the first questions which
arise is, what is the probability that a certain event occurs? For instance, in
reference to Example 26 in Chapter 1, one may ask: What is the probability that
exactly one head occurs; in other words, what is the probability of the event
B = {HTT, T HT, TTH}? The answer to this question is almost automatic and
is 3/8. The relevant reasoning goes like this: Assuming that the three coins are
balanced, the probability of each one of the 8 outcomes, considered as simple
events, must be 1/8. Since the event B consists of 3 sample points, it can occur
in 3 different ways, and hence its probability must be 3/8.

This is exactly the intuitive reasoning employed in defining the concept
of probability when two requirements are met: First, the sample space S has
finitely many outcomes, S = {s1, . . . , sn}, say, and second, each one of these
outcomes is “equally likely” to occur, has the same chance of appearing, when-
ever the relevant random experiment is carried out. This reasoning is based
on the underlying symmetry. Thus, one is led to stipulating that each one of
the (simple) events {si}, i = 1, . . . , n has probability 1/n. Then the next step,
that of defining the probability of a composite event A, is simple; if A consists
of m sample points, A = {si1 , . . . , sim

}, say (1 ≤ m ≤ n) (or none at all, in
which case m = 0), then the probability of A must be m/n. The notation used
is: P({s1}) = · · · = P({sn}) = 1

n
and P(A) = m

n
. Actually, this is the so-called

classical definition of probability. That is,

CLASSICAL DEFINITION OF PROBABILITY Let S be a sample space, associ-
ated with a certain random experiment and consisting of finitely many sample
points n, say, each of which is equally likely to occur whenever the random
experiment is carried out. Then the probability of any event A, consisting of
m sample points (0 ≤ m ≤ n), is given by P(A) = m

n
.

In reference to Example 26 in Chapter 1, P(A) = 4
8 = 1

2 = 0.5. In Example
27 (when the two dice are unbiased), P(X = 7) = 6

36 = 1
6 � 0.167, where

the r.v. X and the event (X = 7) are defined in Section 1.3. In Example 29,
when the balls in the urn are thoroughly mixed, we may assume that all of the
(m+n)(m+n− 1) pairs are equally likely to be selected. Then, since the event
A occurs in 20 different ways, P(A) = 20

(m+ n)(m+ n− 1) . For m = 3 and n = 5,
this probability is P(A) = 20

56 = 5
14 � 0.357.

From the preceding (classical) definition of probability, the following
simple properties are immediate: For any event A, P(A) ≥ 0; P(S) = 1; if two
events A1 and A2 are disjoint (A1 ∩ A2 = ∅), then P(A1 ∪ A2) = P(A1)+ P(A2).
This is so because, if A1 = {si1 , . . . , sik}, A2 = {sj1 , . . . , sj�}, where all si1 , . . . , sik

are distinct from all sj1 , . . . , sj� , then A1 ∪ A2 = {si1 , . . . , siksj1 , . . . , sj�} and
P(A1 ∪ A2) = k+�

n
= k

n
+ �

n
= P(A1) + P(A2).

In many cases, the stipulations made in defining the probability as above
are not met, either because S has not finitely many points (as is the case in
Examples 32, 33–35 (by replacing C and M by ∞), and 36–40 in Chapter 1), or
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because the (finitely many outcomes) are not equally likely. This happens, for
instance, in Example 26 when the coins are not balanced and in Example 27
when the dice are biased. Strictly speaking, it also happens in Example 30. In
situations like this, the way out is provided by the so-called relative frequency

definition of probability. Specifically, suppose a random experiment is carried
out a large number of times N, and let N(A) be the frequency of an event A,
the number of times A occurs (out of N ). Then the relative frequency of A

is N(A)
N

. Next, suppose that, as N → ∞, the relative frequencies N(A)
N

oscillate
around some number (necessarily between 0 and 1). More precisely, suppose
that N(A)

N
converges, as N → ∞, to some number. Then this number is called

the probability of A and is denoted by P(A). That is, P(A) = limN→∞ N(A)
N

.

(It will be seen later in this book that the assumption of convergence of the
relative frequencies N(A)/N is justified subject to some qualifications.) To
summarize,

RELATIVE FREQUENCY DEFINITION OF PROBABILITY Let N(A) be the num-
ber of times an event A occurs in N repetitions of a random experiment, and
assume that the relative frequency of A, N(A)

N
, converges to a limit as N → ∞.

This limit is denoted by P(A) and is called the probability of A.

At this point, it is to be observed that empirical data show that the relative
frequency definition of probability and the classical definition of probability
agree in the framework in which the classical definition applies.

From the relative frequency definition of probability and the usual proper-
ties of limits, it is immediate that: P(A) ≥ 0 for every event A; P(S) = 1; and
for A1, A2 with A1 ∩ A2 = ∅,

P(A1 ∪ A2) = lim
N→∞

N(A1 ∪ A2)
N

= lim
N→∞

(
N(A1)

N
+ N(A2)

N

)
= lim

N→∞
N(A1)

N
+ lim

N→∞
N(A2)

N
= P(A1) + P(A2);

that is, P(A1 ∪ A2) = P(A1) + P(A2), provided A1 ∩ A2 = ∅. These three
properties were also seen to be true in the classical definition of probabil-
ity. Furthermore, it is immediate that under either definition of probability,
P(A1 ∪ . . . ∪ Ak) = P(A1) + · · · + P(Ak), provided the events are pairwise
disjoint; Ai ∩ Aj = ∅, i �= j.

The above two definitions of probability certainly give substance to the
concept of probability in a way consonant with our intuition about what prob-
ability should be. However, for the purpose of cultivating the concept and
deriving deep probabilistic results, one must define the concept of probability
in terms of some basic properties, which would not contradict what we have
seen so far. This line of thought leads to the so-called axiomatic definition of
probability due to Kolmogorov.

AXIOMATIC DEFINITION OF PROBABILITY Probability is a function, denoted
by P , defined for each event of a sample space S, taking on values in the real
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line �, and satisfying the following three properties:

(P1) P(A) ≥ 0 for every event A (nonnegativity of P).
(P2) P(S) = 1 (P is normed).
(P3) For countably infinite many pairwise disjoint events Ai, i= 1, 2, . . . , Ai ∩

Aj = ∅, i �= j, it holds

P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + · · · ; or P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

(sigma-additivity (σ -additivity) of P).

COMMENTS ON THE AXIOMATIC DEFINITION

1) Properties (P1) and (P2) are the same as the ones we have seen earlier,
whereas property (P3) is new. What we have seen above was its so-called
finitely-additive version; that is, P(

⋃n

i=1 Ai) =∑n

i=1 P(Ai), provided Ai ∩
Aj = ∅, i �= j. It will be seen below that finite-additivity is implied by
σ -additivity but not the other way around. Thus, if we are to talk about the
probability of the union of countably infinite many pairwise disjoint events,
property (P3) must be stipulated. Furthermore, the need for such a union
of events is illustrated as follows: In reference to Example 32, calculate the
probability that the first head does not occur before the n th tossing. By
setting Ai = {T . . . T︸ ︷︷ ︸

i

H}, i = n, n + 1, . . . , what we are actually after here

is P(An ∪ An+1 ∪ . . .) with Ai ∩ Aj = ∅, i �= j, i and j ≥ n.

2) Property (P3) is superfluous (reduced to finite-additivity) when the sample
space S is finite, which implies that the total number of events is finite.

3) Finite-additivity is implied by additivity for two events, P(A1 ∪ A2) =
P(A1) + P(A2), A1 ∩ A2 = ∅, by way of induction.

Here are two examples in calculating probabilities.

EXAMPLE 1 In reference to Example 1 in Chapter 1, take n = 58, and suppose we have the
following configuration:

BARIUM

HIGH LOW

Mercury Mercury

Arsenic High Low High Low

High 1 3 5 9
Low 4 8 10 18

Calculate the probabilities mentioned in (i) (a)–(d).

DISCUSSION For simplicity, denote by Bh the event that the site selected
has a high barium concentration, and likewise for other events figuring below.
Then:
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(i)(a) Bh = (Ah ∩ Bh ∩ Mh)∪ (Ah ∩ Bh ∩ M�)∪ (A� ∩ Bh ∩ Mh)∪ (A� ∩ Bh ∩ M�)
and the events on the right-hand side are pairwise disjoint. Therefore
(by the following basic property 2 in Subsection 2.1.1):

P(Bh) = P(Ah ∩ Bh ∩ Mh) + P(Ah ∩ Bh ∩ M�)

+ P(A� ∩ Bh ∩ Mh) + P(A� ∩ Bh ∩ M�)

= 1
58

+ 3
58

+ 4
58

+ 8
58

= 16
58

= 8
29

� 0.276.

(i)(b) Here P(Mh ∩ A� ∩ B�) = P(A� ∩ B� ∩ Mh) = 10
58 = 5

29 � 0.172.

(i)(c) Here the required probability is as in (a):

P(Ah∩Bh∩M�) + P(Ah∩B�∩Mh) + P(A�∩Bh∩Mh) = 12
58

= 6
29

� 0.207.

(i)(d) As above,

P(Ah ∩ B� ∩ M�) + P(A� ∩ Bh ∩ M�) + P(A� ∩ B� ∩ Mh) = 27
58

� 0.466.

EXAMPLE 2 In ranking five horses in a horse race (Example 31 in Chapter 1), calculate the
probability that horse #3 terminates at least second.

DISCUSSION Let Ai be the event that horse #3 terminates in the ith posi-
tion, i = 1, . . . , 5. Then the required event is A1 ∪ A2, where A1, A2 are disjoint.
Thus,

P(A1 ∪ A2) = P(A1) + P(A2) = 24
120

+ 24
120

= 2
5

= 0.4.

EXAMPLE 3 In tossing a coin repeatedly until H appears for the first time (Example 32 in
Chapter 1), suppose that P{T . . . T︸ ︷︷ ︸

i−1

H} = P(Ai) = qi−1 p for some 0 < p < 1

and q = 1 − p (in anticipation of Definition 3 in Section 2.4). Then

P

( ∞⋃
i=n

Ai

)
=

∞∑
i=n

P(Ai) =
∞∑

i=n

qi−1 p = p

∞∑
i=n

qi−1 = p
qn−1

1 − q
= p

qn−1

p
= qn−1.

For instance, for p = 1/2 and n = 3, this probability is 1
4 = 0.25. That is, when

tossing a fair coin, the probability that the first head does not appear either
the first or the second time (and therefore it appears either the third time
or the fourth time etc.) is 0.25. For n = 10, this probability is approximately
0.00195 � 0.002.

Next, we present some basic results following immediately from the defining
properties of the probability. First, we proceed with their listing and then with
their justification.
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2.1.1 Some Basic Properties of a Probability Function

1. P(∅) = 0.

2. For any pairwise disjoint events A1, . . . , An, P(
⋃n

i=1 Ai) =∑n

i=1 P(Ai).
3. For any event A, P(Ac) = 1 − P(A).
4. A1 ⊆ A2 implies P(A1) ≤ P(A2) and P(A2 − A1) = P(A2) − P(A1).
5. 0 ≤ P(A) ≤ 1 for every event A.

6. (i) For any two events A1 and A2:

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

(ii) For any three events A1, A2, and A3:

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) − [P(A1 ∩ A2)

+ P(A1 ∩ A3) + P(A2 ∩ A3)] + P(A1 ∩ A2 ∩ A3).

7. For any events A1, A2, . . . , P(
⋃∞

i=1 Ai) ≤ ∑∞
i=1 P(Ai) (σ -sub-additivity),

and P(
⋃n

i=1 Ai) ≤∑n

i=1 P(Ai) (finite-sub-additivity).

2.1.2 Justification

1. From the obvious fact that S = S ∪ ∅ ∪ ∅ ∪ . . . and property (P3),

P(S) = P(S ∪ ∅ ∪ ∅ ∪ . . .) = P(S) + P(∅) + P(∅) + · · ·
or P(∅) + P(∅) + · · · = 0. By (P1), this can only happen when P(∅) = 0.

Of course, that the impossible event has probability 0 does not come as a
surprise. Any reasonable definition of probability should imply it.

2. Take Ai = ∅ for i ≥ n+ 1, consider the following obvious relation, and use
(P3) and #1 to obtain:

P

(
n⋃

i=1

Ai

)
= P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) =
n∑

i=1

P(Ai).

3. From (P2) and #2, P(A ∪ Ac) = P(S) = 1 or P(A) + P(Ac) = 1, so that
P(Ac) = 1 − P(A).

4. The relation A1 ⊆ A2, clearly, implies A2 = A1 ∪ (A2 − A1), so that, by #2,
P(A2) = P(A1) + P(A2 − A1). Solving for P(A2 − A1), we obtain P(A2 −
A1) = P(A2) − P(A1), so that, by (P1), P(A1) ≤ P(A2).
At this point it must be pointed out that P(A2 − A1) need not be P(A2) −
P(A1), if A1 is not contained in A2.

5. Clearly, ∅ ⊆ A ⊆ S for any event A. Then (P1), #1 and #4 give: 0 = P(∅) ≤
P(A) ≤ P(S) = 1.

6. (i) It is clear (by means of a Venn diagram, for example) that

A1 ∪ A2 = A1 ∪ (A2 ∩ Ac
1

) = A1 ∪ (A2 − A1 ∩ A2).

Then, by means of #2 and #4:

P(A1 ∪ A2) = P(A1) + P(A2 − A1 ∩ A2) = P(A1) + P(A2) − P(A1 ∩ A2).
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(ii) Apply part (i) to obtain:

P(A1 ∪ A2 ∪ A3) = P[(A1 ∪ A2) ∪ A3] = P(A1 ∪ A2) + P(A3)

− P[(A1 ∪ A2) ∩ A3]

= P(A1) + P(A2) − P(A1 ∩ A2) + P(A3)

− P[(A1 ∩ A3) ∪ (A2 ∩ A3)]

= P(A1) + P(A2) + P(A3) − P(A1 ∩ A2)

− [P(A1 ∩ A3) + P(A2 ∩ A3) − P(A1 ∩ A2 ∩ A3)]

= P(A1) + P(A2) + P(A3) − P(A1 ∩ A2) − P(A1 ∩ A3)

− P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3).

7. By the identity in Section 2 of Chapter 1 and (P3):

P

( ∞⋃
i=1

Ai

)
= P
[
A1 ∪ (Ac

1 ∩ A2
) ∪ . . . ∪ (Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

) ∪ . . .
]

= P(A1) + P
(
Ac

1 ∩ A2
)+ · · · + P

(
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

)+ · · ·
≤ P(A1) + P(A2) + · · · + P(An) + · · · (by #4).

For the finite case:

P

(
n⋃

i=1

Ai

)
= P
[
A1 ∪ (Ac

1 ∩ A2
) ∪ . . . ∪ (Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

)]
= P(A1) + P

(
Ac

1 ∩ A2
)+ · · · + P

(
Ac

1 ∩ . . . ∩ Ac
n−1 ∩ An

)
≤ P(A1) + P(A2) + · · · + P(An).

Next, some examples are presented to illustrate some of the properties
#1–#7.

EXAMPLE 4 (i) For two events A and B, suppose that P(A) = 0.3, P(B) = 0.5, and P(A∪
B) = 0.6. Calculate P(A ∩ B).

(ii) If P(A) = 0.6, P(B) = 0.3, P(A ∩ Bc) = 0.4, and B ⊂ C , calculate P(A ∪
Bc ∪ Cc).

DISCUSSION

(i) From P(A ∪ B) = P(A) + P(B) − P(A ∩ B), we get P(A ∩ B) = P(A) +
P(B) − P(A ∪ B) = 0.3 + 0.5 − 0.6 = 0.2.

(ii) The relation B ⊂ C implies Cc ⊂ Bc and hence A ∪ Bc ∪ Cc = A ∪ Bc.

Then P(A ∪ Bc ∪ Cc) = P(A ∪ Bc) = P(A) + P(Bc) − P(A ∩ Bc) =
0.6 + (1 − 0.3) − 0.4 = 0.9.

EXAMPLE 5 Let A and B be the respective events that two contracts I and II, say, are
completed by certain deadlines, and suppose that: P(at least one contract
is completed by its deadline) = 0.9 and P(both contracts are completed by
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their deadlines) = 0.5. Calculate the probability: P(exactly one contract is
completed by its deadline).

DISCUSSION The assumptions made are translated as follows: P(A∪ B) =
0.9 and P(A∩ B) = 0.5. What we wish to calculate is: P((A∩ Bc)∪ (Ac ∩ B)) =
P(A ∩ Bc) + P(Ac ∩ B). Clearly, A = (A ∩ B) ∪ (A ∩ Bc) and B = (A ∩ B) ∪
(Ac ∩ B), so that P(A) = P(A ∩ B) + P(A ∩ Bc) and P(B) = P(A ∩ B) +
P(Ac ∩ B). Hence, P(A ∩ Bc) = P(A) − P(A ∩ B) and P(Ac ∩ B) = P(B) −
P(A ∩ B). Then P(A ∩ Bc) + P(Ac ∩ B) = P(A) + P(B) − 2(A ∩ B) =
[P(A)+ P(B)− P(A∩ B)]− P(A∩ B) = P(A∪ B)− P(A∩ B) = 0.9−0.5 = 0.4.

EXAMPLE 6 (i) For three events A, B, and C , suppose that P(A ∩ B) = P(A ∩ C) and
P(B ∩ C) = 0. Then show that P(A ∪ B ∪ C) = P(A) + P(B) + P(C) −
2P(A ∩ B).

(ii) For any two events A and B, show that P(Ac ∩ Bc) = 1 − P(A) − P(B) +
P(A ∩ B).

DISCUSSION

(i) We have P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) −
P(B ∩ C) + P(A∩ B ∩ C). But A∩ B ∩ C ⊂ B ∩ C , so that P(A∩ B ∩ C) ≤
P(B ∩ C) = 0, and therefore P(A ∪ B ∪ C) = P(A) + P(B) + P(C) −
2P(A ∩ B).

(ii) Indeed, P(Ac ∩ Bc) = P((A ∪ B)c) = 1 − P(A ∪ B) = 1 − P(A) − P(B) +
P(A ∩ B).

EXAMPLE 7 In ranking five horses in a horse race (Example 31 in Chapter 1), what is the
probability that horse #3 will terminate either first or second or third?

DISCUSSION Denote by B the required event and let Ai = “horse #3
terminates in the ith place,” i = 1, 2, 3. Then the events A1, A2, A3 are pairwise
disjoint, and therefore

P(B) = P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3).

But P(A1) = P(A2) = P(A3) = 24
120 = 0.2, so that P(B) = 0.6.

EXAMPLE 8 Consider a well-shuffled deck of 52 cards (Example 28 in Chapter 1), and
suppose we draw at random three cards. What is the probability that at least
one is an ace?

DISCUSSION Let A be the required event, and let Ai be defined by: Ai =
“exactly i cards are aces,” i = 0, 1, 2, 3. Then, clearly, P(A) = P(A1 ∪ A2 ∪
A3). Instead, we may choose to calculate P(A) through P(Ac) = 1 − P(A0),
where

P(A0) =
( 48

3

)( 52
3

) = 48 × 47 × 46
52 × 51 × 50

= 4,324
5,525

, so that P(A) = 1,201
5,525

� 0.217.
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EXAMPLE 9 Refer to Example 3 in Chapter 1 and let C1, C2, C3 be defined by: C1 = “both
S1 and S2 work,” C2 = “S5 works,” C3 = “both S3 and S4 work,” and let
C = “current is transferred from point A to point B.” Then P(C) = P(C1 ∪
C2 ∪ C3). At this point (in anticipation of Definition 3 in Section 2.4; see also
Exercise 4.14 in this chapter), suppose that:

P(C1) = p1 p2, P(C2) = p5, P(C3) = p3 p4,

P(C1 ∩ C2) = p1 p2 p5, P(C1 ∩ C3) = p1 p2 p3 p4,

P(C2 ∩ C3) = p3 p4 p5, P(C1 ∩ C2 ∩ C3) = p1 p2 p3 p4 p5.

Then:

P(C) = p1 p2 + p5 + p3 p4 − p1 p2 p5 − p1 p2 p3 p4 − p3 p4 p5 + p1 p2 p3 p4 p5.

For example, for p1 = p2 = p3 = 0.9, we obtain

P(C) = 0.9 + 2(0.9)2 − 2(0.9)3 − (0.9)4 + (0.9)5 � 0.996.

This section is concluded with two very useful results stated as theorems.
The first is a generalization of property #6 to more than three events, and the
second is akin to the concept of continuity of a function as it applies to a
probability function.

THEOREM 1
The probability of the union of any n events, A1, . . . , An, is given by:

P

(
n⋃

j=1

Aj

)
=

n∑
j=1

P(Aj) −
∑

1≤ j1< j2≤n

P(Aj1 ∩ Aj2 )

+
∑

1≤ j1< j2< j3≤n

P(Aj1 ∩ Aj2 ∩ Aj3 ) − · · ·

+ (−1)n+1 P(A1 ∩ . . . ∩ An).

Although its proof (which is by induction) will not be presented, the pattern
of the right-hand side above follows that of property #6(i) and it is clear. First,
sum up the probabilities of the individual events, then subtract the probabilities
of the intersections of the events, taken two at a time (in the ascending order
of indices), then add the probabilities of the intersections of the events, taken
three at a time as before, and continue like this until you add or subtract
(depending on n) the probability of the intersection of all n events.

Recall that, if A1 ⊆ A2 ⊆ . . . , then limn→∞ An =⋃∞
n=1 An, and if A1 ⊇ A2 ⊇

. . . , then limn→∞ An =⋂∞
n=1 An.

THEOREM 2
For any monotone sequence of events {An}, n ≥ 1, it holds P(limn→∞
An) = limn→∞ P(An).
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This theorem will be employed in many instances, and its use will be then
pointed out.

Exercises

1.1 If P(A) = 0.4, P(B) = 0.6, and P(A ∪ B) = 0.7, calculate P(A ∩ B).

1.2 If for two events A and B, it so happens that P(A) = 3
4 and P(B) = 3

8 ,
show that:

P(A ∪ B) ≥ 3
4

and
1
8

≤ P(A ∩ B) ≤ 3
8
.

1.3 If for the events A, B, and C , it so happens that P(A) = P(B) = P(C) = 1,
then show that:

P(A ∩ B) = P(A ∩ C) = P(B ∩ C) = P(A ∩ B ∩ C) = 1.

1.4 If the events A, B, and C are related as follows: A ⊂ B ⊂ C and P(A) =
1
4 , P(B) = 5

12 , and P(C) = 7
12 , compute the probabilities of the following

events:

Ac ∩ B, Ac ∩ C, Bc ∩ C, A ∩ Bc ∩ Cc, Ac ∩ Bc ∩ Cc.

1.5 Let S be the set of all outcomes when flipping a fair coin four times, so
that all 16 outcomes are equally likely. Define the events A and B by:

A = {s ∈ S; s contains more Ts than Hs},
B = {s ∈ S; any T in s precedes every H in s}.

Compute the probabilities P(A), P(B).

1.6 Let S = {x integer; 1 ≤ x ≤ 200}, and define the events A, B, and C as
follows:

A = {x ∈ S; x is divisible by 7},
B = {x ∈ S; x = 3n + 10, for some positive integer n},
C = {x ∈ S; x2 + 1 ≤ 375}.

Calculate the probabilities P(A), P(B), and P(C).

1.7 If two fair dice are rolled once, what is the probability that the total
number of spots shown is:
(i) Equal to 5?

(ii) Divisible by 3?

1.8 Students in a certain college subscribe to three news magazines A, B,
and C according to the following proportions:

A : 20%, B : 15%, C : 10%,

both A and B : 5%, both A and C : 4%, both B and C : 3%, all three A, B,
and C : 2%.
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If a student is chosen at random, what is the probability he/she subscribes
to none of the news magazines?

1.9 A high school senior applies for admissions to two colleges A and B,
and suppose that: P(admitted at A) = p1, P(rejected by B) = p2, and
P(rejected by at least one, A or B) = p3.

(i) Calculate the probability that the student is admitted by at least one
college.

(ii) Find the numerical value of the probability in part (i), if p1 = 0.6, p2 =
0.2, and p3 = 0.3.

1.10 An airport limousine service has two vans, the smaller of which can carry
6 passengers and the larger 9 passengers. Let x and y be the respective
numbers of passengers carried by the smaller and the larger van in a given
trip, so that a suitable sample space S is given by:

S = {(x, y); x = 0, . . . , 6 and y = 0, 1, . . . , 9}.

Also, suppose that, for all values of x and y, the probabilities P({(x, y)})
are equal. Finally, define the events A, B, and C as follows:

A = “the two vans together carry either 4 or 6 or 10 passengers,”
B = “the larger van carries twice as many passengers as the smaller

van,”
C = “the two vans carry different numbers of passengers.”

Calculate the probabilities: P(A), P(B), and P(C).

1.11 In the sample space S = (0, ∞), consider the events An = (0, 1 − 2
n

),
n = 1, 2, . . . , A = (0, 1), and suppose that P(An) = 2n−1

4n
.

(i) Show that the sequence {An} is increasing and that limn→∞ An =⋃∞
n=1 An = A.

(ii) Use part (i) and the appropriate theorem (cite it!) in order to calculate
the probability P(A).

2.2 Distribution of a Random Variable

For a r.v. X, define the set function PX(B) = P(X ∈ B). Then PX is a prob-
ability function because: PX(B) ≥ 0 for all B, PX(�) = P(X ∈ �) = 1, and, if
Bj , j = 1, 2, . . . are pairwise disjoint then, clearly, (X ∈ Bj), j ≥ 1, are also
pairwise disjoint and X ∈ (

⋃∞
j=1 Bj) =⋃∞

j=1(X ∈ Bj). Therefore

PX

( ∞⋃
j=1

Bj

)
= P

[
X ∈
( ∞⋃

j=1

Bj

)]
= P

[ ∞⋃
j=1

(X ∈ Bj)

]

=
∞∑
j=1

P(X ∈ Bj) =
∞∑
j=1

PX(Bj).
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The probability function PX is called the probability distribution of the r.v.

X. Its significance is extremely important because it tells us the probability that
X takes values in any given set B. Indeed, much of probability and statistics
revolves around the distribution of r.v.’s in which we have an interest.

By selecting B to be (−∞, x], x ∈ �, we have PX(B) = P(X ∈ (−∞, x]) =
P(X ≤ x). In effect, we define a point function which we denote by FX ; that is,
FX(x) = P(X ≤ x), x ∈ �. The function FX is called the distribution function

(d.f.) of X. Clearly, if we know PX , then we certainly know FX. Somewhat un-
expectedly, the converse is also true. Namely, if we know the (relatively “few”)
probabilities FX(x), x ∈ �, then we can determine precisely all probabilities
PX(B) for B subset of �. This converse is a deep theorem in probability that
we cannot deal with here. It is, nevertheless, the reason for which it is the d.f.
FX we deal with, a familiar point function for which so many calculus results
hold, rather than the unfamiliar set function PX.

Clearly, the expressions FX(+∞) and FX(−∞) have no meaning because
+∞ and −∞ are not real numbers. They are defined as follows:

FX(+∞) = lim
n→∞ FX(xn), xn ↑ ∞ and FX(−∞) = lim

n→∞ FX(yn), yn ↓ −∞.

These limits exist because x < y implies (−∞, x] ⊂ (−∞, y] and hence

PX((−∞, x]) = FX(x) ≤ FX(y) = PX((−∞, y]).

The d.f. of a r.v. X has the following basic properties:

1. 0 ≤ FX(x) ≤ 1 for all x ∈ �;
2. FX is a nondecreasing function;
3. FX is continuous from the right;
4. FX(+∞) = 1, FX(−∞) = 0.

The first and the second properties are immediate from the definition of the
d.f.; the third follows by Theorem 2, by taking xn ↓ x ; so does the fourth, by
taking xn ↑ +∞, which implies (−∞, xn] ↑ �, and yn ↓ −∞, which implies
(−∞, yn] ↓ ∅. Figures 2.1 and 2.2 show the graphs of the d.f.’s of some typical
cases.

Now, suppose that the r.v. X is discrete and takes on the values xj , j =
1, 2, . . . , n. Take b = {xj} and on the set {x1, x2, . . . , xn} define the function fX

as follows: fX(xj) = PX({xj}). Next, extend fX over the entire � by setting

0.20
0.40
0.60
0.80
1.00

0

F(x)

x
0.20
0.40
0.60
0.80
1.00

0

F(x)

x

(b) Poisson for l = 2.(a) Binomial for n = 6, p = 
1
–
4

.

Figure 2.1

Examples of Graphs of
d.f.’s



2.2 Distribution of a Random Variable 35

Φ(x)

1.0

0.5

−2 −1 0

(d) N(0, 1).

1 2
x

1.0

0
ba

F(x)

x

(c) U(a, b ).

0

1

x < a

x > b

a   ≤ x ≤ b.x − a
b − aHere F(x) =

Figure 2.2

Examples of Graphs of
d.f.’s

fX(x) = 0 for x �= xj , j = 1, 2, . . . , n. Then fX(x) ≥ 0 for all x, and it is
clear that P(X ∈ B) = ∑xj∈B fX(xj) for B ⊆ �. In particular,

∑n

j=1 fX(xj) =∑
xj∈� fX(xj) = P(X ∈ �) = 1. The function fX just defined is called the

probability density function (p.d.f.) of the r.v. X. By selecting B = (−∞, x]
for some x ∈ �, we have FX(x) =∑xj≤x fX(xj). Furthermore, if we assume at
this point that x1 < x2 < · · · < xn, it is clear that

fX(xj) = FX(xj) − FX(xj−1), j = 2, 3, . . . , n and fX(x1) = FX(x1);

we may also allow j to take the value 1 above by setting FX(x0) = 0. Likewise
if X takes the values xj , j = 1, 2, . . . These two relations state that, in the
case that X is a discrete r.v. as above, either one of the FX of fX specifies
uniquely the other. Setting FX(xj−) for the limit from the left (left-limit) of
FX at xj , FX(xj−) = lim FX(x) as x ↑ xj , we see that FX(xj) − FX(xj−1) =
FX(xj) − FX(xj−), so that fX(xj) = FX(xj) − FX(xj−). In other words, the
value of fX at xj is the size of the jump of FX at the point xj. These points
are illustrated quite clearly in Figure 2.3. For a numerical example (associated
with Figure 2.3), let the r.v. X take on the values: −14, −6, 5, 9, and 24 with
respective probabilities: 0.17, 0.28, 0.22, 0.22, and 0.11.

−14 −6 0 5 9 24
x

F(x)

0.17

0.28

0.22

0.22
0.111

Figure 2.3
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Several specific cases of discrete r.v.’s are discussed in Section 3 of the
following chapter. Also, Examples 4–12, 18–20, 26, 27, and 32–35 in Chapter 1
lead to discrete r.v.’s.

Now, suppose that X is a continuous r.v., one which takes on all values in
a proper interval I (finite or not) in the real line �, so that I = (a, b) with
−∞ ≤ a < b ≤ ∞. Suppose further that there exists a function f : I → [0, ∞)
having the following property: FX(x) = ∫ x

a
f (t) dt, x ∈ I. In particular,∫ b

a

f (t) dt = FX(b) = P(X ≤ b) = P(a ≤ X ≤ b).

If I is not all of �, extend f off I by setting f (x) = 0 for x /∈ I. Thus, for
all x : f (x) ≥ 0 and FX(x) = ∫ x

−∞ f (t) dt. As has already been pointed out
elsewhere, FX uniquely determines PX. The implication of it is that P(X ∈
B) = PX(B) = ∫

B
f (t) dt, B ⊆ �, and, in particular,∫
�

f (t) dt =
∫ ∞

−∞
f (t) dt = P(X ∈ �) = 1.

The function f with the properties: f (x) ≥ 0 all x and P(X ∈ B) = ∫
B

f (t) dt,
B ⊆ �, is the p.d.f. of the r.v. X. In order to emphasize its association with the
r.v. X, we often write fX.

Most of the continuous r.v.’s we are dealing with in this book do have p.d.f.’s.
In Section 3 of the following chapter, a number of such r.v.’s will be presented
explicitly.

Also, Examples 13–17, 21–25, and 36–40 in Chapter 1, under reasonable
assumptions, lead to continuous r.v.’s, as will be seen on various occasions
later. Continuous r.v.’s having p.d.f.’s, actually, form a subclass of all continuous
r.v.’s and are referred to as absolutely continuous r.v.’s. In this book, the term
continuous r.v. will be used in the sense of an absolutely continuous r.v.

It is to be observed that for a continuous r.v. X, P(X = x) = 0 for all
x ∈ �. That is, the probability that X takes on any specific value x is 0; X

takes on values with positive probabilities in a nondegenerate interval around
x. That P(X = x) = 0 follows, of course, from the definition of the p.d.f. of a
continuous r.v., as

P(X = x) =
∫

{x}
f (t) dt = 0.

For a case of a genuine (absolutely) continuous r.v., refer to Example 37
in Chapter 1 and let X and Y be r.v.’s denoting the cartesian coordinates of
the point P of impact. Then the distance of P from the origin is the r.v.
R = √

X 2 + Y 2, which truly takes every value in [0, ∞). As will be seen, it
is reasonable to assume that X and Y are independently normally distributed
with mean 0 and variance σ 2. This leads to the fact that R2 is a multiple of a
chi-square distributed r.v., so that the p.d.f. of R is precisely determined. (See
Exercise 2.14 in Chapter 5.)

If X is a continuous r.v. with p.d.f. fX , then its d.f. FX is given by FX(x) =∫ x

−∞ fX(t) dt, x ∈ �, so that fX uniquely determines FX. It is also true that
dFX(x)

dx
= fX(x) (for continuity points x of fX). Thus, FX also determines fX.
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In summary then, with a r.v. X, we have associated three quantities:

(i) The probability distribution of X, denoted by PX , which is a set function
and gives the probabilities P(X ∈ B), B ⊆ �.

(ii) The d.f. of X, denoted by FX , which is a point function and gives the
probabilities P(X ∈ (−∞, x]) = P(X ≤ x) = FX(x), x ∈ �.

(iii) The p.d.f. fX which is a nonnegative (point) function and gives all prob-
abilities we may be interested in, either through a summation (for the
discrete case) or through an integration (for the continuous case). Thus,
for every x ∈ �:

FX(x) = P(X ≤ x) =
⎧⎨⎩
∑

xi≤x

fX(xi) for the discrete case∫ x

−∞ fX(t) dt for the continuous case,

or, more generally:

PX(B) = P(X ∈ B) =
⎧⎨⎩
∑

xi∈B

fX(xi) for the discrete case∫
B

fX(t) dt for the continuous case.

In the discrete case, fX(xi) = P(X = xi) = PX({xi}), whereas in the
continuous case, fX(x) = 0 for every x. The p.d.f. fX , clearly, determines the
d.f. FX , and the converse is also true. Of course, the p.d.f. fX also determines
the probability distribution PX , but what is also true, although not obvious, is
that the d.f. FX determines the probability distribution PX.

Given a r.v. X, we are primarily if not exclusively interested in its probability
distribution PX. Because of the above, it suffices to restrict ourselves either to
the d.f. FX , or even better, to the p.d.f. fX , which is easier to work with.

The notation X ∼ FX or X ∼ fX stands for the statement that the r.v. X has
the d.f. FX or p.d.f. fX , respectively.

This section is concluded with the following observation and some follow-
up discussion. If Q is any probability distribution in �, then there is a r.v. X

such that PX = Q. To see this, let Y be a r.v. with p.d.f. fY(y) = 1 in [0, 1] (and
0 outside this interval). Then its d.f. FY is given by:

FY(y) = 0, y < 0; FY(y) = y, 0 ≤ y ≤ 1; FY(y) = 1, y > 1.

Next, let F be the d.f. determined by Q, and suppose it is strictly increasing,
so that the inverse F−1 exists. Set X = F−1(Y ). Then we assert that FX = F.

Indeed,

FX(x) = P(X ≤ x) = P[F−1(Y ) ≤ x] = P{F[F−1(Y )] ≤ F(x)}
= P[Y ≤ F(x)] = F(x),

because 0 ≤ F(x) ≤ 1. That is, FX(x) = F(x), x ∈ �. The same result follows
even if F is not strictly increasing by a modified definition of the inverse F−1.

Along the same line, it makes sense to ask whether a given function f is the
p.d.f. or a r.v. X. The required conditions for this to be the case are: f (x) ≥ 0
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for all x, and either

f (xj) > 0, j = 1, 2, . . . , with
∑

j

f (xj) = 1, and f (x) = 0 for all x �= xj , j ≥ 1;

or
∫ ∞

−∞
f (x) dx = 1.

This is so because in either case f defines a d.f. F and hence a r.v. X (discrete
in the former case, and continuous in the latter case) with d.f. F.

Let us conclude this section with the following concrete examples.

EXAMPLE 10 The number of light switch turn-ons at which the first failure occurs is a r.v. X

whose p.d.f. is given by: f (x) = c( 9
10 )x−1, x = 1, 2, . . . (and 0 otherwise).

(i) Determine the constant c.

(ii) Calculate the probability that the first failure will not occur until after the
10th turn-on.

(iii) Determine the corresponding d.f. F.

Hint: At this point, recall how we sum geometric series; namely,
∑∞

n=k tn =
tk

1−t
, |t| < 1, k = 0, 1, . . . .

DISCUSSION

(i) The constant c is determined through the relationship:
∑∞

x=1 f (x) =
1 or
∑∞

x=1 c( 9
10 )x−1 = 1. However,

∑∞
x=1 c( 9

10 )x−1 = c
∑∞

x=1( 9
10 )x−1 =

c[1 + ( 9
10 ) + ( 9

10 )2 + · · ·] = c 1
1− 9

10
= 10c, so that c = 1

10 .

(ii) Here P(X > 10) = P(X ≥ 11) = c
∑∞

x=11( 9
10 )x−1 = c[( 9

10 )10 + ( 9
10 )11 +

· · ·] = c
( 9

10 )10

1− 9
10

= c · 10( 9
10 )10 = 1

10 · 10( 9
10 )10 = (0.9)10 � 0.349.

(iii) First, for x < 1, F(x) = 0. Next, for x ≥ 1, F(x) = ∑x

t=1 c( 9
10 )t−1 =

1 −∑∞
t=x+1 c · ( 9

10 )t−1 = 1 − c
∑∞

t=x+1( 9
10 )t−1 = 1 − 1

10 · ( 9
10 )x

1− 9
10

= 1 − ( 9
10 )x.

Thus, F(x) = 0 for x < 1, and F(x) = 1 − ( 9
10 )x for x ≥ 1.

EXAMPLE 11 The recorded temperature in an engine is a r.v. X whose p.d.f. is given by:
f (x) = n(1 − x)n−1, 0 ≤ x ≤ 1 (and 0 otherwise), where n ≥ 1 is a known
integer.

(i) Show that f is, indeed, a p.d.f.
(ii) Determine the corresponding d.f. F.

DISCUSSION

(i) Because f (x) ≥ 0 for all x, we simply have to check that
∫ 1

0 f (x) dx = 1. To
this end,

∫ 1
0 f (x) dx = ∫ 1

0 n(1 − x)n−1 dx = −n
(1−x)n

n
|10 = −(1 − x)n|10 = 1.

(ii) First, F(x) = 0 for x < 0, whereas for 0 ≤ x ≤ 1, F(x) = ∫ x

0 n(1−t)n−1dt =
−(1− t)n|x0 (from part (i)), and this is equal to: −(1− x)n+1 = 1− (1− x)n.

Thus,

F(x) =
⎧⎨⎩

0, x < 0
1 − (1 − x)n, 0 ≤ x ≤ 1
1, x > 0.
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Exercises

2.1 A sample space describing a three-children family is as follows: S =
{bbb, bbg, bgb, gbb, bgg, gbg, ggb, ggg}, and assume that all eight out-
comes are equally likely to occur. Next, let X be the r.v. denoting the
number of girls in such a family. Then:

(i) Determine the set of all possible values of X.

(ii) Determine the p.d.f. of X.

(iii) Calculate the probabilities: P(X ≥ 2), P(X ≤ 2).

2.2 A r.v. X has d.f. F given by:

F(x) =

⎧⎪⎨⎪⎩
0, x ≤ 0

2c
(
x2 − 1

3 x3
)
, 0 < x ≤ 2

1, x > 2.

(i) Determine the corresponding p.d.f. f.

(ii) Determine the constant c.

2.3 The r.v. X has d.f. F given by:

F(x) =

⎧⎪⎨⎪⎩
0, x ≤ 0
x3 − x2 + x, 0 < x ≤ 1
1, x > 1.

(i) Determine the corresponding p.d.f. f.

(ii) Calculate the probability P(X > 1
2 ).

2.4 The r.v. X has d.f. F given by:

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 4
0.1, 4 ≤ x < 5
0.4, 5 ≤ x < 6
0.7, 6 ≤ x < 8
0.9, 8 ≤ x < 9
1, x ≥ 9.

(i) Draw the graph of F.

(ii) Calculate the probabilities

P(X ≤ 6.5), P(X > 8.1), P(5 < x < 8).

2.5 Let X be a r.v. with p.d.f. f (x) = cx−(c+1), for x ≥ 1, where c is a positive
constant.
(i) Determine the constant c, so that f is, indeed, a p.d.f.

(ii) Determine the corresponding d.f. F.

2.6 Let X be a r.v. with p.d.f. f (x) = cx + d, for 0 ≤ x ≤ 1, and suppose that
P(X > 1

2 ) = 1
3 . Then:

(i) Determine the constants c and d.

(ii) Find the d.f. F of X.
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2.7 Show that the function f (x) = (1
2 )x, x = 1, 2, . . . is a p.d.f.

2.8 For what value of c is the function f (x) = cαx, x = 0, 1, . . . a p.d.f.?
The quantity α is a number such that 0 < α < 1.

2.9 For what value of the positive constant c is the function f (x) = cx, x =
1, 2, . . . a p.d.f.?

2.10 The p.d.f. of a r.v. X is f (x) = c(1
3 )x, for x = 0, 1, . . . , where c is a positive

constant.
(i) Determine the value of c.

(ii) Calculate the probability P(X ≥ 3).

2.11 The r.v. X has p.d.f. f given by: f (x) = c(1 − x2), −1 ≤ x ≤ 1.

(i) Determine the constant c.

(ii) Calculate the probability P(−0.9 < X < 0.9).

2.12 Let X be a r.v. denoting the lifetime of an electrical equipment, and sup-
pose that the p.d.f. of X is: f (x) = ce−cx, for x > 0 (for some constant
c > 0).

(i) Determine the constant c.

(ii) Calculate the probability that X is at least equal to 10 (time units).
(iii) If the probability in part (ii) is 0.5, what is the value of c?

2.13 The r.v. X has the so-called Pareto p.d.f. given by: f (x) = 1+α
x2+α , for x > 1,

where α is a positive constant.
(i) Verify that f is, indeed, a p.d.f.

(ii) Calculate the probability P(X > c), for some c > 1.

2.14 Suppose that the r.v. X takes on the values 0, 1, . . . with the respective
probabilities P(X = j) = f ( j) = c

3 j , j = 0, 1, . . . . Then:
(i) Determine the constant c.

Compute the probabilities:
(ii) P(X ≥ 3).

(iii) P(X = 2k + 1, k = 0, 1, . . .).
(iv) P(X = 3k + 1, k = 0, 1, . . .).

2.15 Let X be a r.v. with p.d.f. f whose graph is given below.
Without calculating f and by using geometric arguments, compute the
following probabilities:

P(X ≤ 3), P(1 ≤ X ≤ 2), P(X > 2), P(X > 5).

1/2
f (x)

0 1 2 3 4 5 x



2.3 Conditional Probability and Related Results 41

2.16 Let X be the r.v. denoting the number of a certain item sold by a merchant
in a given day, and suppose that its p.d.f. is given by:

f (x) =
(

1
2

)x+1

, x = 0, 1, . . .

Calculate the following probabilities:
(i) No items are sold.

(ii) More than three items are sold.
(iii) An odd number of items is sold.

2.17 Suppose a r.v. X has p.d.f. given by: f (x) = λe−λx, x > 0, (λ > 0), and
you are invited to bet whether the observed value x of X would be ≥c

or <c for some positive constant c.

(i) For what c would you bet in favor of x ≥ c?
(ii) What is the answer in part (i) if λ = 4 log 2? (log is the natural

logarithm.)

2.18 The lifetime in hours of electric tubes is a r.v. X with p.d.f. f (x) = c2xe−cx,
for x ≥ 0, where c is a positive constant.

(i) Determine the constant c for which f is, indeed, a p.d.f.
(ii) Calculate the probability that the lifetime will be at least t hours.

(iii) Find the numerical value in part (ii) for c = 0.2 and t = 10.

2.19 Let X be the r.v. denoting the number of forms required to be filled out
by a contractor for participation in contract bids, where the values of
X are 1, 2, 3, 4, and 5, and suppose that the respective probabilities are
proportional to x; that is, P(X = x) = f (x) = cx, x = 1, . . . , 5.

(i) Determine the constant c.

(ii) Calculate the probabilities:

P(X ≤ 3), P(2 ≤ X ≤ 4).

2.20 The recorded temperature in an engine is a r.v. X whose p.d.f. is given
by: f (x) = n(1 − x)n−1, 0 < x < 1 (n ≥ 1, known integer). The engine
is equipped with a thermostat which is activated when the temperature
exceeds a specified level x0. If the probability of the thermostat being
activated is 1/102n, determine x0.

2.3 Conditional Probability and Related Results

Conditional probability is a probability in its own right, as will be seen, and it
is an extremely useful tool in calculating probabilities. Essentially, it amounts
to suitably modifying a sample space S, associated with a random experiment,
on the evidence that a certain event has occurred. Consider the following
examples, by way of motivation, before a formal definition is given.
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EXAMPLE 12 In tossing three distinct coins once (Example 26 in Chapter 1), consider the
events B = “exactly 2 heads occur” = {HHT, HT H, T HH}, A = “2 specified
coins (e.g., coins #1 and #2) show heads” = {HHH, HHT}. Then P(B) = 3

8
and P(A) = 2

8 = 1
4 . Now, suppose we are told that event B has occurred and

we are asked to evaluate the probability of A on the basis of this evidence.
Clearly, what really matters here is the event B, and, given that B has occurred,
the event A occurs only if the sample point HHT appeared; that is, the event
{HHT} = A ∩ B occurred. The required probability is then 1

3 = 1/8
3/8 = P(A∩B)

P(B) ,
and the notation employed is P(A | B) (probability of A, given that B has
occurred or, just, given B). Thus, P(A | B) = P(A∩B)

P(B) . Observe that P(A | B) =
1
3 > 1

4 = P(A).

EXAMPLE 13 In rolling two distinct dice once (Example 27 in Chapter 1), consider the event
B defined by: B = “the sum of numbers on the upper face is 5”, so that B =
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}, and let A =
“the sum of numbers on the upper faces is ≥ 4.” Then Ac = “the sum of numbers
on the upper faces is ≤3” = {(1, 1), (1, 2), (2, 1)}, so that P(B) = 10

36 = 5
18 and

P(A) = 1 − P(Ac) = 1 − 3
36 = 33

36 = 11
12 . Next, if we are told that B has

occurred, then the only way that A occurs is if A ∩ B occurs, where A ∩ B =
“the sum of numbers on the upper faces is both ≥4 and ≤5 (i.e., either 4
or 5)” = {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}. Thus, P(A | B) = 7

10 =
7/36

10/36 = P(A∩B)
P(B) , and observe that P(A | B) = 7

10 < 11
12 = P(A).

EXAMPLE 14 In recording the gender of children in a two-children family (Example 30 in
Chapter 1), let B = {bg, gb} and let A = “older child is a boy” = {bb, bg}, so
that A ∩ B = {bg}. Then P(B) = 1

2 = P(A), P(A | B) = 1
2 .

These examples motivate the following definition of conditional prob-
ability.

DEFINITION 1
The conditional probability of an event A, given the event B with
P(B) > 0, is denoted by P(A | B) and is defined by: P(A | B) = P(A∩ B)/
P(B).

Replacing B by the entire sample space S, we are led back to the (uncondi-

tional) probability of A, as P(A∩S)
P(S) = P(A)

1 = P(A). Thus, the conditional prob-
ability is a generalization of the concept of probability where S is restricted to
an event B.

That the conditional probability is, indeed, a probability is seen formally
as follows: P(A | B) ≥ 0 for every A by definition;

P(S | B) = P(S ∩ B)
P(B)

= P(B)
P(B)

= 1;
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and if A1, A2, . . . are pairwise disjoint, then

P

( ∞⋃
j=1

Aj | B

)
= P
[(⋃∞

j=1 Aj

) ∩ B
]

P(B)
= P
[⋃∞

j=1(Aj ∩ B)
]

P(B)

=
∑∞

j=1 P(Aj ∩ B)

P(B)
=

∞∑
j=1

P(Aj ∩ B)
P(B)

=
∞∑
j=1

P(Aj | B).

It is to be noticed, furthermore, that the P(A | B) can be smaller or larger
than the P(A), or equal to the P(A). The case that P(A | B) = P(A) is of special
interest and will be discussed more extensively in the next section. This point
is made by Examples 12, 13, and 14.

Here are another three examples pertaining to conditional probabilities.

EXAMPLE 15 When we are recording the number of particles emitted by a certain radioactive
source within a specified period of time (Example 35 in Chapter 1), we are going
to see that, if X is the number of particles emitted, then X is a r.v. taking on
the values 0,1,. . . and that a suitable p.d.f. for it is fX(x) = e−λ λx

x! , x = 0, 1, . . . ,
for some constant λ > 0. Next, let B and A be the events defined by: B =
(X ≥ 10), A = (X ≤ 11), so that A∩ B = (10 ≤ X ≤ 11) = (X = 10 or X = 11).
Then

P(B) =
∞∑

x=10

e−λ λx

x!
= e−λ

∞∑
x=10

λx

x!
,

P(A) =
11∑

x=0

e−λ λx

x!
= e−λ

11∑
x=0

λx

x!
, and

P(A | B) =
(

e−λ λ10

10!
+ e−λ λ11

11!

)/
e−λ

∞∑
x=10

λx

x!
.

Once again, P(A | B) = P(A∩B)
P(B) . For a numerical example, take λ = 10. Then

we have (by means of Poisson tables):

P(B) � 0.5421, P(A) � 0.6968, and P(A | B) � 0.441.

EXAMPLE 16 When recording the lifetime of an electronic device, or of an electrical appli-
ance etc. (Example 36 in Chapter 1), if X is the lifetime under consideration,
then X is a r.v. taking values in [0, ∞), and a suitable p.d.f. for it is seen to be
the function fX(x) = λe−λx, x ≥ 0, for some constant λ > 0. Let B and A be
the events: B = “at the end of 5 time units, the equipment was still operat-
ing” = (X ≥ 5), A = “the equipment lasts for no more than 2 additional time
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units” = (X ≤ 7). Then A ∩ B = (5 ≤ X ≤ 7), and:

P(B) =
∫ ∞

5
λe−λx dx = e−5λ, P(A) =

∫ 7

0
λe−λx dx = 1 − e−7λ,

P(A ∩ B) =
∫ 7

5
λe−λx dx = e−5λ − e−7λ, so that

P(A | B) = P(A ∩ B)
P(B)

= e−5λ − e−7λ

e−5λ
= 1 − e−2λ.

Take, for instance, λ = 1
10 . Then, given that e−1 � 0.36788, the preceding

probabilities are:

P(B) � 0.607, P(A) � 0.503 and P(A | B) � 0.181.

EXAMPLE 17 If for the events A and B, P(A)P(B) > 0, then show that: P(A | B) > P(A)
if and only if P(B | A) > P(B). Likewise, P(A | B) < P(A) if and only if
P(B | A) < P(B).

DISCUSSION Indeed, P(A | B) > P(A) is equivalent to P(A∩B)
P(B) > P(A) or

P(A∩B)
P(A) > P(B) or P(B | A) > P(B). Likewise, P(A | B) < P(A) is equivalent

to P(A∩B)
P(B) < P(A) or P(A∩B)

P(A) < P(B) or P(B | A) < P(B).
This section is concluded with three simple but very useful results. They

are the so-called multiplicative theorem, the total probability theorem, and the
Bayes formula.

THEOREM 3
(Multiplicative Theorem) For any nevents A1, . . . , An with P(

⋂n−1
j=1 Aj) >

0, it holds:

P

(
n⋂

j=1

Aj

)
= P(An | A1 ∩ . . . ∩ An−1)P(An−1 | A1 ∩ . . . ∩ An−2)

. . . P(A2 | A1)P(A1).

Its justification is simple, is done by induction, and is left as an exercise
(see Exercise 3.8). Its significance is that we can calculate the probability of
the intersection of nevents, step by step, by means of conditional probabilities.
The calculation of these conditional probabilities is far easier. Here is a simple
example which amply illustrates the point.

EXAMPLE 18 An urn contains 10 identical balls of which 5 are black, 3 are red, and 2 are
white. Four balls are drawn one at a time and without replacement. Find the
probability that the first ball is black, the second red, the third white, and the
fourth black.
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DISCUSSION Denoting by B1 the event that the first ball is black, and
likewise for R2, W3, and B4, the required probability is:

P(B1 ∩ R2 ∩ W3 ∩ B4) = P(B4 | B1 ∩ R2 ∩ W3)P(W3 | B1 ∩ R2)P(R2 | B1)P(B1).

Assuming equally likely outcomes at each step, we have:

P(B1) = 5
10

, P(R2 | B1) = 3
9

, P(W3 | B1 ∩ R2) = 2
8

,

P(B4 | B1 ∩ R2 ∩ W3) = 4
7
.

Therefore,

P(B1 ∩ R2 ∩ W3 ∩ B4) = 4
7

× 2
8

× 3
9

× 5
10

= 1
42

� 0.024.

For the formulation of the next result, the concept of a partition of S is
required. The events {A1, A2, . . . , An} form a partition of S, if these events are
pairwise disjoint, Ai ∩ Aj = ∅, i �= j, and their union is S,

⋃n

j=1 Aj = S. Then
it is obvious that any event B in S may be expressed as follows, in terms of a
partition of S; namely, B =⋃n

j=1(Aj ∩ B). Furthermore,

P(B) =
n∑

j=1

P(Aj ∩ B) =
n∑

j=1

P(B | Aj)P(Aj), provided P(Aj) > 0 for all j.

The concept of partition is defined similarly for countably infinite many events,
and the probability P(B) is expressed likewise. In the sequel, by writing j =
1, 2, . . . and

∑
j we mean to include both cases, finitely many indices and

countably infinite many indices.
Thus, we have the following result.

THEOREM 4
(Total Probability Theorem) Let {A1, A2, . . .} be a partition of S, and let
P(Aj) > 0 for all j. Then, for any event B,

P(B) =
∑

j

P(B | Aj)P(Aj).

The significance of this result is that, if it happens that we know the prob-
abilities of the partitioning events P(Aj), as well as the conditional prob-
abilities of B, given Aj , then these quantities may be combined, according
to the preceding formula, to produce the probability P(B). The probabilities
P(Aj), j = 1, 2, . . . are referred to as a priori or prior probabilities. The fol-
lowing examples illustrate the theorem and also demonstrate its usefulness.

EXAMPLE 19 In reference to Example 2 in Chapter 1, calculate the probability P(+).

DISCUSSION Without having to refer specifically to a sample space, it is
clear that the events D and N form a partition. Then,

P(+) = P(+ and D) + P(+ and N ) = P(+ | D)P(D) + P(+ | N )P(N ).
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Here the a priori probabilities are P(D) = p1, P(N ) = 1 − p1, and

P(+ | D) = 1 − P(− | D) = 1 − p3, P(+ | N ) = p2.

Therefore, P(+) = (1 − p3)p1 + p2(1 − p1). For a numerical application, take
p1 = 0.02 and p2 = p3 = 0.01. Then P(+) = 0.0296. So, on the basis of this
testing procedure, about 2.96% of the population would test positive.

EXAMPLE 20 The proportion of motorists in a given gas station using regular unleaded gaso-
line, extra unleaded, and premium unleaded over a specified period of time
are 40%, 35%, and 25%, respectively. The respective proportions of filling their
tanks are 30%, 50%, and 60%. What is the probability that a motorist selected
at random from among the patrons of the gas station under consideration and
for the specified period of time will fill his/her tank?

DISCUSSION Denote by R, E, and P the events of a motorist using un-
leaded gasoline which is regular, extra unleaded, and premium, respectively,
and by F the event of having the tank filled. Then the translation into terms of
probabilities of the proportions given above is:

P(R) = 0.40, P(E) = 0.35, P(P) = 0.25,

P(F | R) = 0.30, P(F | E) = 0.50, P(F | P) = 0.60.

Then the required probability is:

P(F) = P((F ∩ R) ∪ (F ∩ E) ∪ (F ∩ P))

= P(F ∩ R) + P(F ∩ E) + P(F ∩ P)

= P(F | R)P(R) + P(F | E)P(E) + P(F | P)P(P)

= 0.30 × 0.40 + 0.50 × 0.35 + 0.60 × 0.25

= 0.445.

In reference to Theorem 4, stipulating the prior probabilities P(B | Aj), j =
1, 2, . . . , is often a precarious thing and guesswork. This being the case, the
question then arises of whether experimentation may lead to reevaluation of
the prior probabilities on the basis of new evidence. To put it more formally,
is it possible to use P(Aj) and P(B | Aj), j = 1, 2, . . . in order to calculate
P(Aj | B)? The answer to this question is in the affirmative, is quite simple,
and is the content of the next result.

THEOREM 5
(Bayes’ Formula) Let {A1, A2, . . .} and B be as in the previous theorem.
Then, for any j = 1, 2, . . . :

P(Aj | B) = P(B | Aj)P(Aj)∑
i P(B | Ai)P(Ai)

.
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PROOF Indeed, P(Aj | B) = P(Aj ∩ B)/P(B) = P(B | Aj)P(Aj)/P(B), and
then the previous theorem completes the proof. ▲

The probabilities P(Aj | B), j = 1, 2, . . . , are referred to as posterior prob-
abilities in that they are reevaluations of the respective prior P(Aj) after the
event B has occurred.

EXAMPLE 21 Referring to Example 19, a question of much importance is this: Given that the
test shows positive, what is the probability that the patient actually has the
disease? In terms of the notation adopted, this question becomes: P(D | +) =?
Bayes’ formula gives:

P(D | +) = P(+ | D)P(D)
P(+ | D)P(D) + P(+ | N )P(N )

= p1(1 − p3)
p1(1 − p3) + p2(1 − p1)

.

For the numerical values used above, we get:

P(D | +) = 0.02 × 0.99
0.0296

= 0.0198
0.0296

= 198
296

� 0.669.

So P(D | +) � 66.9%. This result is both reassuring and surprising. Reassuring,
in that only 66.9% of those testing positive actually have the disease. Surprising,
in that this proportion looks rather low, given that the test is quite good: it
identifies correctly 99% of those having the disease. A reconciliation between
these two seemingly contradictory aspects is as follows: The fact that P(D) =
0.02 means that, on the average, 2 out of 100 persons have the disease. So, in
100 persons, 2 will have the disease and 98 will not. When 100 such persons are
tested, 2 × 0.99 = 1.98 will be correctly confirmed as positive (because 0.99 is
the probability of a correct positive), and 98 × 0.01 = 0.98 will be incorrectly
diagnosed as positive (because 0.01 is the probability of an incorrect positive).
Thus, the proportion of correct positives is equal to:

(correct positives)/(correct positives + incorrect positives)

= 1.98/(1.98 + 0.98) = 1.98/2.96 = 198/296 � 0.669.

REMARK 1 The fact that the probability P(D | +) is less than 1 simply
reflects the fact that the test, no matter how good, is imperfect. Should the test
be perfect (P(+ | D) = P(− | Dc) = 1), then P(D | +) = 1, as follows from the
preceding calculations, no matter what P(D) is. The same, of course, is true
for P(Dc | −).

EXAMPLE 22 Refer to Example 20 and calculate the probabilities: P(R | F), P(E | F), and
P(P | F).

DISCUSSION By Bayes’ formula and Example 20,

P(R | F) = P(R ∩ F)
P(F)

= P(F | R)P(R)
P(F)

= 0.30 × 0.40
0.445

� 0.270,
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and likewise,

P(E | F) = 0.50 × 0.35
0.445

� 0.393, P(P | F) = 0.60 × 0.25
0.445

� 0.337.

Exercises

3.1 If P(A | B) > P(A), then show that P(B | A) > P(B), by assuming that
both P(A) and P(B) are positive.

3.2 If A ∩ B = ∅ and P(A ∪ B) > 0, express the probabilities P(A | A ∪ B)
and P(B | A ∪ B) in terms of P(A) and P(B).

3.3 A girls’ club has in its membership rolls the names of 50 girls with the
following descriptions:
20 blondes, 15 with blue eyes and 5 with brown eyes;
25 brunettes, 5 with blue eyes and 20 with brown eyes;
5 redheads, 1 with blue eyes and 4 with green eyes.
If one arranges a blind date with a club member, what is the probability
that:
(i) The girl is blonde?

(ii) The girl is blonde, if it was revealed only that she has blue eyes?

3.4 Suppose that the probability that both of a pair of twins are boys is 0.30
and that the probability that they are both girls is 0.26. Given that the
probability of the first child being a boy is 0.52, what is the probability
that:

(i) The second twin is a boy, given that the first is a boy?
(ii) The second twin is a girl, given that the first is a girl?

(iii) The second twin is a boy?
(iv) The first is a boy and the second is a girl?

3.5 A shipment of 20 TV tubes contains 16 good tubes and 4 defective tubes.
Three tubes are chosen successively and at random each time and are
also tested successively. What is the probability that:

(i) The third tube is good if the first two were found to be good?
(ii) The third tube is defective if the first was found to be good and the

second defective?
(iii) The third tube is defective if the first was found to be defective and

the second was found to be good?
(iv) The third tube is defective if one of the other two was found to be

good and the other was found to be defective?

3.6 For any three events A, B, and C with P(A)P(B)P(C) > 0, show that:
(i) P(Ac | B) = 1 − P(A | B).

(ii) P(A ∪ B | C) = P(A | C) + P(B | C) − P(A ∩ B | C).
Also, by means of counterexamples, show that the following equa-
tions need not be true:



Exercises 49

(iii) P(A | Bc) = 1 − P(A | B).
(iv) P(C | A ∪ B) = P(C | A) + P(C | B), where A ∩ B = ∅.

3.7 If A, B, and C are any events in the sample space S, show that {A,
Ac ∩ B, Ac ∩ Bc ∩ C, (A ∪ B ∪ C)c} is a partition of S.

3.8 Use induction to prove Theorem 3.

3.9 Let {Aj , j = 1, . . . , 5} be a partition of the sample space S and suppose
that:

P(Aj) = j

15
and P(A | Aj) = 5 − j

15
, j = 1, . . . , 5.

Compute the probabilities P(Aj | A), j = 1, . . . , 5.

3.10 A box contains 15 identical balls except that 10 are red and 5 are black.
Four balls are drawn successively and without replacement.
Calculate the probability that the first and the fourth balls are red.

3.11 A box contains m+ n identical balls except that m of them are red and
n are black. A ball is drawn at random, its color is noticed, and then the
ball is returned to the box along with r balls of the same color. Finally, a
ball is drawn also at random.

(i) What is the probability that the first ball is red?
(ii) What is the probability that the second ball is red?

(iii) Compare the probabilities in parts (i) and (ii) and comment on them.
(iv) What is the probability that the first ball is black if the second is red?
(v) Find the numerical values in parts (i), (ii), and (iv) if m = 9, n = 6,

and r = 5.

3.12 A test correctly identifies a disease D with probability 0.95 and wrongly
diagnoses D with probability 0.01. From past experience, it is known
that disease D occurs in a targeted population with frequency 0.2%. An
individual is chosen at random from said population and is given the test.
Calculate the probability that:
(i) The test is +, P(+).

(ii) The individual actually suffers from disease D if the test turns out to
be positive, P(D | +).

3.13 Suppose that the probability of correct diagnosis (either positive or neg-
ative) of cervical cancer in the Pap test is 0.95 and that the proportion
of women in a given population suffering from this disease is 0.01%. A
woman is chosen at random from the target population and the test is
administered.
What is the probability that:
(i) The test is positive?

(ii) The subject actually has the disease, given that the diagnosis is
positive?

3.14 A signal S is sent from point A to point B and is received at B if both
switches I and II are closed. It is assumed that the probabilities of I and
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II being closed are 0.8 and 0.6, respectively, and that P(II is closed/I is
closed) = P(II is closed).

A B

I II

Calculate the following probabilities:
(i) The signal is received at B.

(ii) The (conditional) probability that switch I was open, given that the
signal was not received at B.

(iii) The (conditional) probability that switch II was open, given that the
signal was not received at B.

3.15 The student body in a certain college consists of 55% women and 45%
men. Women and men smoke cigarettes in the proportions of 20% and
25%, respectively. If a student is chosen at random, calculate the proba-
bility that:
(i) The student is a smoker.

(ii) The student is a man, given that he/she is a smoker.

3.16 From a population consisting of 52% females and 48% males, an individ-
ual, drawn at random, is found to be color blind. If we assume that the
proportions of color-blind females and males are 25% and 5%, respec-
tively, what is the probability that the individual drawn is a male?

3.17 Drawers I and II contain black and red pencils as follows:
Drawer I: b1 black pencils and r1 red pencils,
Drawer II: b2 black pencils and r2 red pencils.
A drawer is chosen at random and then a pencil is also chosen at random
from that drawer.

(i) What is the probability that the pencil is black?
(ii) If it is announced that the pencil is black, what is the probability it

was chosen from drawer I?
(iii) Give numerical values in parts (i) and (ii) for b1 = 36, r1 = 12, b2 =

60, r2 = 24.

3.18 Three machines I, II, and III manufacture 30%, 30%, and 40%, respectively,
of the total output of certain items. Of them, 4%, 3%, and 2%, respectively,
are defective. One item is drawn at random from the total output and is
tested.

(i) What is the probability that the item is defective?
(ii) If it is found to be defective, what is the probability the item was

produced by machine I?
(iii) Same question as in part (ii) for each one of the machines II and III.
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3.19 Suppose that a multiple choice test lists n alternative answers of which
only one is correct. If a student has done the homework, he/she is certain
to identify the correct answer; otherwise the student chooses an answer
at random. Denote by A the event that the student does the homework,
set p = P(A), and let B be the event that he/she answers the question
correctly.

(i) Express the probability P(A | B) in terms of p and n.

(ii) If 0 < p< 1 and fixed, show that the probability P(A | B), as a func-
tion of n, is increasing.

(iii) Does the result in part (ii) seem reasonable?

3.20 If the p.d.f. of the r.v. X is: f (x) = λe−λx, for x > 0 (λ > 0), calculate:
(i) P(X > t) (for some t > 0).

(ii) P(X > s + t | X > s) (for some s, t > 0).
(iii) Compare the probabilities in parts (i) and (ii), and draw your

conclusion.

2.4 Independent Events and Related Results

In Example 14, it was seen that P(A | B) = P(A). Thus, the fact that the event
B occurred provides no information in reevaluating the probability of A. Under
such a circumstance, it is only fitting to say that A is independent of B. For
any two events A and B with P(B) > 0, we say that A is independent of B, if
P(A | B) = P(A). If, in addition, P(A) > 0, then B is also independent of A

because

P(B | A) = P(B ∩ A)
P(A)

= P(A ∩ B)
P(A)

= P(A | B)P(B)
P(A)

= P(A)P(B)
P(A)

= P(B).

Because of this symmetry, we then say that A and B are independent. From
the definition of either P(A | B) or P(B | A), it follows then that P(A ∩ B) =
P(A)P(B). We further observe that this relation is true even if one or both
of P(A), P(B) are equal to 0. We take this relation as the defining relation of
independence.

DEFINITION 2
Two events A1 and A2 are said to be independent (statistically or stochas-

tically or in the probability sense), if P(A1 ∩ A2) = P(A1)P(A2). When
P(A1 ∩ A2) �= P(A1)P(A2) they are said to be dependent.

REMARK 2 At this point, it should be emphasized that disjointness and
independence of two events are two distinct concepts; the former does not
even require the concept of probability. Nevertheless, they are related in that,
if A1 ∩ A2 = ∅, then they are independent if and only if at least one of
P(A1), P(A2) is equal to 0. Thus (subject to A1 ∩ A2 = ∅), P(A1)P(A2) > 0
implies that A1 and A2 are definitely dependent.
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The definition of independence extends to three events A1, A2, A3, as well
as to any number n of events A1, . . . , An. Thus, three events A1, A2, A3 for
which P(A1 ∩ A2 ∩ A3) > 0 are said to be independent, if all conditional
probabilities coincide with the respective (unconditional) probabilities:

P(A1 | A2) = P(A1 | A3) = P(A1 | A2 ∩ A3) = P(A1)

P(A2 | A1) = P(A2 | A3) = P(A2 | A1 ∩ A3) = P(A2)

P(A3 | A1) = P(A3 | A2) = P(A3 | A1 ∩ A2) = P(A3)

P(A1 ∩ A2 | A3) = P(A1 ∩ A2), P(A1 ∩ A3 | A2)

= P(A1 ∩ A3), P(A2 ∩ A3 | A1) = P(A2 ∩ A3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

From the definition of conditional probability, relations (1) are equivalent to:

P(A1 ∩ A2) = P(A1)P(A2), P(A1 ∩ A3) = P(A1)P(A3),

P(A2 ∩ A3) = P(A2)P(A3), P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3).

}
(2)

Furthermore, it is to be observed that relations (2) hold even if any of P(A1),
P(A2), P(A3) are equal to 0. These relations are taken as defining relations of
independence of three events A1, A2, A3.

As one would expect, all four relations (2) are needed for independence
(that is, in order for them to imply relations (1)). That this is, indeed, the case
is illustrated by the following examples.

EXAMPLE 23 Let S = {1, 2, 3, 4} and let P({1}) = P({2}) = P({3}) = P({4}) = 1/4. Define
the events A1, A2, A3 by: A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}. Then it is easily
verified that: P(A1 ∩ A2) = P(A1)P(A2), P(A1 ∩ A3) = P(A1)P(A3), P(A2 ∩
A3) = P(A2)P(A3). However, P(A1 ∩ A2 ∩ A3) �= P(A1)P(A2)P(A3).

EXAMPLE 24 Let S = {1, 2, 3, 4, 5} and let P({1}) = 2
16 , P({2}) = P({3}) = P({4}) = 3

16 ,
P({5}) = 5

16 . Define the events A1, A2, A3 by: A1 = {1, 2, 3}, A2 = {1, 2, 4}, A3 =
{1, 3, 4}. Then it is easily verified that: P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3)
but none of the other three relations in (2) is satisfied.

Relations (2) provide the pattern of the definition of independence of n

events. Thus:

DEFINITION 3
The events A1, . . . , An are said to be independent (statistically or stochas-

tically or in the probability sense) if, for all possible choices of k out of
n events (2 ≤ k ≤ n), the probability of their intersection equals the
product of their probabilities. More formally, for any k with 2 ≤ k ≤ n
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and any integers j1, . . . , jk with 1 ≤ j1 < · · · < jk ≤ n, we have:

P

(
k⋂

i=1

Aji

)
=

k∏
i=1

P
(
Aji

)
. (3)

If at least one of the relations in (3) is violated, the events are said to be
dependent. The number of relations of the form (3) required to express
independence of n events is:(

n

2

)
+
(

n

3

)
+ · · · +

(
n

n

)
= 2n −

(
n

1

)
−
(

n

0

)
= 2n − n − 1.

For example, for n = 2, 3, these relations are: 22 − 2 − 1 = 1 and 23 −
3 − 1 = 4, respectively.

Typical cases where independent events occur are whenever we are sam-
pling with replacement from finite populations, such as selecting successively
and with replacement balls from an urn containing balls of several colors,
pulling successively and with replacement playing cards out of a standard
deck of such cards, and the like.

The following property of independence of events is often used without
even being acknowledged; it is stated here as a theorem.

THEOREM 6
(i) If the events A1, A2 are independent, then so are all three sets of
events: A1, Ac

2; Ac
1, A2; Ac

1, Ac
2.

(ii) More generally, if the events A1, . . . , An are independent, then so are
the events A′

1, . . . , A′
n, where A′

i stands either for Ai or Ac
i , i = 1, . . . , n.

For illustrative purposes, we present the proof of part (i) only.

PROOF OF PART (i) Clearly, A1 ∩ Ac
2 = A1 − A1 ∩ A2. Thus,

P
(
A1 ∩ Ac

2

) = P(A1 − A1 ∩ A2) = P(A1) − P(A1 ∩ A2) (since A1 ∩ A2 ⊆ A1)

= P(A1) − P(A1)P(A2) (by independence of A1, A2)

= P(A1)[1 − P(A2)] = P(A1)P
(
Ac

2

)
.

The proof of P(Ac
1 ∩ A2) = P(Ac

1)P(A2) is entirely symmetric. Finally,

P
(
Ac

1 ∩ Ac
2

) = P((A1 ∪ A2)c) (by DeMorgan’s laws)

= 1 − P(A1 ∪ A2)

= 1 − P(A1) − P(A2) + P(A1 ∩ A2)

= 1 − P(A1) − P(A2) + P(A1)P(A2) (by independence of A1, A2)

= [1 − P(A1)] − P(A2)[1 − P(A1)]

= P
(
Ac

1

)
P
(
Ac

2

)
. ▲
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The following examples will help illustrate concepts and results discussed
in this section.

EXAMPLE 25 Suppose that P(B)P(Bc) > 0. Then the events A and B are independent if and
only if P(A | B) = P(A | Bc).

DISCUSSION First, if A and B are independent, then A and Bc are also
independent, by Theorem 6. Thus, P(A | Bc) = P(A∩B c)

P(B c) = P(A)P(B c)
P(B c) = P(A).

Since also P(A | B) = P(A), the equality P(A | B) = P(A | Bc) holds. Next,
P(A | B) = P(A | Bc) is equivalent to P(A∩B)

P(B) = P(A∩B c)
P(B c) or P(A ∩ B)P(Bc) =

P(A∩ Bc)P(B) or P(A∩ B)[1− P(B)] = P(A∩ Bc)P(B) or P(A∩ B)− P(A∩
B)P(B) = P(A ∩ Bc)P(B) or P(A ∩ B) = [P(A ∩ B) + P(A ∩ Bc)]P(B) =
P(A)P(B), since (A ∩ B) ∪ (A ∩ Bc) = A. Thus, A and B are independent.

REMARK 3 It is to be pointed out that the condition P(A | B) = P(A | Bc)
for independence of the events A and B is quite natural, intuitively. It says that
the (conditional) probability of A remains the same no matter which one of B

or Bc is given.

EXAMPLE 26 Let P(C)P(Cc) > 0. Then the inequalities P(A | C) > P(B | C) and P(A | Cc) >

P(B | Cc) imply P(A) > P(B).

DISCUSSION The inequalities P(A | C) > P(B | C) and P(A | Cc) >

P(B | Cc) are equivalent to P(A∩ C) > P(B ∩ C) and P(A∩ Cc) > P(B ∩ Cc).
Adding up these inequalities, we obtain P(A ∩ C) + P(A ∩ Cc) > P(B ∩ C) +
P(B ∩ Cc) or P(A) > P(B), since A = (A ∩ C) ∪ (A ∩ Cc) and B = (B ∩ C) ∪
(B ∩ Cc).

REMARK 4 Once again, that the inequalities of the two conditional proba-
bilities should imply the same inequality for the unconditional probabilities is
quite obvious on intuitive grounds. The justification given above simply makes
it rigorous.

EXAMPLE 27 If the events A, B, and C are independent, then P(A ∪ B ∪ C) = 1 − [1 −
P(A)][1 − P(B)][1 − P(C)].

DISCUSSION Clearly,

P(A ∪ B ∪ C) = P[(Ac ∩ Bc ∩ Cc)c] (by DeMorgan’s laws)

= 1 − P(Ac ∩ Bc ∩ Cc) (by basic property (3))

= 1 − P(Ac)P(Bc)P(Cc) (by Theorem 6(ii)

applied with n = 3)

= 1 − [1 − P(A)][1 − P(B)][1 − P(C)].

EXAMPLE 28 A mouse caught in a maze has to maneuver through three successive escape
hatches in order to escape. If the hatches operate independently and the
probabilities for the mouse to maneuver successfully through them are 0.6,
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0.4, and 0.2, respectively, calculate the probabilities that the mouse: (i) will be
able to escape, (ii) will not be able to escape.

DISCUSSION Denote by H1, H2, and H3 the events that the mouse suc-
cessfully maneuvers through the three hatches, and by E the event that the
mouse is able to escape. We have that H1, H2, and H3 are independent, P(H1) =
0.6, P(H2) = 0.4, and P(H3) = 0.2, and E = H1 ∩ H2 ∩ H3. Then: (i) P(E) =
P(H1 ∩ H2 ∩ H3) = P(H1)P(H2)P(H3) = 0.6 × 0.4 × 0.2 = 0.048, and (ii)
P(Ec) = 1 − P(E) = 1 − 0.048 = 0.952.

The concept of independence carries over to random experiments. Al-
though a technical definition of independence of random experiments is avail-
able, we are not going to indulge in it. The concept of independence of random
experiments will be taken in its intuitive sense, and somewhat more techni-
cally, in the sense that random experiments are independent if they give rise
to independent events associated with them.

Finally, independence is also defined for r.v.’s. This topic will be taken up
in Chapter 5 (see Definition 1 there). Actually, independence of r.v.’s is one of
the founding blocks of most discussions taking place in this book.

Exercises

4.1 If P(A) = 0.4, P(B) = 0.2, and P(C) = 0.3, calculate the probability
P(A ∪ B ∪ C), if the events A, B, and C are:
(i) Pairwise disjoint.

(ii) Independent.

4.2 Show that the event A is independent of itself if and only if P(A) = 0 or
P(A) = 1.

4.3 (i) For any two events A and B, show that P(A∩ B) ≥ P(A)+ P(B)−1.

(ii) If A and B are disjoint, then show that they are independent if and
only if at least one of P(A) and P(B) is zero.

(iii) If the events A, B, and C are pairwise disjoint, under what conditions
are they independent?

4.4 Suppose that the events A1, A2, and B1 are independent, the events A1, A2,
and B2 are independent, and that B1 ∩ B2 = ∅. Then show that the events
A1, A2, B1 ∪ B2 are independent.

4.5 (i) If for the events A, B, and C , it so happens that P(A) = P(B) =
P(C) = 1

2 , P(A∩ B) = P(A∩C) = P(B∩C) = 1
4 , and P(A∩ B∩C) =

1
6 , determine whether or not these events are independent. Justify
your answer.

(ii) For the values given in part (i), calculate the probabilities: P(Ac),
P(A ∪ B), P(Ac ∩ Bc), P(A ∪ B ∪ C), and P(Ac ∩ Bc ∩ Cc).
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4.6 For the events A, B, C and their complements, suppose that:

P(A ∩ B ∩ C) = 1
16

, P(A ∩ Bc ∩ C) = 5
16

, P(A ∩ B ∩ Cc) = 3
16

,

P(A ∩ Bc ∩ Cc) = 2
16

, P(Ac ∩ B ∩ C) = 2
16

, P(Ac ∩ B ∩ Cc) = 1
16

,

P(Ac ∩ Bc ∩ C) = 1
16

, and P(Ac ∩ Bc ∩ Cc) = 1
16

.

(i) Calculate the probabilities: P(A), P(B), P(C).
(ii) Determine whether or not the events A, B, and C are independent.

(iii) Calculate the (conditional) probability P(A | B).
(iv) Determine whether or not the events A and B are independent.

4.7 If the events A1, . . . , An are independent, show that

P

(
n⋃

j=1

Aj

)
= 1 −

n∏
j=1

P
(
Ac

j

)
.

4.8 (i) Three coins, with probability of falling heads being p, are tossed once
and you win, if all three coins show the same face (either all H or all
T). What is the probability of winning?

(ii) What are the numerical answers in part (i) for p = 0.5 and p = 0.4?

4.9 Suppose that men and women are distributed in the freshman and sopho-
more classes of a college according to the proportions listed in the fol-
lowing table.

Class\\Gender M W Totals

F 4 6 10
S 6 x 6 + x

Totals 10 6 + x 16 + x

A student is chosen at random and let M, W, F , and S be the events,
respectively, that the student is a man, a woman, a freshman, or a sopho-
more. Then, being a man or a woman and being a freshman or sophomore
are independent, if:

P(M ∩ F) = P(M)P(F), P(W ∩ F) = P(W )P(F),

P(M ∩ S) = P(M)P(S), P(W ∩ S) = P(W )P(S).

Determine the number x, so that the preceding independence relations
hold.

4.10 The r.v. X has p.d.f. given by:

f (x) =

⎧⎪⎨⎪⎩
cx, 0 ≤ x < 5

c(10 − x), 5 ≤ x < 10
0, elsewhere.
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(i) Determine the constant c.

(ii) Draw the graph of f.

0 5 10

f (x)

x

0.2

Define the events A and B by: A = (X > 5), B = (5 < X < 7.5).
(iii) Calculate the probabilities P(A) and P(B).
(iv) Calculate the conditional probability P(B | A).
(v) Are the events A and B independent or not? Justify your answer.

4.11 Three players I, II, III throw simultaneously three coins with respective
probabilities of falling heads (H) p1, p2, and p3. A sample space describ-
ing this experiment is:

S = {HHH, HHT, HT H, T HH, HTT, T HT, TT H, TTT }.
Define the events Ai, i = 1, 2, 3 and B by:

A1 = {HTT, T HH } A2 = {T HT, HT H }, A3 = {TT H, HHT }
(i.e., the outcome for the ith player, i = 1, 2, 3, is different from those for
the other two players),

B = {HHH, TTT }.
If any one of the events Ai, i = 1, 2, 3 occurs, the ith player wins and
the game ends. If event B occurs, the game is repeated independently as
many times as needed until one of the events A1, A2, A3 occurs.

(i) Calculate the probabilities: P(Ai), i = 1, 2, 3.

(ii) What do these probabilities become for p1 = p2 = p3 = p?
(iii) What is the numerical value in part (ii) if p = 0.5?

Hint: By symmetry, it suffices to calculate P(A1). Let A1 j = “event A1

occurs the jth time,” Bj = “event B occurs the jth time.” Then (with
slight abuse of notation)

A1 = A11 ∪ (B1 ∩ A12) ∪ (B1 ∩ B2 ∩ A13) ∪ . . .

At this point, also recall that:
∑∞

n=0 xn = 1
1−x

, |x| < 1.

4.12 Jim takes the written and road driver’s license tests repeatedly until he
passes them. It is given that the probability that he passes the written test
is 0.9, that he passes the road test is 0.6, and that the tests are independent
of each other. Furthermore, it is assumed that the road test cannot be
taken unless he passes the written test, and that once he passes the
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written test, he does not have to take it again ever, no matter whether he
passes or fails his road tests. Also, it is assumed that the written and the
road test are distinct attempts.
(i) What is the probability that he will pass the road test on his nth

attempt?
(ii) What is the numerical value in part (i) for n = 5?

Hint: Denote by Wi and Rj the events that Jim passes the written test
and the road test the ith and jth time, respectively. Then the required
event is expressed as follows:(
W1 ∩ Rc

1 ∩ . . . ∩ Rc
n−2 ∩ Rn−1

) ∪ (W c
1 ∩ W2 ∩ Rc

1 ∩ . . . ∩ Rc
n−3 ∩ Rn−2

)
∪ . . . ∪ (W c

1 ∩ . . . ∩ W c
n−2 ∩ Wn−1 ∩ Rn

)
.

4.13 The probability that a missile fired against a target is not intercepted
by an antimissile missile is 2

3 . If the missile is not intercepted, then the
probability of a successful hit is 3

4 .

If four missiles are fired independently, what is the probability that:
(i) All four will successfully hit the target?

(ii) At least one will do so?
(iii) What is the minimum number of missiles to be fired so that at least

one is not intercepted with probability at least 0.95?
(iv) What is the minimum number of missiles to be fired so that at least

one hits the target with probability at least 0.99?

4.14 Electric current is transmitted from point A to point B, provided at least
one of the circuits #1 through #n here is closed. It is assumed that the n

circuits close independently of each other and with respective probabil-
ities p1, . . . , pn.

1

2

n

A B

Determine the following probabilities:
(i) No circuit is closed.

(ii) At least one circuit is closed.
(iii) Exactly one circuit is closed.
(iv) How do the expressions in parts (i)–(iii) simplify if p1 = · · · =

pn = p?
(v) What are the numerical values in part (iv) for n = 5 and p = 0.6?
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4.15 Consider two urns U1 and U2 such that urn U1 contains m1 white balls
and n1 black balls, and urn U2 contains m2 white balls and n2 black balls.
All balls are identical except for color. One ball is drawn at random from
each of the urns U1 and U2 and is placed into a third urn. Then a ball is
drawn at random from the third urn. Compute the probability that the
ball is:

(i) Black; (ii) White.
(iii) Give numerical answers to parts (i) and (ii) for: m1 = 10, n1 = 15;

m2 = 35, n2 = 25.

2.5 Basic Concepts and Results in Counting

In this brief section, some basic concepts and results are discussed regarding
the way of counting the total number of outcomes of an experiment or the total
number of different ways we can carry out a task. Although many readers will,
undoubtedly, be familiar with parts of or the entire material in this section, it
would be advisable, nevertheless, to invest some time here in introducing and
adopting some notation, establishing some basic results, and then using them
in computing probabilities in the classical probability framework.

Problems of counting arise in a great number of different situations. Here
are some of them. In each one of these situations, we are asked to compute
the number of different ways that something or other can be done. Here are a
few illustrative cases.

EXAMPLE 29 (i) Attire yourself by selecting a T-shirt, a pair of trousers, a pair of shoes,
and a cap out of n1 T-shirts, n2 pairs of trousers, n3 pairs of shoes, and
n4 caps (e.g., n1 = 4, n2 = 3, n3 = n4 = 2).

(ii) Form all k-digit numbers by selecting the k digits out of n available num-
bers (e.g., k = 2, n = 4 such as {1, 3, 5, 7}).

(iii) Form all California automobile license plates by using one number, three
letters and then three numbers in the prescribed order.

(iv) Form all possible codes by using a given set of symbols (e.g., form all
“words” of length 10 by using the digits 0 and 1).

(v) Place k books on the shelf of a bookcase in all possible ways.
(vi) Place the birthdays of k individuals in the 365 days of a year in all pos-

sible ways.
(vii) Place k letters into k addressed envelopes (one letter to each envelope).

(viii) Count all possible outcomes when tossing k distinct dice.
(ix) Select k cards out of a standard deck of playing cards (e.g., for k = 5,

each selection is a poker hand).
(x) Form all possible k-member committees out of n available individuals.

The calculation of the numbers asked for in situations (i) through (x) just
outlined is in actuality a simple application of the so-called fundamental prin-

ciple of counting, stated next in the form of a theorem.
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THEOREM 7
(Fundamental Principle of Counting) Suppose a task is completed in k

stages by carrying out a number of subtasks in each one of the k stages. If
the numbers of these subtasks are n1, . . . , nk for the k stages, respectively,
then the total number of different ways the overall task is completed is:
n1 × · · · × nk.

Thus, in (i) above the number of different attires is: 4 × 3 × 2 × 2 = 48.

In (ii), the number of all 2-digit numbers formed by using 1, 3, 5, 7 is:
4 × 4 = 16 (11, 13, 15, 17; 31, 33, 35, 37; 51, 53, 55, 57; 71, 73, 75, 77).

In (iii), the number of all possible license plates (by using indiscriminately
all 10 digits from 0 through 9 and all 26 letters of the English alphabet, although
this is not the case in practice) is: 10 × (26 × 26 × 26) × (10 × 10 × 10) =
175,760,000.

In (iv), the number of all possible “words” is found by taking k = 10 and
n1 = · · · = n10 = 2 to obtain: 210 = 1,024.

In (v), all possible arrangements are obtained by taking n1 = k, n2 = k −
1, . . . , nk = k − (k − 1) = 1 to get: k(k − 1) . . . 1 = 1 . . . (k − 1)k. For example,
for k = 10, the number of arrangements is: 3,628,800.

In (vi), the required number is obtained by taking n1 = · · · = nk = 365 to
get: 365k. For example, for k = 3, we have 3653 = 48,627,125.

In (vii), the required number is: k(k − 1) . . . 1 = 1 . . . (k − k)k obtained by
taking n1 = k, n2 = k − 1, . . . , nk = k − (k − 1) = 1.

In (viii), the required number is: 6k obtained by taking n1 = · · · = nk = 6.

For example, for k = 3, we have 63 = 216, and for k = 10, we have 610 =
60,466,176.

In (ix), the number of poker hands is: 52×51×50×49×48
120 = 2,598,960. The

numerator is obtained by taking n1 = 52, n2 = 51, n3 = 50, n4 = 49, n5 = 48.

The division by 120 accounts for elimination of hands consisting of the same
cards but drawn in different order.

Finally, in (x), the required number is: n(n−1)...(n−k+1)
1×2×···×k

, by arguing as in (ix).
For example, for n = 10 and k = 3, we have: 10×9×8

1×2×3 = 120.

In all of the situations (i) through (x), the required numbers were calculated
by the appropriate application of Theorem 7. Furthermore, in many cases, as
clearly exemplified by cases (ii), (iii), (v), (vii), (ix), and (x), the task performed
consisted of selecting and arranging a number of objects out of a set of available
objects. In so doing, the order in which the objects appear in the arrangement
may be of significance, as is, indeed, the case in situations (ii), (iii), (iv), (v),
(vi), and (vii), or it may be just irrelevant, as happens, for example, in cases
(ix) and (x). This observation leads us to the concepts of permutations and
combinations. More precisely, we have

DEFINITION 4
An ordered arrangement of k objects taken from a set of n objects (1 ≤
k ≤ n) is a permutation of the n objects taken k at time. An unordered
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arrangement of k objects taken from a set of n objects is a combination

of the n objects taken k at a time.

The question then arises of how many permutations and how many com-
binations can be formed. The answer to this question is given next.

COROLLARY (to Theorem 7)

(i) The number of ordered arrangements of a set of nobjects taken k at a time
(1 ≤ k ≤ n) is nk when repetitions are allowed. When no repetitions are
allowed, this number becomes the permutations of n objects taken k at a
time, is denoted by Pn,k, and is given by:

Pn,k = n(n − 1) . . . (n − k + 1). (4)

In particular, for k = n,

Pn,n = n(n − 1) . . . 1 = 1 . . . (n − 1)n = n!,

where the notation n! is read “n factorial.”
(ii) The number of combinations (i.e., the number of unordered and without

repetition arrangements) of n objects taken k at a time (1 ≤ k ≤ n) is
denoted by

(
n

k

)
and is given by:(

n

k

)
= Pn,k

k!
= n!

k!(n − k)!
. (5)

REMARK 5 Whether permutations or combinations are appropriate in a
given problem follows from the nature of the problem. For instance, in (ii),
permutations rather than combinations are appropriate as, e.g., 13 and 31 are
distinct entities. The same is true of cases (iii)–(viii), whereas combinations
are appropriate for cases (ix) and (x).

As an example, in part (ii), P4,2 = 4 × 3 = 12 (leave out the numbers with
identical digits 11, 22, 33, and 44), and in part (ix),

(52
5

) = 52!
5!47! = 2,598,960,

after cancellations and by carrying out the arithmetic.

REMARK 6 In (5), set k = n. Then the left-hand side is, clearly, 1, and the
right-hand side is n!

n!0! = 1
0! . In order for this to be 1, we define 0! = 1. From

formula (5), it also follows that
(

n

0

) = 1.

This section is concluded with the justification of Theorem 7 and its corol-
lary and some applications of these results in calculating certain probabilities.

PROOF OF THEOREM 7 It is done by induction. For k = 2, all one has to do
is to pair out each one of the n1 ways of carrying out the subtask at stage 1
with each one of the n2 ways of carrying out the subtask at stage 2 in order
to obtain n1 × n2 for the number of ways of completing the task. Next, make
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the induction hypothesis that the conclusion is true for k = m and establish it
for k = m+ 1. So, in the first m stages, the total number of ways of doing the
job is: n1 × · · · × nm, and there is still the final (m+ 1)st stage for completing
the task. Clearly, all we have to do here is to combine each one of the n1 ×
· · · × nm ways of doing the job in the first m stages with each one of the nm+1

ways of carrying out the subtask in the (m+ 1)st stage to obtain the number
n1 × · · · × nm × nm+1 of completing the task. ▲

PROOF OF THE COROLLARY

(i) Here, we are forming an ordered arrangement of objects in k stages by
selecting one object at each stage from among the n available objects
(because repetitions are allowed). Thus, the theorem applies with n1 =
· · · = nk = n and gives the result nk. When repetitions are not allowed,
the only thing which changes from the case just considered is that: n1 =
n, n2 = n − 1, . . . , nk = n − (k − 1) = n − k + 1, and formula (4) follows.

(ii) Let
(

n

k

)
be the number of combinations (unordered without repetition ar-

rangements) of the n objects taken k at a time. From each one of these un-
ordered arrangements, we obtain k! ordered arrangements by permutation
of the k objects. Then k!× (n

k

)
is the total number of ordered arrangements

of the n objects taken k at a time, which is Pn,k, by part (i). Solving for(
n

k

)
, we obtain the first expression in (5). The second expression follows

immediately by multiplying by (n − k) . . . 1 and dividing by 1 . . . (n − k) =
(n − k)! ▲

There are many interesting variations and deeper results based on
Theorem 7 and its corollary. Some of them may be found in Sections 2.4 and
2.6 of Chapter 2 of the book A Course in Mathematical Statistics, 2nd edition
(1997), Academic Press, by G.G. Roussas.

EXAMPLE 30 It happens that 4 hotels in a certain large city have the same name, e.g., Grand
Hotel. Four persons make an appointment to meet at the Grand Hotel. If each
one of the 4 persons chooses the hotel at random, calculate the following
probabilities:
(i) All 4 choose the same hotel.

(ii) All 4 choose different hotels.

DISCUSSION

(i) If A = “all 4 choose the same hotel,” then P(A) = n(A)
n(S) , where n(A) is

the number of sample points in A. Here, n(S) = 4 × 4 × 4 × 4 = 44,
by Theorem 7 applied with k = 4 and n1 = n2 = n3 = n4 = 4, and
n(A) = 4, by Theorem 7 again applied with k = 1 (the 4 people looked
upon as a single unity) and n1 = 4 (the 4 hotels they can choose). Thus,
P(A) = 4

44 = 1
43 = 1

64 = 0.015625 � 0.016.

(ii) If B = “all 4 choose different hotels,” then, by the first part of the corollary
to Theorem 7, n(B) = P4,4 = 4!, so that P(B) = 4!

44 = 1×2×3
43 = 3

32 =
0.09375 � 0.094.
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EXAMPLE 31 Out of a set of 3 keys, only 1 opens a certain door. Someone tries the keys
successively and let Ak be the event that the right key appears the kth time.
Calculate the probability P(Ak):

(i) If the keys tried are not replaced, k = 1, 2, 3.

(ii) If the keys tried are replaced, k = 1, 2, . . . .

DISCUSSION

(i) P(A1) = 1
3 ; P(A2) = 2×1

3×2 = 1
3 ; P(A3) = 2×1×1

3×2×1 = 1
3 . So, P(A1) = P(A2) =

P(A3) = 1
3 � 0.333.

(ii) Clearly, P(Ak) = P(W1 ∩ · · · ∩ Wk−1 ∩ Rk) = (2
3 )k−1 × 1

3 for all k = 1, 2, . . .

REMARK 7 To calculate the probabilities in part (i) in terms of conditional
probabilities, set: Rk = “the right key appears the kth time,” Wk = “a wrong
key appears the kth time,” k = 1, 2, 3. Then: P(A1) = P(R1) = 1

3 , P(A2) =
P(W1 ∩ R2) = P(R2 | W1)P(W1) = 1

2 × 2
3 = 1

3 , and P(A3) = P(W1 ∩ W2 ∩ R3) =
P(R3 | W1 ∩ W2)P(W2 | W1)P(W1) = 1

1 × 1
2 × 2

3 = 1
3 .

EXAMPLE 32 The faculty in an academic department in UC-Davis consists of 4 assistant
professors, 6 associate professors, and 5 full professors. Also, it has 30 graduate
students. An ad hoc committee of 5 is to be formed to study a certain curricular
matter.

(i) What is the number of all possible committees consisting of faculty alone?
(ii) How many committees can be formed if 2 graduate students are to be

included and all academic ranks are to be represented?
(iii) If the committee is to be formed at random, what is the probability that

the faculty will not be represented?

DISCUSSION It is clear that combinations are the appropriate tool here.
Then we have:

(i) This number is:
(15

5

) = 15!
5!10! = 11×12×13×14×15

1×2×3×4×5 = 3,003.

(ii) Here the number is:
(30

2

)(4
1

)(6
1

)(5
1

) = 30!
2!28! ×4×6×5 = 29×30

2 ×120 = 52,200.
(iii) The required probability is:(30

5

)(15
0

)(45
5

) =
(30

5

)(45
5

) = 30!/5!25!
45!/5!40!

= 26 × 27 × 28 × 29 × 30
41 × 42 × 43 × 44 × 45

= 2,262
19,393

� 0.117.

EXAMPLE 33 What is the probability that a poker hand contains 4 pictures, including at least
2 Jacks? It is recalled here that there are 12 pictures consisting of 4 Jacks, 4
Queens, and 4 Kings.

DISCUSSION A poker hand can be selected in
(52

5

)
ways. The event de-

scribed, call it A, consists of the following number of sample points: n(A) =
n(J2) + n(J3) + n(J4), where Ji = “the poker hand contains exactly i Jacks,”
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i = 2, 3, 4. But

n(J2) =
(

4
2

)(
8
2

)(
40
1

)
, n(J3) =

(
4
3

)(
8
1

)(
40
1

)
, n(J3) =

(
4
4

)(
8
0

)(
40
1

)
,

so that

P(A) =
[(4

2

)(8
2

)+ (43)(81)+ (44)(80)](40
1

)(52
5

) = 8,040
2,598,960

� 0.003.

(For the calculation of
(52

5

)
see Example 29(ix).)

EXAMPLE 34 Each of the 2n members of a committee flips a fair coin in deciding whether
or not to attend a meeting of the committee; a committee member attends the
meeting if an H appears. What is the probability that a majority will show up
for the meeting?

DISCUSSION There will be majority if there are at least n + 1 committee
members present, which amounts to having at least n+1 H’s in 2n independent
throws of a fair coin. If X is the r.v. denoting the number of H’s in the 2n throws,
then the required probability is: P(X ≥ n + 1) =∑2n

x=n+1 P(X = x). However,

P(X = x) =
(

2n

x

)(
1
2

)x(1
2

)2n−x

= 1
22n

(
2n

x

)
,

since there are
(2n

x

)
ways of having x H’s in 2n throws. Therefore

P(X ≥ n + 1) = 1
22n

2n∑
x=n+1

(
2n

x

)
= 1

22n

[
2n∑

x=0

(
2n

x

)
−

n∑
x=0

(
2n

x

)]

= 1
22n

[
22n −

n∑
x=0

(
2n

x

)]
= 1 − 1

22n

n∑
x=0

(
2n

x

)
.

For example, for 2n = 10, P(X ≥ 6) = 1 − 0.6230 = 0.377 (from the binomial
tables).

Exercises

5.1 Telephone numbers at UC-Davis consist of 7-digit numbers the first 3
of which are 752. It is estimated that about 15,000 different telephone
numbers are needed to serve the university’s needs.
Are there enough telephone numbers available for this purpose? Justify
your answer.

5.2 An experimenter is studying the effects of temperature, pressure, and
a catalyst on the yield of a certain chemical reaction. Three different
temperatures, four different pressures, and five different catalysts are
under consideration.
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(i) If any particular experimental run involves the use of a single tem-
perature, pressure, and catalyst, how many experimental runs are
possible?

(ii) How many experimental runs are there that involve use of the lowest
temperature and two lowest pressures?

(iii) How many experimental runs are possible if a specified catalyst is
to be used?

5.3 (i) Given that a zip code consists of a 5-digit number, where the digits
are selected from among the numbers 0, 1, . . . , 9, calculate the
number of all different zip codes.

(ii) If X is the r.v. defined by: X(zip code) = # of nonzero digits in the
zip code, which are the possible values of X?

(iii) Give 3 zip codes and the respective values of X.

5.4 How many 5-digit numbers can be formed by using the numbers 1, 2, 3,
4, and 5, so that odd positions are occupied by odd numbers and even
positions are occupied by even numbers, if:
(i) Repetitions are allowed.
(ii) Repetitions are not allowed.

5.5 Form three-digit numbers by using the numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and
9, and satisfying one of the following requirements:

(i) No restrictions are imposed.
(ii) All three digits are distinct.

(iii) All three-digit numbers start with 1 and end with 0.
If the three-digit numbers are formed at random, calculate the prob-
ability that such a number will be:

(iv) As described in (ii).
(v) As described in (iii).

5.6 On a straight line, there are nspots to be filled in by either a dot or a dash.
What is the number of the distinct groups of resulting symbols? What is
this number if n = 5, 10, 15, 20, and 25?

5.7 A child’s set of blocks consists of 2 red, 4 blue, and 5 yellow cubes. The
blocks can be distinguished only by color. If the child lines up the blocks
in a row at random, calculate the following probabilities:

(i) Red blocks appear at both ends.
(ii) All yellow blocks are adjacent.

(iii) Blue blocks appear at both ends.

5.8 Suppose that the letters C, E, F, F, I, and O are written on six chips and
placed into a box. Then the six chips are mixed and drawn one by one
without replacement. What is the probability that the word “OFFICE” is
formed?

5.9 For any integers mand n with 0 ≤ m ≤ n, show that
(

n

m

) = ( n

n−m

)
either by

calculation, or by using a suitable argument without writing out anything.

5.10 Show that
(

n+1
m+1

)
/
(

n

m

) = n+1
m+1 .
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5.11 If M, N, and m are positive integers with m ≤ M , show that:(
M

m

)
=
(

M − 1
m

)
+
(

M − 1
m− 1

)
,

by recalling that
(

k

x

) = 0 for x > k.

5.12 Without any calculations and by recalling that
(

k

x

) = 0 for x > k, show
that:

r∑
x=0

(
m

x

)(
n

r − x

)
=
(

m+ n

r

)
.

5.13 The binomial expansion formula states that, for any x and y real and n a
positive integer:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Use this formula in order to show that:
n∑

k=0

(
n

k

)
= 2n and

n∑
k=0

(−1)k

(
n

k

)
= 0.

5.14 In the plane, there are npoints such that no three of them lie on a straight
line. How many triangles can be formed? What is this number for n = 10?

5.15 Beethoven wrote 9 symphonies, Mozart wrote 27 piano concertos, and
Schubert wrote 15 string quartets.
(i) If a university radio station announcer wishes to play first a Beethoven

symphony, then a Mozart concerto, and then a Schubert string quar-
tet, in how many ways can this be done?

(ii) What is the number in part (i) if all possible orderings are considered?

5.16 A course in English composition is taken by 10 freshmen, 15 sophomores,
30 juniors, and 5 seniors. If 10 students are chosen at random, calculate
the probability that this group will consist of 2 freshman, 3 sophomores,
4 juniors, and 1 senior.

5.17 If n countries exchange ambassadors, how many ambassadors are in-
volved? What is this number for n = 10, 50, 100?

5.18 From among n eligible draftees, mare to be drafted in such a way that all
possible combinations are equally likely to occur. What is the probability
that a specified man is not drafted?

5.19 From 10 positive and 6 negative numbers, 3 numbers are chosen at ran-
dom and without repetitions. What is the probability that their product
is a negative number?

5.20 Two people toss independently n times each a coin whose probability of
falling heads is p. What is the probability that they have the same number
of heads? What does this probability become for p = 1

2 and any n? Also,
for p = 1

2 and n = 5?
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5.21 A shipment of 2,000 light bulbs contains 200 defective items and 1,800
good items. Five hundred bulbs are chosen at random and are tested,
and the entire shipment is rejected if more than 25 bulbs from among
those tested are found to be defective. What is the probability that the
shipment will be accepted?

5.22 A student is given a test consisting of 30 questions. For each question, 5
different answers (of which only one is correct) are supplied. The stu-
dent is required to answer correctly at least 25 questions in order to pass
the test. If he/she knows the right answers to the first 20 questions and
chooses an answer to the remaining questions at random and indepen-
dently of each other, what is the probability that the student will pass the
test?

5.23 Three cards are drawn at random and without replacement from a stan-
dard deck of 52 playing cards. Compute the probabilities P(Ai), i =
1, . . . , 4, where the events Ai, i = 1, . . . , 4 are defined as follows:
A1 = “all 3 cards are black,” A2 = “exactly 1 card is an ace,”
A3 = “1 card is a diamond, 1 card is a heart, and 1 card is a club.”
A4 = “at least 2 cards are red.”

5.24 From an urn containing nR red balls, nB black balls, and nW white balls
(all identical except for color) 3 balls are drawn at random. Calculate the
following probabilities:

(i) All 3 balls are red.
(ii) At least one ball is red.

(iii) One ball is red, 1 is black, and 1 is white.
Do this when the balls are drawn:
(a) Successively and with replacement;
(b) Without replacement.

5.25 A student committee of 12 people is to be formed from among 100 fresh-
men (40 male + 60 female), 80 sophomores (30 male and 50 female), 70
juniors (24 male and 46 female), and 40 seniors (12 male and 28 female).
Calculate the following probabilities:

(i) Seven students are female and 5 are male.
(ii) The committee consists of the same number of students from each

class.
(iii) The committee consists of 2 female students and 1 male student

from each class.
(iv) The committee includes at least 1 senior (one of whom will serve as

the chairperson of the committee).
The following tabular form of the data facilitates the calculations

Class\\Gender Male Female Totals

Freshman 40 60 100
Sophomore 30 50 80

Junior 24 46 70
Senior 12 28 40

Totals 106 184 290



Chapter 3

Numerical
Characteristics of

a Random Variable,
Some Special

Random Variables

In this chapter, we discuss the following material. In Section 3.1, the concepts
of expectation and variance of a r.v. are introduced and interpretations are
provided. Higher order moments are also defined and their significance is
pointed out. Also, the moment generating function of a r.v. is defined, and
its usefulness as a mathematical tool is commented upon. In Section 3.2, the
Markov and Tchebichev inequalities are introduced and their role in estimating
probabilities is explained. Section 3.3 is devoted to discussing some of the most
commonly occurring distributions: They are the Binomial, Geometric, Poisson,
Hypergeometric, Gamma (Negative Exponential and Chi-square), Normal, and
Uniform distributions. In all cases, the mathematical expectation, variance,
and the moment generating function involved are presented. The chapter is
concluded with a discussion of the concepts of median and mode, which are
illustrated by concrete examples.

3.1 Expectation, Variance, and Moment Generating Function of a Random Variable

The ideal situation in life would be to know with certainty what is going to
happen next. This being almost never the case, the element of chance enters
in all aspects of our life. A r.v. is a mathematical formulation of a random
environment. Given that we have to deal with a r.v. X, the best thing to expect
is to know the values of X and the probabilities with which these values are

68
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taken on, for the case that X is discrete, or the probabilities with which X

takes values in various subsets of the real line � when X is of the continuous
type. That is, we would like to know the probability distribution of X. In real
life, often, even this is not feasible. Instead, we are forced to settle for some
numerical characteristics of the distribution of X. This line of arguments leads
us to the concepts of the mathematical expectation and variance of a r.v., as
well as to moments of higher order.

DEFINITION 1
Let X be a (discrete) r.v. taking on the values xi with corresponding
probabilities f (xi), i = 1, . . . , n. Then the mathematical expectation of
X (or just expectation or mean value of X or just mean of X ) is denoted
by EX and is defined by:

EX =
n∑

i=1

xi f (xi). (1)

If the r.v. X takes on (countably) infinite many values xi with correspond-
ing probabilities f (xi), i = 1, 2, . . . , then the expectation of X is defined
by:

EX =
∞∑

i=1

xi f (xi), provided
∞∑

i=1

|xi| f (xi) < ∞. (2)

Finally, if the r.v. X is continuous with p.d.f. f , its expectation is defined
by:

EX =
∫ ∞

−∞
xf (x)dx, provided this integral exists. (3)

The alternative notations μ(X ) or μX are also often used.

REMARK 1

(i) The condition
∑∞

i=1 |xi| f (xi) < ∞ is needed because, if it is violated, it is
known that

∑∞
i=1 xi f (xi) may take on different values, depending on the

order in which the terms involved are summed up. This, of course, would
render the definition of EX meaningless.

(ii) An example will be presented later on (see Exercise 1.16) where the inte-
gral
∫∞
−∞xf (x)dx = ∞ − ∞, so that it does not exist.

The expectation has several interpretations, some of which are illustrated
by the following Examples 1 and 2. One basic interpretation, however, is that
of center of gravity. Namely, if one considers the material system where mass
f (xi) is placed at the point xi, i = 1, . . . , n, then EX is the center of gravity

(point of equilibrium) of this system. In this sense, EX is referred to as a
measure of location of the distribution of X. The same interpretation holds
when X takes on (countably) infinite many values or is of the continuous
type.
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EXAMPLE 1 Suppose an insurance company pays the amount of $1,000 for lost luggage on
an airplane trip. From past experience, it is known that the company pays this
amount in 1 out of 200 policies it sells. What premium should the company
charge?

DISCUSSION Define the r.v. X as follows: X = 0 if no loss occurs, which
happens with probability 1−(1/200) = 0.995, and X = −1,000 with probability

1
200 = 0.005. Then the expected loss to the company is: EX = −1,000 × 0.005 =
−5. Thus, the company must charge $5 to break even. To this, it will normally
add a reasonable amount for administrative expenses and a profit.

Even in this simple example, but most certainly so in more complicated
cases, it is convenient to present the values of a (discrete) r.v. and the corre-
sponding probabilities in a tabular form as follows.

x 0 −1,000 Total

f (x) 199
200

1
200 1

EXAMPLE 2 A roulette wheel consists of 18 black slots, 18 red slots, and 2 green slots. If a
gambler bets $10 on red, what is the gambler’s expected gain or loss?

DISCUSSION Define the r.v. X by: X = 10 with probability 18/38 and
X = −10 with probability 20/38, or in a tabular form

x 10 −10 Total

f (x) 18
38

20
38 1

Then EX = 10 × 18
38 − 10 × 20

38 = − 10
19 � −0.526. Thus, the gambler’s expected

loss is about 53 cents.

From the definition of the expectation and familiar properties of summa-
tions or integrals, it follows that:

E(cX ) = cEX, E(cX + d) = cEX + d, where c and d are constants. (4)

Also (see Exercise 1.18),

X ≥ c constant, implies EX ≥ c, and, in particlar, X ≥ 0 implies EX ≥ 0. (5)

Now if Y is a r.v. which is a function of X, Y = g(X ), then, in principle, one
may be able to determine the p.d.f. of Y and proceed to defining its expectation
by the appropriate version of formulas (1), (2), (3). It can be shown, however,
that this is not necessary. Instead, the expectation of Y is defined by using the
p.d.f. of X, namely:

EY =
n∑

i=1

g(xi) f (xi) or EY =
∞∑

i=1

g(xi) f (xi) or EY =
∫ ∞

−∞
g(x) f (x) dx,

(6)
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under provisions similar to the ones mentioned in connection with (2) and (3).
By taking g(x) = xk, where k is a positive integer, we obtain the kth moment

of X:

EXk =
n∑

i=1

xk
i f (xi) or EXk =

∞∑
i=1

xk
i f (xi) or EXk =

∫ ∞

−∞
xk f (x) dx.

(7)

For k = 1, we revert to the expectation of X, and for k = 2, we get its second

moment. Moments are important, among other things, in that, in certain cir-
cumstances, a number of them completely determine the distribution of X.
This will be illustrated by concrete cases in Section 3.3 (see also Remark 4).

The following simple example illustrates that the expectation, as a mea-
sure of location of the distribution, may reveal very little about the entire
distribution. Indeed, let the r.v. X take on the values −1, 1, and 2 with cor-
responding probabilities 5

8 , 1
8 , and 2

8 , so that EX = 0. Also, let the r.v. Y take
on the values −10, 10, and 20 with respective probabilities 5

8 , 1
8 , and 2

8 ; then
again EY = 0. The distribution of X is over an interval of length 3, whereas
the distribution of Y is over an interval of length 10 times as large. Yet, they
have the same center of location. This simple example, clearly, indicates that
the expectation by itself is not an adequate measure of description of a distri-
bution, and an additional measure is needed to be associated with the spread
of a distribution. Such a measure exists and is the variance of a r.v. or of its
distribution.

DEFINITION 2
The variance of a r.v. X is denoted by Var(X ) and is defined by:

Var(X ) = E(X − EX )2. (8)

The explicit expression of the right-hand side in (8) is taken from (6) for
g(x) = (x − EX )2. The alternative notations σ 2(X ) and σ 2

X are also often
used for the Var(X ).

For the r.v.’s X and Y mentioned before, we have Var(X ) = 1.75 and
Var(Y ) = 175. Thus, the variance does convey adequately the difference in
size of the range of the distributions of the r.v.’s X and Y . More generally, for
a r.v. X taking on finitely many values x1, . . . , xn with respective probabilities
f (x1), . . . , f (xn), the variance is: Var(X ) = ∑n

i=1(xi − EX )2 f (xi) and repre-
sents the sum of the weighted squared distances of the points xi, i = 1, . . . , n

from the center of location of the distribution, EX. Thus, the further from
EX the xi’s are located, the larger the variance, and vice versa. The same inter-
pretation holds for the case that X takes on (countably) infinite many values
or is of the continuous type. Because of this characteristic property of the vari-
ance, the variance is referred to as a measure of dispersion of the underlying
distribution. In mechanics, the variance is referred to as the moment of inertia.

The positive square root of the Var(X ) is called the standard deviation

(s.d.) of X. Unlike the variance, the s.d. is measured in the same units
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as X (and EX) and serves as a yardstick of measuring deviations of X

from EX.
From (8), (6), and familiar properties of summations and integrals, one

obtains:

Var(X ) = EX2 − (EX )2. (9)

This formula often facilitates the actual calculation of the variance. From (8),
it also follows immediately that

Var(cX ) = c2 Var(X ), Var(cX + d) = c2 Var(X ),

where c and d are constants. (10)

For a r.v. Y which is a function of X, Y = g(X ), the calculation of the
Var [g(X )] reduces to calculating expectations as in (6) because, by means of
(8) and (9):

Var[g(X )] = Var(Y ) = E(Y − EY )2 = EY2 − (EY )2 = Eg2(X ) − [Eg(X )]2.

(11)

Formulas (8) and (9) are special cases of (11).
In reference to Examples 1 and 2, the variances and the s.d.’s of the r.v.’s.

involved are: σ 2(X ) = 4,975, σ (X ) � 70.534, and σ 2(X ) = 36,000
361 � 99.723,

σ (X ) � 9.986, respectively.

EXAMPLE 3 Let X be a r.v. with p.d.f. f (x) = 3x2, 0 < x < 1. Then:

(i) Calculate the quantities: EX, EX2, and Var(X ).
(ii) If the r.v. Y is defined by: Y = 3X − 2, calculate the EY and the Var(Y ).

DISCUSSION

(i) By (3), EX = ∫ 1
0 x · 3x2 dx = 3

4 x4
∣∣1
0 = 3

4 = 0.75, whereas by (7), applied
with k = 2, EX2 = ∫ 1

0 x2 · 3x2 dx = 3
5 = 0.60, so that, by (9), Var(X ) =

0.60 − (0.75)2 = 0.0375.

(ii) By (4) and (6), EY = E(3X − 2) = 3EX − 2 = 3 × 0.75 − 2 = 0.25, whereas
by (10), Var(Y ) = Var(3X − 2) = 9 Var(X ) = 9 × 0.0375 = 0.3375.

In (6), the EY was defined for Y = g(X ), some function of X. In particular,
we may take Y = etX for an arbitrary but fixed t ∈ �. Assuming that there exist
t’s in � for which EetX is finite, then this expectation defines a function in t.
This function is denoted by M(t) and is called the moment generating function
of X. That is,

DEFINITION 3
The function M(t) = EetX , defined for all those t in � for which EetX is
finite, is called the moment generating function (m.g.f.) of X.

Sometimes the notation MX(t) is also used to emphasize the fact that the
m.g.f. under discussion is that of the r.v. X. The m.g.f. of any r.v. always exists
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for t = 0, since Ee0X = E1 = 1; it may exist only for t = 0, or for t in a proper
subset (interval) in �, or for every t in �. All these points will be demonstrated
by concrete examples later on (see, for example, relations (20), (22), (24), (31),
(33), (37), (44), and (46)). The following properties of M(t) follow immediately
from its definition.

McX(t) = MX(ct), McX+d(t) = edt MX(ct), where c and d are constants.

(12)

Indeed,

McX(t) = Eet(cX ) = Ee(ct)X = MX(ct),

and

McX+d(t) = Eet(cX+d) = E
[
edt · e(ct)X

] = edt Ee(ct)X = edt MX(ct).

Under certain conditions, it is also true that:

d

dt
MX(t)

∣∣∣∣
t=0

= EX and
dn

dtn
MX(t)

∣∣∣∣
t=0

= EXn, n = 2, 3, . . . . (13)

For example, for the first property, we have:

d

dt
MX(t)

∣∣∣∣
t=0

=
(

d

dt
EetX

)∣∣∣∣
t=0

= E

(
d

dt
etX

∣∣∣∣
t=0

)
= E(XetX|t=0) = EX.

What is required for this derivation to be legitimate is that the order in which
the operators d

dt
and E operate on etX can be interchanged. The justification

of the property in (13) for n ≥ 2 is quite similar. On account of property (13),
MX(t) generates the moments of X through differentiation and evaluation of
the derivatives at t = 0. It is from this property that the m.g.f. derives its name.

The m.g.f. is also a valuable mathematical tool in many other cases, some
of which will be dealt with in subsequent chapters. Presently, it suffices only
to state one fundamental property of the m.g.f. in the form of a proposition.

PROPOSITION 1 Under certain conditions, the m.g.f. MX of a r.v. X

uniquely determines the distribution of X.

This proposition is, actually, a rather deep probability result and it is re-
ferred to as the inversion formula.

Some forms of such a formula for characteristic functions, which are a
version of a m.g.f. may be found, e.g., in pages 141–145 in A Course in Mathe-

matical Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas.
Still another important result associated with m.g.f.’s is stated (but not

proved) in the following proposition.

PROPOSITION 2 If for the r.v. X all moments EXn, n = 1, 2, . . . are finite,
then, under certain conditions, these moments uniquely determine the m.g.f.
MX of X, and hence (by Proposition 1) the distribution of X.
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Exercise 3.49 provides an example of an application of the proposition just
stated.

For Examples 1 and 2, the m.g.f.’s of the r.v.’s involved are: MX(t) =
0.995 + 0.005e−1,000t, t ∈ �, and MX(t) = 1

19 (9e10t + 10e−10t), t ∈ �. Then,
by differentiation, we get: d

dt
MX(t)|t=0 = −5 = EX, d2

dt2 MX(t)|t=0 = 5,000 =
EX2, so that σ 2(X ) = 4,975, and d

dt
MX(t)|t=0 = − 10

19 = EX, d2

dt2 MX(t)|t=0 =
100 = EX2, so that σ 2(X ) = 36,000

361 � 99.723.

EXAMPLE 4 Let X be a r.v. with p.d.f. f (x) = e−x, x > 0. Then:

(i) Find the m.g.f. MX(t) for the t’s for which it is finite.
(ii) Using MX , obtain the quantities: EX, EX2, and Var(X ).

(iii) If the r.v. Y is defined by: Y = 2−3X, determine MY(t) for the t’s for which
it is finite.

DISCUSSION

(i) By Definition 3,

MX(t) = EetX =
∫ ∞

0
etx · e−xdx =

∫ ∞

0
e−(1−t)x dx

= − 1
1 − t

e−(1−t)x
∣∣∞
0 (provided t �= 1)

= − 1
1 − t

(0 − 1) = 1
1 − t

(provided 1 − t > 0 or t < 1).

Thus, MX(t) = 1
1−t

, t < 1.

(ii) By (13), d

dt
MX(t)|t=0 = d

dt
( 1

1−t
)|t=0 = 1

(1−t)2 |t=0 = 1 = EX, d2

dt2 MX(t)|t=0 =
d

dt
( 1

(1−t)2 )|t=0 = 2
(1−t)3 |t=0 = 2 = EX2, so that, by (9), Var(X ) = 2 − 12 = 1.

(iii) By (12), MY(t) = M2−3X(t) = M−3X+2(t) = e2t MX(−3t) = e2t 1
1−(−3t) =

e2t

1+3t
, provided t > − 1

3 .

Exercises

In several calculations required in solving some exercises in this section, the
following formulas prove very useful.

First, in summing the infinite terms of a geometric series, we have:
∞∑

x=k

tx = tk

1 − t
, k = 0, 1, . . . , and |t| < 1.

Next,
∞∑

x=1

xtx = t

∞∑
x=1

xtx−1 = t

∞∑
x=1

d

dt
tx = t

d

dt

∞∑
x=1

tx

= t
d

dt

(
t

1 − t

)
= t

(1 − t)2
.
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Also,
∞∑

x=2

x(x − 1)tx = t2
∞∑

x=2

x(x − 1)tx−2 = t2
∞∑

x=2

d2

dt2
tx

= t2 d2

dt2

∞∑
x=2

tx = t2 d2

dt2

(
t2

1 − t

)
= 2t2

(1 − t)3
.

In the last two formulas, if there is a number instead of the variable t, the
number is replaced by t, and in the final formulas t is replaced by the number.

1.1 Refer to Exercise 2.1 in Chapter 2 and calculate the quantities: EX,
Var(X ), and the s.d. of X.

1.2 For the r.v. X for which P(X = −c) = P(X = c) = 1/2 (for some c > 0):
(i) Calculate the EX and the Var(X ).

(ii) Show that P(|X − EX| ≤ c) = Var(X )/c2.

1.3 A chemical company currently has in stock 100 lb of a certain chemical,
which it sells to customers in 5 lb packages. Let X be the r.v. denoting
the number of packages ordered by a randomly chosen customer, and
suppose that the p.d.f. of X is given by: f (1) = 0.2, f (2) = 0.4, f (3) = 0.3,
f (4) = 0.1.

x 1 2 3 4

f (x) 0.2 0.4 0.3 0.1

(i) Compute the following quantities: EX, EX2, and Var(X ).
(ii) Compute the expected number of pounds left after the order of the

customer in question has been shipped, as well as the s.d. of the
number of pounds around the expected value.

1.4 Let X be a r.v. denoting the damage incurred (in $) in a certain type of
accident during a given year, and suppose that the distribution of X is
given by the following table:

x 0 1,000 5,000 10,000

f (x) 0.8 0.1 0.08 0.02

A particular company offers a $500 deductible policy. If the company’s
expected profit on a given policy is $100, what premium amount should
it charge?

1.5 Let X be the r.v. denoting the number in the uppermost side of a fair die
when rolled once.
(i) Determine the m.g.f. of X.

(ii) Use the m.g.f. to calculate: EX, EX2, Var(X ), and the s.d. of X.

1.6 For any r.v. X, for which the EX and the EX2 are finite, show that:

Var(X ) = EX2 − (EX )2 = E[X(X − 1)] + EX − (EX )2.
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1.7 Suppose that for a r.v. X it is given that: EX = 5 and E[X(X − 1)] = 27.5.
Calculate:
(i) EX2.

(ii) Var(X ) and s.d. of X.

1.8 For the r.v. X with p.d.f. f (x) = (1/2)x, x = 1, 2, . . . :
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6 to compute the Var(X ).

1.9 The p.d.f. f of a r.v. X is given by: f (x) = c(1/3)x, for x = 0, 1, . . .

(c some positive constant).
(i) Calculate the EX.

(ii) Determine the m.g.f. MX of X and specify the range of its argument.
(iii) Employ the m.g.f. in order to derive the EX.

1.10 For the r.v. X with p.d.f. f (x) = 0.5x, for 0 ≤ x ≤ 2, calculate: EX, Var(X ),
and the s.d. of X.

1.11 If the r.v. X has p.d.f. f (x) = 3x2 − 2x + 1, for 0 < x < 1, compute the
expectation and variance of X.

1.12 If the r.v. X has p.d.f. f given by:

f (x) =

⎧⎪⎨⎪⎩
c1x, −2 < x < 0
c2x, 0 ≤ x < 1
0, otherwise,

and if we suppose that EX = 1
3 , determine the constants c1 and c2.

1.13 The lifetime in hours of electric tubes is a r.v. X with p.d.f. f given by:
f (x) = λ2xe−λx, for x > 0 (λ > 0). Calculate the expected life of such
tubes.

1.14 Let X be a r.v. whose EX = μ ∈ �. Then:
(i) For any constant c, show that:

E(X − c)2 = E(X − μ)2 + (μ − c)2 = Var(X ) + (μ − c)2.

(ii) Use part (i) to show that E(X − c)2, as a function of c, is minimized
for c = μ.

1.15 Let X be a r.v. with p.d.f. f (x) = |x|
c2 , for −c < x < c, c > 0. For any

n = 1, 2, . . . , calculate the EXn, and as a special case, derive the EX and
the Var (X ).

1.16 Let X be a r.v. with p.d.f. given by: f (x) = 1
π

· 1
1+x 2 , x ∈ �. Show that:

(i) f is, indeed, a p.d.f. (called the Cauchy p.d.f.).
(ii)
∫∞
−∞xf (x) dx = ∞ − ∞, so that the EX does not exist.

1.17 If X is a r.v. for which all moments EXn, n = 0, 1, . . . are finite, show that

MX(t) =
∞∑

n=0

(EXn)
tn

n!
.
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Hint: Use the expansion ex =∑∞
n=0

x n

n! .

Remark: The result in this exercise says that the moments of a r.v.
determine (under certain conditions) the m.g.f. of the r.v., and hence
its distribution.

1.18 Establish the inequalities stated in relation (5) for both the discrete and
the continuous case.

3.2 Some Probability Inequalities

If the r.v. X has a known p.d.f. f , then, in principle, we can calculate probabil-
ities P(X ∈ B) for B ⊆ �. This, however, is easier said than done in practice.
What one would be willing to settle for would be some suitable and computable
bounds for such probabilities. This line of thought leads us to the inequalities
discussed here.

THEOREM 1
(i) For any nonnegative r.v. X and for any constant c > 0, it holds:

P(X ≥ c) ≤ EX/c.

(ii) More generally, for any nonnegative function of any r.v. X, g(X ),
and for any constant c > 0, it holds:

P[g(X ) ≥ c] ≤ Eg(X )/c. (14)

(iii) By taking g(X ) = |X − EX| in part (ii), the inequality reduces to the
Markov inequality, namely,

P(|X − EX| ≥ c) = P(|X − EX|r ≥ cr) ≤ E|X − EX|r/cr , r > 0. (15)

(iv) In particular, for r = 2 in (15), we get the Tchebichev inequality,
namely,

P(|X − EX| ≥ c) ≤ E(X − EX )2

c2
= σ 2

c2
or

P(|X − EX| < c) ≥ 1 − σ 2

c2
, (16)

where σ 2 stands for the Var(X ). Furthermore, if c = kσ , where σ is
the s.d. of X, then:

P(|X − EX| ≥ kσ ) ≤ 1
k2

or P(|X − EX| < kσ ) ≥ 1 − 1
k2

. (17)

REMARK 2 From the last expression, it follows that X lies within k s.d.’s
from its mean with probability at least 1 − 1

k2 , regardless of the distribution of
X. It is in this sense that the s.d. is used as a yardstick of deviations of X from
its mean, as already mentioned elsewhere.
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Thus, for example, for k = 2, 3, we obtain, respectively:

P(|X − EX| < 2σ ) ≥ 0.75, P(|X − EX| < 3σ ) ≥ 8
9

� 0.889. (18)

PROOF OF THEOREM 1 Clearly, all one has to do is to justify (14) and
this only for the case that X is continuous with p.d.f. f , because the discrete
case is entirely analogous.

Indeed, let A = {x ∈ �; g(x) ≥ c}, so that Ac = {x ∈ �; g(x) < c}. Then,
clearly:

Eg(X ) =
∫ ∞

−∞
g(x) f (x) dx =

∫
A

g(x) f (x) dx +
∫

Ac

g(x) f (x) dx

≥
∫

A

g(x) f (x) dx (since g(x) ≥ 0)

≥ c

∫
A

f (x) dx (since g(x) ≥ c on A)

= cP(A) = cP[g(X ) ≥ c].

Solving for P[g(X ) ≥ c], we obtain the desired result. ▲

EXAMPLE 5 Let the r.v. X take on the values −2, −1/2, 1/2, and 2 with respective prob-
abilities 0.05, 0.45, 0.45, and 0.05. Then EX = 0 and σ 2 = Var(X ) = 0.625, so
that 2σ � 1.582. Then: P(|X| < 2σ ) = P(−1.582 < X < 1.582) = P(X =
− 1

2 ) + P(X = 1
2 ) = 0.90, compared with the lower bound of 0.75.

EXAMPLE 6 Let the r.v. X take on the value x with probability f (x) = e−λ λx

x! , x = 0, 1, . . . ,
some λ > 0. As will be seen later on (see relation (23)), this is a Poisson r.v. with
parameter λ, and EX = Var(X ) = λ. For selected values of λ, probabilities
P(X ≤ k) are given by the Poisson tables. For illustrative purposes, let λ = 9.
Then σ = 3 and therefore: P(|X − 9| < 2 × 3) = P(3 < X < 15) = 0.9373,
compared with 0.75, and P(|X − 9| < 3 × 3) = P(0 < X < 18) = 0.9946,
compared with 0.889.

Exercises

2.1 Suppose the distribution of the r.v. X is given by the following table:

x −1 0 1

f (x) 1/18 8/9 1/18

(i) Calculate the EX (call it μ), the Var(X ), and the s.d. of X (call it σ ).
(ii) Compute the probability: P(|X − μ| ≥ kσ ) for k = 2, 3.

(iii) By the Tchebichev inequality: P(|X − μ| ≥ kσ ) ≤ 1/k2. Compare the
exact probabilities computed in part (ii) with the respective upper
bounds.
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2.2 If X is a r.v. with expectation μ and s.d. σ , use the Tchebichev inequality:
(i) To determine c in terms of σ and α, so that:

P(|X − μ| < c) ≥ α (0 < α < 1).

(ii) Give the numerical value of c for σ = 1 and α = 0.95.

2.3 Let X be a r.v. with p.d.f. f (x) = c(1 − x2), for −1 ≤ x ≤ 1. Refer to
Exercise 2.11(i) in Chapter 2 for the determination of the constant c and
then:
(i) Calculate the EX and Var(X ).

(ii) Use the Tchebichev inequality to find a lower bound for the proba-
bility P(−0.9 < X < 0.9), and compare it with the exact probability
calculated in Exercise 2.11(ii) in Chapter 2.

2.4 Let X be a r.v. with (finite) mean μ and variance 0. Then:
(i) Use the Tchebichev inequality to show that P(|X − μ| ≥ c) = 0 for all

c > 0.
(ii) Use part (i) and Theorem 2 in Chapter 2 in order to conclude that

P(X = μ) = 1.

3.3 Some Special Random Variables

3.3.1 The Discrete Case

In this section, we discuss seven distributions — four discrete and three of the
continuous type, which occur often. These are the Binomial, the Geometric,
the Poisson, the Hypergeometric, the Gamma (which includes the Negative
Exponential and the Chi-Square), the Normal, and the Uniform distributions.
At this point, it should be mentioned that a p.d.f. is 0 for all the values of its
argument not figuring in its definition.

Binomial Distribution We first introduced the concept of a binomial ex-

periment, which is meant to be an experiment resulting in two possible out-
comes, one termed a success, denoted by S and occurring with probability
p, and the other termed a failure, denoted by F and occurring with proba-
bility q = 1 − p. A binomial experiment is performed n independent times
(with p remaining the same), and let X be the r.v. denoting the number of
successes. Then, clearly, X takes on the values 0, 1, . . . , n, with the respective
probabilities:

P(X = x) = f (x) =
(

n

x

)
pxqn−x, x = 0, 1, . . . , n, 0 < p < 1, q = 1 − p.

(19)

The r.v. X is said to be Binomially distributed, its distribution is called Bino-

mial with parameters n and p, and the fact that X is so distributed is denoted
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by X ∼ B(n, p). The graph of f depends on n and p; two typical cases, for
n = 12, p = 1

4 , and n = 10, p = 1
2 are given in Figures 3.1 and 3.2.

Values of the p.d.f. f of the B(12, 1
4 ) distribution

f (0) = 0.0317 f (7) = 0.0115

f (1) = 0.1267 f (8) = 0.0024

f (2) = 0.2323 f (9) = 0.0004

f (3) = 0.2581 f (10) = 0.0000

f (4) = 0.1936 f (11) = 0.0000

f (5) = 0.1032 f (12) = 0.0000

f (6) = 0.0401

0.25

x

0.20

0.15

0.10

0.05

0 1 1312111098765432

n = 12

p = 1–
4

f (x)

Figure 3.1

Graph of the p.d.f. of
the Binomial
Distribution for
n = 12, p = 1

4

Values of the p.d.f. f of the B(10, 1
2 ) distribution

f (0) = 0.0010 f (6) = 0.2051

f (1) = 0.0097 f (7) = 0.1172

f (2) = 0.0440 f (8) = 0.0440

f (3) = 0.1172 f (9) = 0.0097

f (4) = 0.2051 f (10) = 0.0010

f (5) = 0.2460

For selected n and p, the d.f. F(k) = ∑k

j=0

(
n

j

)
pjqn− j is given by tables,

the Binomial tables (see, however, Exercise 3.1). The individual probabilities(
n

j

)
pjqn− j may be found by subtraction. Alternatively, such probabilities can

be calculated recursively (see Exercise 3.9).



3.3 Some Special Random Variables 81
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n = 10

p = 1–
2

f (x)

Figure 3.2

Graph of the p.d.f. of
the Binomial
Distribution for
n = 10, p = 1

2

For n = 1, the corresponding r.v. is known as the Bernoulli r.v. It is then
clear that a B(n, p) r.v. X is the sum of n B(1, p) r.v.’s. More precisely, in n inde-
pendent binomial experiments, associate with the ith performance of the ex-
periment the r.v. Xi defined by: Xi = 1 if the outcome is S (a success) and Xi = 0
otherwise, i = 1, . . . , n. Then, clearly,

∑n

i=1 Xi is the number of 1’s in the n tri-
als, or, equivalently, the number of S ’s, which is exactly what the r.v. X stands
for. Thus, X =∑n

i=1 Xi. Finally, it is mentioned here that, if X ∼ B(n, p), then:

EX = np, Var(X ) = npq, and MX(t) = ( pet + q)n, t ∈ �. (20)

The relevant derivations are left as exercises (see Exercises 3.10 and 3.11).
A brief justification of formula (19) is as follows: Think of the n outcomes of
the n experiments as n points on a straight line segment, where an S or an F ,
is to be placed. By independence, the probability that there will be exactly x

S ’s in x specified positions (and therefore n−x F ’s in the remaining positions)
is pxqn−x, and this probability is independent of the locations where the x

S ’s occur. Because there are
(

n

x

)
ways of selected x points for the S ’s, the

conclusion follows.
Finally, for illustrative purposes, refer to Example 7 in Chapter 1. In that

example, clearly X ∼ B(n, 0.8), and for the sake of specificity take n = 25,
so that X takes on the values 0, 1, . . . , 25. Next (see Exercise 3.1),

(25
x

)
(0.8)x

(0.2)25−x = (25
y

)
(0.2)y(0.8)25−y, where y = 25 − x. Therefore, for a = 15 and

b = 20, for example, P(15 ≤ X ≤ 25) = ∑10
y=5

(25
y

)
(0.2)y(0.8)25−y = 0.994 −

0.421 = 0.573. Finally, EX = 25 × 0.8 = 20,Var(X ) = 25 × 0.8 × 0.2 = 4, so
that σ (X ) = 2. Examples 8–10 in Chapter 1 fit into the same framework.

Geometric Distribution This distribution arises in a binomial experiment
situation when trials are carried out independently (with constant probability
p of an S) until the first S occurs. The r.v. X denoting the number of required
trials is a Geometrically distributed r.v. with parameter p and its distribution
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is the Geometric distribution with parameter p. It is clear that X takes on the
values 1, 2, . . . with the respective probabilities:

P(X = x) = f (x) = pqx−1, x = 1, 2, . . . , 0 < p < 1, q = 1 − p. (21)

The justification of this formula is immediate because, if the first S is to appear
in the xth position, the overall outcome is F F . . . F︸ ︷︷ ︸

x−1

S whose probability (by
independence) is qx−1 p.

The graph of f depends on p; two typical cases for p = 1
4 and p = 1

2 are
given in Figure 3.3.

Values of f (x) = (0.25)(0.75)x−1, Values of f (x) = (0.5)x,
x = 1, 2, . . . x = 1, 2, . . .

f (1) = 0.2500 f (1) = 0.5000
f (2) = 0.1875 f (2) = 0.2500
f (3) = 0.1406 f (3) = 0.1250
f (4) = 0.1055 f (4) = 0.0625
f (5) = 0.0791 f (5) = 0.0313
f (6) = 0.0593 f (6) = 0.0156
f (7) = 0.0445 f (7) = 0.0078
f (8) = 0.0334
f (9) = 0.0250

f (10) = 0.0188

x

0.05
0.1

0.15
0.2

0

0.25

f (x)

1110987654320 1

p = 1/4

x

0.1
0.2
0.3
0.4

0

0.5

f (x)

876543210

p = 1/2

Figure 3.3

Graphs of the p.d.f.’s
of the Geometric
Distribution with
p = 1

4
and p = 1

2

If the r.v. X is Geometrically distributed with parameter p, then:

EX = 1
p

, Var(X ) = q

p2
, MX(t) = pet

1 − qet
, t < −log q. (22)
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REMARK 3 Sometimes the p.d.f. of X is given in the form: f (x) = pqx, x =
0, 1, . . . ; then EX = q

p
, Var(X ) = p

q2 and MX(t) = p

1−qet , t < −log q.

In reference to Example 11 in Chapter 1, assume for mathematical con-
venience that the number of cars passing by may be infinite. Then the r.v.
X described there has the Geometric distribution with some p. Here prob-
abilities are easily calculated. For example, P(X ≥ 20) = ∑∞

x=20 pqx−1 =
pq19∑∞

x=0 qx = pq19 1
1−q

= q19; i.e., p(X ≥ 20) = q19. For instance, if p = 0.01,
then q = 0.99 and P(X ≥ 20) � 0.826.

Poisson Distribution A r.v. X taking on the values 0, 1, . . . with respective
probabilities given in (23) is said to have the Poisson distribution with pa-

rameter λ; its distribution is called the Poisson distribution with parameter

λ. That X is Poisson distributed with parameter λ is denoted by X ∼ P(λ).

P(X = x) = f (x) = e−λ λx

x!
, x = 0, 1, . . . , λ > 0. (23)

The graph of f depends on λ; for example, for λ = 5, it looks like that in
Figure 3.4. That f is a p.d.f. follows from the formula

∑∞
x=0

λx

x! = eλ.

Values of the p.d.f. f of the P(5) distribution

f (0) = 0.0067 f (9) = 0.0363

f (1) = 0.0337 f (10) = 0.0181

f (2) = 0.0843 f (11) = 0.0082

f (3) = 0.1403 f (12) = 0.0035

f (4) = 0.1755 f (13) = 0.0013

f (5) = 0.1755 f (14) = 0.0005

f (6) = 0.1462 f (15) = 0.0001

f (7) = 0.1044

f (8) = 0.0653 f (n) is negligible for n ≥ 16.

x

0.20

0.15

0.10

0.05

0 1 1312111098765432 14 15

f (x)

Figure 3.4

Graph of the p.d.f.
of the Poisson
Distribution with
λ = 5
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For selected values of λ, the d.f. F(k) =∑k

j=0 e−λ λ j

j! is given by tables, the
Poisson tables. The individual values e−λ λ j

j! are found by subtraction. Alterna-
tively, such probabilities can be calculated recursively (see Exercise 3.20). It
is not hard to see (see Exercises 3.21 and 3.22) that, if X ∼ P(λ), then:

EX = λ, Var(X ) = λ, and MX(t) = eλet−λ, t ∈ �. (24)

From these expressions, the parameter λ acquires a special meaning: it is both
the mean and the variance of the r.v. X.

Example 12 in Chapter 1 may serve as an illustration of the usage of the
Poisson distribution. Assuming, for mathematical convenience, that the num-
ber of bacteria may be infinite, then the Poisson distribution may be used to
describe the actual distribution of bacteria (for a suitable value of λ) quite
accurately. There is a host of similar cases for the description of which the
Poisson distribution is appropriate. These include the number of telephone
calls served by a certain telephone exchange center within a certain period of
time, the number of particles emitted by a radioactive source within a certain
period of time, the number of typographical errors in a book, etc.

There is an intimate relationship between the Poisson and the Binomial
distributions: the former may be obtained as the limit of the latter, as ex-
plained in the following. Namely, it is seen (see Exercise 3.23) that in the
Binomial, B(n, p), situation, if n is large and p is small, then the Binomial
probabilities

(
n

x

)
px(1 − p)n−x are close to the Poisson probabilities e−np (np)x

x! .
More precisely,

(
n

x

)
px

n(1 − pn)n−x → e−λ λx

x! , provided n → ∞ and pn → 0
so that npn → λ ∈ (0, ∞). Here pn is the probability of a success in the
nth trial. Thus, for large values of n,

(
n

x

)
px

n(1 − pn)n−x � e−λ λx

x! ; or, upon re-
placing λ by npn, we obtain the approximation mentioned before. A rough
explanation of why Poisson probabilities are approximated by Binomial prob-
abilities is given next. To this end, suppose an event A occurs once in a
small time interval h with approximate probability proportional to h and
coefficient of proportionally λ; i.e., A occurs once in h with approximate
probability λh. It occurs two or more times with probability approximately
0, so that it occurs zero times with probability approximately 1 − λh.
Finally, occurrences in nonoverlapping intervals of length h are independent.
Next, consider the unit interval (0, 1] and divide it into a large number n

of nonoverlapping subintervals of equal length h: (ti−1, ti], i = 1, . . . , n, t0 =
0, tn = 1, h = 1

n
. With the ith interval (ti−1, ti], associate the r.v. Xi de-

fined by: Xi = 1 with approximate probability λh and 0 with approximate
probability 1 − λh. Then the r.v. X = ∑n

i=1 Xi denotes the number of oc-
currences of A over the unit (0, 1] interval with approximate probabilities(

n

x

)
(λh)x(1−λh)n−x. The exact probabilities are found by letting n → ∞ (which

implies h → 0). Because here pn = λh and npn = nλh = nλ 1
n

= λ, we have
that
(

n

x

)
(λh)x(1 − λh)n−x → e−λ λx

x! , as n → ∞ (by Exercise 3.23), so that the
exact probabilities are e−λ λx

x! . So, the exact probability that A occurs x times
in (0, 1] is the Poisson probability e−λ λx

x! , and the approximate probability
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that A occurs the same number of times is the Binomial probability
(

n

x

)
(λh)x

(1 − λh)n−x; these two probabilities are close to each other for large n.
The following example sheds some light on the approximation just

discussed.

EXAMPLE 7 If X is a r.v. distributed as B(25, 1
16 ), we find from the Binomial tables that

P(X = 2) = 0.2836. Next, considering a r.v. Y distributed as P(λ) with λ =
25
16 = 1.5625, we have that P(Y = 2) = e−1.5625 (1.5625)2

2! � 0.2556. Thus, the exact
probability is underestimated by the amount 0.028. The error committed is of
the order of 9.87%. Given the small value of n = 25, the approximate value is
not bad at all.

Hypergeometric Distribution This distribution occurs quite often and is
suitable in describing situations of the following type: m identical objects
(e.g., balls) are thoroughly mixed with n identical objects (which again can
be thought of as being balls) but distinct from the m objects. From these
m + n objects, r are drawn without replacement, and let X be the number
among the r which come from the m objects. Then the r.v. X takes on the
values 0, 1, . . . , min(r, m) with respective probabilities given below. Actually,
by defining

(
m

x

) = 0 for x > m, we have:

P(X = x) = f (x) =
(

m

x

)(
n

r−x

)(
m+ n

r

) , x = 0, . . . , r; (25)

mand n may be referred to as the parameters of the distribution. By assuming
that the selections of r objects out of the m + n are all equally likely, there
are
(

m+n

r

)
ways of selecting these r objects, whereas there are

(
m

x

)
ways of

selecting x out of the mobjects, and
(

n

r−x

)
ways of selecting the remaining r−x

objects out of n objects. Thus, the probability that X = x is as given in the
preceding formula. The simple justification that these probabilities actually
sum to 1 follows from Exercise 5.12 in Chapter 2. For large values of any
one of m, n, and r, actual calculation of the probabilities in (25) may be quite
involved. A recursion formula (see Exercise 3.26) facilitates significantly these
calculations. The calculation of the expectation and of the variance of X is
based on the same ideas as those used in Exercise 3.10 in calculating the
EX and Var(X ) when X ∼ B(n, p). We omit the details and give the relevant
formulas, namely,

EX = mr

m+ n
, Var(X ) = mnr(m+ n − r)

(m+ n)2(m+ n − 1)
.

Finally, by utilizing ideas and arguments similar to those employed in Exer-
cise 3.23, it is shown that as m and n → ∞ so that m

m+n
→ p∈ (0, 1), then(

m

x

)(
n

r−x

)
/
(

m+ n

r

)
tends to

(
r

x

)
px(1 − p)r−x. Thus, for large values of m and n,

the Hypergeometric probabilities
(

m

x

)(
n

r−x

)
/
(

m+ n

r

)
may be approximated by the

simpler Binomial probabilities
(

r

x

)
px

m,n(1 − pm,n)r−x, where pm,n = m

m+ n
.
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EXAMPLE 8 As an application of formula (25) and the approximation discussed, take m =
70, n = 90, r = 25 and x = 10. Then:

f (10) =
(70

10

)( 90
25−10

)(70 + 90
25

) =
(70

10

)(90
15

)(160
25

) � 0.166,

after quite a few calculations. On the other hand, since m

m+ n
= 70

160 = 7
16 , the

Binomial tables give for the B(25, 7
16 ) distribution:

(25
10

)
( 7

16 )
10

( 9
16 )

15 = 0.15.
Therefore, the approximation overestimates the exact probability by the
amount 0.016. The error committed is of the order of 10.7%.

3.3.2 The Continuous Case

Gamma Distribution For its introduction, a certain function, the so-
called Gamma function, is to be defined first. It is shown that the integral∫∞

0 yα−1e−y dy is finite for α > 0 and is thus defining a function (in α), namely,

�(α) =
∫ ∞

0
yα−1e−y dy, α > 0. (26)

This is the Gamma function. By means of the Gamma function, the Gamma

distribution is defined as follows:

f (x) = 1
�(α)βα

xα−1e−x/β , x > 0, α > 0, β > 0; (27)

α and β are the parameters of the distribution. That the function f integrates
to 1 is an immediate consequence of the definition of �(α). A r.v. X taking on
values in � and having p.d.f. f , given in (27), is said to be Gamma distributed

with parameters α and β; one may choose the notation X ∼ �(α, β) to ex-
press this fact. The graph of f depends on α and β but is, of course, always
concentrated on (0, ∞). Typical cases for several values of the pair (α, β) are
given in Figures 3.5 and 3.6.

The Gamma distribution is suitable for describing waiting times between
successive occurrences of a random event and is also used for describing
survival times. In both cases, it provides great flexibility through its two pa-
rameters α and β. For specific values of the pair (α, β), we obtain the Negative

0.25

0 1
x

0.50

0.75

1.00

2 3 4 5 6 7 8

f(x)

a = 1, b = 1

a = 2, b = 1

a = 4, b = 1

Figure 3.5

Graphs of the p.d.f.
of the Gamma
Distribution for
Several Values of
α, β
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Figure 3.6

Graphs of the p.d.f.
of the Gamma
Distribution for
Several Values of
α, β

Exponential and Chi-Square distributions to be studied subsequently. By inte-
gration by parts, one may derive the following useful recursive relation for the
Gamma function (see Exercise 3.27):

�(α) = (α − 1)�(α − 1). (28)

In particular, if α is an integer, repeated applications of recursive relation (28)
produce

�(α) = (α − 1)(α − 2) . . . �(1).

But �(1) = ∫∞
0 e−y dy = 1, so that

�(α) = (α − 1)(α − 2) . . . 1 = (α − 1)! (29)

For later reference, we mention here (see also Exercise 3.45) that, by integra-
tion, we obtain:

�

(
1
2

)
= √

π , (30)

and then, by means of this and the recursive formula (28), we can calculate
�(3

2 ), �(5
2 ), etc. Finally, by integration (see Exercises 3.28 and 3.29), it is seen

that:

EX = αβ, Var(X ) = αβ2 and MX(t) = 1
(1 − βt)α

, t <
1
β

. (31)

EXAMPLE 9 The lifetime of certain equipment is described by a r.v. X whose distribution
is Gamma with parameters α = 2 and β = 1

3 , so that the corresponding p.d.f.
is: f (x) = 9xe−3x, for x > 0. Determine the expected lifetime, the variation
around it, and the probability that the lifetime is at least 1 unit of time.

DISCUSSION Since EX = αβ and Var(X ) = αβ2, we have here: EX = 2
3

and Var(X ) = 2
9 . Also,

P(X > 1) =
∫ ∞

1
9xe−3x dx = 4

e3
� 0.199.
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Negative Exponential Distribution In (27), set α = 1 and β = 1
λ

(λ > 0)
to obtain:

f (x) = λe−λx, x > 0, λ > 0. (32)

This is the so-called Negative Exponential distribution with parameter λ. The
graph of f (x) depends on λ but, typically, looks as in Figure 3.7.

0.25

0 1
x

0.50

0.75

1.00

2 3 4 5 6 7 8

f(x)

Figure 3.7

Graph of the
Negative
Exponential p.d.f.
with λ = 1

For a r.v. X having the Negative Exponential distribution with parameter λ,
formulas (31) give:

EX = 1
λ

, Var(X ) = 1
λ2

, and MX(t) = λ

λ − t
, t < λ. (33)

The expression EX = 1
λ

provides special significance for the parameter λ: its
inverse value is the mean of X. This fact also suggests the reparameterization

of f ; namely, set 1
λ

= μ, in which case:

f (x) = 1
μ

e
− x

μ , x > 0, EX = μ, Var(X ) = μ2, and

MX(t) = 1
1 − μt

, t <
1
μ

. (34)

From (32), one finds by a simple integration:

F(x) = 1 − e−λx, x > 0, so that P(X > x) = e−λx, x > 0. (35)

The Negative Exponential distribution is used routinely as a survival distri-
bution; namely, as describing the lifetime of an equipment, etc., put in service
at what may be termed as time zero. As such, it exhibits a lack of memory

property, which may not be desirable in this context. Namely, if one poses the
following question: What is the probability that an equipment will last for t

additional units of time, given that it has already survived s units of time, the
answer (by means of the Negative Exponential distribution) is, by (35):

P(X > s + t | X > s) = P(X > s + t, X > s)
P(X > s)

= P(X > s + t)
P(X > s)

= e−λ(s+t)

e−λs

= e−λt = P(X > t);
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i.e., P(X > s + t | X > s) = P(X > t) independent of s! Well, in real life, used
pieces of equipment do not exactly behave as brand-new ones! Finally, it is to
be mentioned that the Negative Exponential distribution is the waiting time
distribution between the occurrence of any two successive events following
the Poisson distribution (see also Exercise 3.20(ii) in Chapter 2).

EXAMPLE 10 The lifetime of an automobile battery is described by a r.v. X having the Neg-
ative Exponential distribution with parameter λ = 1

3 . Then:

(i) Determine the expected lifetime of the battery and the variation around
this mean.

(ii) Calculate the probability that the lifetime will be between 2 and 4 time
units.

(iii) If the battery has lasted for 3 time units, what is the (conditional) proba-
bility that it will last for at least an additional time unit?

DISCUSSION

(i) Since EX = 1
λ

and Var(X ) = 1
λ2 , we have here: EX = 3, Var(X ) = 9, and

s.d.(X ) = 3.
(ii) Since, by (35), F(x) = 1 − e− x

3 for x > 0, we have P(2 < X < 4) = P(2 <

X ≤ 4) = P(X ≤ 4) − P(X ≤ 2) = F(4) − F(2) = (1 − e− 4
3 ) − (1 − e− 2

3 ) =
e− 2

3 − e− 4
3 � 0.252.

(iii) The required probability is: P(X > 4 | X > 3) = P(X > 1), by the mem-
oryless property of this distribution, and P(X > 1) = 1 − P(X ≤ 1) =
1 − F(1) = e− 1

3 � 0.716.

Chi-Square Distribution In formula (27) , set α = r

2 for a positive integer
r and β = 2 to obtain:

f (x) = 1

�
(

r

2

)
2r/2

x(r/2)−1e−x/2, x > 0, r > 0 integer. (36)

The resulting distribution is known as the Chi-Square distribution with r de-

grees of freedom (d.f.). This distribution is used in certain statistical inference
problems involving confidence intervals for variances and testing hypotheses
about variances. The notation used for a r.v. X having the Chi-Square distribu-
tion with r d.f. is X ∼ χ2

r . For such a r.v., formulas (31) then become:

EX = r, Var(X ) = 2r (both easy to remember) and

MX(t) = 1
(1 − 2t)r/2

, t <
1
2
. (37)

The shape of the graph of f depends on r, and, typically, looks like that in
Figure 3.8.

Later on (see Corollary to Theorem 5 in Chapter 5), it will be seen why r is
referred to as the number of d.f. of the distribution.

Normal Distribution This is by far the most important distribution, in
both probability and statistics. The reason for this is twofold: First, many
observations do follow to a very satisfactory degree a Normal distribution
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Graph of the p.d.f. of
the Chi-Square
Distribution for
Several Values of r

0.8

0.6

0.4

0.2

1−1−2 0 2 3 4 5

s = 2

s = 1

s = 0.5

x

f (x)

N( m, s 2)

Figure 3.9

Graph of the p.d.f.
of the Normal
Distribution with
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Values of σ

(see, for instance, Examples 13–17 in Chapter 1); and second, no matter what
the underlying distribution of observations is, the sum of sufficiently many
observations behaves pretty much as if it were normally distributed, under very
mild conditions. This second property is referred to as normal approximation

or as the Central Limit Theorem and will be revisited later on (see Section 7.2
in Chapter 7). The p.d.f. of a Normal distribution is given by:

f (x) = 1√
2πσ

e−(x−μ)2/σ 2
, x ∈ �, μ ∈ �, σ > 0; (38)

μ and σ 2 (or σ ) are referred to as the parameters of the distribution. The
graph of f depends on μ and σ ; typical cases for μ = 1.5 and various values
of σ are given in Figure 3.9.

No matter what μ and σ are, the curve representing f attains its maximum
at x = μ and this maximum is equal to 1/

√
2πσ , is symmetric around μ (i.e.,

f (μ − x) = f (μ + x)), and f (x) tends to 0 as x → ∞ or x → −∞. All
these observations follow immediately from formula (38). That the function
f (x) integrates to 1 is seen through a technique involving a double integral
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and polar coordinates (see Exercise 3.44). For μ = 0 and σ = 1, formula (38)
is reduced to:

f (x) = 1√
2π

e−x 2/2, x ∈ �, (39)

and this is referred to as the standard Normal distribution (see Figure 3.10
for its graph).

1−1−2−3 0 32

f(x)

0.4 1
2p

x

Figure 3.10

Graph of the p.d.f. of
the standard Normal
Distribution

The fact that a r.v. X is Normally distributed with parameters μ and σ 2

(or σ ) is conveniently denoted by: X ∼ N(μ, σ 2). In particular, X ∼ N(0, 1)
for μ = 0, σ = 1. We often use the notation Z for a N(0, 1) distributed r.v.

The d.f. of the N(0, 1)-distribution is usually denoted by 
; i.e., if
Z ∼ N(0, 1), then:

P(Z ≤ x) = 
(x) =
∫ x

−∞

1√
2π

e−t2/2 dt, x ∈ �. (40)

Calculations of probabilities of the form P(a < X < b) for −∞ ≤ a ≤ b < ∞
are done through two steps: First, turn the r.v. X ∼ N(μ, σ 2) into a N(0, 1)-
distributed r.v., or, as we say, standardize it, and then use available tables,
the Normal tables (see Proposition 3). The standardization is based on the
following simple result.

PROPOSITION 3 If X ∼ N(μ, σ 2), then Z = X−μ

σ
is ∼N(0, 1).

PROOF Indeed, for y ∈ �,

FZ(y) = P(Z ≤ y) = P

(
X − μ

σ
≤ y

)
= P(X ≤ μ + σ y)

=
∫ μ+σ y

−∞

1√
2πσ

e−(t−μ)2/2σ 2
dt.
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Set t−μ

σ
= z, so that t = μ + σz with range from −∞ to y, and dt = σ dz, to

obtain:

FZ(y) =
∫ y

−∞

1√
2πσ

e−z2/2σ dz

=
∫ y

−∞

1√
2π

e−z2/2 dz, so that

fZ(y) = d

dy
FZ(y) = 1√

2π
e−y2/2,

which is the p.d.f. of the N(0, 1) distribution. ▲

Thus, if X ∼ N(μ, σ 2) and a, b are as above, then:

P(a < X < b) = P

(
a − μ

σ
<

X − μ

σ
<

b − μ

σ

)
= P

(
a − μ

σ
< Z <

b − μ

σ

)
= 


(
b − μ

σ

)
− 


(
a − μ

σ

)
.

That is,

P(a < X < b) = 


(
b − μ

σ

)
− 


(
a − μ

σ

)
. (41)

Any other probabilities (involving intervals) can be found by way of prob-
ability (40) by exploiting the symmetry (around 0) of the N(0, 1) curve.

Now, if Z ∼ N(0, 1), it is clear that EZ2n+1 = 0 for n = 0, 1, . . . ; by
integration by parts, the following recursive relation is also easily established:

m2n = (2n − 1)m2n−2, where mk =
∫ ∞

−∞
xk 1√

2π
e−x 2/2 dx, (42)

from which it follows that EZ = 0 and EZ2 = 1, so that Var(Z ) = 1. (For
details, see Exercise 3.48.)

If X ∼ N(μ, σ 2), then Z = X−μ

σ
∼ N(0, 1), so that (by properties (9) and (10)):

0 = EZ = EX

σ
− μ

σ
, 1 = Var(Z) = 1

σ 2
Var(X ), or EX = μ and

Var(X ) = σ 2.

In other words:

If X ∼ N(μ, σ 2), then EX = μ and Var(X ) = σ 2. (43)

Thus, the parameters μ and σ 2 have specific interpretations: μ is the mean of
X and σ 2 is its variance (so that σ is its s.d.).

If Z ∼ N(0, 1), it is seen from the Normal tables that:

P(−1 < Z < 1) = 0.68269, P(−2 < Z < 2) = 0.95450,

P(−3 < Z < 3) = 0.99730,

so that almost all of the probability mass lies within 3 standard deviations from
the mean. The same is true, by means of formula (41), applied with a = μ−kσ
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and b = μ + kσ with k = 1, 2, 3 in case X ∼ N(μ, σ 2). That is:

P(μ − σ < X < μ + σ ) = 0.68269, P(μ − 2σ < X < μ + 2σ ) = 0.95450,

P(μ − 3σ < X < μ + 3σ ) = 0.99730.

Finally, simple integration produces the m.g.f. of X (see also Exercise 3.46),
namely,

MX(t) = eμt+σ 2t2/2, t ∈ �, for X ∼ N(μ, σ 2);

MZ(t) = et2/2, t ∈ �, for Z ∼ N(0, 1).
(44)

As will be seen in subsequent chapters, the Normal distribution is widely
used in problems of statistical inference, involving point estimation, interval
estimation, and testing hypotheses. Some instances where the Normal distri-
bution is assumed as an appropriate (approximate) underlying distribution are
described in Examples 13–17 in Chapter 1, as mentioned already.

EXAMPLE 11 Suppose that numerical grades in a statistics class are values of a r.v. X which
is (approximately) Normally distributed with mean μ = 65 and s.d. σ = 15.

Furthermore, suppose that letter grades are assigned according to the fol-
lowing rule: the student receives an A if X ≥ 85; B if 70 ≤ X < 85; C if
55 ≤ X < 70; D if 45 ≤ X < 55; and F if X ≤ 45.

(i) If a student is chosen at random from that class, calculate the probability
that the student will earn a given letter grade.

(ii) Identify the expected proportions of letter grades to be assigned.

DISCUSSION

(i) The student earns an A with probability P(X ≥ 85) = 1 − P(X < 85) =
1 − P( X − μ

σ
< 85 − 65

15 ) � 1 − P(Z < 1.34) � 1 − 
(1.34) = 1 − 0.909877 =
0.090123 � 0.09. Likewise, the student earns a B with probability P(70 ≤
X < 85) = P(70 − 65

15 ≤ X − μ

σ
< 85 − 65

15 ) � P(0.34 ≤ Z < 1.34) � 
(1.34) −

(0.34) = 0.909877 − 0.633072 = 0.276805 � 0.277. Similarly, the student
earns a C with probability P(55 ≤ X < 70) � 
(0.34) + 
(0.67) − 1 =
0.381643 � 0.382. The student earns a D with probability P(45 ≤ X <

55) � 
(1.34) − 
(0.67) = 0.161306 � 0.161, and the student is assigned
an F with probability P(X < 45) � 
(−1.34) = 1 − 
(1.34) = 0.09123 �
0.091.

(ii) The respective expected proportions for A, B, C, D, and F are: 9%, 28%,
38%, 16%, and 9%.

Indeed, suppose there are n students, and let XA be the number of those
whose numerical grades are ≥85. By assuming that the n events that the nu-
merical grade of each one of the n students is ≥85 are independent, we have
that XA ∼ B(n, 0.09). Then, XA

n
is the proportion of A grades, and E( XA

n
) =

1
n
n×0.09 = 0.09 = 9% is the expected proportion of A’s. Likewise for the other

grades.
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This section is concluded with a simple distribution, the Uniform (or Rect-
angular) distribution.

Uniform (or Rectangular) Distribution Such a distribution is restricted
to finite intervals between the parameters α and β with −∞ < α < β < ∞,
and its p.d.f. is given by:

f (x) = 1
β − α

, α ≤ x ≤ β (−∞ < α < β < ∞). (45)

Its graph is given in Figure 3.11, and it also justifies its name as rectangular.

x

b - a
1

f (x)

0 b  a

Figure 3.11

Graph of the p.d.f. of
the U(α, β)

Distribution

The term “uniform” is justified by the fact that intervals of equal length
in (α, β) are assigned the same probability regardless of their location. The
notation used for such a distribution is U(α, β) (or R(α, β)), and the fact that
the r.v. X is distributed as such is denoted by X ∼ U(α, β) (or X ∼ R(α, β)).
Simple integrations give (see also Exercise 3.51):

EX = α + β

2
, Var(X ) = (α − β)2

12
, and MX(t) = eβt − eαt

(β − α)t
, t ∈ �. (46)

EXAMPLE 12 A bus is supposed to arrive at a given bus stop at 10:00 a.m., but the actual time
of arrival is a r.v. X which is uniformly distributed over the 16-minute interval
from 9:52 to 10:08. If a passenger arrives at the bus stop at exactly 9:50, what is
the probability that the passenger will board the bus no later than 10 minutes
from the time of his/her arrival?

DISCUSSION The p.d.f. of X is f (x) = 1/16 for x ranging between 9:52
and 10:08, and 0 otherwise. The passenger will board the bus no later than 10
minutes from the time of his/her arrival at the bus stop if the bus arrives at
the bus stop between 9:52 and 10:00 (as the passenger will necessarily have
to wait for 2 minutes, between 9:50 and 9:52). The probability for the bus to
arrive between 9:52 and 10:00 is 8/16 = 0.5. This is the required probability.

REMARK 4 It has been stated (see comments after relation (7)) that some-
times a handful of moments of a r.v. X completely determine the distribution
of X. Actually, this has been the case in all seven distributions examined
in this section. In the Binomial distribution, knowledge of the mean amounts
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to knowledge of p, and hence of f . The same is true in the Geometric distribu-
tion, as well as in the Poisson distribution. In the Hypergeometric distribution,
knowledge of the first two moments, or equivalently, of the mean and variance
of X (see expressions for the expectation and variance), determine m and n

and hence the distribution itself. The same is true of the Gamma distribution,
as well as the Normal and Uniform distributions.

Exercises

3.1 If X ∼ B(n, p) with p > 0.5, the Binomial tables (in this book) cannot
be used, even if n is suitable. This problem is resolved by the following
result.
(i) If X ∼ B(n, p), show that P(X = x) = P(Y = n − x), where Y ∼

B(n, q) (q = 1 − p).
(ii) Apply part (i) for n = 20, p = 0.625, and x = 8.

3.2 Let X be a r.v. distributed as B(n, p), and recall that P(X = x) = f (x) =(
n

x

)
pxqn−x, x = 0, 1, . . . , n (q = 1 − p). Set B(n, p; x) = f (x).

(i) By using the relationship:
(

m+ 1
y

) = (m
y

) + ( m

y−1

)
(see Exercise 5.11 in

Chapter 2), show that:

B(n + 1, p; x) = pB(n, p; x − 1) + q B(n, p; x).

(ii) By using this recursive relation of B(n+ 1, p;.), calculate the proba-
bilities B(n, p; x) for n = 26, p = 0.25, and x = 10.

3.3 Someone buys one ticket in each one of 50 lotteries, and suppose that
each ticket has probability 1/100 of winning a prize. Compute the prob-
ability that the person in question will win a prize:
(i) Exactly once.

(ii) At least once.

3.4 Suppose that 15 people, chosen at random from a target population, are
asked if they favor a certain proposal. If 43.75% of the target population
favor the proposal, calculate the probability that:
(i) At least 5 of the 15 polled favor the proposal.

(ii) A majority of those polled favor the proposal.

3.5 A fair die is tossed independently 18 times, and the appearance of a 6 is
called a success. Find the probability that:

(i) The number of successes is greater than the number of failures.
(ii) The number of successes is twice as large as the number of failures.

(iii) The number of failures is 3 times the number of successes.

3.6 Suppose you are throwing darts at a target and that you hit the bull’s eye
with probability p. It is assumed that the trials are independent and that
p remains constant throughout.
(i) If you throw darts 100 times, what is the probability that you hit the

bull’s eye at least 40 times?
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(ii) What does this expression become for p = 0.25?
(iii) What is the expected number of hits, and what is the s.d. around this

expected number?

3.7 If X ∼ B(100, 1/4), use the Tchebichev inequality to determine a lower
bound for the probability: P(|X − 25| < 10).

3.8 A manufacturing process produces defective items at the constant (but
unknown to us) proportion p. Suppose that n items are sampled inde-
pendently and let X be the r.v. denoting the number of defective items
among the n, so that X ∼ B(n, p). Use the Tchebichev inequality in
order to determine the smallest value of the sample size n, so that:
P(| X

n
− p| < 0.05

√
pq) ≥ 0.95 (q = 1 − p).

3.9 If X ∼ B(n, p) show that f (x + 1) = p

q
· n− x

x+ 1 f (x), x = 0, 1, . . . , n − 1,
(q = 1 − p).

3.10 If X ∼ B(n, p):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6 to calculate the Var(X).

Hint: For part (i), observe that:

EX =
n∑

x=1

x
n(n − 1)!

x(x − 1)!(n − x)!
pxqn−x = np

n∑
x=1

(
n − 1
x − 1

)
px−1q(n−1)−x

= np

n−1∑
y=0

(
n − 1

y

)
pyq(n−1)−y = np,

and E[X(X − 1)] =
n∑

x=2

x(x − 1)
n(n − 1)(n − 2)!

x(x − 1)(x − 2)!(n − x)!
pxqn−x

= n(n − 1)p2
n∑

x=2

(
n − 2
x − 2

)
px−2q(n−2)−(x−2)

= n(n− 1)p2
n−2∑
y=0

(
n − 2

y

)
pyq(n−2)−y = n(n − 1)p2.

3.11 If X ∼ B(n, p):
(i) Show that MX(t) = (pet + q)n, t ∈ � (q = 1 − p).

(ii) Use part (i) to rederive the EX and the Var(X ).

3.12 Let the r.v. X have the Geometric p.d.f. f (x) = pqx−1, x = 1, 2, . . . (q =
1 − p).
(i) What is the probability that the first success will occur by the 10th

trial?
(ii) What is the numerical value of this probability for p = 0.2?

3.13 A manufacturing process produces defective items at the rate of 1%. Let X

be the r.v. denoting the number of trials required until the first defective
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item is produced. Then calculate the probability that X is not larger
than 10.

3.14 A fair die is tossed repeatedly until a six appears for the first time. Cal-
culate the probability that:
(i) This happens on the 3rd toss.

(ii) At least 5 tosses will be needed.

3.15 A coin with probability p of falling heads is tossed repeatedly and inde-
pendently until the first head appears.
(i) Determine the smallest number of tosses, n, required to have the first

head appearing by the nth time with prescribed probability α.
(ii) Determine the value of n for α = 0.95, and p = 0.25 (q = 0.75) and

p = 0.50(=q).

3.16 If X has the Geometric distribution; i.e., f (x) = pqx−1, for x = 1, 2, . . .

(q = 1 − p):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6 to calculate the Var(X ).

Hint: Refer to the comments made just before the Exercises in
Section 3.1 (of this chapter).

3.17 If X has the Geometric distribution, then:
(i) Derive the m.g.f. of X and specify the range of its argument.

(ii) Employ the m.g.f. in order to derive: EX, EX2, and Var(X ).

3.18 Suppose that r.v. X is distributed as P(λ); i.e., f (x) = e−λ λx

x! , for x =
0, 1, . . . , and that f (2) = 2 f (0). Determine the value of the parameter λ.

3.19 Let X be a Poisson distributed r.v. with parameter λ, and suppose that
P(X = 0) = 0.1. Calculate the probability P(X = 5).

3.20 If X ∼ P(λ), show that: f (x + 1) = λ
x+1 f (x), x = 0, 1, . . . .

3.21 If X ∼ P(λ):
(i) Calculate the EX and the E[X(X − 1)].

(ii) Use part (i) and Exercise 1.6 to calculate the Var(X ).

Hint: For part (i), observe that:

EX = e−λ
∞∑

x=1

x
λ · λx−1

x(x − 1)!
= λe−λ

∞∑
y=0

λy

y!
= λe−λeλ = λ, and

E[X(X − 1)] = λ2e−λ
∞∑

x=2

x(x − 1)
λx−2

x(x − 1)(x − 2)!
= λ2e−λ

∞∑
y=0

λy

y!
= λ2.

3.22 If X ∼ P(λ):
(i) Show that MX(t) = eλ(et−1), t ∈ �.

(ii) Use the m.g.f. to rederive the EX and the Var(X ).
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3.23 For n = 1, 2, . . . , let the r.v. Xn ∼ B(n, pn) where, as n → ∞, 0 < pn → 0,
and npn → λ ∈ (0, ∞). Then show that:(

n

x

)
px

nqn−x
n

−−→
n→∞ e−λ λx

x!
(qn = 1 − pn).

Hint: Write
(

n

x

)
as n(n − 1) . . . (n − x + 1)/x!, set npn = λn, so that

pn = λn

n
−−→
n→∞ 0 and qn = 1 − pn = 1 − λn

n
−−→
n→∞ 1. Group terms suitably,

take the limit as n → ∞, and use the calculus fact that (1 + xn

n
)n → ex

when xn → x as n → ∞.

3.24 In an undergraduate statistics class of 80, 10 of the students are, actually,
graduate students. If 5 students are chosen at random from the class,
what is the probability that:
(i) No graduate students are included?

(ii) At least 3 undergraduate students are included?

3.25 Suppose a geologist has collected 15 specimens of a certain rock, call it
R1, and 10 specimens of another rock, call it R2. A laboratory assistant
selects randomly 15 specimens for analysis, and let X be the r.v. denoting
the number of specimens of rock R1 selected for analysis.

(i) Specify the p.d.f. of the r.v. X.
(ii) What is the probability that at least 10 specimens of the rock R1 are

included in the analysis?
(iii) What is the probability that all specimens come from the rock R2?

3.26 If the r.v. X has the Hypergeometric distribution; i.e., P(X = x) = f (x) =
(m

x)( n

r−x)
(m+n

r ) , x = 0, 1, . . . , r, then show that:

f (x + 1) = (m− x)(r − x)
(n − r + x + 1)(x + 1)

f (x).

Hint: Start with f (x + 1) and write the numerator in terms of facto-
rials. Then modify suitably some terms, and regroup them to arrive at
the expression on the right-hand side.

3.27 By using the definition of �(α) by (26) and integrating by parts, show
that: �(α) = (α − 1)�(α − 1), α > 1.

3.28 Let the r.v. X have the Gamma distribution with parameters α and β. Then:
(i) Show that: EX = αβ, Var(X ) = αβ2.

(ii) As a special case of part (i), show that: If X has the Negative Expo-
nential distribution with parameter λ, then EX = 1

λ
,Var(X ) = 1

λ2 .

(iii) If X ∼ χ2
r , then EX = r, Var(X ) = 2r.

3.29 If the r.v. X is distributed as Gamma with parameters α and β, then:
(i) Show that MX(t) = 1/(1 − βt)α , provided t < 1/β.

(ii) Use the m.g.f. to rederive the EX and the Var(X ).

3.30 Let X be a r.v. denoting the lifetime of a certain component of a sys-
tem, and suppose that X has the Negative Exponential distribution with
parameter λ. Also, let g(x) be the cost of operating this equipment to
time X = x.
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(i) Compute the expected cost of operation over the lifetime of the
component under consideration, when:
(a) g(x) = cx, where c is a positive constant,
(b) g(x) = c(1 − 0.5e−αx), where α is a positive constant.

(ii) Specify the numerical values in part (i) when λ = 1/5, c = 2, and
α = 0.2.

3.31 If the r.v. X has the Negative Exponential p.d.f. with parameter λ, calcu-
late the failure rate r(x) defined by: r(x) = f (x)

1−F(x) , for x > 0, where F is
the d.f. of X.

3.32 Suppose that certain events occur in a time interval λt according to the
Poisson distribution with parameter λt. Then show that the waiting time
between any two such successive events is a r.v. T which has the Negative
Exponential distribution with parameter λ, by showing that P(T > t) =
e−λt, t > 0.

3.33 Let X be the r.v. denoting the number of particles arriving independently
at a detector at the average rate of 3 per second, and let Y be the r.v. denot-
ing the waiting time between two successive arrivals. Refer to Exercise
3.32 in order to calculate:
(i) The probability that the first particle will arrive within 1 second.

(ii) Given that we have waited for 1 second since the arrival of the last
particle without a new arrival, what is the probability that we have
to wait for at least another second?

3.34 Let X be a r.v. with p.d.f. f (x) = αβxβ−1e−αxβ

, for x > 0 (where the
parameters α and β are > 0). This is the so-called Weibull distribution
employed in describing the lifetime of living organisms or of mechanical
systems.

(i) Show that f is, indeed, a p.d.f.
(ii) For what values of the parameters does f become a Negative

Exponential p.d.f.?
(iii) Calculate the quantities: EX, EX2, and Var(X ).

Hint: For part (i), observe that:
∫∞

0 αβxβ−1e−αxβ

dx = ∫∞
0 e−αxβ ×

(αβxβ−1)dx = − ∫∞
0 de−αxβ = −e−αxβ |∞

0 = 1.

For part (iii), set αxβ = t, so that x = t1/β/α1/β , dx = (t
1
β
−1

/βα1/β)dt

and 0 < t < ∞. Then:

EXn = 1
αn/β

∫ ∞

0
t

( n
β
+1)−1

e−tdt.

Then multiply and divide by the constant �( n

β
+ 1) and observe that

1
�( n

β
+1) t

( n
β
+1)−1

e−t (t > 0) is a Gamma p.d.f. with parameters n

β
+ 1 and 1.

3.35 In reference to Exercise 3.34, calculate:
(i) The failure rate r(x) = f (x)

1−F(x) , x > 0, where F is the d.f. of the
r.v. X.

(ii) The conditional probability P(X > s + t | X > t), s > 0, t > 0.
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(iii) Compare the results in parts (i) and (ii) with the respective results
in Exercise 3.31 here, and Exercise 3.20(ii) in Chapter 2.

3.36 If 
 is the d.f. of the r.v. Z ∼ N(0, 1), show that:
(i) For 0 ≤ a < b, P(a < Z < b) = 
(b) − 
(a).

(ii) For a ≤ 0 < b, P(a < Z < b) = 
(−a) + 
(b) − 1.
(iii) For a ≤ b < 0, P(a < Z < b) = 
(−a) − 
(−b).
(iv) For c > 0, P(−c < Z < c) = 2
(c) − 1.

3.37 If the r.v. Z ∼ N(0, 1), use the Normal tables in the appendix to verify
that:

(i) P(−1 < Z < 1) = 0.68269.
(ii) P(−2 < Z < 2) = 0.9545.

(iii) P(−3 < Z < 3) = 0.9973.

3.38 (i) If the r.v. X is distributed as N(μ, σ 2), identify the constant c, in terms
of μ and σ , for which:

P(X < c) = 2 − 9P(X > c).

(ii) What is the numerical value of c for μ = 5 and σ = 2?

3.39 For any r.v. X with expectation μ and variance σ 2 (both finite), use the
Tchebichev inequality to determine a lower bound for the probabilities:
P(|X − μ| < kσ ), for k = 1, 2, 3. Compare these bounds with the respec-
tive probabilities when X ∼ N(μ, σ 2) (see Exercise 3.37).

3.40 The distribution of I.Q.’s of the people in a given group is approximated
well by the Normal distribution with μ = 105 and σ = 20. What propor-
tion of the individuals in the group in question has an I.Q. :

(i) At least 50?
(ii) At most 80?

(iii) Between 95 and 125?

3.41 A certain manufacturing process produces light bulbs whose life length
(in hours) is a r.v. X distributed as Normal with μ = 2,000 and σ = 200.
A light bulb is supposed to be defective if its lifetime is less than 1,800. If
25 light bulbs are tested, what is the probability that at most 15 of them
are defective? (Use the required independence.)

3.42 A manufacturing process produces 1/2-inch ball bearings, which are
assumed to be satisfactory if their diameter lies in the interval 0.5 ±
0.0006 and defective otherwise. A day’s production is examined, and it
is found that the distribution of the actual diameters of the ball bearings
is approximately Normal with μ = 0.5007 inch and σ = 0.0005 inch.
What would you expect the proportion of defective ball bearings to be
equal to?

3.43 Let f be the p.d.f. of the N(μ, σ 2) distribution. Then show that:
(i) f is symmetric about μ.

(ii) max x∈� f (x) = 1/
√

2πσ .
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3.44 (i) Show that f (x) = 1√
2π

e− x 2

2 , x ∈ �, is a p.d.f.

(ii) Use part (i) in order to show that f (x) = 1√
2πσ

e
− (x−μ)2

2σ2 , x ∈ � (μ ∈
�, σ > 0) is also a p.d.f.

Hint: Set I = 1√
2π

∫∞
−∞ e− x 2

2 dx and show that I2 = 1, by writing I2 as
a product of two integrals and then as a double integral; at this point,
use polar coordinates: x = r cos θ , y = r sin θ , 0 < r < ∞, 0 ≤ θ < 2π .
Part (ii) is reduced to part (i) by letting x−μ

σ
= y.

3.45 Refer to the definition of �(α) by (26) and show that �(1
2 ) = √

π.

3.46 (i) If X ∼ N(0, 1), show that MX(t) = et2/2, t ∈ �.
(ii) If X ∼ N(μ, σ 2), use part (i) to show that MX(t) = eμt+ σ2t2

2 , t ∈ �.
(iii) Employ the m.g.f. in part (ii) in order to show that EX = μ and

Var(X ) = σ 2.

3.47 If the r.v. X has m.g.f. MX(t) = eαt+βt2
, where α ∈ � and β > 0, identify

the distribution of X.

3.48 If X ∼ N(0, 1), show that:
(i) EX2n+1 = 0 and EX2n = (2n)!

2n(n!) , n = 0, 1, . . .

(ii) From part (i), derive that EX = 0 and Var(X ) = 1.
(iii) Employ part (ii) in order to show that, if X ∼ N(μ, σ 2), then EX = μ

and Var(X ) = σ 2.

Hint: For part (i), that EX2n+1 = 0 follows by the fact that the inte-
grand is an odd function. For EX2n, establish a recursive relation, inte-
grating by parts, and then multiply out the resulting recursive relations
to find an expression for EX2n. The final form follows by simple manip-
ulations. For part (iii), recall that X ∼ N(μ, σ 2) implies X−μ

σ
∼ N(0, 1).

3.49 Let X be a r.v. with moments given by:

EX2n+1 = 0, EX2n = (2n)!
2n(n!)

, n = 0, 1, . . .

(i) Use Exercise 1.17 in order to express the m.g.f. of X in terms of the
moments given.

(ii) From part (i) and Exercise 3.46(i), conclude that X ∼ N(0, 1).

3.50 If the r.v. X is distributed as U(−α, α) (α > 0), determine the parameter
α, so that each of the following equalities holds:
(i) P(−1 < X < 2) = 0.75.

(ii) P(|X| < 1) = P(|X| > 2).

3.51 If X ∼ U(α, β), show that EX = α+β

2 , Var(X ) = (α−β)2

12 .

3.52 If the r.v. X is distributed as U(0, 1), compute the expectations:
(i) E(3X 2 − 7X + 2).

(ii) E(2eX ).
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3.4 Median and Mode of a Random Variable

Although the mean of a r.v. X does specify the center of location of the dis-
tribution of X, sometimes this is not what we actually wish to know. A case
in point is the distribution of yearly income in a community (e.g., in a state
or in a country). For the sake of illustration, consider the following (rather)
extreme example. A community consisting of 100 households comprises 10
households with yearly income $400,000 each and 90 households with yearly
income $12,000 each. Defining the r.v. X to take the values 400,000 and 12,000
with respective probabilities 0.10 and 0.90, we obtain: EX = 50,800. Thus, the
average yearly income in this community would be $50,800, significantly above
the national average yearly income, which would indicate a rather prosperous
community. The reality, however, is that this community is highly stratified,
and the expectation does not reveal this characteristic. What is more appro-
priate for cases like this are numerical characteristics of a distribution known
as median or, more generally, percentiles or quantiles.

The median of the distribution of a r.v. X is usually defined as a point,
denoted by x0.50, for which

P(X ≤ x0.50) ≥ 0.50 and P(X ≥ x0.50) ≥ 0.50, (47)

or, equivalently,

P(X < x0.50) ≤ 0.50 and P(X ≤ x0.50) ≥ 0.50. (48)

If the underlying distribution is continuous, the median is (essentially)
unique and may be simply defined by:

P(X ≤ x0.50) = P(X ≥ x0.50) = 0.50 (49)

However, in the discrete case, relation (47) (or (48)) may not define the
median in a unique manner, as the following example shows.

EXAMPLE 13 Examine the median of the r.v. X distributed as follows.

x 1 2 3 4 5 6 7 8 9 10

f (x) 2/32 1/32 5/32 3/32 4/32 1/32 2/32 6/32 2/32 6/32

DISCUSSION We have P(X ≤ 6) = 16/32 = 0.50 ≥ 0.50 and P(X ≥ 6) =
17/32 > 0.05 ≥ 0.50, so that (47) is satisfied. Also,

P(X ≤ 7) = 18/32 > 0.50 ≥ 0.50 and P(X ≥ 7) = 16/32 = 0.50 ≥ 0.50,

so that (47) is satisfied again. However, if we define the median as the point
(6 + 7)/2 = 6.5, then P(X ≤ 6.5) = P(X ≥ 6.5) = 0.50, as (47) requires, and
the median is uniquely defined.

Relations (47)–(49) and Example 13 suggest the following definition of the
median.
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DEFINITION 4
The median of the distribution of a continuous r.v. X is the (essentially)
unique point x0.50 defined by (49). For the discrete case, consider two
cases: Let xk be the value for which P(X ≤ xk) = 0.50, if such a value
exists. Then the unique median is defined to be the midpoint between
xk and xk+1: i.e., x0.50 = (xk + xk+1)/2. If there is no such value, the
unique median is defined by the relations: P(X < x0.50) < 0.50 and
P(X ≤ x0.50) > 0.50 (or P(X ≤ x0.50) > 0.50 and P(X ≥ x0.50) > 0.50).

Thus, in Example 14, x0.50 = 6, because P(X < 6) = P(X ≤ 5) = 15/32 <

0.50 and P(X ≤ 6) = 17/32 > 0.50.

EXAMPLE 14 Determine the median of the r.v. X distributed as follows.

x 1 2 3 4 5 6 7 8 9 10

f (x) 2/32 1/32 2/32 6/32 4/32 2/32 1/32 7/32 1/32 6/32

More generally, the pth quartile is defined as follows.

DEFINITION 5
For any p with 0 < p< 1, the pth quartile of the distribution of a r.v. X,
denoted by xp, is defined as follows: If X is continuous, then the (essen-
tially) unique xp is defined by:

P(X ≤ xp) = p and P(X ≥ xp) = 1 − p.

For the discrete case, consider two cases: Let xk be the value for which
P(X ≤ xk) = p, if such a value exists. Then the unique pth quantile

is defined to be the midpoint between xk and xk+1; i.e., xp = (xk +
xk+1)/2. If there is no such value, the unique pth quantile is defined
by the relation: P(X < xp) < p and P(X ≤ xp) > p (or P(X ≤ xp) > p and
P(X ≥ xp) > 1 − p).

Thus, the pth quantile is a point xp, which divides the distribution of X

into two parts, and (−∞, xp] contains exactly 100p% (or at least 100p%) of the
distribution, and [xp, ∞) contains exactly 100(1− p)% (or at least 100(1− p)%)
of the distribution of X. For p = 0.50, we obtain the median. These concepts
are illustrated further by the following examples.

EXAMPLE 15 Refer to Figure 3.1 (B(12, 1/4)) and determine x0.25, x0.50, and x0.75.

DISCUSSION Here x0.25 = 2 since P(X < 2) = P(X = 0) + P(X = 1) =
0.1584 ≤ 0.25 and P(X ≤ 2) = 0.1584 + P(X = 2) = 0.3907 ≥ 0.25. Likewise,
x0.50 = 3 since P(X < 3) = 0.3907 ≤ 0.50 and P(X ≤ 3) = 0.6488 ≥ 0.50.
Finally, x0.75 = 4, since P(X < 4) = 0.6488 ≤ 0.75 and P(X ≤ 4) = 0.8424 > 0.75.

EXAMPLE 16 Refer to Figure 3.4 (P(5)) and determine x0.25, x0.50, and x0.75.

As in the previous example, x0.25 = 2, x0.50 = 4, and x0.75 = 6.
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EXAMPLE 17 If X ∼ U(0, 1), take p = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90
and determine the corresponding xp.

Here F(x) = ∫ x

0 dt = x, 0 ≤ x ≤ 1. Therefore F(xp) = p gives xp = p.

EXAMPLE 18 If X ∼ N(0, 1), take p as in the previous example and determine the corre-
sponding xp.

From the Normal tables, we obtain: x0.10 = −x0.90 = −1.282, x0.20 = −x0.80 =
−0.842, x0.30 = −x0.70 = −0.524, x0.40 = −x0.60 = −0.253, and x0.50 = 0.

Another numerical characteristic which helps shed some light on the distribu-
tion of a r.v. X is the so-called mode.

DEFINITION 6
A mode of the distribution of a r.v. X is any point, if such points exist,
which maximizes the p.d.f. of X, f.

A mode, being defined as a maximizing point, is subject to all shortcomings
of maximization: It may not exist at all; it may exist but is not obtainable in
closed form; there may be more than one mode (the distribution is a multi-

modal one). It may also happen that there is a unique mode (unimodal distri-
bution). Clearly, if a mode exists, it will be of particular importance for discrete
distributions, as the modes provide the values of the r.v. X which occur with
the largest probability. With this in mind, we restrict ourselves to two of the
most popular discrete distributions: the Binomial and the Poisson distribution.

THEOREM 2
Let X be B(n, p); that is,

f (x) =
(

n

x

)
pxqn−x, 0 < p < 1, q = 1 − p, x = 0, 1, . . . , n.

Consider the number (n+ 1)p and set m = [(n+ 1)p], where [y] denotes
the largest integer which is ≤y. Then, if (n + 1)p is not an integer, f (x)
has a unique mode at x = m. If (n+ 1)p is an integer, then f (x) has two
modes obtained for x = m and x = m− 1.

PROOF For x ≥ 1, we have

f (x)
f (x − 1)

=
(

n

x

)
pxqn−x(

n

x−1

)
px−1qn−x+1

=
n!

x!(n−x)! pxqn−x

n!
(x−1)!(n−x+1)! px−1qn−x+1

= n − x + 1
x

· p

q
.
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That is,

f (x)
f (x − 1)

= n − x + 1
x

· p

q
.

Hence f (x) > f (x − 1) ( f is increasing) if and only if

(n − x + 1)p > x(1 − p), or np − xp + p > x − xp, or (n + 1)p > x, and

f (x) = f (x − 1) if and only if x = (n + 1)p in case (n + 1)p is an integer.

Thus, if (n + 1)p is not an integer, we have:

0 < 1 < · · · < m < (n + 1)p < m+ 1 < · · · < n,

and, by a slight abuse of notation,

f (0) < f (1) < · · · < f (m) > f (m+ 1) > · · · > f (n),

so that there is a unique mode at m. If (n + 1)p is an integer (=m), then we
have:

0 < 1 < · · · < m− 1 < m < m+ 1 < · · · < n,

and, as above,

f (0) < f (1) < · · · < f (m− 1) = f (m) > f (m+ 1) > · · · > f (n),

so that there are two modes at m and m− 1. ▲

THEOREM 3
Let X be P(λ); that is,

f (x) = e−λ λx

x!
, x = 0, 1, 2, . . . , λ > 0.

Then, if λ is not an integer, f (x) has a unique mode at x = [λ]. If λ is an
integer, then f (x) has two modes obtained for x = λ and x = λ − 1.

PROOF For x ≥ 1, we have

f (x)
f (x − 1)

= e−λλx/x!
e−λλx−1/(x − 1)!

= λ

x
.

Hence f (x) > f (x − 1) if and only if λ > x, and f (x) = f (x − 1) if and only if
x = λ in case λ is an integer. Thus, if λ is not an integer, f (x) keeps increasing
for x ≤ [λ] and then decreases. Thus the maximum of f (x) occurs at x =
[λ]. If λ is an integer, then the maximum occurs at x = λ. But in this case
f (x) = f (x − 1), which implies that x = λ − 1 is a second point which gives
the maximum value to the p.d.f. ▲

EXAMPLE 19 Let X ∼ B(n, p) with n = 20 and p = 1
4 . Then (n + 1)p = 21

4 is not an integer
and therefore there is a unique mode. Since 21

4 = 5.25, the mode is [5.25] = 5.
The maximum probability is

(20
5

)
(0.25)5(0.75)15 = 0.2024. If n = 15 and p = 1

4 ,
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then (n + 1)p = 16
4 = 4 and therefore there are two modes; they are 4 and 3.

The respective maximum probability is
(15

4

)
(0.25)4(0.75)11 = 0.2252.

EXAMPLE 20 Let X ∼ P(λ) and let λ = 4.5. Then there is a unique mode which is [4.5] = 4.
The respective maximum probability is 0.1898. If, on the other hand, λ = 7,
then there are two modes 7 and 6. The respective maximum probability is
0.149.

Exercises

4.1 Let X be a r.v. with p.d.f. f (x) = 3x2, for 0 ≤ x ≤ 1.
(i) Calculate the EX and the median of X and compare them.

(ii) Determine the 0.125-quantile of X.

4.2 Let X be a r.v. with p.d.f. f (x) = xn, for 0 ≤ x ≤ c (n positive integer),
and let 0 < p < 1. Determine:
(i) The pth quantile xp of X in terms of n and p.

(ii) The median x0.50 for n = 3.

4.3 (i) If the r.v. X has p.d.f. f (x) = λe−λx, for x > 0 (λ > 0), determine the
pth quantile xp in terms of λ and p.

(ii) What is the numerical value of xp for λ = 1
10 and p = 0.25?

4.4 Let X be a r.v. with p.d.f. f given by:

f (x) =

⎧⎪⎨⎪⎩
c1x2, −1 ≤ x ≤ 0
c2(1 − x2), 0 < x ≤ 1
0, otherwise.

(i) If it is also given that EX = 0, determine the constants c1 and c2.
(ii) Determine the 1

3 -quantile of the distribution.

4.5 Let X be a r.v. with d.f. F given in Exercise 2.2 of Chapter 2:
(i) Determine the mode of the respective p.d.f. f .

(ii) Show that 1
2 is the 5

32 = 0.15625-quantile of the distribution.

4.6 Two fair and distinct dice are rolled once, and let X be the r.v. denoting
the sum of the numbers shown, so that the possible values of X are:
2, 3, . . . , 12.

(i) Derive the p.d.f. f of the r.v. X.
(ii) Compute the EX.

(iii) Find the median of f , as well as its mode.

4.7 Determine the modes of the following p.d.f.’s:
(i) f (x) = (1

2 )x, x = 1, 2, . . . .

(ii) f (x) = (1 − α)x, x = 1, 2, . . . (0 < α < 1). Also, what is the value
of α?

(iii) f (x) = 2
3x+1 , x = 0, 1, . . . .
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4.8 Let X ∼ B(100, 1/4) and suppose you were to bet on the observed value
of X. On which value would you bet?

4.9 In reference to Exercise 3.33, which number(s) of particles arrives within
1 second with the maximum probability?

4.10 Let X be a r.v. (of the continuous type) with p.d.f. f symmetric about
a constant c (i.e., f (c − x) = f (c + x) for all x ; in particular, if c = 0,
then f (−x) = f (x) for all x). Then show that c is the median of X. (As a
by-product of it, we have, for example, that the mean μ in the N(μ, σ 2)
is also the median.)

Hint: Start with P(X ≤ c) = ∫ c

−∞ f (x)dx and, by making a change
of the variable x, show that this last integral equals

∫∞
0 f (c − y)dy.

Likewise, P(X ≥ c) = ∫∞
c

f (x)dx and a change of the variable x leads
to the integral

∫∞
0 f (c+ y)dy. Then the use of symmetry completes the

proof.

4.11 Let X be a r.v. of the continuous type with p.d.f. f , with finite expectation,
and median m, and let c be any constant. Then:
(i) Show that:

E|X − c| = E|X − m| + 2
∫ c

m

(c − x) f (x) dx.

(ii) Use part (i) to conclude that the constant c which minimizes the
E|X − c| is c = m.

Hint: For m < c, show that:

|x − c| − |x − m| =
⎧⎨⎩

c − m, x< m

c + m− 2x, m ≤ x≤ c

m− c, x> c.

Then

E|X − c| − E|X − m| =
∫ m

−∞
(c − m) f (x) dx +

∫ c

m

(c + m− 2x) f (x) dx

+
∫ ∞

c

(m− c) f (x) dx

= c − m

2
+ (c + m)

∫ c

m

f (x) dx − 2
∫ c

m

xf (x) dx

+ (m− c)
∫ ∞

m

f (x) dx − (m− c)
∫ c

m

f (x) dx

= c − m

2
+ m− c

2
+ 2c

∫ c

m

f (x) dx − 2
∫ c

m

xf (x) dx

= 2
∫ c

m

(c − x) f (x) dx.
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For m ≥ c, show that:

|x − c| − |x − m| =
⎧⎨⎩

c − m, x < c

−c − m+ 2x, c ≤ x ≤ m

m− c, x > m.

Then

E|X − c|−E|X − m| =
∫ c

−∞
(c − m) f (x) dx +

∫ m

c

(−c − m+ 2x) f (x) dx

+
∫ ∞

m

(m− c) f (x) dx

= (c − m)
∫ m

−∞
f (x) dx − (c − m)

∫ m

c

f (x) dx

− (c + m)
∫ m

c

f (x) dx + 2
∫ m

c

xf (x) dx

+ (m− c)
∫ ∞

m

f (x) dx

= c − m

2
+ m− c

2
− 2c

∫ m

c

f (x)dx+ 2
∫ m

c

xf (x)dx

= −2
∫ m

c

(c − x) f (x) dx = 2
∫ c

m

(c − x) f (x) dx.

Combining the two results, we get

E|X − c| = E|X − m| + 2
∫ c

m

(c − x) f (x)dx.

4.12 Let X be a continuous r.v. with pth quantile xp, and let Y = g(X ), where
g is a strictly increasing function, so that the inverse g−1 exists (and is
also strictly increasing). Let yp be the pth quantile of the r.v. Y .

(i) Show that yp = g(xp).
(ii) If X has the Negative Exponential distribution with λ = 1, calculate

xp.
(iii) Use parts (i) and (ii) to determine yp without calculations, where

Y = eX .
(iv) What do parts (ii) and (iii) become for p = 0.5?



Chapter 4

Joint and Conditional
p.d.f.’s, Conditional

Expectation and
Variance, Moment

Generating Function,
Covariance, and

Correlation Coefficient

A brief description of the material discussed in this chapter is as follows. In
the first section, two r.v.’s are considered and the concepts of their joint prob-
ability distribution, joint d.f., and joint p.d.f. are defined. The basic properties
of the joint d.f. are given, and a number of illustrative examples are provided.
On the basis of a joint d.f., marginal d.f.’s are defined. Also, through a joint
p.d.f., marginal and conditional p.d.f.’s are defined, and illustrative examples
are supplied. By means of conditional p.d.f.’s, conditional expectations and
conditional variances are defined and are applied to some examples. These
things are done in the second section of the chapter.

In the following section, the expectation is defined for a function of two
r.v.’s and some basic properties are listed. As a special case, one obtains the
joint m.g.f. of the r.v.’s involved, and from this, marginal m.g.f.’s are derived.
Also, as a special case, one obtains the covariance and the correlation coef-
ficient of two r.v.’s. Their significance is explained, and a basic inequality is
established regarding the range of their values. Finally, a formula is provided
for the calculation of the variance of the sum of two r.v.’s.

109
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In the fourth section of the chapter, many of the concepts, defined for two
r.v.’s in the previous sections, are generalized to k r.v.’s. In the final section,
three specific multidimensional distributions are introduced, the Multinomial,
the Bivariate (or 2-dimensional) Normal, and the Multivariate Normal. The
derivation of marginal and conditional p.d.f.’s of the Multinomial and Bivariate
Normal distributions is also presented. This section is concluded with a brief
discussion of the Multivariate Normal distribution.

4.1 Joint d.f. and Joint p.d.f. of Two Random Variables

In carrying out a random experiment, we are often interested simultaneously
in two outcomes rather than one. Then with each one of these outcomes a r.v. is
associated, and thus we are furnished with two r.v.’s or a 2-dimensional ran-

dom vector. Let us denote by (X, Y ) the two relevant r.v.’s or the 2-dimensional
random vector. Here are some examples where two r.v.’s arise in a natural
way. The pair of r.v.’s (X, Y ) denote, respectively: the SAT and GPA scores of
a student chosen at random from a specified student population; the number
of customers waiting for service in two lines in your local favorite bank; the
days of a given year that the Dow Jones Averages closed with a gain and the
corresponding gains; the number of hours a student spends daily for studying
and for other activities; the weight and the height of an individual chosen at
random from a targeted population; the amount of fertilizer used and the yield
of a certain agricultural commodity; the lifetimes of two components used in
an electronic system; the dosage of a drug used for treating a certain allergy
and the number of days a patient enjoys relief.

We are going to restrict ourselves to the case where both X and Y are
either discrete or of the continuous type. The concepts of probability distri-
bution, distribution function, and probability density function are defined by
a straightforward generalization of the definition of these concepts in Section
2.2 of Chapter 2. Thus, the joint probability distribution of (X, Y), to be de-
noted by PX,Y , is defined by: PX,Y(B) = P[(X, Y) ∈ B], B ⊆ �2 = � × �,
the 2-dimensional Euclidean space, the plane. In particular, by taking B =
(−∞, x] × (−∞, y], we obtain the joint d.f. of X, Y , to be denoted by FX,Y ;
namely, FX,Y(x, y) = P(X ≤ x, Y ≤ y), x, y ∈ �. The d.f. FX,Y has properties
similar to the ones mentioned in the case of a single r.v., namely:

1. 0 ≤ FX,Y(x, y) ≤ 1 for all x, y ∈ �.
Whereas it is, clearly, still true that x1 ≤ x2 and y1 ≤ y2 imply FX,Y(x1,
y1) ≤ FX,Y(x2, y2), property #2 in the case of a single r.v. may be restated
as follows: x1 < x2 implies FX(x2) − FX(x1) ≥ 0. This property is replaced
here by:

2. The variation of FX,Y over rectangles with sides parallel to the axes, given
in Figure 4.1, is ≥0.

3. FX,Y is continuous from the right (right-continuous); i.e., if xn ↓ x and
yn ↓ y, then FX,Y(xn, yn) → FX,Y(x, y) as n → ∞.
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4. FX,Y(+∞, +∞) = 1 and FX,Y(−∞, −∞) = FX,Y(−∞, y) = FX,Y(x, −∞) =
0 for any x, y ∈ �, where, of course, FX,Y(+∞, +∞) is defined to be the
limn→∞ FX,Y(xn, yn) as xn ↑ ∞ and yn ↑ ∞, and similarly for the remaining
cases.

x

y

y2

y1

x1 x20

(x1, y1)

(x1, y2)
(x2, y2)

(x2, y1)
+

− +

−

Figure 4.1

The Variation V of
FX, Y over the
Rectangle Is:
FX, Y(x1, y1) +

FX, Y(x2, y2) −
FX, Y(x1, y2) −
FX, Y(x2, y1)

Property #1 is immediate, and property #2 follows by the fact that the variation
of FX,Y as described is simply the probability that the pair (X, Y) lies in the
rectangle of Figure 4.1, or, more precisely, the probability P(x1 < X ≤ x2, y1 <

Y ≤ y2), which, of course, is ≥ 0; the justification of properties #3 and #4 is
based on Theorem 2 in Chapter 2.

Now, suppose that the r.v.’s X and Y are discrete and take on the values xj

and yj , j ≥ 1, respectively. Then the joint p.d.f. of X and Y , to be denoted by
fX,Y , is defined by: fX,Y(xj , yj) = P(X = xj , Y = yj) and fX,Y(x, y) = 0 when
(x, y) �= (xj , yj) (i.e., at least one of x or y is not equal to xj or yj , respectively).
It is then immediate that for B ⊆ �2, P[(X, Y ) ∈ B] = ∑(xj , yj)∈B fX,Y(xj , yj),
and, in particular,

∑
(xj , yj)∈�2 fX,Y(xj , yj) = 1, and FX,Y(x, y) = ∑xj≤x, yj≤y

fX,Y(xj , yj). In the last relation, FX,Y is expressed in terms of fX,Y . The converse
is also possible (as was done in the case of a single r.v.), but we do not intend
to indulge in it. A simple illustrative example, however, may be in order.

EXAMPLE 1 Each one of the r.v.’s X and Y takes on four values only, 0, 1, 2, 3, with joint
probabilities expressed best in a matrix form as in Table 4.1.

Table 4.1 y\x 0 1 2 3 Totals

0 0.05 0.21 0 0 0.26
1 0.20 0.26 0.08 0 0.54
2 0 0.06 0.07 0.02 0.15
3 0 0 0.03 0.02 0.05

Totals 0.25 0.53 0.18 0.04 1

DISCUSSION The r.v.’s X and Y may represent, for instance, the number
of customers waiting for service in two lines in a bank. Then, for example,
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for (x, y) with x = 2 and y = 1, we have FX,Y(x, y) = FX,Y(2, 1) = ∑u≤2,v≤1
fX,Y(u, v) = fX,Y(0, 0) + fX,Y(0, 1) + fX,Y(1, 0) + fX,Y(1, 1) + fX,Y(2, 0) +
fX,Y(2, 1) = 0.05 + 0.20 + 0.21 + 0.26 + 0 + 0.08 = 0.80; also, P(2 ≤ X ≤
3, 0 ≤ Y ≤ 2) = fX,Y(2, 0) + fX,Y(2, 1) + fX,Y(2, 2) + fX,Y(3, 0) + fX,Y(3, 1) +
fX,Y(3, 2) = 0 + 0.08 + 0.07 + 0 + 0 + 0.02 = 0.17.

Now, suppose that both X and Y are of the continuous type, and, indeed,
a little bit more; namely, there exists a nonnegative function fX,Y defined on
�2 such that, for all x and y in �: FX,Y(x, y) = ∫ y

−∞
∫ x

−∞ fX,Y(s, t) ds dt. Then
for B ⊆ �2 (interpret B as a familiar geometric figure in �2): P[(X, Y) ∈
B] = ∫

B

∫
fX,Y(x, y) dx dy, and, in particular,

∫∞
−∞
∫∞
−∞ fX,Y(x, y) dx dy = 1.

The function fX,Y is called the joint p.d.f. of X and Y . Analogously to the
case of a single r.v., the relationship ∂2

∂x ∂y
FX,Y(x, y) = fX,Y(x, y) holds true (for

continuity points (x, y) of fX,Y), so that not only does the joint p.d.f. determine
the joint d.f. through an integration process, but the converse is also true; i.e.,
the joint d.f. determines the joint p.d.f. through differentiation. Again, as in the
case of a single r.v., P(X = x, Y = y) = 0 for all x, y ∈ �; also, if a nonnegative
function f , defined on �2, integrates to 1, then there exist two r.v.’s X and Y

for which f is their joint p.d.f.
This section is concluded with a reference to Example 37 in Chapter 1

where two continuous r.v.’s X and Y arise in a natural manner. Later on (see
Subsection 4.5.2), it may be stipulated that the joint distribution of X and Y

is the Bivariate Normal. For the sake of a simpler illustration, consider the
following example.

EXAMPLE 2 Let the r.v.’s X and Y have the joint p.d.f. fX,Y(x, y) = λ1λ2e−λ1x−λ2 y,
x, y > 0, λ1, λ2 > 0. For example, X and Y may represent the lifetimes of
two components in an electronic system. Derive the joint d.f. FX,Y .

DISCUSSION The corresponding joint d.f. is: FX,Y(x, y) = ∫ y

0

∫ x

0 λ1λ2 ×
e−λ1s−λ2t ds dt = ∫ y

0 λ2e−λ2t(
∫ x

0 λ1e−λ1s ds)dt = ∫ y

0 λ2e−λ2t (1 − e−λ1x)dt = (1 −
e−λ1x)(1 − e−λ2 y) for x > 0, y > 0, and 0 otherwise. That is,

FX,Y(x, y) = (1 − e−λ1x)(1 − e−λ2 y), x > 0, y > 0,

and FX,Y(x, y) = 0 otherwise. (1)

By letting x and y → ∞, we obtain FX,Y(∞, ∞) = 1, which also shows that
fX,Y , as given above, is, indeed, a p.d.f., since FX,Y(∞, ∞) = ∫∞

0

∫∞
0 λ1λ2 ×

e−λ1s−λ2t ds dt.

EXAMPLE 3 It is claimed that the function FX,Y given by: FX,Y = 1
16 xy(x + y), 0 ≤ x ≤ 2,

0 ≤ y ≤ 2, is the joint d.f. of the r.v.’s X and Y . Then:

(i) Verify that FX,Y is, indeed, a d.f.
(ii) Determine the corresponding joint p.d.f. fX,Y .

(iii) Verify that fX,Y found in part (ii) is, indeed, a p.d.f.
(iv) Calculate the probability: P(0 ≤ X ≤ 1, 1 ≤ Y ≤ 2).
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DISCUSSION

(i) We have to verify the validity of the defining relations 1–4. Clearly, FX,Y(x, y)
attains its maximum for x = y = 2, which is 1. Since also FX,Y(x, y) ≥ 0, the
first property holds. Next, for any rectangle as in Figure 4.1, we have:

16[FX,Y(x1, y1) + FX,Y(x2, y2) − FX,Y(x1, y2) − FX,Y(x2, y1)]

= x1 y1(x1 + y1) + x2 y2(x2 + y2) − x1 y2(x1 + y2) − x2 y1(x2 + y1)

= x2
1 y1 + x1 y2

1 + x2
2 y2 + x2 y2

2 − x2
1 y2 − x1 y2

2 − x2
2 y1 − x2 y2

1

= −x2
1 (y2 − y1) + x2

2 (y2 − y1) − y2
1 (x2 − x1) + y2

2 (x2 − x1)

= (x2
2 − x2

1

)
(y2 − y1) + (x2 − x1)

(
y2

2 − y2
1

)
= (x1 + x2)(x2 − x1)(y2 − y1) + (x2 − x1)(y2 + y1)(y2 − y1)

≥ 0,

because x1 ≤ y1 and x2 ≤ y2, so that the second property also holds. The
third property holds because FX,Y is continuous, and hence right-continuous.
Finally, the fourth property holds because as either x → −∞ or y → −∞ (in
fact, if either one of them is 0), then FX,Y is 0, and if x → ∞ and y → ∞ (in
fact, if x = y = 1), then FX,Y is 1.

(ii) For 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2, fX,Y(x, y) = ∂2

∂x∂y
( 1

16 xy(x + y)) = 1
16

∂2

∂x∂y

(x2 y+ xy2) = 1
16

∂
∂y

∂
∂x

(x2 y+ xy2) = 1
16

∂
∂y

(2xy+ y2) = 1
16 (2x+ 2y) = 1

8 (x+ y);

i.e., fX,Y(x, y) = 1
8 (x + y), 0 ≤ x ≤ 2, 0 ≤ y ≤ 2. For (x, y) outside the rect-

angle [0, 2] × [0, 2], fX,Y is 0, since FX,Y is constantly either 0 or 1.

(iii) Since fX,Y is nonnegative, all we have to show is that it integrates to 1. In
fact, ∫ ∞

−∞

∫ ∞

−∞
fX,Y(x, y) dx dy =

∫ 2

0

∫ 2

0

1
8

(x + y) dx dy

= 1
8

(∫ 2

0

∫ 2

0
x dx dy+

∫ 2

0

∫ 2

0
ydx dy

)
= 1

8
(2 × 2 + 2 × 2)

= 1.

(iv) Here, P(0 ≤ X ≤ 1, 1 ≤ Y ≤ 2) = ∫ 2
1

∫ 1
0

1
8 (x + y)dx dy= 1

8 [
∫ 2

1 (
∫ 1

0 x dx)dy +∫ 2
1 (y
∫ 1

0 dx)dy] = 1
8 (1

2 × 1 + 1 × 3
2 ) = 1

4 .

EXAMPLE 4 If the function fX,Y is given by: fX,Y(x, y) = cx2 y for 0 < x2 < y < 1 (and 0
otherwise):

(i) Determine the constant c, so that fX,Y is a p.d.f.
(ii) Calculate the probability: P(0 < X < 3

4 , 1
4 ≤ Y < 1).
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0 1

1 (1, 1)

y = x2

(x, y)

x
x

y

y

Figure 4.2

Range of the Pair
(x, y)

DISCUSSION

(i) Clearly, for the function to be nonnegative, c must be > 0. The actual value
of c will be determined through the relationship:∫ ∫

{(x, y);0<x2≤y<1}
cx2 ydxdy = 1.

The region over which the p.d.f. is positive is the shaded region in Figure 4.2,
determined by a branch of the parabola y = x2, the y-axis, and the line segment
connecting the points (0, 1) and (1, 1). Since for each fixed x with 0 < x < 1, y

ranges from x2 to 1, we have:
∫∫

{x2≤y<1} cx2 ydx dy = c
∫ 1

0 (x2
∫ 1

x2 ydy) dx =
c

2

∫ 1
0 x2(1 − x4)dx= c

2 (1
3 − 1

7 ) = 2c

21 = 1 and c = 21
2 .

(ii) Since y = x2 = 1
4 for x = 1

2 , it follows that, for each x with 0 < x ≤ 1
2 ,

the range of y is from 1
4 to 1; on the other hand, for each x with 1

2 < x ≤ 3
4 , the

range of y is from x2 to 1 (see Figure 4.3).

y

1

1/4

(1, 1)

0 1/2 3/4 1
x

Figure 4.3

Diagram
Facilitating
Integration
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Thus,

P

(
0 < X ≤ 3

4
,

1
4

≤ Y < 1
)

= c

∫ 1
2

0

∫ 1

1
4

x2 ydydx + c

∫ 3
4

1
2

∫ 1

x2
x2 ydydx

= c

∫ 1
2

0

(
x2
∫ 1

1
4

ydy

)
dx + c

∫ 3
4

1
2

(
x2
∫ 1

x2
ydy

)
dx

= c

2

∫ 1
2

0
x2
(

1 − 1
16

)
dx + c

2

∫ 3
4

1
2

x2(1 − x4) dx

= 15c

3 × 28
+ 38c

3 × 28
− 2,059c

7 × 215
= c × 41,311

21 × 215

= 21
2

× 41,311
21 × 215

= 41,311
216

= 41,311
65,536

� 0.63.

Exercises

1.1 Let X and Y be r.v.’s denoting, respectively, the number of cars and buses
lined up at a stoplight at a given point in time, and suppose their joint
p.d.f. is given by the following table:

y\ x 0 1 2 3 4 5

0 0.025 0.050 0.125 0.150 0.100 0.050
1 0.015 0.030 0.075 0.090 0.060 0.030
2 0.010 0.020 0.050 0.060 0.040 0.020

Calculate the following probabilities:
(i) There are exactly 4 cars and no buses.

(ii) There are exactly 5 cars.
(iii) There is exactly 1 bus.
(iv) There are at most 3 cars and at least 1 bus.

1.2 In a sociological project, families with 0, 1, and 2 children are stud-
ied. Suppose that the numbers of children occur with the following
frequencies:

0 children: 30%; 1 child: 40%; 2 children: 30%.

A family is chosen at random from the target population, and let X and
Y be the r.v.’s denoting the number of children in the family and the
number of boys among those children, respectively. Finally, suppose that
P(observing a boy) = P(observing a girl) = 0.5.
Calculate the joint p.d.f. fX,Y(x, y) = P(X = x, Y = y), 0 ≤ y ≤ x, x =
0, 1, 2.
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Hint: Tabulate the joint probabilities as indicated below by utilizing
the formula:

P(X = x, Y = y) = P(Y = y | X = x)P(X = x).

y\ x 0 1 2

0
1
2

1.3 If the r.v.’s X and Y have the joint p.d.f. given by:

fX,Y(x, y) = x + y, 0 < x < 1, 0 < y < 1,

calculate the probability P(X < Y).

1.4 The r.v.’s X and Y have the joint p.d.f. fX,Y given by:

fX,Y(x, y) = 6
7

(
x2 + xy

2

)
, 0 < x ≤ 1, 0 < y ≤ 2.

(i) Show that fX,Y is, indeed, a p.d.f.
(ii) Calculate the probability P(X > Y).

1.5 The r.v.’s X and Y have the joint p.d.f. fX,Y(x, y) = e−x−y, x > 0, y > 0.
(i) Calculate the probability P(X ≤ Y ≤ c) for some c > 0.

(ii) Find the numerical value in part (i) for c = log 2, where log is the
natural logarithm.

1.6 If the r.v.’s X and Y have the joint p.d.f. fX,Y(x, y) = e−x−y, for x > 0 and
y > 0, compute the following probabilities:

(i) P(X ≤ x); (ii) P(Y ≤ y); (iii) P(X < Y); (iv) P(X + Y ≤ 3).

1.7 Let X and Y be r.v.’s jointly distributed with p.d.f. fX,Y(x, y) = 2/c2, for
0 < x ≤ y < c.
Determine the constant c.

1.8 The r.v.’s X and Y have the joint p.d.f. fX,Y given by:

fX,Y(x, y) = cye−xy/2, 0 < y < x.

Determine the constant c.

1.9 The joint p.d.f. of the r.v.’s X and Y is given by:

fX,Y(x, y) = xy2, 0 < x ≤ c1, 0 < y ≤ c2.

Determine the condition that c1 and c2 must satisfy so that fX,Y is, indeed,
a p.d.f.

1.10 The joint p.d.f. of the r.v.’s X and Y is given by:

fX,Y(x, y) = cx, x > 0, y > 0, 1 ≤ x + y < 2 (c > 0).

Determine the constant c.
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Hint: The following diagram should facilitate the calculations.

The range of the pair (x, y) is the shadowed area.

2

1

0 1 2x x

y = 2 − x

y = 1 − x

y = 2 − x

x +
y

= 1

x +
y

= 2

1.11 The r.v.’s X and Y have joint p.d.f. fX,Y given by:

fX,Y(x, y) = c(y2 − x2)e−y, −y < x < y, 0 < y < ∞.

Determine the constant c.

4.2 Marginal and Conditional p.d.f.’s, Conditional Expectation and Variance

In the case of two r.v.’s with joint d.f. FX,Y and joint p.d.f. fX,Y , we may define
quantities which were not available in the case of a single r.v. These quantities
are marginal d.f.’s and p.d.f.’s, conditional p.d.f.’s, and conditional expectations
and variances. To this end, consider the joint d.f. FX,Y(x, y) = P(X ≤ x, Y ≤ y),
and let y → ∞. Then we obtain FX,Y(x, ∞) = P(X ≤ x, Y < ∞) = P(X ≤
x) = FX(x); thus, FX(x) = FX,Y(x, ∞), and likewise, FY(y) = FX,Y(∞, y).
That is, the d.f.’s of the r.v.’s X and Y are obtained from their joint d.f. by
eliminating one of the variables x or y through a limiting process. The d.f.’s
FX and FY are referred to as marginal d.f.’s. If the r.v.’s X and Y are dis-
crete with joint p.d.f. fX,Y , then P(X = xi) = P(X = xi, −∞ < Y < ∞) =∑

yj∈� fX,Y(xi, yj); i.e., fX(xi) = ∑yj∈� fX,Y(xi, yj), and likewise, fY(yj) =∑
xi∈� fX,Y(xi, yj). Because of this marginalization process, the p.d.f.’s of the

r.v.’s. X and Y, fX and fY , are referred to as marginal p.d.f.’s. In the continuous
case, fX and fY are obtained by integrating out the “superfluous” variables;
i.e., fX(x) = ∫∞

−∞ fX,Y(x, y)dy and fY(y) = ∫∞
−∞ fX,Y(x, y)dx. The marginal fX

is, indeed, the p.d.f. of X because P(X ≤ x) = P(X ≤ x, −∞ < Y < ∞) =
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∫ x

−∞
∫∞
−∞ fX,Y(s, t)dt ds = ∫ x

−∞[
∫∞
−∞ fX,Y(s, t)dt] ds = ∫ x

−∞ fX(s)ds; i.e., FX(x) =
P(X ≤ x) = ∫ x

−∞ fX(s)ds, so that d

dx
FX(x) = fX(x), and likewise, d

dy
FY(y) =

fY(y) (for continuity points x and y of fX and fY , respectively).
In terms of the joint and the marginal p.d.f.’s, one may define formally the

functions:

fX|Y(x | y) = fX,Y(x, y)/ fY(y) for fixed y with fY(y) > 0,

and

fY|X(y | x) = fX,Y(x, y)/ fX(x) for fixed x with fX(x) > 0.

These nonnegative functions are, actually, p.d.f.’s. For example, for the con-
tinuous case:∫ ∞

−∞
fX|Y(x | y) dx = 1

fY(y)

∫ ∞

−∞
fX,Y(x, y) dx = fY(y)

fY(y)
= 1,

and similarly for fY|X(y | x); in the discrete case, integrals are replaced by
summation signs. The p.d.f. fX|Y(· | y) is called the conditional p.d.f. of X,
given Y = y, and fY|X(· | x) is the conditional p.d.f. of Y , given X = x. The
motivation for this terminology is as follows: For the discrete case, fX|Y(x | y) =
fX,Y (x, y)

fY (y) = P(X=x,Y=y)
P(Y=y) = P(X = x | Y = y); i.e., fX|Y(x | y) does, indeed, stand

for the conditional probability that X = x, given that Y = y. Likewise for
fY|X(· | x). In the continuous case, the points x and y are to be replaced by
“small” intervals around them.

The concepts introduced so far are now illustrated by means of Examples.

EXAMPLE 5 Refer to Example 1 and derive the marginal and conditional p.d.f.’s involved.

DISCUSSION From Table 4.1, we have: fX(0) = 0.25, fX(1) = 0.53, fX(2) =
0.18, and fX(3) = 0.04; also, fY(0) = 0.26, fY(1) = 0.54, fY(2) = 0.15, and
fY(3) = 0.05. Thus, the probability that there are 2 people in line one, for in-
stance, regardless of how many people are in the other line, is: P(X = 2) =
fX(2) = 0.18. Next, fX|Y(0 | 0) = 0.05

0.26 = 5
26 � 0.192, fX|Y(1 | 0) = 0.21

0.26 = 21
26 �

0.808, fX|Y(2 | 0) = 0, fX|Y(3 | 0) = 0; fX|Y(0 | 1) = 0.20
0.54 = 20

54 � 0.37, fX|Y(1 | 1) =
0.26
0.54 = 26

54 � 0.481, fX|Y(2 | 1) = 0.08
0.54 = 8

54 � 0.148, fX|Y(3 | 1) = 0; fX|Y(0 | 2) =
0, fX|Y(1 | 2) = 0.06

0.15 = 6
15 = 0.40, fX|Y(2 | 2) = 0.07

0.15 = 7
15 � 0.467, fX|Y(3 | 2) =

0.02
0.15 = 2

15 � 0.133; fX|Y(0 | 3) = 0, fX|Y(1 | 3) = 0, fX|Y(2 | 3) = 0.03
0.05 = 3

5 = 0.60,
fX|Y(3 | 3) = 0.02

0.05 = 2
5 = 0.40. Likewise for fY|X(· | ·). Thus, fY|X(0|0) = 0.2,

FY|X(1 | 0) = 0.8, fY|X(2 | 0) = fY|X(3 | 0) = 0; fY|X(0 | 1) = 21
53 � 0.396,

fY|X(1 | 1) = 26
53 � 0.491, fY|X(2 | 1) = 6

53 � 0.113, fY|X(3 | 1) = 0; fY|X(0 | 2) =
0, fY|X(1 | 2) = 8

18 � 0.444, fY|X(2 | 2) = 7
18 � 0.389, fY|X(3 | 2) = 3

18 � 0.167;
fY|X(0 | 3) = fY|X(1 | 3) = 0, fY|X(2 | 3) = fY|X(3 | 3) = 0.5.

EXAMPLE 6 Refer to Example 2 and derive the marginal d.f.’s and p.d.f.’s, as well as the
conditional p.d.f.’s, involved.
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DISCUSSION In (1), let y → ∞ to obtain FX(x) = 1 − e−λ1x, x > 0, and
likewise FY(y) = 1 − e−λ2 y, y > 0, by letting x → ∞. Next, by differentia-
tion, fX(x) = λ1e−λ1x, x > 0, and fY(y) = λ2e−λ2 y, y > 0, so that the r.v.’s X

and Y have the Negative Exponential distribution with parameters λ1 and λ2,
respectively. Finally, for x > 0 and y > 0:

fX|Y(x | y) = λ1λ2e−λ1x−λ2 y

λ2e−λ2 y
= λ1e−λ1x = fX(x), and likewise

fY|X(y | x) = fY(y).

EXAMPLE 7 Refer to Example 4 and determine the marginal and conditional p.d.f.’s fX , fY ,
fX|Y , and fY|X .

DISCUSSION We have:

fX(x) =
∫ 1

x2
cx2 ydy = cx2

∫ 1

x2
ydy = 21

4
x2(1 − x4), 0 < x < 1,

fY(y) =
∫ √

y

0
cx2 ydx = cy

∫ √
y

0
x2 dx = 21

6
y2√y, 0 < y < 1,

and therefore

fX|Y(x | y) =
21
2 x2 y

21
6 y2√y

= 3x2

y
√

y
, 0 < x ≤ √

y, 0 < y < 1,

fY|X(y | x) =
21
2 x2 y

21
4 x2(1 − x4)

= 2y

1 − x4
, x2 ≤ y < 1, 0 < x < 1.

EXAMPLE 8 Consider the function fX,Y defined by:

fX,Y(x, y) = 8xy, 0 < x ≤ y < 1.

(i) Verify that fX,Y is, indeed, a p.d.f.
(ii) Determine the marginal and conditional p.d.f.’s.

(iii) Calculate the quantities: EX, EX 2, Var(X ), EY, EY 2, Var(Y ), and E(XY).

DISCUSSION

(i) Since fX,Y is nonnegative, all we have to check is that it integrates to 1. In
fact, ∫ 1

0

∫ y

0
8xydx dy = 8

∫ 1

0

(
y

∫ y

0
x dx

)
dy = 4

∫ 1

0
y3 dy = 1.

(ii)

fX(x) =
∫ 1

x

8xydy = 8x

∫ 1

x

ydy = 4x(1 − x2), 0 < x < 1,

fY(y) =
∫ y

0
8xydx = 8y

∫ y

0
x dx = 4y3, 0 < y < 1,
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and therefore

fX|Y(x | y) = 8xy

4y3
= 2x

y2
, 0 < x ≤ y < 1,

fY|X(y | x) = 8xy

4x(1 − x2)
= 2y

1 − x2
, 0 < x ≤ y < 1.

(iii)

EX =
∫ 1

0
x · 4x(1 − x2)dx= 4

∫ 1

0
x2(1 − x2)dx= 4

(∫ 1

0
x2 dx −

∫ 1

0
x4 dx

)
= 8

15
,

EX2 =
∫ 1

0
x2 · 4x(1 − x2)dx = 4

(∫ 1

0
x3dx −

∫ 1

0
x5dx

)
= 1

3
, so that

Var(X) = EX2 − (EX)2 = 1
3

− 64
225

= 11
225

;

EY =
∫ 1

0
y · 4y3dy = 4

∫ 1

0
y4 dy = 4

5
,

EY2 =
∫ 1

0
y2 · 4y3dy = 4

∫ 1

0
y5dy = 2

3
, so that

Var(Y) = EY2 − (EY)2 = 2
3

− 16
25

= 2
75

= 6
225

.

Finally,

E(XY) =
∫ 1

0

∫ y

0
xy · 8xydx dy = 8

∫ 1

0
y2
(∫ y

0
x2dx

)
dy

= 8
3

∫ 1

0
y5 dy = 4

9
.

Once a conditional p.d.f. is at hand, an expectation can be defined as done in
relations (1), (2), and (3) of Chapter 3. However, a modified notation will be
needed to reveal the fact that the expectation is calculated with respect to a
conditional p.d.f. The resulting expectation is the conditional expectation of
one r.v., given the other r.v., as specified below.

E(X | Y = yj) =
∑
xi∈�

xi fX|Y(xi | yj) or E(X | Y = y) =
∫ ∞

−∞
xfX|Y(x | y)dx,

(2)
for the discrete and continuous case, respectively; similarly:

E(Y | X = xi) =
∑
yj∈�

yj fY|X(yj | xi) or E(Y | X = x) =
∫ ∞

−∞
y fY|X(y | x)dy.

(3)

Of course, it is understood that the preceding expectations exist as explained
right after relations (2) and (3) in Chapter 3 were defined. However, unlike
the results in (1)–(3) in Chapter 3 which are numbers, in relations (2) and (3)



4.2 Marginal and Conditional p.d.f.’s, Conditional Expectation and Variance 121

above the outcomes depend on yj or y, and xi or x, respectively, which reflect
the values that the “conditioning” r.v.’s assume. For illustrative purposes, let
us calculate some conditional expectations.

EXAMPLE 9 In reference to Example 1, calculate: E(X | Y = 0) and E(Y | X = 2).

DISCUSSION In Example 5, we have calculated the conditional p.d.f.’s
fX|Y(· | 0) and fY|X(· | 2). Therefore:

E(X | Y = 0) = 0 × 5
26

+ 1 × 21
26

+ 2 × 0 + 3 × 0 = 21
26

� 0.808, and

E(Y | X = 2) = 0 × 0 + 1 × 8
18

+ 2 × 7
18

+ 3 × 3
18

= 31
18

� 1.722.

So, if in the y-line there are no customers waiting, the expected number of
those waiting in the x-line will be about 0.81; likewise, if there are 2 customers
waiting in the x-line, the expected number of those waiting in the y-line will
be about 1.72.

EXAMPLE 10 In reference to Example 2, calculate: E(X | Y = y) and E(Y | X = x).

DISCUSSION In Example 6, we have found that fX|Y(x | y) = fX(x) =
λ1e−λ1x (x > 0), and fY|X(y | x) = fY(y) = λ2e−λ2 y (y > 0), so that: E(X | Y =
y) = ∫∞

0 xλ1e−λ1xdx = 1/λ1, and E(Y | X = x) = ∫∞
0 yλ2e−λ2 y dy = 1/λ2, by

integration by parts, or simply by utilizing known results.

EXAMPLE 11 In reference to Example 4, calculate: E(X | Y = y) and E(Y | X = x).

DISCUSSION In Example 7, we have found that fX|Y(x | y) = 3x2

y
√

y
, 0 <

x ≤ √
y, so that

E(X | Y = y) =
∫ √

y

0
x · 3x2

y
√

y
dx = 3

y
√

y

∫ √
y

0
x3 dx = 3

√
y

4
, 0 < y < 1.

Also, fY|X(y | x) = 2y

1−x4 , x2 ≤ y < 1, so that

E(Y | X = x) =
∫ 1

x2
y · 2y

1 − x4
dy = 2

1 − x4

∫ 1

x2
y2 dy = 2(1 − x6)

3(1 − x4)
, 0 < x < 1.

EXAMPLE 12 In reference to Example 8, calculate: E(X | Y = y) and E(Y | X = x).

DISCUSSION In Example 8(ii), we have found that fX|Y(x | y) = 2x

y2 , 0 <

x ≤ y < 1, and fY|X(y | x) = 2y

1−x2 , 0 < x ≤ y < 1, so that

E(X | Y = y) =
∫ y

0
x · 2x

y2
dx = 2

y2

∫ y

0
x2 dx = 2y

3
, 0 < y < 1,
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and

E(Y | X = x) =
∫ 1

x

y · 2y

1 − x2
dy = 2

1 − x2

∫ 1

x

y2 dy = 2(1 − x3)
3(1 − x2)

, 0 < x < 1.

Now, for the discrete case, set g(yj) = E(X | Y = yj) and proceed to replace
yj by the r.v. Y . We obtain the r.v. g(Y) = E(X | Y), and then it makes sense to
talk about its expectation Eg(Y) = E[E(X | Y)]. Although the E(X | Y = yj)
depends on the particular values of Y , it turns out that its average does not,
and, indeed, is the same as the EX. More precisely, it holds:

E[E(X | Y)] = EX and E[E(Y | X)] = EY. (4)

That is, the expectation of the conditional expectation of X is equal to its
expectation, and likewise for Y . Relation (4) is true both for the discrete and
the continuous case. Its justification for the continuous case, for instance, is
as follows:

We have g(Y) = E(X | Y) and therefore

Eg(Y) =
∫ ∞

−∞
g(y) fY(y)dy =

∫ ∞

−∞
E(X | y) fY(y)dy

=
∫ ∞

−∞

[ ∫ ∞

−∞
xfX|Y(x | y)dx

]
fY(y)dy

=
∫ ∞

−∞

∫ ∞

−∞
[xfX|Y(x | y) fY(y)dx]dy =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y(x, y)dx dy

=
∫ ∞

−∞
x

[ ∫ ∞

−∞
fX,Y(x, y)dy

]
dx =

∫ ∞

−∞
xfX(x)dx = EX; i.e.,

Eg(Y) = E[E(X | Y)] = EX.

REMARK 1 However, Var [E(X | Y)] ≤ Var(X) with equality holding, if and
only if Y is a function of X (with probability 1). A proof of this fact may be
found in Section 5.3.1 in the book A Course in Mathematical Statistics, 2nd
edition (1997), Academic Press, by G. G. Roussas.

EXAMPLE 13 Verify the first relation E[E(X | Y)] = EX, in (4) for Examples 4 and 8.

DISCUSSION By Example 7, fX(x) = 21
4 x2(1 − x4), 0 < x < 1, so that

EX =
∫ 1

0
x · 21

4
x2(1 − x4)dx = 21

4

(∫ 1

0
x3dx −

∫ 1

0
x7dx

)
= 21

32
.

From Example 11, E(X | Y) = 3
√

Y

4 , 0 < Y < 1, whereas, from Example 7,
fY(y) = 21

6 y2√y, 0 < y < 1, so that

E[E(X | Y)] =
∫ 1

0

3
√

y

4
· 21

6
y2√ydy = 21

8

∫ 1

0
y3 dy = 21

32
= EX.
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(However, Var[E(X | Y)] = Var(3
√

Y

4 ) = 9
16 Var(

√
Y) = 9

16 [EY − (E
√

Y)2] =
9

16 (4
5 − 49

64 ) = 99
5,120 < 2

75 = Var(Y).)
Also, from Examples 12 and 8(ii), E(X | Y) = 2Y

3 , 0 < Y < 1, and fY(y) =
4y3, 0 < y < 1, EX = 8

15 by Example 8, so that

E[E(X | Y)] =
∫ 1

0

2y

3
· 4y3 dy = 8

3

∫ 1

0
y4 dy = 8

15
= EX.

(However, Var[E(X | Y)] = Var(2Y

3 ) = 4
9 Var(Y) < Var(Y).)

In addition to the conditional expectation of X, given Y , one may define
the conditional variance of X, given Y , by utilizing the conditional p.d.f.
and formula (8) in Chapter 3; the notation to be used is Var(X | Y = yj)
or Var(X | Y = y) for the discrete and continuous case, respectively. Thus:

Var(X | Y = yj) =
∑
xi∈�

[xi − E(X | Y = yj)]2 fX|Y(xi | yj), (5)

and

Var(X | Y = y) =
∫ ∞

−∞
[x − E(X | Y = y)]2 fX|Y(x | y)dx, (6)

for the discrete and the continuous case, respectively. The conditional vari-
ances depend on the values of the conditioning r.v., as was the case for the
conditional expectations. From formulas (5) and (6), it is not hard to see (see
also Exercise 2.20) that:

Var(X | Y = yj) = E(X2 | Y = yj) − [E(X | Y = yj)]2 or
(7)

Var(X | Y = y) = E(X2 | Y = y) − [E(X | Y = y)]2,

for the discrete and the continuous case, respectively.

EXAMPLE 14 In reference to Example 8, determine Var(X | Y = y) by using the second
formula in (7).

DISCUSSION By (7),

Var(X | Y = y) = E(X2 | Y = y) − [E(X | Y = y)]2

=
∫ y

0
x2 · 2x

y2
dx −
(

2y

3

)2

(by Examples 8(ii) and 12)

= 2
y2

∫ y

0
x3 dx − 4y2

9
= y2

2
− 4y2

9
= y2

18
, 0 < y < 1.

Exercises

2.1 Refer to Exercise 1.1 and calculate the marginal p.d.f.’s fX and fY .

2.2 Refer to Exercise 1.2 and calculate the marginal p.d.f.’s fX and fY .
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2.3 If the joint p.d.f. of the r.v.’s X and Y is given by the following table,
determine the marginal p.d.f.’s fX and fY .

y\ x −4 −2 2 4

−2 0 0.25 0 0
−1 0 0 0 0.25

1 0.25 0 0 0
2 0 0 0.25 0

2.4 The r.v.’s X and Y take on the values 1, 2, and 3, as indicated in the
following table:

y\ x 1 2 3

1 2/36 2/36 3/36
2 1/36 10/36 3/36
3 4/36 5/36 6/36

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Determine the conditional p.d.f.’s fX|Y(· | y) and fY|X(· | x).

2.5 The r.v.’s X and Y have joint p.d.f. fX,Y given by the entries of the following
table:

y\ x 0 1 2 3

1 1/8 1/16 3/16 1/8
2 1/16 1/16 1/8 1/4

(i) Determine the marginal p.d.f.’s fX and fY , and the conditional p.d.f.
fX|Y(· | y), y = 1, 2.

(ii) Calculate: EX, EY, E(X | Y = y), y = 1, 2, and E[E(X | Y)].
(iii) Compare EX and E[E(X | Y)].
(iv) Calculate: Var(X) and Var(Y).

2.6 Let the r.v.’s X and Y have the joint p.d.f.:

fX,Y(x, y) = 2
n(n + 1)

, y = 1, . . . , x; x = 1, . . . , n.

Then compute:
(i) The marginal p.d.f.’s fX and fY .

(ii) The conditional p.d.f.’s fX|Y(· | y) and fY|X(· | x).
(iii) The conditional expectations E(X | Y = y) and E(Y | X = x).

Hint: Recall that:
∑n

t=1 t = n(n+ 1)
2 .

2.7 In reference to Exercise 1.3, calculate the marginal p.d.f.’s fX and fY .

2.8 Determine the marginal p.d.f.’s of the r.v.’s X and Y whose joint p.d.f. is
given by:

fX,Y(x, y) = 6
5

(x + y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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2.9 Let X and Y be two r.v.’s with joint p.d.f. given by:

fX,Y(x, y) = ye−x, 0 < y ≤ x < ∞.

(i) Determine the marginal p.d.f.’s fX and fY , and specify the range of
the arguments involved.

(ii) Determine the conditional p.d.f.’s fX|Y(· | y) and fY|X(· | x), and spec-
ify the range of the arguments involved.

(iii) Calculate the (conditional) probability P(X > 2 log 2 | Y = log 2),
where always log stands for the natural logarithm.

2.10 The joint p.d.f. of the r.v.’s X and Y is given by:

fX,Y(x, y) = xe−(x+y), x > 0, y > 0.

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Determine the conditional p.d.f. fY|X(· | x).

(iii) Calculate the probability P(X > log 4), where always log stands for
the natural logarithm.

2.11 The joint p.d.f. of the r.v.’s X and Y is given by:

fX,Y(x, y) = 1
2

ye−xy, 0 < x < ∞, 0 < y < 2.

(i) Determine the marginal p.d.f. fY .
(ii) Find the conditional p.d.f. fX|Y(· | y), and evaluate it at y = 1/2.

(iii) Compute the conditional expectation E(X | Y = y), and evaluate it
at y = 1/2.

2.12 In reference to Exercise 1.4, calculate:
(i) The marginal p.d.f.’s fX , fY , and the conditional p.d.f. fY|X(· | x); in

all cases, specify the range of the variables involved.
(ii) EY and E(Y | X = x).

(iii) E[E(Y | X)] and observe that it is equal to EY .
(iv) The probability P(Y > 1

2 | X < 1
2 ).

2.13 In reference to Exercise 1.7, calculate:
(i) The marginal p.d.f.’s fX and fY .

(ii) The conditional p.d.f.’s fX|Y(· | y) and fY|X(· | x).
(iii) The probability P(X ≤ 1).

2.14 In reference to Exercise 1.8, determine the marginal p.d.f. fY and the
conditional p.d.f. fX|Y(· | y).

2.15 In reference to Exercise 1.9:
(i) Determine the marginal p.d.f.’s fX and fY .

(ii) Determine the conditional p.d.f. fX|Y(· | y).
(iii) Calculate the EX and E(X | Y = y).
(iv) Show that E[E(X | Y)] = EX.
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2.16 In reference to Exercise 1.10, determine:
(i) The marginal p.d.f. fX .

(ii) The conditional p.d.f. fY|X(· | x).

2.17 In reference to Exercise 1.11, determine:
(i) The marginal p.d.f. fY .

(ii) The conditional p.d.f. fX|Y(· | y).
(iii) The marginal p.d.f. fX .

2.18 (i) For a fixed y > 0, consider the function f (x, y) = e−y yx

x! , x =
0, 1, . . . and show that it is the conditional p.d.f. of a r.v., given that
another r.v. Y = y.

(ii) Now, suppose that the marginal p.d.f. of Y is Negative Exponential
with parameter λ = 1. Determine the joint p.d.f. of the r.v.’s X and Y .

(iii) Show that the marginal p.d.f. fX is given by:

fX(x) =
(

1
2

)x+1

, x = 0, 1, . . . .

2.19 Suppose the r.v. Y is distributed as P(λ) and that the conditional p.d.f. of
a r.v. X, given Y = y, is B(y, p). Then show that:
(i) The marginal p.d.f. fX is Poisson with parameter λp.

(ii) The conditional p.d.f. fY|X(· | x) is Poisson with parameter λq (with
q = 1 − p) over the set: x, x + 1, . . . .

2.20 (i) Let X and Y be two discrete r.v.’s with joint p.d.f. fX,Y . Then show
that the conditional variance of X, given Y , satisfies the following
relation:

Var(X | Y = yj) = E(X2 | Y = yj) − [E(X | Y = yj)]2.

(ii) Establish the same relation, if the r.v.’s X and Y are of the continuous
type.

4.3 Expectation of a Function of Two r.v.’s, Joint and Marginal m.g.f.’s, Covariance,
and Correlation Coefficient

In this section, a function of the r.v.’s X and Y is considered and its expectation
and variance are defined. As a special case, one obtains the joint m.g.f. of X

and Y , the covariance of X and Y , and their correlation coefficient. To this end,
let g be a real-valued function defined on �2, so that g(X, Y) is a r.v. Then the
expectation of g(X, Y) is defined as in (6) in Chapter 3 except that the joint
p.d.f. of X and Y is to be used. Thus:

Eg(X, Y) =
∑

xi∈�, yj∈�
g(xi, yj) fX,Y(xi, yj) or

∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y(x, y)dx dy,

(8)
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for the discrete and the continuous case, respectively, provided, of course, the
quantities defined exist. Properties analogous to those in (4) in Chapter 3 apply
here, too. Namely, for c and d constants:

E[cg(X, Y)] = cEg(X, Y), E[cg(X, Y) + d] = cEg(X, Y) + d. (9)

Also, if h is another real-valued function, then (see also Exercise 3.17):

g(X, Y) ≤ h(X, Y) implies Eg(X, Y) ≤ Eh(X, Y), (10)

and, in particular,

g(X) ≤ h(X) implies Eg(X) ≤ Eh(X). (11)

For the special choice of the function g(x, y) = et1x+t2 y, t1, t2 reals, the
expectation E exp(t1 X + t2Y) defines a function in t1, t2 for those t1, t2 for
which this expectation is finite. That is:

MX,Y(t1, t2) = Eet1 X+t2Y , (t1, t2) ∈ C ⊆ �2. (12)

Thus, for the discrete and the continuous case, we have, respectively,

MX,Y(t1, t2) =
∑

xi∈�, yj∈�
et1xi+t2 yj fX,Y(xi, yj), (13)

and

MX,Y(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
et1x+t2 y fX,Y(x, y)dx dy. (14)

The function MX,Y(·, ·) so defined is called the joint m.g.f. of the r.v.’s X and
Y . Clearly, MX,Y(0, 0) = 1 for any X and Y , and it may happen that C = {(0, 0)}
or C ⊂ �2 or C = �2. Here are two examples of joint m.g.f.’s.

EXAMPLE 15 Refer to Example 1 and calculate the joint m.g.f. of the r.v.’s involved.

DISCUSSION For any t1, t2 ∈ �, we have, by means of (13):

MX,Y(t1, t2) =
3∑

x=0

3∑
y=0

et1x+t2 y fX,Y(x, y)

= 0.05 + 0.20et2 + 0.21et1 + 0.26et1+t2 + 0.06et1+2t2 + 0.08e2t1+t2

+ 0.07e2t1+2t2 + 0.03e2t1+3t2 + 0.02e3t1+2t2 + 0.02e3t1+3t2 . (15)

EXAMPLE 16 Refer to Example 2 and calculate the joint m.g.f. of the r.v.’s involved.

DISCUSSION By means of (14), we have here:

MX,Y(t1, t2) =
∫ ∞

0

∫ ∞

0
et1x+t2 yλ1λ2e−λ1x−λ2 ydx dy

=
∫ ∞

0
λ1e−(λ1−t1)x dx ·

∫ ∞

0
λ2e−(λ2−t2)ydy.
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But
∫∞

0 λ1e−(λ1−t1)x dx = − λ1
λ1−t1

e−(λ1−t1)x|∞0 = λ1
λ1−t1

, provided t1 < λ1, and like-
wise
∫∞

0 λ2e−(λ2−t2)y dy = λ2
λ2−t2

for t2 < λ2. (We arrive at the same results
without integration by recalling (Example 6) that the r.v.’s X and Y have the
Negative Exponential distributions with parameters λ1 and λ2, respectively.)
Thus,

MX,Y(t1, t2) = λ1

λ1 − t1
× λ2

λ2 − t2
, t1 < λ1, t2 < λ2. (16)

In (12), by setting successively t2 = 0 and t1 = 0, we obtain:

MX,Y(t1, 0) = Eet1 X = MX(t1), MX,Y(0, t2) = Eet2Y = MY(t2). (17)

Thus, the m.g.f.’s of the individual r.v.’s X and Y are taken as marginals from
the joint m.g.f. of X and Y , and they are referred to as marginal m.g.f.’s. For
example, in reference to (15) and (16), we obtain:

MX(t1) = 0.25 + 0.53 et1 + 0.18 e2t1 + 0.04e3t1 , t1 ∈ �, (18)

MY(t2) = 0.26 + 0.54 et2 + 0.15 e2t2 + 0.05e3t2 , t2 ∈ �, (19)

and

MX(t1) = λ1

λ1 − t1
, t1 < λ1, MY(t2) = λ2

λ2 − t2
, t2 < λ2. (20)

The joint m.g.f., as defined in (12), has properties analogous to the ones
stated in (12) of Chapter 3. Namely, for c1, c2 and d1, d2 constants:

Mc1 X+d1,c2Y+d2 (t1, t2) = ed1t1+d2t2 MX,Y(c1t1, c2t2). (21)

Its simple justification is left as an exercise (see Exercise 3.2).
In the present context, a version of the properties stated in (13) of Chapter

3, is the following:

∂

∂t1
MX,Y(t1, t2)|t1=t2=0 = EX,

∂

∂t2
MX,Y(t1, t2)|t1=t2=0 = EY, (22)

and

∂2

∂t1∂t2
MX,Y(t1, t2)|t1=t2=0 = E(XY), (23)

provided one may interchange the order of differentiating and taking expec-
tations. For example, for (23), we have:

∂2

∂t1∂t2
MX,Y(t1, t2)|t1=t2=0 = ∂2

∂t1∂t2
Eet1 X+t2Y

∣∣
t1=t2=0

= E

(
∂2

∂t1∂t2
et1 X+t2Y

∣∣
t1=t2=0

)
= E
(
XYet1 X+t2Y

∣∣
t1=t2=0

) = E(XY).
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REMARK 2 Although properties (21) and (22) allow us to obtain moments
by means of the m.g.f.’s of the r.v.’s X and Y , the most significant property of
the m.g.f. is that it allows (under certain conditions) to retrieve the distribution
of the r.v.’s X and Y . This is done through the so-called inversion formula.

Now, select the function g as follows: g(x, y) = cx + dy, where c and d are
constants. Then, for the continuous case:

Eg(X, Y) = E(cX + dY) =
∫ ∞

−∞

∫ ∞

−∞
(cx + dy) fX,Y(x, y)dx dy

= c

∫ ∞

−∞

∫ ∞

−∞
xfX,Y(x, y)dx dy + d

∫ ∞

−∞

∫ ∞

−∞
y fX,Y(x, y)dx dy

= c

∫ ∞

−∞

[
x

∫ ∞

−∞
fX,Y(x, y)dy

]
dx + d

∫ ∞

−∞

[
y

∫ ∞

−∞
fX,Y(x, y)dx

]
dy

= c

∫ ∞

−∞
xfX(x)dx + d

∫ ∞

−∞
y fY(x)dy = cEX + dEY ; i.e.,

assuming the expectations involved exist:

E(cX + dY) = cEX + dEY , where c and d are constants. (24)

In the discrete case, integrals are replaced by summation signs. On account
of the usual properties of integrals and summations, property (24) applies to
a more general situation. Thus, for two functions g1 and g2, we have:

E[g1(X, Y) + g2(X, Y)] = Eg1(X, Y) + Eg2(X, Y), (25)

provided the expectations involved exist.
Next, suppose the r.v.’s X and Y have finite expectations and take g(x, y) =

(x − EX)(y − EY). Then the Eg(X, Y) = E[(X − EX)(Y − EY)] is called the
covariance of the r.v.’s X and Y and is denoted by Cov(X, Y). Thus:

Cov(X, Y) = E[(X − EX)(Y − EY)] = E(XY) − (EX)(EY). (26)

The second equality in (26) follows by multiplying out (X − EX)(Y − EY) and
applying property (25).

The variance of a single r.v. has been looked upon as a measure of dispersion
of the distribution of the r.v. Some motivation will be given subsequently to the
effect that the Cov(X, Y) may be thought of as a measure of the degree to which
X and Y tend to increase or decrease simultaneously when Cov(X, Y) > 0 or to
move toward opposite directions when Cov(X, Y) < 0. This point is sufficiently
made by the following simple example.

EXAMPLE 17 Consider the events Aand B with P(A)P(B) > 0 and set X = IA and Y = IB for
the indicator functions, where IA(s) = 1 if s ∈ A and IA(s) = 0 if s ∈ Ac. Then,
clearly, EX = P(A), EY = P(B), and XY = IA∩B, so that E(XY) = P(A∩ B).
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It follows that Cov(X, Y) = P(A ∩ B) − P(A)P(B). Next,

P(A)[P(Y = 1 | X = 1) − P(Y = 1)] = P(A ∩ B) − P(A)P(B)

= Cov(X, Y), (27)

P(Ac)[P(Y = 0 | X = 0) − P(Y = 0)] = P(Ac ∩ Bc) − P(Ac)P(Bc)

= P(A ∩ B) − P(A)P(B) = Cov(X, Y), (28)

P(Ac)[P(Y = 1 | X = 0) − P(Y = 1)] = P(Ac ∩ B) − P(Ac)P(B)

= −[P(A ∩ B) − P(A)P(B)] = −Cov(X, Y), (29)

P(A)[P(Y = 0 | X = 1) − P(Y = 0)] = P(A ∩ Bc) − P(A)P(Bc)

= −[P(A ∩ B) − P(A)P(B)] = −Cov(X, Y), (30)

(see also Exercise 3.3).

From (27) and (28), it follows that Cov(X, Y) > 0 if and only if P(Y = 1 | X =
1) > P(Y = 1), or P(Y = 0 | X = 0) > P(Y = 0). That is, Cov(X, Y) > 0 if and
only if, given that X has taken a “large” value (namely, 1), it is more likely that Y

does so as well than it otherwise would; also, given that X has taken a “small”
value (namely, 0), it is more likely that Y does so too than it otherwise would.
On the other hand, from relations (29) and (30), we see that Cov(X, Y) < 0 if
and only if P(Y = 1 | X = 0) > P(Y = 1), or P(Y = 0 | X = 1) > P(Y = 0).
That is, Cov(X, Y) < 0 if and only if, given that X has taken a “small” value, it
is more likely for Y to take a “large” value than it otherwise would, and given
that X has taken a “large” value, it is more likely for Y to take a “small” value
than it otherwise would.

As a further illustration of the significance of the covariance we proceed to
calculate the Cov(X, Y) for the r.v.’s of Example 1.

EXAMPLE 18 Refer to Example 1 and calculate the Cov(X, Y).

DISCUSSION In Example 5, the (marginal) p.d.f.’s fX and fY were calcu-
lated. Then: EX = 1.01 and EY = 0.99. Next, the r.v. XY is distributed as
follows, on the basis of Table 4.1.

xy 0 1 2 3 4 6 9
fX,Y 0.46 0.26 0.14 0 0.07 0.05 0.02

Therefore E(XY) = 1.3 and then, by formula (26), Cov(X, Y) = 1.3−1.01×
0.99 = 0.3001.

Here the covariance is positive, and by comparing the values of the con-
ditional probabilities in Example 5 with the appropriate unconditional prob-
abilities, we see that this is consonant with the observation just made that X

and Y tend to take simultaneously either “large” values or “small” values. (See
also Example 19 later.)
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The result obtained next provides the range of values of the covariance of
two r.v.’s; it is also referred to as a version of the Cauchy–Schwarz inequality.

THEOREM 1

(i) Consider the r.v.’s X and Y with EX = EY = 0 and Var(X) =
Var(Y) = 1. Then always −1 ≤ E(XY) ≤ 1, and E(XY) = 1 if and
only if P(X = Y) = 1, and E(XY) = −1 if and only if P(X = −Y) = 1.
(ii) For any r.v.’s X and Y with finite expectations and positive variances
σ 2

X and σ 2
Y , it always holds:

−σXσY ≤ Cov(X, Y) ≤ σXσY , (31)

and Cov(X, Y) = σXσY if and only if P[Y = EY + σY

σX
(X − EX)] = 1,

Cov(X, Y) = −σXσY if and only if P[Y = EY − σY

σX
(X − EX)] = 1.

PROOF

(i) Clearly, 0 ≤ E(X − Y)2 = EX 2 + EY 2 − 2E(XY) = 2 − 2E(XY), so that
E(XY) ≤ 1; also, 0 ≤ E(X + Y )2 = EX 2 + EY 2 + 2E(XY) = 2 + 2E(XY),
so that −1 ≤ E(XY). Combining these results, we obtain −1 ≤ E(XY) ≤ 1.
As for equalities, observe that, if P(X = Y) = 1, then E(XY) = EX 2 = 1,
and if P(X = −Y) = 1, then E(XY ) = −EX 2 = −1. Next, E(XY) = 1 implies
E(X−Y )2 = 0 or Var(X−Y) = 0. But then P(X−Y = 0) = 1 or P(X = Y) = 1
(see Exercise 2.4 in Chapter 3). Also, E(XY) = −1 implies E(X + Y)2 = 0 or
Var(X + Y) = 0, so that P(X = −Y ) = 1 (by the exercise just cited).

(ii) Replace the r.v.’s X and Y by the r.v.’s X∗ = X−EX

σX
and Y∗ = Y−EY

σY
, for

which EX∗ = EY∗ = 0 and Var(X∗) = Var(Y∗) = 1. Then the inequalities
−1 ≤ E(X∗Y∗) ≤ 1 become

−1 ≤ E

[(
X − EX

σX

)(
Y − EY

σY

)]
≤ 1 (32)

from which (31) follows. Also, E(X∗Y∗) = 1 if and only if P(X∗ = Y∗) =
1 becomes E[(X − EX)(Y − EY)] = σXσY if and only if P[Y = EY + σY

σX

(X − EX)] = 1, and E(X∗Y∗) = −1 if and only if P(X∗ = −Y∗) = 1 becomes
E[(X − EX)(Y − EY)] = −σXσY if and only if P[Y = EY − σY

σX
(X − EX)] = 1.

A restatement of the last two conclusions is: Cov(X, Y) = σXσY if and only
if P[Y = EY + σY

σX
(X − EX)] = 1, and Cov(X, Y) = −σXσY if and only if

P[Y = EY − σY

σX
(X − EX)] = 1. ▲

From the definition of the Cov(X, Y) in (26), it follows that if X is measured
in units, call them a, and Y is measured in units, call them b, then Cov(X, Y) is
measured in units ab. Furthermore, because the variance of a r.v. ranges from
0 to ∞, it follows from (31) that Cov(X, Y) may vary from −∞ to ∞. These two
characteristics of a covariance are rather undesirable and are both eliminated
through the standardization process of replacing X and Y by X−EX

σX
and Y−EY

σY
.

By (32), the range of the covariance of these standardized r.v.’s is the interval
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[−1, 1]. This covariance is called the correlation coefficient of the r.v.’s X and
Y and is denoted by ρ(X, Y). Thus:

ρ(X, Y) = E

[(
X − EX

σX

)(
Y − EY

σY

)]
= Cov(X, Y)

σXσY

= E(XY) − (EX)(EY)
σXσY

. (33)

Furthermore, by (32):

−1 ≤ ρ(X, Y) ≤ 1, (34)

and, by part (ii) of Theorem 1:

ρ(X, Y) = 1 if and only if P

[
Y = EY + σY

σX

(X − EX)
]

= 1, (35)

ρ(X, Y) = −1 if and only if P

[
Y = EY − σY

σX

(X − EX)
]

= 1. (36)

The straight lines represented by y = EY + σY

σX
(x − EX) and y = EY − σY

σX

(x − EX) are depicted in Figure 4.4.

EY − EX
σY

σX

EY + EX
σY

σX

x

y

0 EX

EY

y = EY +
(x - EX )

σY

σX

y = EY −
(x - EX )

σ
Yσ

X

Figure 4.4

Lines of Perfect
Linear Relation of x

and y

From relation (35), we have that ρ(X, Y) = 1 if and only if (X, Y ) are linearly
related (with probability 1). On the other hand, from Example 17, we have that
Cov(X, Y) > 0 if and only if X and Y tend to take simultaneously either “large”
values or “small” values. Since Cov(X, Y) and ρ(X, Y ) have the same sign,
the same statement can be made about ρ(X, Y ), being positive if and only if
X and Y tend to take simultaneously either “large” values or “small” values.
The same arguments apply for the case that Cov(X, Y ) < 0 (equivalently,
ρ(X, Y ) < 0). This reasoning indicates that ρ(X, Y) may be looked upon as a
measure of linear dependence between X and Y . The pair (X, Y ) lies on the
line y = EY + σY

σX
(x − EX) if ρ(X, Y) = 1; pairs identical to (X, Y ) tend to be

arranged along this line, if (0 <)ρ(X, Y ) < 1, and they tend to move further
and further away from this line as ρ(X, Y ) gets closer to 0; the pairs bear no
sign of linear tendency whatever, if ρ(X, Y ) = 0. Rough arguments also hold
for the reverse assertions. For 0 < ρ(X, Y ) ≤ 1, the r.v.’s X and Y are said to
be positively correlated, and uncorrelated if ρ(X, Y ) = 0. Likewise, the pair
(X, Y ) lies on the line y = EY − σY

σX
(x − EX) if ρ(X, Y ) = −1; pairs identical
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to (X, Y ) tend to be arranged along this line if −1 < ρ(X, Y ) < 0. Again, rough
arguments can also be made for the reverse assertions. For −1 ≤ ρ(X, Y ) < 0,
the r.v.’s X and Y are said to be negatively correlated.

Actually, a more precise argument to this effect can be made by consid-
ering the distance D of the (random) point (X, Y) from the lines y = EY ±
σY

σX
(x − EX). It can be seen that:

ED2 = 2σ 2
Xσ 2

Y

σ 2
X + σ 2

Y

(1 − |ρ(X, Y)|). (37)

Then one may use the interpretation of the expectation as an average and
exploit (37) in order to arrive at the same reasoning but in a more rigorous
way.

(a)
x

y

(b)
x

y

(c)
x

y

(d)
x

y

(e)
x

y

Figure 4.5

As an illustration, let us calculate the ρ(X, Y) for Examples 1 and 8.

EXAMPLE 19 In reference to Example 1, calculate the Cov(X, Y) and the ρ(X, Y).

DISCUSSION From Table 4.1, we find EX 2 = 1.61, EY 2 = 1.59. By
Example 18, EX = 1.01, EY = 0.99, so that Var(X) = EX 2 − (EX)2 = 0.5899,
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Var(Y) = EY 2 − (EY)2 = 0.6099. Since Cov(X, Y) = 0.3001 (by Example 18),
we have: ρ(X, Y) = Cov(X,Y)√

Var(X)Var(Y)
= 0.3001√

0.5899×0.6099
� 0.5.

EXAMPLE 20 In reference to Example 8, calculate the Cov(X, Y ) and the ρ(X, Y ).

DISCUSSION By Example 8(iii), Cov(X, Y ) = E(XY ) − (EX)(EY ) = 4
9 −

8
15 · 4

5 = 4
225 ,

√
Var(X) =

√
11

15 ,
√

Var(Y) =
√

6
15 , so that

ρ(X, Y) = Cov(X, Y )√
Var(X )

√
Var(Y)

=
4

225√
11

15 ·
√

6
15

= 4√
66

� 0.492.

EXAMPLE 21 Let X and Y be two r.v.’s with finite expectations and equal (finite) variances,
and set U = X + Y and V = X − Y . Then the r.v.’s U and V are uncorrelated.

DISCUSSION Indeed,

E(U V ) = E[(X + Y )(X − Y)] = E(X2 − Y2) = EX 2 − EY 2,

(EU)(EV ) = [E(X + Y)][E(X − Y )]

= (EX + EY )(EX − EY ) = (EX )2 − (EY )2,

so that

Cov(U, V ) = E(U V ) − (EU)(EV ) = [EX 2 − (EX)2] − [EY 2 − (EY)2]

= Var(X ) − Var(Y ) = 0.

Figure 4.5 illustrates the behavior of the correlation coefficient ρ(X, Y) of the
r.v.’s X and Y . In (a), ρ(X, Y) = 1, the r.v.’s X and Y are perfectly positively
linearly related. In (b), ρ(X, Y) = −1, the r.v.’s X and Y are perfectly negatively
linearly related. In (c), 0 < ρ(X, Y) < 1, the r.v.’s X and Y are positively corre-
lated. In (d), −1 < ρ(X, Y) < 0, the r.v.’s X and Y are negatively correlated. In
(e), ρ(X, Y) = 0, the r.v.’s X and Y are uncorrelated.

The following result presents an interesting property of the correlation
coefficient.

THEOREM 2
Let X and Y be r.v.’s with finite first and second moments and positive
variances, and let c1, c2, d1, d2 be constants with c1c2 �= 0. Then:

ρ(c1 X + d1, c2Y + d2) = ± ρ(X, Y), with + if c1c2 > 0 and − if c1c2 < 0.

(38)

PROOF Indeed, Var(c1 X + d1) = c2
1Var(X), Var(c2Y + d2) = c2

2Var(Y), and
Cov(c1 X + d1, c2Y + d2) = E{[(c1 X + d1) − E(c1 X + d1)][(c2Y + d2) −
E(c2Y + d2)]} = E[c1(X − EX) · c2(Y − EY)] = c1c2 E[(X − EX)(Y − EY)] =
c1c2Cov(X, Y). Therefore ρ(c1 X + d1, c2Y + d2) = c1c2 Cov(X,Y)

|c1c2|
√

Var(X) Var(Y)
, and the

conclusion follows. ▲
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EXAMPLE 22 Let X and Y be temperatures in two localities measured in the Celsius scale,
and let U and V be the same temperatures measured in the Fahrenheit scale.
Then ρ(X, Y) = ρ(U, V ), as it should be. This is so because U = 9

5 X + 32 and
V = 9

5 Y + 32, so that (38) applies with the + sign.

This section is concluded with the following result and an example.

THEOREM 3
For two r.v.’s X and Y with finite first and second moments, and (positive)
standard deviations σX and σY , it holds:

Var(X + Y) = σ 2
X + σ 2

Y + 2Cov(X, Y) = σ 2
X + σ 2

Y + 2σXσYρ(X, Y), (39)

and

Var(X + Y) = σ 2
X + σ 2

Y if X and Y are uncorrelated. (40)

PROOF Since (40) follows immediately from (39), and Cov(X, Y) = σXσY ×
ρ(X, Y), it suffices to establish only the first equality in (39). Indeed,

Var(X + Y) = E[(X + Y) − E(X + Y)]2 = E[(X − EX) + E(Y − EY)]2

= E(X − EX)2 + E(Y − EY)2 + 2E[(X − EX)(Y − EY)]

= σ 2
X + σ 2

Y + 2Cov(X, Y). ▲

EXAMPLE 23 In reference to Examples 1 and 8 and by means of results obtained in Examples
19, 8(iii), and 20, respectively, calculate Var(X + Y).

DISCUSSION By (39),

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

= 0.5899 + 0.6099 + 2 × 0.3001 = 1.8 for Example 1, and

= 11
225

+ 2
75

+ 2 × 4
225

= 1
9

for Example 8.

Exercises

3.1 Let X and Y be the r.v.’s denoting the number of sixes when two fair dice
are rolled independently 15 times each. Determine the E(X + Y).

3.2 Show that the joint m.g.f. of two r.v.’s X and Y satisfies the following
property, where c1, c2, d1, and d2 are constants.

Mc1 X+d1,c2Y+d2 (t1, t2) = ed1t1+d2t2 MX,Y(c1t1, c2t2).
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3.3 Provide a justification of relations (28)–(30). That is:
(i) P(Ac ∩ Bc) − P(Ac)P(Bc) = P(A ∩ B) − P(A)P(B).

(ii) P(Ac ∩ B) − P(Ac)P(B) = −P(A ∩ B) + P(A)P(B).
(iii) P(A ∩ Bc) − P(A)P(Bc) = −P(A ∩ B) + P(A)P(B).

3.4 Let X and Y be two r.v.’s with EX = EY = 0. Then, if Var(X − Y) = 0, it
follows that P(X = Y) = 1, and if Var(X + Y) = 0, then P(X = −Y) = 1.

Hint: Use Exercise 2.4 in Chapter 3.

3.5 In reference to Exercise 2.1 (see also Exercise 1.1), calculate:
(i) EX, EY, Var(X), and Var(Y).

(ii) Cov(X, Y) and ρ(X, Y).
(iii) Decide on the kind of correlation of the r.v.’s X and Y .

3.6 Refer to Exercises 1.2 and 2.2 and calculate:
(i) EX, EY, Var(X), Var(Y).

(ii) E(XY), Cov(X, Y).
(iii) ρ(X, Y).
(iv) What kind of correlation, if any, do the r.v.’s X and Y exhibit?

3.7 In reference to Exercise 2.3:
(i) Calculate EX, EY, Var(X), and Var(Y).

(ii) Calculate Cov(X, Y) and ρ(X, Y).
(iii) Plot the points (−4, 1), (−2, 2), (2, 2), and (4, −1), and reconcile this

graph with the value of ρ(X, Y) found in part (ii).

3.8 In reference to Exercise 2.4, calculate the following quantities:
(i) EX, EY, Var(X), and Var(Y).

(ii) Cov(X, Y) and ρ(X, Y).

3.9 Refer to Exercise 2.5, and calculate the Cov(X, Y) and the ρ(X, Y).

3.10 Let X be a r.v. taking on the values −2, −1, 1, 2, each with probability 1/4,
and define the r.v. Y by: Y = X2. Then calculate the quantities: EX, Var(X),
EY, Var(Y), E(XY), Cov(X, Y), and ρ(X, Y). Are you surprised by the
value of ρ(X, Y)? Explain.

3.11 Refer to Example 8 and compute the covariance Cov(X, Y) and the cor-
relation coefficient ρ(X, Y). Decide on the kind of correlation of the r.v.’s
X and Y .

3.12 In reference to Exercise 2.7 (see also Exercise 1.3), calculate:
(i) The expectations EX and EY .

(ii) The variances Var(X) and Var(Y).
(iii) The covariance Cov(X, Y) and the correlation coefficient ρ(X, Y).
(iv) On the basis of part (iii), decide on the kind of correlation of the r.v.’s

X and Y .

3.13 In reference to Exercise 2.8, calculate:
(i) The expectations EX and EY .

(ii) The variances Var(X) and Var(Y).
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(iii) The covariance Cov(X, Y) and the correlation coefficient ρ(X, Y).
(iv) On the basis of part (iii), decide on the kind of correlation of the r.v.’s

X and Y .

3.14 Let X be a r.v. with finite expectation and finite and positive variance,
and set Y = aX + b, where a and b are constants and a �= 0. Then show
that |ρ(X, Y)| = 1 and, indeed ρ(X, Y) = 1 if and only if a > 0, and
ρ(X, Y) = −1 if and only if a < 0.

3.15 For any two r.v.’s X and Y , set U = X + Y and V = X − Y . Then show
that:

(i) P(U V < 0) = P(|X| < |Y|).
(ii) If EX 2 = EY 2 < ∞, then E(U V ) = 0.

(iii) If EX 2 < ∞, EY 2 < ∞ and Var(X) = Var(Y), then the r.v.’s U and
V are uncorrelated.

3.16 Let X and Y be r.v.’s with finite second moments EX 2, EY 2, and Var(X) >

0. Suppose we know X and we wish to predict Y in terms of X through the
linear relationship Y = αX+β, where α and β are (unknown) constants.
Further, suppose there exist values α̂ and β̂ of α and β, respectively,
for which the expectation of the square difference [Y − (α̂X + β̂)]2 is
minimum. Then Ŷ = α̂X + β̂ is called the best linear predictor of Y

in terms of X (when the criterion of optimality is that of minimizing
E[Y − (αX + β)]2 over all α and β). Then show that α̂ and β̂ are given as
follows:

α̂ = σY

σX

ρ(X, Y), β̂ = EY − α̂EX,

where σX and σY are the s.d.’s of the r.v.’s X and Y , respectively.

3.17 Justify the statement made in relation (10), for both the discrete and the
continuous case.

4.4 Some Generalizations to k Random Variables

If instead of two r.v.’s X and Y we have k r.v.’s X1, . . . , Xk, most of the con-
cepts defined and results obtained in the previous sections are carried over
to the k-dimensional case in a straightforward way. Thus, the joint proba-

bility distribution of (X1, . . . , Xk), to be denoted by PX1,..., Xk
, is defined by:

PX1,..., Xk
(B) = P[(X1, . . . , Xk) ∈ B], B ⊆ �k = �×· · ·×� (k factors), and their

joint d.f. is: FX1,..., Xk
(x1, . . . , xk) = P(X1 ≤ x1, . . . , Xk ≤ xk), x1, . . . , xk ∈ �.

The obvious versions of properties #1 and #3 stated in Section 4.1 hold here
too; also, a suitable version of property #2 holds, but we shall not insist on
it. The joint p.d.f. of X1, . . . , Xk is denoted by fX1,..., Xk

and is defined in an
obvious manner. Thus, for the case the r.v.’s X1, . . . , Xk are discrete taking
on respective values x1i, . . . , xki, we have fX1,..., Xk

(x1i, . . . , xki) = P(X1 =
x1i, . . . , Xk = xki) and 0 otherwise. Then, for B ⊆ �k, P[(X1, . . . , Xk) ∈ B] =∑

fX1,..., Xk
(x1, . . . , xk), where the summation extends over all (x1, . . . , xk) ∈ B.

For the continuous case, the joint p.d.f. is a nonnegative function such that
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FX1,..., Xk
(x1, . . . , xk) = ∫ xk

−∞ · · · ∫ x1

−∞ fX1,..., Xk
(t1, . . . , tk)dt1 . . . dtk. It follows that

for B ⊆ �k (where you may interpret B as a familiar geometric figure in
�k): P[(X1, . . . , Xk) ∈ B] = ∫ · · · ∫︸ ︷︷ ︸

B

fX1,..., Xk
(x1, . . . , xk)dx1 . . . dxk. As in the

2-dimensional case, ∂k

∂x1...∂xk
FX1,..., Xk

(x1, . . . , xk) = fX1,..., Xk
(x1, . . . , xk) (for con-

tinuity points (x1, . . . , xk) of fX1,..., Xk
). In the next subsection, three concrete

examples will be presented, one for the discrete case, and two for the contin-
uous case. In the present k-dimensional case, there are many marginal d.f.’s
and p.d.f.’s. Thus, if in FX1,..., Xk

(x1, . . . , xk), t of the x’s, xj1 , . . . , xjt , are replaced
by +∞ (in the sense they are let to tend to +∞), then what is left is the
marginal joint d.f. of the r.v.’s Xi1 , . . . , Xis , FXi1 ,..., Xis

, where s + t = k. Like-
wise, if in fX1,..., Xk

(x1, . . . , xk), xj1 , . . . , xjt are eliminated through summation
(for the discrete case) or integration (for the continuous case), what is left
is the marginal joint p.d.f. of the r.v.’s Xi1 , . . . , Xis , fXi1

, . . . , Xis . Combining
joint and marginal joint p.d.f.’s, as in the 2-dimensional case, we obtain a variety
of conditional p.d.f.’s. Thus, for example,

fX j1 ,..., X jt |Xi1 ,..., Xis
(xj1 , . . . , xjt | xi1 , . . . , xis ) = fX1,..., Xk

(x1, . . . , xk)
fXi1 ,..., Xis

(xi1 , . . . , xis )
.

Utilizing conditional p.d.f.’s, we can define conditional expectations and con-

ditional variances, as in the 2-dimensional case (see relations (2), (3) and (5),
(6)). For a (real-valued) function g defined on �k, the expectation of the r.v.
g(X1, . . . , Xk) is defined in a way analogous to that in (8) for the 2-dimensional
case, and the validity of properties (9) and (10) is immediate. In particular,
provided the expectations involved exist:

E(c1 X1 + · · · + ck Xk + d) = c1 EX1 + · · · + ck EXk + d,

c1, . . . , ck, d constants. (41)

By choosing g(x1, . . . , xk) = exp(t1x1 + · · · + tkxk), t1, . . . , tk ∈ �, the resulting
expectation (assuming it is finite) is the joint m.g.f. of X1, . . . , Xk; i.e.,

MX1,..., Xk
(t1, . . . , tk) = Eet1 X1+···+tk Xk , (t1, . . . , tk) ∈ C ⊆ �k. (42)

The appropriate versions of properties (21) and (23) become here:

Mc1 X1+d1,...,ck Xk+dk
(t1, . . . , tk) = ed1t1+···+dktk MX1,..., Xk

(c1t1, . . . , cktk), (43)

where c1, . . . , ck and d1, . . . , dk are constants, and:

∂n1+···+nk

∂n1 t1 . . . ∂nk tk
MX1,..., Xk

(t1, . . . , tk)|t1=···=tk=0 = E
(
X

n1
1 . . . X

nk

k

)
, (44)

for ≥ 0 integers n1, . . . , nk.

REMARK 3 Relation (44) demonstrates the joint moment generating prop-
erty of the joint m.g.f. The joint m.g.f. can also be used for recovering the joint
distribution of the r.v.’s X1, . . . , Xk as indicated in Remark 2.
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Finally, the appropriate versions of relations (39) and (40) become here,
by setting σ 2

Xi
= Var(Xi), i = 1, . . . , k:

Var(X1 + · · · + Xk) =
k∑

i=1

σ 2
Xi

+ 2
∑

1≤i< j≤k

Cov(Xi, X j)

=
k∑

i=1

σ 2
Xi

+ 2
∑

1≤i< j≤k

σXi
σX j

ρ(Xi, X j), (45)

and

Var(X1 + · · · + Xk) =
k∑

i=1

σ 2
Xi

if the Xi’s are pairwise uncorrelated; (46)

i.e., ρ(Xi, X j) = 0 for i �= j.

Exercises

4.1 If the r.v.’s X1, X 2, X3 have the joint p.d.f. fX1, X 2, X3 (x1, x2, x3) =
c3e−c(x1+x2+x3), x1 > 0, x2 > 0, x3 > 0 (c > 0), determine:
(i) The constant c.

(ii) The marginal p.d.f.’s fX1 , fX 2 , and fX3 .
(iii) The joint conditional p.d.f. of X1 and X 2, given X3.
(iv) The conditional p.d.f. of X1, given X 2 and X3.

4.2 Determine the joint m.g.f. of the r.v.’s X1, X 2, X3 with p.d.f.
fX1, X 2, X3 (x1, x2, x3) = c3e−c(x1+x2+x3), x1 > 0, x2 > 0, x3 > 0 (c any positive
constant, see also Exercise 4.1).

4.3 (Cramér-Wold devise) Show that if we know the joint distribution of the
r.v.’s X1, . . . , Xn, then we can determine the distribution of any linear com-
bination c1 X1 + · · · + cnXn of X1, . . . , Xn, where c1, . . . , cn are constants.
Conversely, if we know the distribution of all linear combinations just
described, then we can determine the joint distribution of X1, . . . , Xn.

4.4 If the r.v.’s X1, . . . , Xm and Y1, . . . , Yn have finite second moments, then
show that:

Cov

(
m∑

i=1

Xi,
n∑

j=1

Yj

)
=

m∑
i=1

n∑
j=1

Cov(Xi, Yj).

4.5 The Multinomial, the Bivariate Normal, and the Multivariate Normal Distributions

In this section, we introduce and study to some extent three multidimen-
sional distributions; they are the Multinomial distribution, the 2-dimensional

Normal or Bivariate Normal distribution, and the k-dimensional Normal

distribution.
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4.5.1 Multinomial Distribution

A multinomial experiment is a straightforward generalization of a binomial
experiment, where, instead of 2, there are k (mutually exclusive) possible
outcomes, O1, . . . , Ok, say, occurring with respective probabilities p1, . . . , pk.
Simple examples of multinomial experiments are those of rolling a die (with
6 possible outcomes); selecting (with replacement) r balls from a collection
of n1 + · · · + nk balls, so that ni balls have the number i written on them, i =
1, . . . , k; selecting (with replacement) r objects out of a collection of objects
of which n1 are in good condition, n2 have minor defects, and n3 have serious
defects, etc. Suppose a multinomial experiment is carried out independently
n times and the probabilities p1, . . . , pk remain the same throughout. Denote
by Xi the r.v. of the number of times outcome Oi occurs, i = 1, . . . , k. Then
the joint p.d.f. of X1, . . . , Xk is given by:

fX1,..., Xk
(x1, . . . , xk) = n!

x1! . . . xk!
p

x1
1 . . . p

xk

k , (47)

where x1, . . . , xk are ≥ 0 integers with x1 + · · · + xk = n, and, of course,
0 < pi < 1, i = 1, . . . , k, p1 + · · · + pk = 1. The distribution given by (47)
is the Multinomial distribution with parameters n and p1, . . . , pk, and the
r.v.’s X1, . . . , Xk are said to have the Multinomial distribution with these pa-
rameters. That the right-hand side of (47) is the right formula for the joint
probabilities P(X1 = x1, . . . , Xk = xk) ensues as follows: By independence,
the probability that Oi occurs ni times, i = 1, . . . , k, in specified positions,
is given by: p

x1
1 . . . p

xk

k regardless of the positions of occurrence of Oi’s. The
different ways of choosing the ni positions for the occurrence of Oi, i =
1, . . . , k, is equal to:

(
n

n1

)(
n−n1

n2

) · · · (n−n1−···−nk−1
nk

)
. Writing out each term in fac-

torial form and making the obvious cancellations, we arrive at: n!/(x1! . . . xk!)
(see also Exercise 5.1). For illustrative purposes, let us consider the following
example.

EXAMPLE 24 A fair die is rolled independently 10 times. Find the probability that faces
#1 through #6 occur the following respective number of times: 2, 1, 3, 1, 2,
and 1.

DISCUSSION By letting Xi be the r.v. denoting the number of occurrences
of face i, i = 1, . . . , 6, we have:

fX1,..., X6 (2, 1, 3, 1, 2, 1) = 10!
2!1!3!1!2!1!

(1/6)10 = 4,725
1,889,568

� 0.003.

In a Multinomial distribution, all marginal p.d.f.’s and all conditional p.d.f.’s
are also Multinomial. More precisely, we have the following result.
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THEOREM 4
Let X1, . . . , Xk be Multinomially distributed with parameters n and
p1, . . . , pk, and for 1 ≤ s < k, let 1 ≤ i1 < i2 < · · · < is ≤ k, Y =
n − (Xi1 + · · · + Xis ) and q = 1 − (pi1 + · · · + pis ). Then:

(i) The r.v.’s Xi1 , . . . , Xis , Y are distributed Multinomially with parame-
ters n and pi1 , . . . , pis , q.

(ii) The conditional joint distribution of X j1 , . . . , X jt , given Xi1 = xi1 , . . . ,
Xis = xis , is Multinomial with parameters n− r and pj1/q , . . . , pjt/q,
where r = xi1 + · · · + xis and t = k − s.

PROOF

(i) For ≥ 0 integers xi1 , . . . , xis with xi1 + · · · + xis = r ≤ n, we have:

fXi1 ,..., Xis
(xi1 , . . . , xis ) = P(Xi1 = xi1 , . . . , Xis = xis )

= P(Xi1 = xi1 , . . . , Xis = xis , Y = n − r)

= n!
xi1 ! . . . xis !(n − r)!

p
xi1
i1

. . . p
xis

is
qn−r.

(ii) For ≥ 0 integers xj1 , . . . , xjt with xj1 + · · · + xjt = n − r, we have:

fX j1 ,..., X jt |Xi1 ,..., Xis
(xj1 , . . . , xjt |xi1 , . . . , xis )

= P(X j1 = xj1 , . . . , X jt = xjt |Xi1 = xi1 , . . . , Xis = xis )

= P(X j1 = xj1 , . . . , X jt = xjt , Xi1 = xi1 , . . . , Xis = xis )/

P(Xi1 = xi1 , . . . , Xis = xis )

= n!
xj1 ! · · · xjt !xi1 ! · · · xis !

p
xj1
j1

. . . p
xjt

jt
× p

xi1
i1

. . . p
xis

is

/
(

n!
xi1 ! . . . xis !(n − r)!

p
xi1
i1

. . . p
xis

is
qn−r

)
= (n − r)!

xj1 ! . . . xjt !
(pj1/q)xj1 . . . (pjt/q)xjt . ▲

EXAMPLE 25 In reference to Example 24, calculate: P(X2 = X4 = X6 = 2) and P(X1 =
X3 = 1, X5 = 2 | X2 = X4 = X6 = 2).

DISCUSSION Here n = 10, r = 6, p2 = p4 = p6 = 1
6 and q = 1 − 3

6 = 1
2 .

Thus:

P(X2 = X4 = X6 = 2) = 10!
2!2!2!4!

(
1
6

)6 (1
2

)4

= 4,725
186,624

� 0.025,
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and:

P(X1 = X3 = 1, X5 = 2 | X2 = X4 = X6 = 2) = 4!
1!1!2!

(
1/6
1/2

)4

= 4
27

� 0.148.

EXAMPLE 26 In a genetic experiment, two different varieties of a certain species are crossed
and a specific characteristic of the offspring can occur only at three levels, A,
B, and C, say. According to a proposed model, the probabilities for A, B, and
C are 1

12 , 3
12 , and 8

12 , respectively. Out of 60 offspring, calculate:

(i) The probability that 6, 18, and 36 fall into levels A, B, and C, respectively.
(ii) The (conditional) probability that 6 and 18 fall into levels A and B, respec-

tively, given that 36 falls into level C.

DISCUSSION

(i) Formula (47) applies with n = 60, k = 3, p1 = 1
12 , p2 = 3

12 , p3 = 8
12 , x1 =

6, x2 = 18, x3 = 36 and yields:

P(X1 = 6, X2 = 18, X3 = 36) = 60!
6!18!36!

(
1
12

)6( 3
12

)18( 8
12

)36

� 0.011.

(ii) Here Theorem 4(ii) applies with s = 1, t = 2, xi1 = x3 = 36, xj1 = x1 =
6, xj2 = x2 = 18, r = 36, so that n−r = 60−36 = 24, q = 1− p3 = 1− 8

12 = 4
12 ,

and yields:

P(X1 = 6, X2 = 18/X3 = 36) = (n − r)!
x1!x2!

(
p1

q

)x1
(

p2

q

)x2

= (24)!
6!18!

(
1

12
4

12

)6 ( 3
12
4

12

)18

=
(

24
6

)(
1
4

)6(3
4

)18

= 0.1852 (from the Binomial tables).

An application of formula (42) gives the joint m.g.f. of X1, . . . , Xk as follows,
where the summation is over all ≥ 0 integers x1, . . . , xk with x1 + · · · + xk = n:

MX1,..., Xk
(t1, . . . , tk) =

∑
et1x1+···+tkxk

n!
x1! · · · xk!

p
x1
1 . . . p

xk

k

=
∑ n!

x1! . . . xk!
(p1et1 )x1 . . . (pketk )xk

= (p1et1 + · · · + pketk )n; i.e.,

MX1,..., Xk
(t1, . . . , tk) = (p1et1 + · · · + pketk )n, t1, . . . , tk ∈ �. (48)

By means of (44) and (48), we can find the Cov(Xi, X j) and the ρ(Xi, X j)
for any 1 ≤ i < j ≤ k. Indeed, EXi = npi, EX j = npj , Var(Xi) = npi(1 − pi),
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Var(X j) = npj(1 − pj) and E(XiX j) = n(n − 1)pi pj . Therefore:

Cov(Xi, X j) = −npi pj and ρ(Xi, X j) = −[pi pj/((1 − pi)(1 − pj))]1/2

(49)

(see Exercise 5.4 for details).

4.5.2 Bivariate Normal Distribution

The joint distribution of the r.v.’s X and Y is said to be the Bivariate Normal

distribution with parameters μ1, μ2 in �, σ1, σ2 positive and ρ ∈ [−1, 1], if the
joint p.d.f. is given by the formula:

fX,Y(x, y) = 1

2πσ1σ2

√
1 − ρ2

e−q/2, x, y ∈ �, (50)

where

q = 1
1 − ρ2

[(
x − μ1

σ1

)2

− 2ρ

(
x − μ1

σ1

)(
y − μ2

σ2

)
+
(

y − μ2

σ2

)2 ]
. (51)

This distribution is also referred to as 2-dimensional Normal. The shape of
fX,Y looks like a bell sitting on the xy-plane and whose highest point is located
at the point (μ1, μ2, 1/(2πσ1σ2

√
1 − ρ2)) (see Figure 4.6).

fX,Y (x, y)

(a) (b)

y

y

x
x

fX,Y (x, y)

Figure 4.6

Graphs of the p.d.f. of
the Bivariate Normal
Distribution: (a)
Centered at the Origin;
(b) Centered Elsewhere
in the (x, y)-plane

That fX,Y integrates to 1 and therefore is a p.d.f. is seen by rewriting it in a
convenient way. Specifically,(

x− μ1

σ1

)2

− 2ρ

(
x−μ1

σ1

)(
y− μ2

σ2

)
+
(

y− μ2

σ2

)2

=
(

y− μ2

σ2

)2

− 2
(

ρ
x− μ1

σ1

)(
y− μ2

σ2

)
+
(

ρ
x− μ1

σ1

)2

+ (1 − ρ2)
(

x− μ1

σ1

)2

=
[(

y− μ2

σ2

)
−
(

ρ
x−μ1

σ1

)]2

+ (1 − ρ2)
(

x− μ1

σ1

)2

. (52)
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Furthermore,

y − μ2

σ2
− ρ

x − μ1

σ1
= y − μ2

σ2
− 1

σ2
· ρσ2

x − μ1

σ1

= 1
σ2

{
y −
[
μ2 + ρσ2

σ1
(x − μ1)

]}
= y − bx

σ2
, where bx = μ2 + ρσ2

σ1
(x − μ1)

(see also Exercise 5.6).
Therefore, the right-hand side of (52) is equal to:(

y − bx

σ2

)2

+ (1 − ρ2)
(

x − μ1

σ1

)2

,

and hence the exponent becomes:

− (x − μ1)2

2σ 2
1

− (y − bx)2

2(σ2

√
1 − ρ2)2

.

Then the joint p.d.f. may be rewritten as follows:

fX,Y(x, y) = 1√
2πσ1

e
− (x−μ1)2

2σ2
1 · 1√

2π(σ2

√
1 − ρ2)

e
− (y− bx)2

2(σ2
√

1 − ρ 2)2 . (53)

The first factor on the right-hand side of (53) is the p.d.f. of N(μ1, σ 2
1 ) and the

second factor is the p.d.f. of N(bx, (σ2

√
1 − ρ2)2). Therefore, integration with

respect to y produces the marginal N(μ1, σ 2
1 ) distribution, which, of course,

integrates to 1. So, we have established the following two facts:
∫∞
−∞
∫∞
−∞

fX,Y(x, y) dx dy = 1, and

X ∼ N
(
μ1, σ 2

1

)
, and, by symmetry, Y ∼ N

(
μ2, σ 2

2

)
. (54)

The results recorded in (54) also reveal the special significance of the param-
eters μ1, σ 2

1 and μ2, σ 2
2 . Namely, they are the means and the variances of the

(normally distributed) r.v.’s X and Y , respectively. Relations (53) and (54) also
provided immediately the conditional p.d.f. fY|X ; namely,

fY|X(y/x) = 1√
2π(σ2

√
1 − ρ2)2

exp
[

− (y − bx)2

2(σ2

√
1 − ρ2)2

]
.

Thus, in obvious notation:

Y | X = x ∼ N(bx, (σ2

√
1 − ρ2)2), bx = μ2 + ρσ2

σ1
(x − μ1), (55)

and by symmetry:

X | Y = y ∼ N(by, (σ1

√
1 − ρ2)2), by = μ1 + ρσ1

σ2
(y − μ2). (56)

In Figure 4.7, the conditional p.d.f. fY|X(· | x) is depicted for three values of
x : x = 5, 10, and 15.
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Conditional
Probability Density
Functions of the
Bivariate Normal
Distribution

Formulas (53), (54), and (56) also allow us to calculate easily the covariance
and the correlation coefficient of X and Y . Indeed, by (53):

E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy fX,Y(x, y)dx dy =

∫ ∞

−∞
xfX(x)

[ ∫ ∞

−∞
y fY|X(y | x)dy

]
dx

=
∫ ∞

−∞
xfX(x)bx dx =

∫ ∞

−∞
xfX(x)

[
μ2 + ρσ2

σ1
(x − μ1)

]
dx

= μ1μ2 + ρσ1σ2

(see also Exercise 5.7). Since we already know that EX = μ1, EY = μ2, and
Var(X) = σ 2

1 , Var(Y) = σ 2
2 , we obtain:

Cov(X, Y) = E(XY) − (EX)(EY) = μ1μ2 + ρσ1σ2 − μ1μ2 = ρσ1σ2,

and therefore ρ(X, Y) = ρσ1σ2
σ1σ2

= ρ. Thus, we have:

Cov(X, Y) = ρσ1σ2 and ρ(X, Y) = ρ. (57)

Relation (57) reveals that the parameter ρ in (50) is, actually, the correlation
coefficient of the r.v.’s X and Y .

EXAMPLE 27 If the r.v.’s X1 and X2 have the Bivariate Normal distribution with parameters
μ1, μ2, σ 2

1 , σ 2
2 , and ρ:

(i) Calculate the quantities: E(c1 X1 + c2 X2), Var(c1 X1 + c2 X2), where c1, c2

are constants.
(ii) How the expression in part (i) becomes for: μ1 = −1, μ2 = 3, σ 2

1 = 4, σ 2
2 =

9, and ρ = 1
2 ?

DISCUSSION

(i) E(c1 X1 + c2 X2) = c1 EX1 + c2 EX2 = c1μ1 + c2μ2, since Xi ∼ N (μi, σ 2
i ), so

that EXi = μi, i = 1, 2. Also,

Var(c1 X1 + c2 X2) = c2
1σ

2
X1

+ c2
2σ

2
X2

+ 2c1c2σX1σX 2ρ(X1, X2) (by (32))

= c2
1σ

2
1 + c2

2σ
2
2 + 2c1c2σ1σ2ρ ,
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since Xi ∼ N(μi, σ 2
i ), so that Var(Xi) = σ 2

i , i = 1, 2, and ρ(X1, X2) = ρ, by
(57).
(ii) Here E(c1 X1 + c2 X2) = −c1 + 3c2, and Var(c1 X1 + c2 X2) = 4c1 + 9c2 +
2c1c2 × 2 × 3 × 1

2 = 4c1 + 9c2 + 6c1c2.

Finally, it can be seen by integration that the joint m.g.f. of X and Y is given
by the formula:

MX,Y(t1, t2) = exp
[
μ1t1 + μ2t2 + 1

2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2

)]
, t1, t2 ∈ �;

(58)

we choose not to pursue its justification (which can be found, e.g., in pages
158–159, in the book “A Course in Mathematical Statistics,” 2nd edition (1997),
Academic Press, by G.G. Roussas). We see, however, easily that

∂

∂t1
MX,Y(t1, t2) = (μ1 + σ 2

1 t1 + ρσ1σ2t2
)
MX,Y(t1, t2),

and hence:

∂2

∂t1∂t2
MX,Y(t1, t2) = ρσ1σ2 MX,Y(t1, t2) + (μ1 + σ 2

1 t1 + ρσ1σ2t2
)

×(μ2 + σ 2
2 t2 + ρσ1σ2t1

)
MX,Y(t1, t2),

which, evaluated at t1 = t2 = 0, yields: ρσ1σ2 + μ1μ2 = E(XY), as we have
already seen.

4.5.3 Multivariate Normal Distribution

The Multivariate Normal distribution is a generalization of the Bivariate Nor-
mal distribution and can be defined in a number of ways; we choose the one
given here. To this end, for k ≥ 2, let μ = (μ1, . . . , μk) be a vector of constants,
and let Σ be a k × k nonsingular matrix, so that the inverse Σ−1 exists and
the determinant |Σ| �= 0. Finally, set X for the vector of r.v.’s X1, . . . , Xk; i.e.,
X = (X1, . . . , Xk) and x = (x1, . . . , xk) for any point in �k. Then, the joint p.d.f.
of the Xi’s, or the p.d.f. of the random vector X, is said to be Multivariate

Normal, or k-Variate Normal, if it is given by the formula:

fX(x) = 1
(2π)k/2|Σ|1/2

exp
[
−1

2
(x − μ)Σ−1(x − μ)′

]
, x ∈ �k,

where, it is to be recalled that “′” stands for transpose.
It can be seen that: EXi = μi, Var(Xi) = σ 2

i is the (i, i)th element of Σ,
and Cov(Xi, X j) is the (i, j)th element of Σ, so that μ = (EX1, . . . , EXk)
and Σ = (Cov(Xi, X j)), i, j = 1, . . . , k. The quantities μ and Σ are called the
parameters of the distribution. It can also be seen that the joint m.g.f. of the
Xi’s, or the m.g.f. of the random vector X, is given by:

MX(t) = exp
(
μt′ + 1

2
tΣt′
)

, t ∈ �k.
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The k-Variate Normal distribution has properties similar to those of the
2-dimensional Normal distribution, and the latter is obtained from the former
by taking μ = (μ1, μ2) and Σ = ( σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)
, where ρ = ρ(X1, X2).

More relevant information can be found, e.g., in Chapter 18 of the reference
cited in the discussion of Example 27.

Exercises

5.1 Show that(
n

n1

)(
n − n1

n2

)
· · ·
(

n − n1 − · · · − nk−1

nk

)
= n!

n1!n2! . . . nk!
.

5.2 In a store selling TV sets, it is known that 25% of the customers will
purchase a TV set of brand A, 40% will purchase a TV set of brand B, and
35% will just be browsing around. For a lot of 10 customers:
(i) What is the probability that 2 will purchase a TV set of brand A, 3 will

purchase a TV set of brand B, and 5 will purchase neither?
(ii) If it is known that 6 customers did not purchase a TV set, what is the

(conditional) probability that 1 of the rest will purchase a TV set of
brand A and 3 will purchase a TV set of brand B?

5.3 Human blood occurs in 4 types termed A, B, AB, and O with respective
frequencies pA = 0.40, pB = 0.10, pAB = 0.05, and pO = 0.45. If n

donors participate in a blood drive, denote by XA, XB, XAB, and XO the
numbers of donors with respective blood types A, B, AB, and O . Then
XA, XB, XAB, and XO are r.v.’s having the Multinomial distribution with
parameters nand pA, pB, pAB, pO . Write out the appropriate formulas for
the following probabilities:

(i) P(XA = xA, XB = xB, XAB = xAB, XO = xO) for xA, xB, xAB, and
xO nonnegative integers with xA + xB + xAB + xO = n.

(ii) P(XA = xA, XB = xB, XAB = xAB).
(iii) P(XA = xA, XB = xB).
(iv) P(XA = xA).
(v) P(XA = xA, XB = xB, XAB = xAB | XO = xO).

(vi) P(XA = xA, XB = xB | XAB = xAB, XO = xO).
(vii) P(XA = xA | XB = xB, XAB = xAB, XO = xO).

(viii) Give numerical answers to parts (i)–(vii), if n = 20, and xA =
8, xB = 2, xAB = 1, xO = 9.

5.4 In conjunction with the Multinomial distribution, show that:

EXi = npi, EX j = npj , Var(Xi) = npi(1 − pi), Var(X j) = npj(1 − pj),

Cov(Xi, X j) = −npi pj and ρ(Xi, X j) = − pi pj

[pi(1 − pi)pj(1 − pj)]1/2
.
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5.5 Refer to Exercises 5.3 and 5.4, and for n = 20, calculate the quantities:

EXA, EXB, EXAB, EXO ; Var(XA), Var(XB), Var(XAB),

Var(XO); Cov(XA, XB), Cov(XA, XAB), Cov(XA, XO);

ρ(XA, XB), ρ(XA, XAB), ρ(XA, XO).

5.6 Elaborate on the expressions in (51), as well as the expressions following
(51).

5.7 If the r.v.’s X and Y have the Bivariate Normal distribution with parame-
ters μ1, μ2, σ 2

1 , σ 2
2 , and ρ, show that E(XY) = μ1μ2 + ρσ1σ2.

Hint: Write the joint p.d.f. fX,Y as fY|X(y | x) fX(x) and use the fact
(see relation (54)) that E(Y | X = x) = bx = μ2 + ρσ2

σ1
(x − μ1).

5.8 If the r.v.’s X and Y have the Bivariate Normal distribution, then, by
using Exercise 5.7, show that the parameter ρ is, indeed, the correlation
coefficient of the r.v.’s X and Y, ρ = ρ(X, Y).

5.9 If the r.v.’s X and Y have the Bivariate Normal distribution, and c1, c2

are constants, express the expectation E(c1 X + c2Y) and the variance
Var(c1 X + c2Y) in terms of c1, c2, μ1 = EX, μ2 = EY, σ 2

1 = Var(X), σ 2
2 =

Var(Y), and ρ = ρ(X, Y).

5.10 If the r.v.’s X and Y have the Bivariate Normal distribution, then it is
known (see, e.g., relation (11) on page 158 in the book A Course in

Mathematical Statistics, 2nd edition (1997), Academic Press, by G.G.
Roussas) that the joint m.g.f. of X and Y is given by:

MX,Y(t1, t2)= exp
[
μ1t1 +μ2t2 + 1

2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2

)]
, t1, t2 ∈ �.

Use this m.g.f. in order to show that:

EX = μ1, EY = μ2, Var(X) = σ 2
1 , Var(Y) = σ 2

2 ,

Cov(X, Y) = ρσ1σ2, and ρ(X, Y) = ρ.

5.11 Use the joint m.g.f. of the r.v.’s X and Y having a Bivariate Normal distri-
bution (see Exercise 5.10) in order to show that:
(i) If X and Y have the Bivariate Normal distribution with parameters

μ1, μ2, σ 2
1 , σ 2

2 , and ρ, then, for any constants c1 and c2, the r.v. c1 X +
c2Y has the Normal distribution with parameters c1μ1 + c2μ2, and
c2

1σ
2
1 + 2c1c2ρσ1σ2 + c2

2σ
2
2 .

(ii) If the r.v. c1 X+c2Y is Normally distributed, then the r.v.’s. X and Y have
the Bivariate Normal distribution with parameters μ1 = EX, μ2 =
EY, σ 2

1 = Var(X), σ 2
2 = Var(Y), and ρ = ρ(X, Y).

5.12 Consider the function f defined by:

f (x, y)=
{

1
2π

e− x2+y2

2 , for (x, y) outside the square [−1, 1]×[−1, 1]
1

2π
e− x2+y2

2 + 1
2πe

x3 y3, for (x, y) in the square [−1, 1]×[−1, 1].
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(i) Show that f is a non-Bivariate Normal p.d.f.
(ii) Also, show that both marginals, call them f1 and f2, are N(0, 1) p.d.f.’s.

Remark: We know that if X, Y have the Bivariate Normal distribution,
then the distributions of the r.v.’s X and Y themselves are Normal. This
exercise shows that the inverse need not be true.

5.13 Let the r.v.’s X and Y have the Bivariate Normal distribution with param-
eters μ1, μ2, σ 2

1 , σ 2
2 , and ρ, and set U = X + Y, V = X − Y . Then show

that:
(i) The r.v.’s U and V also have the Bivariate Normal distribution with

parameters μ1 + μ2, μ1 − μ2, τ 2
1 = σ 2

1 + 2ρσ1σ2 + σ 2
2 , τ 2

2 = σ 2
1 −

2ρσ1σ2 + σ 2
2 , and ρ0 = (σ 2

1 − σ 2
2 )/τ1τ2.

(ii) U ∼ N(μ1 + μ2, τ 2
1 ), V ∼ N(μ1 − μ2, τ 2

2 ).
(iii) The r.v.’s U and V are uncorrelated if and only if σ 2

1 = σ 2
2 .



Chapter 5

Independence of
Random Variables

and Some Applications

This chapter consists of two sections. In the first section, we introduce the
concept of independence of r.v.’s and establish criteria for proving or disprov-
ing independence. Also, its relationship to uncorrelatedness is discussed. In
the second section, the sample mean and the sample variance are defined, and
some of their moments are also produced. The main thrust of this section,
however, is the discussion of the reproductive property of certain distribu-
tions. As a by-product, we also obtain the distribution of the sample mean and
of a certain multiple of the sample variance for independent and Normally
distributed r.v.’s.

5.1 Independence of Random Variables and Criteria of Independence

In Section 4 of Chapter 2, the concept of independence of two events was
introduced and it was suitably motivated and illustrated by means of examples.
This concept was then generalized to more than two events. What is done in
this section is, essentially, to carry over the concept of independence from
events to r.v.’s. To this end, consider first two r.v.’s X1 and X2 and the events
induced in the sample space S by each one of them separately as well as by
both of them jointly. That is, for subsets B1, B2 of �, let:

A1 = (X1 ∈ B1) = X−1
1 (B1) = {s ∈ S; X1(s) ∈ B1}, (1)

A2 = (X2 ∈ B2) = X−1
2 (B2) = {s ∈ S; X2(s) ∈ B2}, (2)

A12 = ((X1, X2) ∈ B1 × B2) = (X1 ∈ B1 & X2 ∈ B2) = (X1, X2)−1(B1 × B2)

= {s ∈ S; X1(s) ∈ B1 as X2(s) ∈ B2} = A1 ∩ A2. (3)
150
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Then the r.v.’s X1, X2 are said to be independent if, for any B1 and B2 as before,
the corresponding events A1 and A2 are independent; that is, P(A1 ∩ A2) =
P(A1)P(A2). By (1)–(3), clearly, this relation is equivalent to:

P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2). (4)

This relation states, in effect, that information regarding one r.v. has no effect
on the probability distribution of the other r.v. For example,

P(X1 ∈ B1|X2 ∈ B2) = P(X1 ∈ B1, X2 ∈ B2)
P(X2 ∈ B2)

= P(X1 ∈ B1)P(X2 ∈ B2)
P(X2 ∈ B2)

= P(X1 ∈ B1).

Relation (4) is taken as the definition of independence of these two r.v.’s, which
is then generalized in a straightforward way to k r.v.’s.

DEFINITION 1
Two r.v.’s X1 and X2 are said to be independent (statistically or stochas-

tically or in the probability sense) if, for any subsets B1 and B2 of �,

P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2).

The r.v.’s X1, . . . , Xk are said to be independent (in the same sense as
above) if, for any subsets B1, . . . , Bk of �,

P(Xi ∈ Bi, i = 1, . . . , k) =
k∏

i=1

P(Xi ∈ Bi). (5)

Nonindependent r.v.’s are said to be dependent.

The practical question which now arises is how one checks independence
of k given r.v.’s, or lack thereof. This is done by means of the following cri-
terion referred to as the Factorization Theorem because of the form of the
expressions involved.

THEOREM 1
(Criterion of independence, Factorization Theorem) For k ≥ 2,
the r.v.’s X1, . . . , Xk are independent if and only if any one of the following
three relations holds:

(i) FX1,..., Xk
(x1, . . . , xk) = FX1 (x1) · · · FXk

(xk) (6)

for all x1, . . . , xk in �.

(ii) fX1,..., Xk
(x1, . . . , xk) = fX1 (x1) · · · fXk

(xk) (7)

for all x1, . . . , xk in �.

(iii) MX1,..., Xk
(t1, . . . , tk) = MX1 (t1) · · · MXk

(tk) (8)

for all t1, . . . , tk in a non-degenerate interval containing 0.
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Before we proceed with the justification of this theorem, let us refer to
Example 1 in Chapter 4 and notice that: fX(3) = 0.04, fY(2) = 0.15, and
fX,Y(3, 2) = 0.02, so that fX,Y(3, 2) = 0.02 �= 0.04 × 0.15 = 0.006 = fX(3) fY(2).

Accordingly, the r.v.’s X and Y are not independent. On the other hand, in
reference to Example 2 (see also Example 6), we have, for all x, y > 0:

fX,Y(x, y) = λ1λ2e−λ1x−λ2 y = (λ1e−λ1x)(λ2e−λ2 y) = fX(x) fY(y),

so that fX,Y(x, y) = fX(x) fY(y) for all x and y, and consequently, the r.v.’s
X and Y are independent. Finally, refer to the Bivariate Normal distribution
whose p.d.f. is given by (49) of Chapter 4 and set ρ = 0. Then, from (49), (50),
and (53), we have fX,Y(x, y) = fX(x) fY(y) for all x and y. Therefore, ρ = 0
implies that the r.v.’s X and Y are independent.

EXAMPLE 1 Examine the r.v.’s X and Y from an independence viewpoint, if their joint p.d.f.
is given by: fX,Y(x, y) = 4xy, 0 < x < 1, 0 < y < 1 (and 0 otherwise).

DISCUSSION We will use part (ii) of Theorem 1 for which the marginal
p.d.f.’s are needed. To this end, we have:

fX(x) = 4x

∫ 1

0
ydy = 2x, 0 < x < 1;

fY(y) = 4y

∫ 1

0
x dx = 2y, 0 < y < 1.

Hence, for all 0 < x < 1 and 0 < y < 1, it holds that: 2x × 2y = 4xy, or
fX(x) fY(y) = fX,Y(x, y). This relation is also, trivially, true (both sides are
equal to 0) for x and y not satisfying the inequalities 0 < x < 1 and 0 < y < 1.
It follows that X and Y are independent.

Here are two examples where the r.v.’s involved are not independent.

EXAMPLE 2 If the r.v.’s X and Y have joint p.d.f. given by: fX,Y(x, y) = 2, 0 < x < y < 1
(and 0 otherwise), check whether these r.v.’s are independent or not.

DISCUSSION Reasoning as in the previous example, we find:

fX(x) = 2
∫ 1

x

dy = 2(1 − x), 0 < x < 1;

fY(y) = 2
∫ y

0
dx = 2y, 0 < y < 1.

Then independence of X and Y would require that: 4(1 − x)y = 2 for all
0 < x < y < 1, which, clearly, need not hold. For example, for x = 1

4 , y =
1
2 , 4(1 − x)y = 4 × 3

4 × 1
2 = 3

2 �= 2. Thus, the X and Y are not independent.

EXAMPLE 3 In reference to Example 8 in Chapter 4, the r.v.’s X and Y have joint p.d.f.
fX,Y(x, y) = 8xy, 0 < x ≤ y < 1 (and 0 otherwise), and:

fX(x) = 4x(1 − x2), 0 < x < 1; fY(y) = 4y3, 0 < y < 1.
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Independence of X and Y would require that: 4x(1 − x2) × 4y3 = 8xy or
(1 − x2)y2 = 1

2 , 0 < x ≤ y ≤ 1. However, this relation need not be true
because, for example, for x = 1

4 and y = 1
2 , we have: left-hand side = 15

64 �= 1
2 =

right-hand side. So, the r.v.’s X and Y are dependent.

REMARK 1 On the basis of Examples 2 and 3, one may surmise the following
rule of thumb: If the arguments x and y (for the case of two r.v.’s) do not vary
independently of each other, the r.v.’s involved are likely to be dependent.

A special case of the following result will be needed for the proof of
Theorem 1.

PROPOSITION 1 Consider the r.v.’s X1, . . . , Xk, the functions gi : � → �,
i = 1, . . . , k, and suppose all expectations appearing below are finite. Then
independence of the r.v.’s X1, . . . , Xk implies:

E

[
k∏

i=1

gi(Xi)

]
=

k∏
i=1

Egi(Xi). (9)

PROOF Suppose the r.v.’s are of the continuous type (so that we use integrals;
replace them by summations, if the r.v.’s are discrete). Then:

E

[
k∏

i=1

gi(Xi)

]
=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g1(x1) · · · gk(xk) fX1,..., Xk

(x1, . . . , xk) dx1 · · · dxk

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g1(x1) · · · gk(xk) fX1 (x1) · · · fXk

(xk) dx1 · · · dxk

(by independence)

=
[∫ ∞

−∞
g1(x1) fX1 (x1) dx1

]
· · ·
[∫ ∞

−∞
gk(xk) fXk

(xk) dxk

]

= Eg1(X1) · · · Egk(Xk) =
k∏

i=1

Egi(Xi). ▲

COROLLARY 1 By taking gi(Xi) = eti Xi , ti ∈ �, i = 1, . . . , k, relation (9)
becomes:

E exp(t1 X1 + · · · + tk Xk) =
k∏

i=1

E exp(tiXi), or

MX1,..., Xk
(t1, . . . , tk) =

k∏
i=1

MXi
(ti). (10)

COROLLARY 2 If the r.v.’s X and Y are independent, then they are un-
correlated. The converse is also true, if the r.v.’s have the Bivariate Normal
distribution.
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PROOF In (9), take k = 2, identify X1 and X2 with X and Y , respectively,
and let g1(x) = g2(x) = x, x ∈ �. Then E(XY ) = (EX )(EY ), which im-
plies Cov(X, Y ) = 0 and ρ(X, Y ) = 0. The converse for the Bivariate Normal
distribution follows by means of (50) and (53) in Chapter 4. ▲

REMARK 2 That uncorrelated r.v.’s are not, in general, independent may be
illustrated by means of examples (see, e.g., Exercise 1.20).

REMARK 3 If X1, . . . , Xk are independent r.v.’s, then it is intuitively clear
that independence should be preserved for suitable functions of the Xi’s. For
example, if Yi = g(Xi), i = 1, . . . , k, then the r.v.’s Y1, . . . , Yk are also inde-
pendent. Independence is also preserved if we take different functions of the
Xi’s, provided these functions do not include the same Xi’s. For instance, if
Y = g(Xi1 , . . . , Xim

) and Z = h(X j1 , . . . , X jn), where 1 ≤ i1 < · · · < im ≤ k, 1 ≤
j1 < · · · < jn ≤ k and all i1, . . . , im are distinct from all j1, . . . , jn, then the r.v.’s
Y and Z are independent. This will be a rule of thumb to be followed in this
book.

PROOF OF THEOREM 1 The proof can be only partial but sufficient for the
purposes of this book.

(i) Independence of the r.v.’s X1, . . . , Xk means that relation (5) is satisfied.
In particular, this is true if Bi = (−∞, xi], i = 1, . . . , k which is (6). That
(6) implies (5) is a deep probabilistic result dealt with at a much higher
level.

(ii) Suppose the r.v.’s are independent and first assume they are discrete.
Then, by taking Bi = {xi}, i = 1, . . . , k in (5), we obtain (7). If the r.v.’s are
continuous, then consider (6) and differentiate both sides with respect to
x1, . . . , xk, which, once again, leads to (7) (for continuity points x1, . . . , xk).
For the converse, suppose that (7) is true; that is, for all t1, . . . , tk in �,

fX1,... , Xk
(t1, . . . , tk) = fX1 (t1) · · · fXk

(tk).

Then, if the r.v.’s are discrete, sum over the ti’s from −∞ to xi, i = 1, . . . , k

to obtain (6); if the r.v.’s are continuous, replace the summation operations
by integrations in order to obtain (6) again. In either case, independence
follows.

(iii) Independence of X1, . . . , Xk implies (8) by means of Corollary 1 to Propo-
sition 1 above.

The converse is also true but its proof will not be pursued here (it requires
the use of the so-called inversion formula as indicated in Section 1 of Chapter 3
and Remarks 1 and 2 of Chapter 4). ▲

Part (ii) of Theorem 1 has the following corollary, which provides still
another useful criterion for independence of k r.v.’s.
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COROLLARY 3 The r.v.’s X1, . . . , Xk are independent if and only if
fX1,..., Xk

(x1, . . . , xk) = h1(x1) · · · hk(xk) for all x1, . . . , xk in �, where hi is a non-
negative function of xi alone, i = 1, . . . , k.

PROOF Suppose the r.v.’s X1, . . . , Xk are independent. Then, by (7),
fX1,..., Xk

(x1, . . . , xk) = fX1 (x1) · · · fXk
(x1) for all x1, . . . , xk in �, so that the

above factorization holds with hi = fXi
, i = 1, . . . , k. Next, assume that the

factorization holds, and suppose that the r.v.’s are continuous. For each fixed
i = 1, . . . , k, set

ci =
∫ ∞

−∞
hi(xi) dxi,

so that c1 . . . ck =
∫ ∞

−∞
h1(x1) dx1 . . .

∫ ∞

−∞
hk(xk) dxk

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
h1(x1) . . . hk(xk) dx1 · · · dxk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,..., Xk

(x1, . . . , xk) dx1 · · · dxk

= 1.

Then, integrating fX1,..., Xk
(x1, . . . , xk) with respect to all xj ’s with j �= i, we get

fXi
(xi) = c1 . . . ci−1 ci+1 . . . ckhi(xi)

= 1
ci

hi(xi).

Hence

fX1 (x1) . . . fXk
(xk) = 1

c1 . . . ck

h1(x1) . . . hk(xk)

= h1(x1) . . . hk(xk) = fX1,..., Xk
(x1, . . . , xk),

or fX1,... , Xk
(x1, . . . , xk) = fX1 (x1) . . . fXk

(xk), for all x1, . . . , xk in �, so that the
r.v.’s X1, . . . , Xk are independent. The same conclusion holds in case the r.v.’s
are discrete by using summations rather than integrations. ▲

The significance of Corollary 3 is that, in order to check for independence
of the r.v.’s X1, . . . , Xk all one has to do is to establish a factorization of fX1,..., Xk

as stated in the corollary. One does not have to verify that the factors are the
marginal p.d.f.’s (that will follow as indicated previously).

This section is concluded with the definition of what is known as a random
sample. Namely, n independent and identically distributed (i.i.d.) r.v.’s are re-
ferred to as forming a random sample of size n. Some of their properties are
discussed in the next section.
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Exercises

1.1 In reference to Exercise 2.5 in Chapter 4, determine whether or not the
r.v.’s X and Y are independent. Justify your answer.

1.2 In reference to Exercises 1.1 and 2.1 in Chapter 4, determine whether or
not the r.v.’s X and Y are independent.

1.3 The r.v.’s X, Y , and Z have the joint p.d.f. given by: fX,Y, Z(x, y, z) = 1
4 if

x = 1, y = z = 0; x = 0, y = 1, z = 0; x = y = 0, z = 1; x = y = z = 1.
(i) Derive the marginal joint p.d.f.’s fX,Y , fX, Z , fY, Z .

(ii) Derive the marginal p.d.f.’s fX , fY , and fZ .
(iii) Show that any two of the r.v.’s X, Y , and Z are independent.
(iv) Show that the r.v.’s X, Y , and Z are dependent.

1.4 In reference to Exercise 2.8 in Chapter 4, decide whether or not the r.v.’s
X and Y are independent. Justify your answer.

1.5 In reference to Examples 4 and 7 in Chapter 4, investigate whether or not
the r.v.’s X and Y are independent and justify your answer.

1.6 Let X and Y be r.v.’s with joint p.d.f. given by:

fX,Y(x, y) = 6
5

(x2 + y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(i) Determine the marginal p.d.f.’s fX and fY .
(ii) Investigate whether or not the r.v.’s X and Y are independent. Justify

your answer.

1.7 The r.v.’s X, and Y have joint p.d.f. given by:

fX,Y(x, y) = 1, 0 < x < 1, 0 < y < 1.

Then:
(i) Derive the marginal p.d.f.’s fX , and fY .

(ii) Show that X and Y are independent.
(iii) Calculate the probability P(X + Y < c).
(iv) Give the numerical value of the probability in part (iii) for c = 1/4.

1.8 The r.v.’s X, Y , and Z have joint p.d.f. given by:

fX,Y, Z(x, y, z) = 8xyz, 0 < x < 1, 0 < y < 1, 0 < z < 1.

(i) Derive the marginal p.d.f.’s fX , fY , and fZ .
(ii) Show that the r.v.’s X, Y , and Z are independent.

(iii) Calculate the probability P(X < Y < Z).

1.9 The r.v.’s X and Y have joint p.d.f. given by:

fX,Y(x, y) = c, for x2 + y2 ≤ 9.

(i) Determine the constant c.
(ii) Derive the marginal p.d.f.’s fX and fY .

(iii) Show that the r.v.’s X and Y are dependent.
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1.10 The r.v.’s X, Y , and Z have joint p.d.f. given by:

fX,Y Z(x, y, z) = c3e−c(x+y+z), x > 0, y > 0, z > 0.

(i) Determine the constant c.
(ii) Derive the marginal joint p.d.f.’s fX,Y , fX, Z , and fY, Z .

(iii) Derive the marginal p.d.f.’s fX , fY , and fZ .
(iv) Show that any two of the r.v.’s X, Y , and Z, as well as all three r.v.’s

are independent.

1.11 The r.v.’s X and Y have joint p.d.f. given by the following product:
fX,Y(x, y) = g(x)h(y), where g and h are nonnegative functions.
(i) Derive the marginal p.d.f.’s fX and fY as functions of g and h, respec-

tively.
(ii) Show that the r.v.’s X and Y are independent.

(iii) If h = g, then the r.v.’s are identically distributed.
(iv) From part (iii), conclude that P(X > Y) = 1/2, provided the distri-

bution is of the continuous type.

1.12 The life of a certain part in a new automobile is a r.v. X whose p.d.f. is
Negative Exponential with parameter λ = 0.005 days.
(i) What is the expected life of the part in question?

(ii) If the automobile comes with a spare part whose life is a r.v. Y dis-
tributed as X and independent of it, find the p.d.f. of the combined
life of the part and its spare.

(iii) What is the probability that X + Y ≥ 500 days?

1.13 Let the r.v. X be distributed as U(0, 1) and set Y = −logX.
(i) Determine the d.f. of Y and then its p.d.f.

(ii) If the r.v.’s Y1, . . . , Yn are independently distributed as Y , and Z =
Y1 + · · · + Yn, determine the distribution of the r.v. Z.

1.14 Let the independent r.v.’s X and Y be distributed as N(μ1, σ 2
1 ) and

N(μ2, σ 2
2 ), respectively, and define the r.v.’s U and V by: U = aX +b, V =

cY + d, where a, b, c, and d are constants.
(i) Use the m.g.f. approach in order to show that:

U ∼ N(aμ1 + b, (aσ1)2), V ∼ N(cμ2 + d, (cσ2)2).

(ii) Determine the joint m.g.f. of U and V .
(iii) From parts (i) and (ii), conclude that U and V are independent.

1.15 Let X and Y be independent r.v.’s denoting the lifetimes of two batteries
and having the Negative Exponential distribution with parameter λ. Set
T = X + Y and:
(i) Determine the d.f. of T by integration, and then the corresponding

p.d.f.
(ii) Determine the p.d.f. of T by using the m.g.f.’s approach.

(iii) For λ = 1/3, calculate the probability P(T ≤ 6).

1.16 Let X1, . . . , Xn be i.i.d. r.v.’s with m.g.f. M , and let X̄ = 1
n

(X1 + · · · + Xn).
Express the m.g.f. MX̄ in terms of M .
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1.17 In reference to Exercise 3.1 in Chapter 4:
(i) Calculate the Var (X + Y ) and the s.d. of X + Y .

(ii) Use the Tchebichev inequality to determine a lower bound for the
probability: P(X + Y ≤ 10).

1.18 Let p be the proportion of defective computer chips in a very large lot of
chips produced over a period of time by a certain manufacturing process.
For i = 1, . . . , n, associated with the ith chip the r.v. Xi, where Xi = 1
if the ith chip is defective, and Xi = 0 otherwise. Then X1, . . . , Xn are
independent r.v.’s distributed as B(1, p), and let X̄ = 1

n
(X1 + · · · + Xn).

(i) Calculate the EX̄ and the Var (X̄ ) in terms of p and q = 1 − p.
(ii) Use the Tchebichev inequality to determine the smallest value of n

for which P(|X̄ − p| < 0.1
√

pq) ≥ 0.99.

1.19 Let the independent r.v.’s X1, . . . , Xn be distributed as P(λ), and set X̄ =
1
n

(X1 + · · · + Xn).
(i) Calculate the EX̄ and the Var (X̄ ) in terms of λ and n.

(ii) Use the Tchebichev inequality to determine the smallest n, in terms
of λ and c, for which P(|X̄ − λ| < c) ≥ 0.95, for some c > 0.

(iii) Give the numerical value of n for c = √
λ and c = 0.1

√
λ.

1.20 The joint distribution of the r.v.’s X and Y is given by:

y\ x −1 0 1

−1 α β α

0 β 0 β

1 α β α

where α, β > 0 with α + β = 1/4.
(i) Derive the marginal p.d.f.’s fX and fY .

(ii) Calculate the EX, EY , and E(XY ).
(iii) Show that Cov (X, Y ) = 0.
(iv) Show that the r.v.’s X and Y are dependent.

Remark: Whereas independent r.v.’s are always uncorrelated, this ex-
ercise shows that the converse need not be true.

1.21 Refer to Exercise 1.10 and calculate the following quantities without any
integration: E(XY ), E(XY Z), Var (X + Y ), Var (X + Y + Z).

1.22 The i.i.d. r.v.’s X1, . . . , Xn have expectation μ ∈ � and variance σ 2 < ∞,
and set X̄ = 1

n
(X1 + · · · + Xn).

(i) Determine the EX̄ and the Var (X̄ ) in terms of μ and σ .
(ii) Use the Tchebichev inequality to determine the smallest value of n

for which P(|X̄ − μ| < kσ) is at least 0.99; take k = 1, 2, 3.

1.23 A piece of equipment works on a battery whose lifetime is a r.v. X with
expectation μ and s.d. σ . If n such batteries are used successively and
independently of each other, denote by X1, . . . , Xn their respective life-
times, so that X̄ = 1

n
(X1 +· · ·+ Xn) is the average lifetime of the batteries.
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Use the Tchebichev inequality to determine the smallest value of n for
which P(|X̄ − μ| < 0.5σ ) ≥ 0.99.

1.24 Let X1, . . . , Xn be i.i.d. r.v.’s with EX1 = μ ∈ � and Var (X1) = σ 2 < ∞,
and set X̄ = 1

n
(X1 + · · · + Xn).

(i) Calculate the EX̄ and the Var (X̄ ) in terms of μ and σ .
(ii) Use the Tchebichev inequality in order to determine the smallest

value of n, in terms of the positive constant c and α, so that

P(|X̄ − μ| < cσ ) ≥ α (0 < α < 1).

(iii) What is the numerical value of n in part (ii) if c = 0.1 and α =
0.90, α = 0.95, α = 0.99?

1.25 In reference to Exercise 5.13(iii) in Chapter 4, show that the r.v.’s U and
V are independent if and only if σ 2

1 = σ 2
2 .

5.2 The Reproductive Property of Certain Distributions

Independence plays a decisive role in the reproductive property of certain
r.v.’s. Specifically, if X1, . . . , Xk are r.v.’s having certain distributions, then, if
they are also independent, it follows that the r.v. X1 + · · · + Xk is of the same
kind. This is, basically, the content of this section. The tool used in order to
establish this assertion is the m.g.f., and the basic result employed is relation
(8), characterizing independence of r.v.’s. The conditions of applicability of (8)
hold in all cases considered here.

First, we derive some general results regarding the sample mean and the
sample variance of k r.v.’s, which will be used, in particular, in the Normal
distribution case discussed below. To this end, for any k r.v.’s X1, . . . , Xk, their
sample mean, denoted by X̄ k or just X̄ , is defined by:

X̄ = 1
k

k∑
i=1

Xi. (11)

The sample variance of the Xi’s, denoted by S2
k or just S2, is defined by:

S2 = 1
k

k∑
i=1

(Xi − EXi)2,

provided the EXi’s are finite. In particular, if EX1 = · · · = EXk = μ, say, then
S2 becomes:

S2 = 1
k

k∑
i=1

(Xi − μ)2. (12)

The r.v.’s defined by (11) and (12) are most useful when the underlying r.v.’s
form a random sample; that is, they are i.i.d.

PROPOSITION 2 Let X1, . . . , Xk be i.i.d. r.v.’s with (finite) mean μ. Then
EX̄ = μ. Furthermore, if the Xi’s also have (finite) variance σ 2, then Var (X̄ ) =
σ 2

k
and ES2 = σ 2.
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PROOF The first result follows from (40) in Chapter 4 by taking c1 = · · · =
ck = 1/k. The second result follows from (44) in the same chapter, by way of
Corollary 2 to Proposition 1 here, because independence of Xi and X j , for i �= j,
implies ρ(Xi, X j) = 0. In order to check the third result, observe first that:

k∑
i=1

(Xi − μ)2 =
k∑

i=1

X2
i + kμ2 − 2μ

k∑
i=1

Xi,

so that

E

k∑
i=1

(Xi − μ)2 =
k∑

i=1

EX2
i + kμ2 − 2μ · kμ

=
k∑

i=1

(σ 2 + μ2) + kμ2 − 2kμ2 = kσ 2.

Then ES2 = 1
k
E
∑k

i=1(Xi − μ)2 = 1
k
kσ 2 = σ 2. ▲

The general thrust of the following four results is to the effect that, if
X1, . . . , Xk are independent and have certain distributions, then their sum X1+
· · · + Xk has a distribution of the same respective kind. The proof of this
statement relies on relation (8), which is validated on account of (10).

THEOREM 2
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ B(ni, p) (the same
p), i = 1, . . . , k. Then

∑k

i=1 Xi ∼ B(
∑k

i=1 ni, p).

PROOF By independence, relation (20) in Chapter 3, and t ∈ �:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi
(t) =

k∏
i=1

(pet + q)ni = (pet + q)
∑k

i=1 ni ,

which is the m.g.f. of B(
∑k

i=1 ni, p). Then
∑k

i=1 Xi ∼ B(
∑k

i=1 ni, p). ▲

THEOREM 3
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ P(λi), i = 1, . . . , k.
Then

∑k

i=1 Xi ∼ P(
∑k

i=1 λi).

PROOF As above, employ independence and relation (24) in Chapter 3 in
order to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi
(t) =

k∏
i=1

exp(λie
t − λi) = exp

[(
k∑

i=1

λi

)
et −
(

k∑
i=1

λi

)]
,

which is the m.g.f. of P(
∑k

i=1 λi), so that
∑k

i=1 Xi ∼ P
(∑k

i=1 λi

)
. ▲
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THEOREM 4
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ N(μi, σ 2

i ), i =
1, . . . , k. Then

∑k

i=1 Xi ∼ N(
∑k

i=1 μi,
∑k

i=1 σ 2
i ). In particular, if μ1 =

· · · = μk = μ and σ1 = · · · = σk = σ , then
∑k

i=1 Xi ∼ N(kμ, kσ 2).

PROOF Use independence and formula (44) in Chapter 3, for t ∈ �, in order
to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi
(t) =

k∏
i=1

exp
(

μit + σ 2
i

2
t

)

= exp
[( k∑

i=1

μi

)
t +
∑k

i=1 σ 2
i

2
t

]
,

which is the m.g.f. of N(
∑k

i=1 μi,
∑k

i=1 σ 2
i ), so that

∑k

i=1 Xi ∼ N(
∑k

i=1 μi,∑k

i=1 σ 2
i ). The special case is immediate. ▲

To this theorem, there are the following two corollaries.

COROLLARY 1 If the r.v.’s X1, . . . , Xk are independent and distributed as
N(μ, σ 2), then their sample mean X̄ ∼ N(μ, σ 2

k
), and

√
k(X̄−μ)

σ
∼ N(0, 1).

PROOF Here X̄ = Y1 + · · · + Yk, where Yi = Xi

k
, i = 1, . . . , k are independent

and Yi ∼ N(μ

k
, σ 2

k2 ) by Theorem 2 in Chapter 3, applied with c = 1/k and
d = 0. Then the conclusion follows by Theorem 4. The second conclusion is
immediate by the part just established and Proposition 1 in Chapter 3, since√

k(X̄−μ)
σ

= X̄−μ√
σ 2/k

. ▲

COROLLARY 2 Let the r.v.’s X1, . . . , Xk be independent, let Xi ∼ N(μi, σ 2
i ),

i = 1, . . . , k, and let ci, i = 1, . . . , k be constants. Then
∑k

i=1 ciXi ∼
N(
∑k

i=1 ciμi,
∑k

i=1 c2
i σ

2
i ).

PROOF As in Corollary 1, Xi ∼ N(μi, σ 2
i ) implies ciXi ∼ N(ciμi, c2

i σ
2
i ), and

the r.v.’s ciXi, i = 1, . . . , k are independent. Then the conclusion follows from
the theorem. ▲

THEOREM 5
Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ χ2

ri
, i = 1, . . . , k.

Then
∑k

i=1 Xi ∼ χ2
r1+···+rk

.

PROOF Use independence and formula (37) in Chapter 3, for t < 1
2 , to obtain:

M∑k
i=1 Xi

(t) =
k∏

i=1

MXi
(t) =

k∏
i=1

1
(1 − 2t)ri/2

= 1
(1 − 2t)(r1+···+rk)/2

,

which is the m.g.f. of χ2
r1+···+rk

. ▲
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COROLLARY Let the r.v.’s X1, . . . , Xk be independent and let Xi ∼ N(μi,
σ 2

i ), i = 1, . . . , k. Then
∑k

i=1( Xi−μi

σi
)2 ∼ χ2

k , and, in particular, if μ1 = · · · =
μk = μ and σ 2

1 = · · · = σ 2
k = σ 2, then kS2

σ 2 ∼ χ2
k , where S2 is given in (12).

PROOF The assumption Xi ∼ N(μi, σ 2
i ) implies that Xi−μi

σi
∼ N(0, 1) by

Proposition 1 in Chapter 3, and ( Xi−μi

σi
)

2 ∼ χ2
1 by Proposition 2 in the same

chapter. Since independence of Xi, i = 1, . . . , k implies that of ( Xi−μi

σi
)2, i =

1, . . . , k, the theorem applies and yields the first assertion. The second assertion
follows from the first by taking μ1 = · · · = μk = μ and σ1 = · · · = σk = σ , and
using (12) to obtain kS2

σ 2 =∑k

i=1( Xi−μ

σ
)2. ▲

REMARK 4 From the fact that kS2

σ 2 ∼ χ2
k and formula (37) in Chapter 3, we

have E(kS2

σ 2 ) = k, Var (kS2

σ 2 ) = 2k, or ES2 = σ 2 and Var (S2) = 2σ 4/k.

REMARK 5 Knowing the distribution of
∑k

i=1 Xi is of considerable practical
importance. For instance, if Xi is the number of defective items among ni in
the ith lot of certain items, i = 1, . . . , k, then

∑k

i=1 Xi is the total number of
defective items in the k lots (and Theorem 2 applies). Likewise, if Xi is the
number of particles emitted by the ith radioactive source, i = 1, . . . , k, then∑k

i=1 Xi is the total number of particles emitted by all k radioactive sources
(and Theorem 3 applies). Also, if Xi is the rain (in inches, for example) which
fell in the ith location over a specified period of time, i = 1, . . . , k, then

∑k

i=1 Xi

is the total rainfall in all of k locations under consideration over the specified
period of time (and Theorem 4 applies). Finally, if Yi denotes the lifetime of
the ith battery in a lot of k identical batteries, whose lifetime is assumed to
be normally distributed, then Xi = [(Yi − μ)/σ ]2 measures a deviation from
the mean lifetime μ, and

∑k

i=1 Xi is the totality of such deviations for the k

batteries (and Theorem 5 applies).
Here are some numerical applications.

EXAMPLE 4 The defective items in two lots of sizes n1 = 10 and n2 = 15 occur indepen-
dently at the rate of 6.25%. Calculate the probabilities that the total number of
defective items: (i) Does not exceed 2; (ii) Is more than 5.

DISCUSSION If X1 and X2 are the r.v.’s denoting the numbers of defective
items in the two lots, then X1 ∼ B(10, 0.0625), X2 ∼ B(15, 0.0625) and they
are independent. Then X = X1 + X2 ∼ B(25, 0.0625) and therefore: (i) P(X ≤
2) = 0.7968 and (ii) P(X > 5) = 1 − P(X ≤ 5) = 0.0038 (from the Binomial
tables).

EXAMPLE 5 Five radioactive sources independently emit particles at the rate of 0.08 per
certain time unit. What is the probability that the total number of particles
does not exceed 3 in the time unit considered?
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DISCUSSION In obvious notation, we have here the independent r.v.’s Xi

distributed as P(0.08), i = 1, . . . , 5. Then X = ∑5
i=1 Xi ∼ P(0.4), and the

required probability is: P(X ≤ 3) = 0.999224 (from the Poisson tables).

EXAMPLE 6 The rainfall in two locations is measured (in inches over a certain time unit)
by two independent and Normally distributed r.v.’s X1 and X2 as follows: X1 ∼
N(10, 9) and X2 ∼ N(15, 25). What is the probability that the total rainfall: (i)
Will exceed 30 inches (which may result in flooding)? (ii) Will be less than 8
inches (which will mean a drought)?

DISCUSSION If X = X1+X2, then X ∼ N(25, 34), so that: (i) P(X > 30) =
1 − P(X ≤ 30) = 1 − P(Z ≤ 30−25√

34
) � 1 − 
(0.86) = 1 − 0.805105 = 0.194895,

and (ii) P(X < 8) = P(Z < 8−25√
34

) � 
(−2.92) = 1 − 
(2.92) = 1 − 0.99825 =
0.00175.

In the definition of S2 by (12), we often replace μ by the sample mean X̄;
this is done habitually in statistics as μ is not really known. Let us denote by
S̄2 the resulting quantity; that is,

S̄2 = 1
k

k∑
i=1

(Xi − X̄ )2. (13)

Then it is easy to establish the following identity:
k∑

i=1

(Xi − μ)2 =
k∑

i=1

(Xi − X̄ )2 + k(X̄ − μ)2, (14)

or

kS2 = kS̄2 + [
√

k(X̄ − μ)]2. (15)

Indeed,
k∑

i=1

(Xi − μ)2 =
k∑

i=1

[(Xi − X̄) + (X̄ − μ)]2 =
k∑

i=1

(Xi − X̄)2 + k(X̄ − μ)2,

since
∑k

i=1(Xi − X̄ )(X̄ − μ) = (X̄ − μ)(kX̄ − kX̄ ) = 0.
From (15), we have, dividing through by σ 2:

kS2

σ 2
= kS̄2

σ 2
+
[√

k(X̄ − μ)
σ

]2

. (16)

Now kS2

σ 2 ∼ χ2
k and [

√
k(X̄−μ)

σ
]2 ∼ χ2

1 (by Propositions 1 and 2 in Chapter 3) when
the r.v.’s X1, . . . , Xk are independently distributed as N(μ, σ 2). Therefore, from
(16), it appears quite feasible that kS̄2

σ 2 ∼ χ2
k−1. This is, indeed, the case and is

the content of the following theorem. This theorem is presently established
under an assumption to be justified later on (see Theorem 9 in Chapter 6). The
assumption is this: If the r.v.’s X1, . . . , Xk are independent and distributed as
N(μ, σ 2), then the r.v.’s X̄ and S̄2 are independent. (The independence of X̄

and S̄2 implies then that of [
√

k(X̄−μ)
σ

]2 and kS̄2

σ 2 .)
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THEOREM 6
Let the r.v.’s X1, . . . , Xk be independent and distributed as N(μ, σ 2), and
let S̄2 be defined by (13). Then kS̄ 2

σ 2 ∼ χ2
k−1. Consequently, ES̄2 = k−1

k
σ 2

and Var (S̄2) = 2(k−1)σ 4

k2 .

PROOF Consider relation (16), take the m.g.f.’s of both sides, and use the
corollary to Theorem 5 and the assumption of independence made previously
in order to obtain:

MkS2/σ 2 (t) = MkS̄2/σ 2 (t)M[
√

k(X̄−μ)/σ ]2 (t),

so that

MkS̄2/σ 2 (t) = MkS2/σ 2 (t)/M[
√

k(X̄−μ)/σ ]2 (t),

or

MkS̄2/σ 2 (t) = 1/(1 − 2t)k/2

1/(1 − 2t)1/2
= 1

(1 − 2t)(k−1)/2
,

which is the m.g.f. of the χ2
k−1 distribution. The second assertion follows im-

mediately from the first and formula (37) in Chapter 3. ▲

This chapter is concluded with the following comment. Theorems 2–5 may
be misleading in the sense that the sum of independent r.v.’s always has a
distribution of the same kind as the summands. That this is definitely not
so is illustrated by examples. For instance, if the independent r.v.’s X and Y

are U(0, 1), then their sum X + Y is not uniform; rather, it is triangular (see
Example 4 (continued) in Chapter 6).

Exercises

2.1 For any r.v.’s X1, . . . , Xn, set

X̄ = 1
n

n∑
i=1

Xi and S2 = 1
n

n∑
i=1

(Xi − X̄ )2,

and show that:

(i)

nS2 =
n∑

i=1

(Xi − X̄ )2 =
n∑

i=1

X2
i − nX̄2.

(ii) If the r.v.’s have common (finite) expectation μ, then
n∑

i=1

(Xi − μ)2 =
n∑

i=1

(Xi − X̄ )2 + n(X̄ − μ)2 = nS2 + n(X̄ − μ)2.
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2.2 In reference to Exercise 3.1 in Chapter 4, specify the distribution of the
sum X + Y , and write out the expression for the exact probability P(X +
Y ≤ 10).

2.3 If the independent r.v.’s X and Y are distributed as B(m, p) and B(n, p),
respectively:
(i) What is the distribution of the r.v. X + Y?

(ii) If m = 8, n = 12, and p = 0.25, what is the numerical value of the
probability: P(5 ≤ X + Y ≤ 15)?

2.4 The independent r.v.’s X1, . . . , Xn are distributed as B(1, p), and let Sn =
X1 + · · · + Xn.
(i) Determine the distribution of the r.v. Sn.

(ii) What is the EXi and the Var(Xi), i = 1, . . . , n?
(iii) From part (ii) and the definition of Sn, compute the ESn and Var(Sn).

2.5 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f , and let I be an interval in �. Let
p = P(X1 ∈ I).
(i) Express p in terms of the p.d.f. f .

(ii) For k with 1 ≤ k ≤ n, express the probability that at least k of
X1, . . . , Xn take values in the interval I in terms of p.

(iii) Simplify the expression in part (ii), if f is the Negative Exponential
p.d.f. with parameter λ and I = ( 1

λ
, ∞).

(iv) Find the numerical value of the probability in part (iii) for n = 4 and
k = 2.

2.6 The breakdown voltage of a randomly chosen diode of a certain type is
known to be Normally distributed with mean value 40V and s.d. 1.5V.
(i) What is the probability that the voltage of a single diode is between

39 and 42?
(ii) If 5 diodes are independently chosen, what is the probability that at

least one has a voltage exceeding 42?

2.7 Refer to Exercise 1.18 and set X = X1 + · · · + Xn.
(i) Justify the statement that X ∼ B(n, p).

(ii) Suppose that n is large and p is small (both assumptions quite appro-
priate in the framework of Exercise 1.18), so that:

f (x) =
(

n

x

)
pxqn−x � e−np (np)x

x!
, x = 0, 1, . . .

If np = 2, calculate the approximate values of the probabilities f (x)
for x = 0, 1, 2, 3, and 4.

2.8 The r.v.’s X1, . . . , Xn are independent and Xi ∼ P(λi):
(i) What is the distribution of the r.v. X = X1 + · · · + Xn?

(ii) If X̄ = 1
n

(X1 + · · · + Xn), calculate the EX̄ and the Var(X̄) in terms
of λ1, . . . , λn, and n.
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(iii) What do the EX̄ and the Var(X̄) become when the Xi’s in part (i) are
distributed as P(λ)?

2.9 Suppose that the number of no-shows for a scheduled airplane flight is
a r.v. X distributed as P(λ), and it is known from past experience that,
on the average, there are 2 no-shows. If there are 5 flights scheduled,
compute the following probabilities for the total number of no-shows
X = X1 + · · · + X5:

(i) 0. (v) At most 10. (ix) 15.
(ii) At most 5. (vi) 10. (x) At least 15.

(iii) 5. (vii) At least 10.
(iv) At least 5. (viii) At most 15.

2.10 The r.v.’s X1, . . . , Xn are independent and Xi ∼ P(λi), i = 1, . . . , n. Set
T =∑n

i=1 Xi and λ =∑n

i=1 λi, and show that:
(i) The conditional p.d.f. of Xi, given T = t, is B(t, λi/λ), i = 1, . . . , n.

(ii) What does the distribution in part (i) become for λ1 = · · · = λn = c,
say?

2.11 If the independent r.v.’s X and Y are distributed as N(μ1, σ 2
1 ) and

N(μ2, σ 2
2 ), respectively:

(i) Specify the distribution of X − Y .
(ii) Calculate the probability P(X > Y) in terms of μ1, μ2, σ1, and σ2.

(iii) If μ1 = μ2, conclude that P(X > Y) = 0.5.

2.12 The m + n r.v.’s X1, . . . , Xm and Y1, . . . , Yn are independent and Xi ∼
N(μ1, σ 2

1 ), i = 1, . . . , m, Yj ∼ N(μ2, σ 2
2 ), j = 1, . . . , n. Set X̄ = 1

m

∑m

i=1
Xi, Ȳ = 1

n

∑n

j=1 Yj and:
(i) Calculate the probability P(X̄ > Ȳ) in terms of m, n, μ1, μ2, σ1, and

σ2.
(ii) Give the numerical value of the probability in part (i) when μ1 = μ2

unspecified.

2.13 Let the independent r.v.’s X1, . . . , Xn be distributed as N(μ, σ 2) and set
X =∑n

i=1 αiXi, Y =∑n

j=1 β j X j , where the αi’s and the β j ’s are constants.
Then:
(i) Determine the p.d.f.’s of the r.v.’s X and Y .

(ii) Show that the joint m.g.f. of X and Y is given by:

MX,Y(t1, t2) = exp
[
μ1t1 + μ2t2 + 1

2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2

)]
,

where μ1 = μ
∑n

i=1 αi, μ2 = μ
∑n

j=1 β j , σ 2
1 = σ 2∑n

i=1 α2
i , σ 2

2 =
σ 2∑n

j=1 β2
j , ρ = (

∑n

i=1 αiβi)/σ1σ2.
(iii) From part (ii), conclude that X and Y have the Bivariate Normal

distribution with correlation coefficient

ρ(X, Y) = ρ =
(

n∑
i=1

αiβi

)
/σ1σ2.
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(iv) From part (iii), conclude that X and Y are independent if and only if∑n

i=1 αiβi = 0.

2.14 Let X and Y be independent r.v.’s distributed as N(0, σ 2).
(i) Set R = √

X2 + Y 2 and determine the probability: P(R ≤ r), for
r > 0.

(ii) What is the numerical value of P(R ≤ r) for σ = 1 and r = 1.665, r =
2.146, r = 2.448, r = 2.716, r = 3.035, and r = 3.255?



Chapter 6

Transformation
of Random Variables

This chapter is devoted to transforming a given set of r.v.’s to another set of r.v.’s.
The practical need for such transformations will become apparent by means
of concrete examples to be cited and/or discussed. The chapter consists of five
sections. In the first section, a single r.v. is transformed into another single r.v.
In the following section, the number of available r.v.’s is at least two, and they
are to be transformed into another set of r.v.’s of the same or smaller number.
Two specific applications produce two new distributions, the t-distribution
and the F -distribution, which are of great applicability in statistics. A brief
account of specific kinds of transformations is given in the subsequent two
sections, and the chapter is concluded with a section on order statistics.

6.1 Transforming a Single Random Variable

EXAMPLE 1 Suppose that the r.v.’s X and Y represent the temperature in a certain locality
measured in degrees Celsius and Fahrenheit, respectively. Then it is known
that X and Y are related as follows: Y = 9

5 X + 32.

This simple example illustrates the need for transforming a r.v. X into another
r.v. Y , if Celsius degrees are to be transformed into Fahrenheit degrees.

EXAMPLE 2 As another example, let the r.v. X denote the velocity of a molecule of mass
m. Then it is known that the kinetic energy of the molecule is a r.v. Y related
to X in the following manner: Y = 1

2 mX2.

Thus, determining the distribution of the kinetic energy of the molecule in-
volves transforming the r.v. X as indicated above.

168
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The formulation of the general problem is as follows: Let X be a r.v. of the
continuous type with p.d.f. fX , and let h be a real-valued function defined on
�. Define the r.v. Y by Y = h(X) and determine its p.d.f. fY . Under suitable
regularity conditions, this problem can be resolved in two ways. One is to
determine first the d.f. FY and then obtain fY by differentiation, and the other
is to obtain fY directly.

THEOREM 1
Let S ⊆ � be the set over which fX is strictly positive, let h : S → T (the
image of S under h) ⊆ � be one-to-one (that is, to distinct x’s in S there
correspond distinct y’s in T) and strictly monotone, and let Y = h(X).
For x ∈ S, set y = h(x) ∈ T . Then FY(y) = FX[h−1(y)], if h is increasing,
and FY(y) = 1 − FX[h−1(y)], if h is decreasing.

PROOF Inverting the function y = h(x), we get x = h−1(y). Then for increas-
ing h (which implies increasing h−1), we have:

FY(y) = P(Y ≤ y) = P[h(X) ≤ y] = P{h−1[h(X)] ≤ h−1(y)}
= P[X ≤ h−1(y)] = FX[h−1(y)]. (1)

If h is decreasing, then so is h−1 and therefore:

FY(y) = P[h(X) ≤ y] = P{h−1[h(X)] ≥ h−1(y)}
= P[X ≥ h−1(y)] = 1 − P[X < h−1(y)]

= 1 − P[X ≤ h−1(y)] = 1 − FX[h−1(y)]. ▲ (2)

As an illustration, consider the case Y = 9
5 X +32 in Example 1 above. Here

y = h(x) = 9
5 x + 32 is one-to-one and strictly increasing. Therefore

FY(y) = FX

[
5
9

(y − 32)
]

and fY(y) = 5
9

fX

[
5
9

(y − 32)
]
. (3)

The function y = h(x) may not be one-to-one and strictly increasing on the
entire S but it is so on subsets of it. Then FY can still be determined. Example 2
above illustrates the point. Let Y = 1

2 mX2 as mentioned above. Then proceed
as follows: For y > 0:

FY(y) = P(Y ≤ y) = P

(
1
2

mX2 ≤ y

)
= P

(
X2 ≤ 2y

m

)
= P

(
−
√

2y

m
≤ X ≤

√
2y

m

)
= P

(
X ≤
√

2y

m

)
− P

(
X < −

√
2y

m

)
= P

(
X ≤
√

2y

m

)
− P

(
X ≤ −

√
2y

m

)
= FX

(√
2y

m

)
− FX

(
−
√

2y

m

)
. (4)



170 Chapter 6 Transformation of Random Variables

Differentiating in (1) or (2) (depending on whether h is increasing or decreas-
ing), we obtain the p.d.f. of Y , namely,

fY(y) = d

dy
FY(y) = d

dx
FX(x)

∣∣∣∣
x=h−1(y)

×
∣∣∣∣dx

dy

∣∣∣∣ = fX[h−1(y)]

∣∣∣∣ d

dy
h−1(y)

∣∣∣∣, y ∈ T.

(5)

In the case of formula (3), relation (5) gives: fY(y) = 5
9 fX[ 5

9 (y − 32)], as has
already been seen. In the case of formula (4),

fY(y) =
[

fX

(√
2y

m

)
+ fX

(
−
√

2y

m

)]
(1/
√

2my). (6)

Instead of going through the d.f. (which process requires monotonicity of
the transformation y = h(x)), under certain conditions, fY may be obtained
directly from fX . Such conditions are described in the following theorem.

THEOREM 2
Let X be a r.v. with positive and continuous p.d.f. on the set S ⊆ �, and
let h : S → T (the image of S under h) be a one-to-one transformation,
so that the inverse x = h−1(y), y ∈ T , exists. Suppose that, for y ∈ T , the
derivative d

dy
h−1(y) exists, is continuous, and �= 0. Then the p.d.f. of

the r.v. Y = h(X) is given by:

fY(y) = fX[h−1(y)]

∣∣∣∣ d

dy
h−1(y)

∣∣∣∣, y ∈ T (and = 0 for y /∈ T). (7)

PROOF (rough outline) Let B = [c, d] be an interval in T and suppose B is
transformed into the interval A = [a, b] by the inverse transformation x =
h−1(y). Then:

P(Y ∈ B) = P[h(X) ∈ B] = P(X ∈ A) =
∫

A

fX(x) dx.

When transforming x into y through the transformation x = h−1(y),∫
A

fX(x)dx = ∫
B

fX[h−1(y)]| d

dy
h−1(y)|dy, according to the theory of changing

variables in integrals. Thus,

P(Y ∈ B) =
∫

B

fX[h−1(y)]

∣∣∣∣ d

dy
h−1(y)

∣∣∣∣dy,

which implies that the integrand is the p.d.f. of Y . ▲

Relation (7) has already been illustrated by Example 1. A slightly more
general case is the following one.

EXAMPLE 3 Determine the p.d.f. of the r.v. Y defined by: Y = aX + b (a �= 0). In particular,
determine fY , if X ∼ N(μ, σ 2).
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DISCUSSION The transformation y = ax + b gives x = h−1(y) = y− b

a
, so

that dx

dy
= d

dy
h−1(y) = 1

a
. Therefore: fY(y) = fX( y− b

a
) 1

|a| . For the special case:

fY(y) = 1√
2π |a|σ exp

[
−
(

y− b

a
− μ
)2

2σ 2

]
= 1√

2π |a|σ exp
{
− [y − (aμ + b)]2

2(aσ )2

}
.

Thus, if X ∼ N(μ, σ 2), then Y = aX + b ∼ N(aμ + b, (aσ )2).
A modification of Theorem 2 when the assumption that h : S → T is one-

to-one is not satisfied, but a version of it is, is stated in the following result.
This result has already been illustrated by (6) in connection with Example 2.

THEOREM 3
Let X be a r.v. with positive and continuous p.d.f. on the set S ⊆ �, and
suppose that the transformation h : S → T is not one-to-one. Sup-
pose further that when S is partitioned into the pairwise disjoint subsets
S1, . . . , Sr and h is restricted to Sj and takes values in Tj (the image of Sj

under h), then h is one-to-one. Denoting by hj this restriction, we have
then: hj : Sj → Tj is one-to-one, so that the inverse x = h−1

j (y), y ∈ Tj ,
exists, j = 1, . . . , r. Finally, we suppose that, for any y ∈ Tj , j = 1, . . . , r,
the derivatives d

dy
h−1

j (y) exist, are continuous, and �= 0. Then the p.d.f.
of the r.v. Y = h(X) is determined as follows: Set

fYj
= fX

[
h−1

j (y)
]∣∣∣∣ d

dy
h−1

j (y)

∣∣∣∣, y ∈ Tj , j = 1, . . . , r,

and for y ∈ T , suppose that y belongs to k of the r Tj ’s, 1 ≤ k ≤ r. Then
fY(y) is the sum of the corresponding k fYj

(y)’s. Alternatively,

fY(y) =
r∑

j=1

δ j(y) fYj
(y), y ∈ T (and = 0 for y /∈ T), (8)

where δ j(y) = 1, if y ∈ Tj and δ j(y) = 0, if y /∈ Tj , j = 1, . . . , r.

REMARK 1 It is to be noticed that, whereas the subsets S1, . . . , Sr are pair-
wise disjoint, their images T1, . . . , Tr need not be so. For instance, in Example 2,
S1 = (0, ∞), S2 = (−∞, 0) but T1 = T2 = (0, ∞).

Exercises

1.1 The r.v. X has p.d.f. fX(x) = (1 − α)αx, x = 0, 1, . . . (0 < α < 1), and set
Y = X3. Determine the p.d.f. fY .

1.2 Let the r.v.’s X and Y represent the temperature of a certain object in
degrees Celsius and Fahrenheit, respectively. Then, it is known that Y =
9
5 X + 32 and X = 5

9 Y − 160
9 .
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(i) If Y ∼ N(μ, σ 2), determine the distribution of X.
(ii) If P(90 ≤ Y ≤ 95) = 0.95, then also P(a ≤ X ≤ b) = 0.95, for some

a < b. Determine the numbers a and b.
(iii) We know that: P(μ − σ ≤ Y ≤ μ + σ ) � 0.6827 = p1, P(μ − 2σ ≤

Y ≤ μ + 2σ ) � 0.9545 = p2, and P(μ−3σ ≤ Y ≤ μ + 3σ ) �
0.9973 = p3. Calculate the intervals [ak, bk], k = 1, 2, 3 for which
P(ak ≤ X ≤ bk) is, respectively, equal to pk, k = 1, 2, 3.

1.3 Let the r.v. X have p.d.f. fX positive on the set S ⊆ �, and set U = aX +b,
where a and b are constants and a > 0.

(i) Use Theorem 2 in order to derive the p.d.f. fU .
(ii) If X has the Negative Exponential distribution with parameter λ,

show that U has the same kind of distribution with parameter λ/a.
(iii) If X ∼ U(c, d), then show that U ∼ U(ac + b, ad + b).

1.4 If the r.v. X has the Negative Exponential distribution with parameter λ,
set Y = eX and Z = log X and determine the p.d.f.’s fY and fZ .

1.5 Let X ∼ U(α, β) and set Y = eX . Then determine the p.d.f. fY . If α > 0,
set Z = log X and determine the p.d.f. fZ .

1.6 (i) If the r.v. X is distributed as U(0, 1) and Y = −2 log X, show that Y is
distributed as χ2

2 .
(ii) If X1, . . . , Xn is a random sample from the U(0, 1) distribution and

Yi = −2 log Xi, use part (i) and the m.g.f. approach in order to show
that
∑n

i=1 Yi is distributed as χ2
2n.

1.7 If the r.v. X has the p.d.f. fX(x) = 1√
2π

x−2e−1/2x2
, x ∈ �, show that the r.v.

Y = 1
X

∼ N(0, 1).

1.8 Suppose that the velocity of a molecule of mass m is a r.v. X with p.d.f.

fX(x) =
√

2
π

x2e−x2/2, x > 0 (the so-called Maxwell distribution). De-

rive the p.d.f. of the r.v. Y = 1
2 mX2, which is the kinetic energy of the

molecule.

1.9 If the r.v. X ∼ N(0, 1), use Theorem 3 in order to show that the r.v.
Y = X2 ∼ χ2

1 .

1.10 Let Xr be a r.v. distributed as t with r degrees of freedom: Xr ∼ tr (r =
1, 2, . . .) whose p.d.f. is given in relation (10) below. Then show that:
(i) EXr does not exist for r = 1.

(ii) EXr = 0 for r ≥ 2.
(iii) Var(Xr) = r

r−2 for r ≥ 3.

Hint: That EXr does not exist for r = 1 is, actually, reduced to
Exercise 1.16 in Chapter 3. That EXr = 0 for r ≥ 2 follows by a simple
integration. So, all that remains to calculate is EX2

r . For this purpose,
first reduce the original integral to an integral over the interval (0, ∞),
by symmetry of the region of integration and the fact that the inte-
grand is an even function. Then, use the transformation t2

r
= x, and
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next the transformation 1
1 + x

= y. Except for constants, the integral is
then reduced to the form∫ 1

0
yα−1(1 − y)β−1dy (α > 0, β > 0).

At this point, use the following fact:∫ 1

0
yα−1(1 − y)β−1dy = �(α)�(β)

�(α + β)
.

(A proof of this fact may be found, e.g., in pages 70–71, of the book
A Course in Mathematical Statistics, 2nd edition (1967), Academic
Press, by G. G. Roussas.) The proof is concluded by using the recursive
relation of the Gamma function (�(γ ) = (γ − 1)�(γ − 1)) and the fact
that �(1

2 ) = √
π .

6.2 Transforming Two or More Random Variables

Often the need arises to transform two or more given r.v.’s to another set of
r.v.’s. The following examples illustrate the point.

EXAMPLE 4 The times of arrival of a bus at two successive bus stops are r.v.’s X1 and X2

distributed as U(α, β), for two time points α < β. Calculate the probabilities
P(X1 + X2 > x) for 2α < x < 2β.

Clearly, this question calls for the determination of the distribution of the r.v.
X1 + X2.

Or more generally (and more realistically), suppose that a bus makes k stops
between its depot and its terminal, and that the arrival time at the ith stop
is a r.v. Xi ∼ U(αi, βi), αi < βi, i = 1, . . . , k + 1 (where Xk+1 is the time of
arrival at the terminal). Determine the distribution of the duration of the trip
X1 + · · · + Xk+1.

EXAMPLE 5 Consider certain events occurring in every time interval [t1, t2] (0 < t1 < t2)
according to the Poisson distribution P(λ(t2 − t1)). Then the waiting times
between successive occurrences are independent r.v.’s distributed according
to the Negative Exponential distribution with parameter λ. Let X1 and X2 be
two such times. What is the probability that one would have to wait at least
twice as long for the second occurrence than the first? That is, what is the
probability P(X2 > 2X1)?

Here one would have to compute the distribution of the r.v. X2 − 2X1.
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Below, a brief outline of the theory underpinning the questions posed in the
examples is presented. First, consider the case of two r.v.’s X1 and X2 hav-
ing the joint p.d.f. fX1, X2 . Often the question posed is that of determining the
distribution of a function of X1 and X2, h1(X1, X2). The general approach is
to set Y1 = h1(X1, X2) and also consider another (convenient) transformation
Y2 = h 2(X1, X2). Next, determine the joint p.d.f. of Y1 and Y2, fY1,Y2 , and, finally,
compute the (marginal) p.d.f. fY1 . Conditions under which fY1,Y2 is determined
by way of fX1, X2 are given below.

THEOREM 4
Consider the r.v.’s X1 and X2 with joint p.d.f. fX1, X2 positive and con-
tinuous on the set S ⊆ �2, and let h1, h2 be two real-valued transfor-
mations defined on S; that is, h1, h2 : S → �, and let T be the image
of S under the transformation (h1, h2). Suppose that (h1, h2) is one-to-
one from S onto T . Thus, if we set y1 = h1(x1, x2) and y2 = h2(x1, x2),
we can solve uniquely for x1, x2 : x1 = g1(y1, y2), x2 = g2(y1, y2). Sup-
pose further that the partial derivatives g1i(y1, y2) = ∂

∂yi
g1(y1, y2) and

g2i(y1, y2) = ∂
∂yi

g2(y1, y2), i= 1, 2 exist and are continuous for (y1, y2) ∈
T . Finally, suppose that the Jacobian J = ∣∣g11(y1, y2) g12(y1, y2)

g21(y1, y2) g22(y1, y2)

∣∣ is �= 0 on T .
Then the joint p.d.f. of the r.v.’s Y1 = h1(X1, X2)and Y2 = h2(X1, X2), fY1,Y 2 ,
is given by:

fY1,Y2 (y1, y2) = fX1, X2 [g1(y1, y2), g2(y1, y2)]|J|, (y1, y2) ∈ T (9)

(and = 0 for (y1, y2) /∈ T).

The justification of this theorem is entirely analogous to that of Theorem 2
and will be omitted.

In applying Theorem 4, one must be careful in checking that the underlying
assumptions hold and in determining correctly the set T . As an illustration, let
us discuss the first part of Example 4.

EXAMPLE 4 (continued ) Discussion We have y1 = x1 + x2 and let y2 = x2. Then x1 =
y1 − y2 and x2 = y2, so that ∂x1

∂y1
= 1, ∂x1

∂y2
= −1, ∂x2

∂y1
= 0, ∂x2

∂y2
= 1, and J =∣∣1 −1

0 1

∣∣ = 1. For the determination of S and T , see Figures 6.1 and 6.2.

Since fX1, X2 (x1, x2) = 1
(β − α)2 for (x1, x2) ∈ S, we have fY1,Y 2 (y1, y2) = 1

(β −α)2

for (y1, y2) ∈ T ; that is, for 2α < y1 < 2β, α < y2 < β, α < y1 − y2 < β

(and = 0 for (y1, y2) /∈ T).

Thus, we get:

fY1,Y2 (y1, y2) =
{ 1

(β−α)2 , 2α < y1 < 2β, α < y2 < β, α < y1 − y2 < β

0, otherwise.
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x2

x1

b

ba

a

S

0

Figure 6.1

S ={(x1, x2)∈�2;
fX1, X2

(x1, x2)>0}

y2
y1 − y2 = c

y1 − y2 = a

y1 − y2 = b

y1
2a a

b

ba  + b0

a

2b

T

Figure 6.2

T = Image of S

Under the
Transformation
Used

Therefore:

fY1 (y1) =

⎧⎪⎪⎨⎪⎪⎩
1

(β−α)2

∫ y1−α

α
dy2 = y1−2α

(β−α)2 , for 2α < y1 ≤ α + β

1
(β−α)2

∫ β

y1−β
dy2 = 2β−y1

(β−α)2 , for α + β < y1 ≤ 2β

0, otherwise.

The graph of fY1 is given in Figure 6.3.

EXAMPLE 5 (continued ) Discussion Here y1 = x2 − 2x1 = −2x1 + x2 and let y2 = x2.
Then x1 = − 1

2 y1 + 1
2 y2 and x2 = y2, so that J = ∣∣− 1

2
1
2

0 1

∣∣ = − 1
2 and |J| = 1

2 .
Clearly, S is the first quadrant. As for T , we have y2 = x2, so that y2 > 0.
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0

1
   b − a

a + b2a 2b
y1

fY1
(y1)

Figure 6.3

This Density Is
Known as the
Triangular p.d.f.

Also, − 1
2 y1 + 1

2 y2 = x1, so that − 1
2 y1 + 1

2 y2 > 0 or −y1 + y2 > 0 or y2 > y1.
The conditions y2 > 0 and y2 > y1 determine T (see Figure 6.4).

0

y1 = y2

y2

y1

Figure 6.4

T is the part of the plane above the y1-axis and also above the main diagonal
y1 = y2.

Since fX1, X2 (x1, x2) = λ2e−λ(x1+x2) (x1, x2 > 0), we have fY1,Y2 (y1, y2) =
λ2

2 e
λ
2 y1− 3λ

2 y2 , (y1, y2) ∈ T (and = 0 otherwise). Therefore fY1 (y1) is taken by
integrating out y2. More precisely, for y1 < 0:

fY1 (y1) = λ2

2
e

λ
2 y1

∫ ∞

0
e− 3λ

2 y2dy2 = −λ2

2
× 2

3λ
e

λ
2 y1 × e− 3λ

2 y2

∣∣∣∣∞
0

= −λ

3
e

λ
2 y1 (0 − 1) = λ

3
e

λ
2 y1 ,
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whereas for y1 > 0:

fY1 (y1) = λ2

2
e

λ
2 y1

∫ ∞

y1

e− 3λ
2 y2dy2 = −λ

3
e

λ
2 y1 × e− 3λ

2 y2

∣∣∣∣∞
y1

= −λ

3
e

λ
2 y1 (0 − e− 3λ

2 y1 ) = λ

3
e−λy1 .

To summarize:

fY1 (y1) =
⎧⎨⎩

λ
3 e

λ
2 y1 , y1 < 0

λ
3 e−λy1 , y1 ≥ 0.

Therefore P(X2 > 2X1) = P(X2 − 2X1 > 0) = P(Y1 > 0) = λ
3

∫∞
0 e−λy1dy1 = 1

3 .

REMARK 2 To be sure, the preceding probability is also calculated as
follows:

P(X2 > 2X1) =
∫ ∫
(x2>2x1)

λ2e−λx1−λx2dx1 dx2

=
∫ ∞

0
λe−λx2

(∫ x2/2

0
λe−λx1dx1

)
dx2

=
∫ ∞

0
λe−λx2 (1 − e− λ

2 x2 )dx2

=
∫ ∞

0
λe−λx2dx2 − 2

3

∫ ∞

0

3λ

2
e− 3λ

2 x2dx2 = 1 − 2
3

= 1
3
.

Applications of Theorem 4 lead to two new distributions, which are of great
importance in statistics. They are the t-distribution and the F -distribution.

DEFINITION 1
Let X and Y be two independent r.v.’s distributed as follows: X ∼ N(0, 1)
and Y ∼ χ2

r , and define the r.v. T by: T = X/
√

Y/r. The r.v. T is said to
have the (Student’s) t-distribution with r degrees of freedom (d.f.). The
notation used is: T ∼ tr .

The p.d.f. of T, fT , is given by the formula:

fT (t) = �
[

1
2 (r + 1)

]
√

πr�(r/2)
× 1

[1 + (t2/r)](1/2)(r+1)
, t ∈ �, (10)

and its graph (for r = 5) is presented in Figure 6.5.
From formula (10), it is immediate that fT is symmetric about 0 and tends

to 0 as t → ±∞. It can also be seen (see Exercise 2.10) that fT (t) tends to
the p.d.f. of the N(0, 1) distribution as the number r of d.f. tends to ∞. This is
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t

fT(t)

t5

0

t∞(N(0, 1))

Figure 6.5

Two Curves of the t

Probablity Density
Function

depicted in Figure 6.5 by means of the curve denoted by t∞. Also, it is seen
(see Exercise 2.9) that ET = 0 for r ≥ 2, and Var(T) = r

r−2 for r ≥ 3. Finally,
the probabilities P(T ≤ t), for selected values of t and r, are given by tables
(the t-tables). For r ≥ 91, one may use the tables for the standard Normal
distribution.

Regarding the derivation of fT , we have:

fX(x) = 1√
2π

e−(1/2)x2
, x ∈ �,

fY(y) =
{

1
�( 1

2 r)2(1/2)r y(r/2)−1e−y/2, y > 0

0, y ≤ 0.

Set U = Y and consider the transformation

(h1, h2) :
{

t = x√
y/r

u = y
; then

{
x = 1√

r
t
√

u

y = u,

and

J =
∣∣∣∣∣

√
u√
r

t

2
√

u
√

r

0 1

∣∣∣∣∣ =
√

u√
r
.

Therefore, for t ∈ �, u > 0, we get

fT,U (t, u) = 1√
2π

e−t2u/2r × 1
�(r/2)2r/2

u(r/2)−1e−u/2 ×
√

u√
r

= 1√
2πr�(r/2)2r/2

u(1/2)(r+1)−1 exp
[
−u

2

(
1 + t2

r

)]
.
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Hence

fT (t) =
∫ ∞

0

1√
2πr�(r/2)2r/2

u(1/2)(r+1)−1 exp
[
−u

2

(
1 + t2

r

)]
du.

Set

u

2

(
1 + u2

r

)
= z, so that u = 2z

(
1 + t2

r

)−1

, du = 2
(

1 + t2

r

)−1

dz,

and z ∈ [0, ∞). Therefore we continue as follows:

fT (t) =
∫ ∞

0

1√
2πr�(r/2)2r/2

[
2z

1 + (t2/r)

](1/2)(r+1)−1

e−z 2
1 + (t2/r)

dz

= 1√
2πr�(r/2)2r/2

2(1/2)(r+1)

[1 + (t2/r)](1/2)(r+1)

∫ ∞

0
z(1/2)(r+1)−1e−zdz

= 1√
πr�(r/2)

1
[1 + (t2/r)](1/2)(r+1)

�

[
1
2

(r + 1)
]

,

since 1
�[ 1

2 (r+1)]
z(1/2)(r+1)−1e−z (z > 0) is the p.d.f. of the Gamma distribution

with parameters α = r+1
2 and β = 1; that is,

fT (t) = �[ 1
2 (r + 1)]√
πr�(r/2)

× 1
[1 + (t2/r)](1/2)(r+1)

, t ∈ �.

Now, we proceed with the definition of the F -distribution.

DEFINITION 2
Let X and Y be two independent r.v.’s distributed as follows: X ∼ χ2

r1

and Y ∼ χ2
r2

, and define the r.v. F by: F = X/r1
Y/r2

. The r.v. F is said to have
the F-distribution with r1 and r2 degrees of freedom (d.f.). The notation
often used is: F ∼ Fr1,r2 .

The p.d.f. of F, fF , is given by the formula:

fF ( f ) =
{

�[ 1
2 (r1+r2)](r1/r2)r1/2

�( 1
2 r1)�( 1

2 r2)
× f (r1/2)−1

[1+(r1/r2) f ](1/2)(r1+r2) , for f > 0

0, for f ≤ 0,
(11)

and its graphs (for r1 = 10, r2 = 4 and r1 = r2 = 10) are given in Figure 6.6.
The probabilities P(F ≤ f ), for selected values of f and r1, r2, are given by
tables (the F -tables).
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0 20 30
f

F10,10

F10,4

fF( f )

10

Figure 6.6

Two Curves of the F

Probablity Density
Function

The derivation of fF is based on Theorem 4 and is as follows. For x and
y > 0, we have:

fX(x) = 1

�
(

1
2r1
)
2r1/2

x (r1/2)−1e−x/2, x > 0,

fY(y) = 1

�
(

1
2r2
)
2r2/2

y(r2/2)−1e−y/2, y > 0.

We set Z = Y , and consider the transformation

(h1, h2) :
{

f = x/r1
y/r2

z = y
; then

{
x = r1

r2
f z

y = z,

and

J =
∣∣∣∣∣

r1
r2

z r1
r2

f

0 1

∣∣∣∣∣ = r1

r2
z, so that |J| = r1

r2
z.

For f, z > 0, we get:

fF, Z( f, z) = 1

�
(

1
2r1
)
�
(

1
2r2
)
2(1/2)(r1+r2)

(
r1

r2

)(r1/2)−1

f (r1/2)−1z(r1/2)−1z(r2/2)−1

× exp
(

− r1

2r2

)
f ze−z/2 r1

r2
z

= (r1/r2)r1/2 f (r1/2)−1

�
(

1
2r1
)
�
(

1
2r2
)
2(1/2)(r1+r2)

z(1/2)(r1+r2)−1 exp
[
− z

2

(
r1

r2
f + 1
)]

.
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Therefore

fF ( f ) =
∫ ∞

0
fF, Z( f, z)dz

= (r1/r2)r1/2 f (r1/2)−1

�
(

1
2r1
)
�
(

1
2r2
)
2(1/2)(r1+r2)

∫ ∞

0
z(1/2)(r1+r2)−1 exp

[
− z

2

(
r1

r2
f + 1
)]

dz.

Set

z

2

(
r1

r2
f + 1
)

= t, so that z = 2t

(
r1

r2
f + 1
)−1

,

dz = 2
(

r1

r2
f + 1
)−1

dt, t ∈ [0, ∞).

Thus continuing, we have

fF ( f ) = (r1/r2)r1/2 f (r1/2)−1

�
(

1
2r1
)
�
(

1
2r2
)
2(1/2)(r1+r2)

2(1/2)(r1+r2)−1
(

r1

r2
f + 1
)−(1/2)(r1+r2)+1

× 2
(

r1

r2
f + 1
)−1 ∫ ∞

0
t(1/2)(r1+r2)−1e−tdt

= �[ 1
2 (r1 + r2)](r1/r2)r1/2

�
(

1
2r1
)
�
(

1
2r2
) × f (r1/2)−1

[1 + (r1/r2) f ](1/2)(r1+r2)
,

since 1
�[ 1

2 (r1+r2)]
t(1/2)(r1+r2)−1e−t (t > 0) is the p.d.f. of the Gamma distribution

with parameters α = r1+r2
2 and β = 1. Therefore

fF ( f ) =
⎧⎨⎩

�[ 1
2 (r1+r2)](r1/r2)r1/2

�( 1
2 r1)�( 1

2 r2)
× f (r1/2)−1

[1+(r1/r2) f ](1/2)(r1+r2) , for f > 0

0, for f ≤ 0.

REMARK 3

(i) From the definition of the F -distribution, it follows that, if F ∼ Fr1,r2 , then
1
F

∼ Fr2,r1 .
(ii) If T ∼ tr , then T2 ∼ F1.r . Indeed, T = X/

√
Y/r, where X and Y are

independent, and X ∼ N(0, 1), Y ∼ χ2
r . But then T2 = X 2

Y/r
= X 2/1

Y/r
∼ F1,r ,

since X2 ∼ χ2
1 and X2 and Y are independent.

(iii) If F ∼ Fr1,r2 , then it can be shown (see Exercise 2.10) that

EF = r2

r2 − 2
, for r2 ≥ 3, and Var(F) = 2r2

2 (r1 + r2 − 2)
r1(r2 − 2)2(r2 − 4)

, for r2 ≥ 5.

One can formulate a version of Theorem 4 for k(>2) r.v.’s X1, . . . , Xk, as
well as a version of Theorem 3. In the following, such versions are formulated
for reference purposes.



182 Chapter 6 Transformation of Random Variables

THEOREM 5
Consider the r.v.’s X1, . . . , Xk with joint p.d.f. fX1,..., Xk

positive and contin-
uous on the set S ⊆ �k, and let h1, . . . , hk be real-valued transformations
defined on S; that is, h1, . . . , hk : S → �, and let T be the image of S

under the transformation (h1, . . . , hk). Suppose that (h1, . . . , hk) is one-
to-one from S onto T . Thus, if we set yi = hi(x1, . . . , xk), i = 1, . . . , k,
then we can solve uniquely for xi, i = 1, . . . , k : xi = gi(y1, . . . , yk), i =
1, . . . , k. Suppose further that the partial derivatives gij(y1, . . . , yk) =
∂

∂yj
gi(y1, . . . , yk), i, j = 1, . . . , k exist and are continuous for (y1, . . . ,

yk) ∈ T. Finally, suppose that the Jacobian

J =
∣∣∣∣∣∣
g11(y1, . . . , yk) · · · g1k(y1, . . . , yk)

. . . . . . . . . · · · . . . . . . . . .

gk1(y1, . . . , yk) · · · gkk(y1, . . . , yk)

∣∣∣∣∣∣
is �= 0 on T . Then the joint p.d.f. of the r.v.’s Yi = hi(X1, . . . , Xk), i =
1, . . . , k, fY1,...,Yk

, is given by:

fY1,...,Yk
(y1, . . . , yk) = fX1,..., Xk

[g1(y1, . . . , yk), . . . , gk(y1, . . . , yk)] · |J|,
(y1, . . . , yk) ∈ T (and = 0 for (y1, . . . , yk) /∈ T). (12)

A suitable version of the previous result when the transformations
h1, . . . , hk are not one-to-one is stated below; it will be employed in
Theorem 12 in Section 5.

THEOREM 6
Let X1, . . . , Xk be r.v.’s with joint p.d.f. fX1,..., Xk

positive and continuous on
the set S ⊆ �k, and let h1, . . . , hk be real-valued transformations defined
on S; that is, h1, . . . , hk : S → �, and let T be the image of S under the
transformation (h1, . . . , hk). Suppose that (h1, . . . , hk) is not one-to-one
from S onto T but there is a partition of S into (pairwise disjoint) subsets
S1, . . . , Sr such that when (h1, . . . , hk) is restricted to Sj and takes values
in Tj (the image of Sj under (h1, . . . , hk)), j = 1, . . . , r, then (h1, . . . , hk)
is one-to-one. Denoting by (h1 j , . . . , hkj) this restriction, we have then:
(h1 j , . . . , hkj) : Sj → Tj is one-to-one, so that we can solve uniquely
for xi, i = 1, . . . , k : xi = g ji(y1, . . . , yk), i = 1, . . . , k, for each j =
1, . . . , r. Suppose further that the partial derivatives g jil(y1, . . . , yk) =
∂

∂yl
g ji(y1, . . . , yk), i, l = 1, . . . , k, j = 1, . . . , r exist and are continuous

for (y1, . . . , yk) ∈ Tj , j = 1, . . . , r, and the Jacobian

Jj =
∣∣∣∣∣∣
g j11(y1, . . . , yk) · · · g j1k(y1, . . . , yk)

. . . · · · . . .

g jk1(y1, . . . , yk) · · · g jkk(y1, . . . , yk)

∣∣∣∣∣∣
is �= 0 on Tj for j = 1, . . . , r.
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Set

fYj
(y1, . . . , yk) = fX1,..., Xk

[g j1(y1, . . . , yk), . . . , g jk(y1, . . . , yk)]|Jj|,
(y1, . . . , yk) ∈ Tj , j = 1, . . . , r.

Then the joint p.d.f. of the r.v.’s Yi = hi(X1, . . . , Xk), i = 1, . . . , k,
fY1,...,Yk

, is given by:

fY1,...,Yk
(y1, . . . , yk) =

r∑
j=1

δ j(y1, . . . , yk) fYj
(y1, . . . , yk), (y1, . . . , yk) ∈ T

(and = 0 for (y1, . . . , yk) /∈ T), (13)

where δ j(y1, . . . , yk) = 1, if (y1, . . . , yk) ∈ Tj and δ j(y1, . . . , yk) = 0, if
(y1, . . . , yk) /∈ Tj , j = 1, . . . , r.

Exercises

2.1 The r.v.’s X and Y denote the outcomes of one independent throw of two
fair dice, and let Z = X + Y . Determine the distribution of Z.

2.2 Let the independent r.v.’s X and Y have the Negative Exponential distri-
bution with λ = 1, and set U = X + Y, V = X/Y .
(i) Derive the joint p.d.f. fU,V .

(ii) Then derive the marginal p.d.f.’s fU and fV .
(iii) Show that the r.v.’s U and V are independent.

2.3 Let the independent r.v.’s X and Y have the Negative Exponential distri-
bution with λ = 1, and set U = 1

2 (X + Y), V = 1
2 (X − Y).

(i) Show that the joint p.d.f. of the r.v.’s U and V is given by:

fU,V (u, v) = 2e−2u, −u < v < u, u > 0.

(ii) Also, show that the marginal p.d.f.’s fU and fV are given by:

fU (u) = 4ue−2u, u > 0; fV (v) = e−2v , for v > 0,

fV (v) = e2v , for v < 0.

2.4 Let the independent r.v.’s X and Y have the joint p.d.f. fX,Y positive on a
set S, subset of �2, and set U = aX + b, V = cY + d, where a, b, c, and
d are constants with ac �= 0.
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(i) Use Theorem 4 in order to show that the joint p.d.f. of U and V is
given by:

fU,V (u, v) = 1
|ac| fX,Y

(
u − b

a
,
v − c

d

)

= 1
|ac| fX

(
u − b

c

)
fY

(
v − c

d

)
, (u, v) ∈ T,

the image of S under the transformations u = ax + b, v = cy + d.
(ii) If X ∼ N(μ1, σ 2

1 ) and Y ∼ N(μ2, σ 2
2 ), show that U and V are inde-

pendently distributed as N(aμ1 + b, (aσ 2
1 )) and N(cμ2 + b, (cσ 2

2 )),
respectively.

2.5 If the independent r.v.’s X and Y are distributed as N(0, 1), set U =
X + Y, V = X − Y , and:
(i) Determine the p.d.f.’s of U and V .

(ii) Show that U and V are independent.
(iii) Compute the probability P(U < 0, V > 0).

2.6 Let X and Y be independent r.v.’s distributed as N(0, 1), and set

U = 1√
2

(X + Y), V = 1√
2

(X − Y).

(i) Determine the joint p.d.f. of U and V .
(ii) From the joint p.d.f. fU,V , infer fU and fV without integration.

(iii) Conclude that U and V are also independent.
(iv) How else could you arrive at the p.d.f.’s fU and fV ?

2.7 Let X and Y be independent r.v.’s distributed as N(0, σ 2). Then show
that the r.v. U = X2 + Y 2 has the Negative Exponential distribution with
parameter λ = 1/2σ 2.

2.8 The independent r.v.’s X and Y have p.d.f. given by: fX,Y(x, y) = 1
π

, for
x, y ∈ � with x2 + y2 ≤ 1, and let Z2 = X2 + Y 2. Use polar coordinates
to determine the p.d.f. fZ2 .

Hint: Let Z = +
√

Z2 and set X = Z cos �, Y = Z sin �, where
Z ≥ 0 and 0 < � ≤ 2π . First, determine the joint p.d.f. fZ,� and then
the marginal p.d.f. fZ . Finally, by means of fZ and the transformation
U = Z2, determine the p.d.f. fU = fZ2 .

2.9 If the r.v. Xr ∼ tr , then the t-tables (at least the ones in this book) do
not give probabilities for r > 90. For such values, we can use instead the
Normal tables. The reason for this is that the p.d.f. of Xr converges to
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the p.d.f. of the N(0, 1) distribution as r → ∞. More precisely,

fXr
(t) = �

(
r+1

2

)
√

πr�
(

r

2

) × 1(
1 + t2

r

)(r+1)/2
−→

r→∞
1√
2π

e−t2/2 (t > 0).

Hint: In proving this convergence, first observe that(
1 + t2

r

)(r+1)/2

=
[(

1 + t2

r

)r]1/2

×
(

1 + t2

r

)1/2

−→
r→∞et2/2,

and then show that

�
(

r+1
2

)
�
(

r

2

) −→
r→∞

1√
2

,

by utilizing the Stirling formula. This formula states that:

�(n)√
2πn(2n−1)/2e−n

→ 1 as n → ∞.

2.10 Let Xr1,r2 be a r.v. having the F -distribution with parameters r1 and r2; i.e.,
Xr1,r2 ∼ Fr1,r2 . Then show that:

EXr1,r2 = r2

r2 − 2
, r2 ≥ 3; Var(Xr1,r2 ) = 2r2

2 (r1 + r2 − 2)
r1(r2 − 2)2(r2 − 4)

, r2 ≥ 5.

Hint: Start out with the kth moment EXk
r1,r2

, use first the transforma-
tion r1

r2
f = x, and second the transformation 1

1 + x
= y. Then observe

that the integrand is the p.d.f. of a Gamma distribution (except for suit-
able constants). Thus, the EXk

r1,r2
is expressed in terms of the Gamma

function without carrying out any integrations. Specifically, we find:

EXk
r1,r2

=
(

r2

r1

)k �
(

r1+2k

2

)
�
(

r2−2k

2

)
�
(

r1
2

)
�
(

r2
2

) , r2 > 2k.

Applying this formula for k = 1 (which requires that r2 ≥ 3), and k = 2
(which requires that r2 ≥ 5), and using the recursive property of the
Gamma function, we determine the required expressions.

6.3 Linear Transformations

In this section, a brief discussion is presented for a specific kind of transfor-
mation, linear transformations. The basic concepts and results used here can
be found in any textbook on linear algebra.
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DEFINITION 3
Suppose the variables x1, . . . , xk are transformed into the variables
y1, . . . , yk in the following manner:

yi =
k∑

j=1

cijxj , i = 1, . . . , k, (14)

where the cij ’s are real constants. Such a transformation is called a linear

transformation (all the xi’s enter into the transformation in a linear way,
in the first power).

Some terminology and elementary facts from matrix algebra will be
used here. Denote by C the k × k matrix of the cij , i, j = 1, . . . , k con-
stants; that is, C = (cij), and by |C| or � its determinant. Then it is well
known that if � �= 0, one can uniquely solve for xi in (14):

xi =
k∑

j=1

dij yj , i = 1, . . . , k, (15)

for suitable constants dij . Denote by D the k×k matrix of the dij ’s and by
�∗ its determinant: D = (dij), �∗ = |D|. Then it is known that �∗ = 1/�.
Among the linear transformations, a specific class is of special impor-
tance; it is the class of orthogonal transformations.

A linear transformation is said to be orthogonal, if
k∑

j=1

c2
ij = 1 and

k∑
j=1

cijci′ j = 0, i, i′ = 1, . . . , k, i �= i′,

or, equivalently,
k∑

i=1

c2
ij = 1 and

k∑
i=1

cijcij′ = 0, j, j′ = 1, . . . , k, j �= j′. (16)

Relations (16) simply state that the row (column) vectors of the matrix
C have norm (length) 1, and any two of them are perpendicular. The
matrix C itself is also called orthogonal. For an orthogonal matrix C, it
is known that |C| = ±1. Also, in the case of an orthogonal matrix C,
it happens that dij = c ji, i, j = 1, . . . , k; or in matrix notation: D = C′,
where C′ is the transpose of C (the rows of C′ are the same as the columns
of C). Thus, in this case:

xi =
k∑

j=1

c jiyj , i = 1, . . . , k. (17)

Also, under orthogonality, the vectors of the xi’s and of the yj ’s have
the same norm. To put it differently:

k∑
i=1

x2
i =

k∑
j=1

y2
j. (18)

Some of these concepts and results are now to be used in connection with
r.v.’s.
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THEOREM 7
Suppose the r.v.’s X1, . . . , Xk are transformed into the r.v.’s Y1, . . . ,
Yk through a linear transformation with the matrix C = (cij) and |C| =
� �= 0. Let S ⊆ �k be the set over which the joint p.d.f. of X1, . . . , Xk,
fX1,..., Xk

, is positive, and let T be the image of S under the linear transfor-
mation. Then:

(i) The joint p.d.f. of Y1, . . . , Yk, fY1,...,Yk
, is given by:

fY1,...,Yk
(y1, . . . , yk) = fX1,..., Xk

( k∑
j=1

d1 j yj , . . . ,
k∑

j=1

dkj yj

)
1

|�| , (19)

for (y1, . . . , yk) ∈ T (and = 0 otherwise), where the dij ’s are as in
(15).

(ii) In particular, if C is orthogonal, then:

fY1,...,Yk
(y1, . . . , yk) = fX1,..., Xk

(
k∑

j=1

c j1 yj , . . . ,
k∑

j=1

c jkyj

)
, (20)

for (y1, . . . , yk) ∈ T (and = 0 otherwise); also,
k∑

j=1

Y2
j =

k∑
i=1

X2
i . (21)

PROOF

(i) Relation (19) follows from Theorem 5.
(ii) Relation (20) follows from (19) and (17), and (21) is a restatement of

(18). ▲

Next, we specialize this result to the case that the r.v.’s X1, . . . , Xk are
Normally distributed and independent.

THEOREM 8
Let the independent r.v.’s X1, . . . , Xk be distributed as follows: Xi ∼ N(μi,
σ 2), i = 1, . . . , k, and suppose they are transformed into the r.v.’s Y1, . . . ,
Yk by means of an orthogonal transformation C. Then the r.v.’s Y1, . . . , Yk

are also independent and Normally distributed as follows:

Yi ∼ N

(
k∑

j=1

cijμ j , σ 2

)
, i = 1, . . . , k. (22)

PROOF From the transformations Yi =∑k

j=1 cij X j , it is immediate that each
Yi is Normally distributed with mean EYi =∑k

j=1 cijμ j and variance Var(Yi) =∑k

j=1 c2
ijσ

2 = σ 2∑k

j=1 c2
ij = σ 2. So the only thing to be justified is the assertion
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of independence. From the Normality assumption on the Xi’s, we have:

fX1,..., Xk
(x1, . . . , xk) =

(
1√

2πσ

)k

exp
[
− 1

2σ 2

k∑
i=1

(xi − μi)2
]
. (23)

Then, since C is orthogonal, (20) applies and gives, by means of (23):

fY1,...,Yk
(y1, . . . , yk) =

(
1√

2πσ

)k

exp
[
− 1

2σ 2

k∑
i=1

(
k∑

j=1

c jiyj − μi

)2]
. (24)

Thus, the proof is completed by establishing the following algebraic relation:

k∑
i=1

(
k∑

j=1

c jiyj − μi

)2

=
k∑

i=1

(
yi −

k∑
j=1

cijμ j

)2

(25)

(see Exercise 3.1). ▲

Finally, suppose the orthogonal matrix C in Theorem 8 is chosen to be as
follows:

C =

⎛⎜⎜⎜⎜⎜⎝
1/

√
k 1/

√
k . . . . . . . . . . . . . . . 1/

√
k

1/
√

2 × 1 −1/
√

2 × 1 0 . . . . . . . . . 0

1/
√

3 × 2 1/
√

3 × 2 −2/
√

3 × 2 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

1/
√

k(k − 1) 1/
√

k(k − 1) . . . . . . . . . 1/
√

k(k − 1) −(k − 1)/
√

k(k − 1)

⎞⎟⎟⎟⎟⎟⎠.

That is, the elements of C are given by the expressions:

c1 j = 1/
√

k, j = 1, . . . , k,

cij = 1/
√

i(i − 1), for i = 2, . . . , k and j = 1, . . . , i − 1,

and 0 for j = i + 1, . . . , k,

cii = −(i − 1)/
√

i(i − 1), i = 2, . . . , k.

From these expressions, it readily follows that
∑k

j=1 c2
ij = 1 for all i =

1, . . . , k, and
∑k

j=1 cijci′ j = 0 for all i, i′ = 1, . . . , k, with i �= i′, so that C is,
indeed, orthogonal (see also Exercise 3.2). Next, let Z1, . . . , Zk be independent
r.v.’s distributed as N(0, 1), and transform them into the r.v.’s Y1, . . . , Yk by
means of C; that is,

Y1 = 1√
k

Z1 + 1√
k

Z2 + · · · + 1√
k

Zk

Y2 = 1√
2 × 1

Z1 − 1√
2 × 1

Z2
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Y3 = 1√
3 × 2

Z1 + 1√
3 × 2

Z2 − 2√
3 × 2

Z3

...

Yk = 1√
k(k − 1)

Z1 + 1√
k(k − 1)

Z2 + · · · + 1√
k(k − 1)

Zk−1 − k − 1√
k(k − 1)

Zk.

Then, by Theorem 8, the r.v.’s Y1, . . . , Yk are independently distributed as
N(0, 1), whereas by (21)

k∑
j=1

Y2
j =

k∑
i=1

Z2
i .

However, Y1 = √
kZ̄, so that

k∑
j=2

Y2
j =

k∑
j=1

Y2
j − Y2

1 =
k∑

i=1

Z2
i − (

√
kZ̄)2 =

k∑
i=1

Z2
i − kZ̄2 =

k∑
i=1

(Zi − Z̄)2.

On the other hand,
∑k

j=2 Y2
j and Y1 are independent; equivalently,∑k

i=1 (Zi − Z̄)2 and kZ̄ are independent, or

Z̄ and
k∑

i=1

(Zi − Z̄)2 are independent. (26)

This last conclusion is now applied as follows.

THEOREM 9
Let X1, . . . , Xk be independent r.v.’s distributed as N(μ, σ 2). Then the
sample mean X̄ = 1

k

∑k

i=1 Xi and the sample variance S2 = 1
k

∑k

i=1(Xi −
X̄)2 are independent.

PROOF The assumption that Xi ∼ N(μ, σ 2) implies that Xi−μ

σ
∼ N(0, 1).

By setting Zi = (Xi − μ)/σ, i = 1, . . . , k, the Zi’s are as in the preceding
derivations and therefore (26) applies. Since

Z̄ = 1
k

k∑
i=1

(
Xi − μ

σ

)
= 1

σ
(X̄ − μ), and

k∑
i=1

(Zi − Z̄)2 =
k∑

i=1

(
Xi − μ

σ
− X̄ − μ

σ

)2

= 1
σ 2

k∑
i=1

(Xi − X̄)2,

it follows that 1
σ

(X̄ − μ) and 1
σ 2

∑k

i=1(Xi − X̄)2 are independent or that X̄ and
1
k

∑k

i=1(Xi − X̄)2 are independent. ▲
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Exercises

3.1 Establish relation (25) in the proof of Theorem 8.

Hint: Expand the left-hand side and the right-hand side in (25), use
orthogonality, and show that the common value of both sides is:

k∑
j=1

y2
j +

k∑
j=1

μ2
j − 2

k∑
j=1

k∑
i=1

c jiμiμ j.

3.2 Show that the matrix with row elements given by:

c1 j = 1/
√

k, j = 1, . . . , k,

cij = 1/
√

i(i − 1), i = 2, . . . , k and j = 1, . . . , i − 1,

and 0 for j = i + 1, . . . , k,

cii = −(i − 1)/
√

i(i + 1), i = 2, . . . , k is orthogonal.

3.3 Let X1, X2, X3 be independent r.v.’s such that Xi ∼ N(μi, σ 2), i = 1, 2, 3,
and set

Y1 = − 1√
2

X1 + 1√
2

X2,

Y2 = − 1√
3

X1 − 1√
3

X2 + 1√
3

X3,

Y3 = 1√
6

X1 + 1√
6

X2 + 2√
6

X3.

Then:
(i) Show that the r.v.’s Y1, Y2, Y3 are independent Normally distributed

with variance σ 2 and respective means:

EY1 = 1√
2

(−μ1 + μ2), EY2 = 1√
3

(−μ1 − μ2 + μ3),

EY3 = 1√
6

(μ1 + μ2 + 2μ3).

(ii) If μ1 = μ2 = μ3 = 0, then show that 1
σ 2 (Y2

1 + Y2
2 + Y2

3 ) ∼ χ2
3 ,

Hint: For part (i), prove that the transformation employed is or-
thogonal and then use Theorem 8 to conclude independence of
Y1, Y2, Y3. That the means and the variance are as described follows
either from Theorem 8 or directly. Part (ii) follows from part (i) and
the assumption that μ1 = μ2 = μ3 = 0.

3.4 If the r.v.’s X and Y have the Bivariate Normal distribution with parameters
μ1, μ2, σ 2

1 , σ 2
2 , and ρ, then the r.v.’s U = X−μ1

σ1
, V = Y−μ2

σ2
have the Bivariate

Normal distribution with parameters 0, 0, 1, 1, and ρ; and vice versa.
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3.5 If the r.v.’s X and Y have the Bivariate Normal distribution with parame-
ters 0, 0, 1, 1, and ρ, then the r.v.’s cX and dY have the Bivariate Normal
distribution with parameters 0, 0, c2, d2, and ρ0, where ρ0 = 1 if cd > 0,
and ρ0 = −1 if cd < 0; c and d are constants with cd �= 0.

3.6 Let the r.v.’s X and Y have the Bivariate Normal distribution with parame-
ters 0, 0, 1, 1, and ρ, and set: U = X + Y, V = X − Y . Then show that:
(i) The r.v.’s U and V also have the Bivariate Normal distribution with

parameters 0, 0, 2(1 + ρ), 2(1 − ρ), and 0.
(ii) From part (i), conclude that the r.v.’s U and V are independent.

(iii) From part (i), also conclude that: U ∼ N(0, 2(1 + ρ)), V ∼ N(0,
2(1 − ρ)).

3.7 Let the r.v.’s X and Y have the Bivariate Normal distribution with parame-
ters μ1, μ2, σ 2

1 , σ 2
2 , and ρ, and set:

U = X − μ1

σ1
, V = Y − μ2

σ2
.

Then:
(i) Determine the joint distribution of the r.v.’s U and V .

(ii) Show that U + V and U − V have the Bivariate Normal distribution
with parameters 0, 0, 2(1 + ρ), 2(1 − ρ), and 0 and are independent.
Also, U + V ∼ N(0, 2(1 + ρ)), U − V ∼ N(0, 2(1 − ρ)).

(iii) For σ 2
1 = σ 2

2 = σ 2, say, conclude that the r.v.’s X + Y and X − Y are
independent.

REMARK 4 Actually, the converse of part (iii) is also true; namely, if
X and Y have the Bivariate Normal distribution N(μ1, μ2, σ 2

1 , σ 2
2 , ρ), then

independence of X +Y and X −Y implies σ 2
1 = σ 2

2 . The justification of this
statement is easier by means of m.g.f.’s, and it was, actually, discussed in
Exercise 5.13 of Chapter 4.

3.8 Let the independent r.v.’s X1, . . . , Xn be distributed as N(μ, σ 2) and sup-
pose that μ = kσ (k > 0). Set

X̄ = 1
n

n∑
i=1

Xi, S2 = 1
n − 1

n∑
i=1

(Xi − X̄)2.

Then:
(i) Determine an expression for the probability:

P(aμ < X̄ < bμ, 0 < S2 < cσ 2),

where a, b, and c are constants, a < b and c > 0.
(ii) Give the numerical value of the probability in part (i) if a = 1

2 , b =
3
2 , c = 1.487, k = 1.5, and n = 16.

Hint: Use independence of X̄ and S2 provided by Theorem 9. Also, use
the fact that (n−1)S2

σ 2 ∼ χ2
n−1 by Theorem 6 in Chapter 5 (where S2 is

denoted by S̄2).
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6.4 The Probability Integral Transform

In this short section, a very special type of transformation is considered, the so-
called probability integral transform. By means of this transformation, two
results are derived. Roughly, these results state that, if X ∼ F and Y = F(X),
then, somewhat surprisingly, Y is always distributed as U(0, 1). Furthermore,
for a given d.f. F , there is always a r.v. X ∼ F ; this r.v. is given by X = F−1(Y),
where Y ∼ U(0, 1) and F−1 is the inverse function of F . To facilitate the
derivations, F will be assumed to be (strictly) increasing.

THEOREM 10
For an increasing d.f. F , let X ∼ F and set Y = F(X). Then Y ∼ U(0, 1).

PROOF Since 0 ≤ F(X) ≤ 1, it suffices to consider y ∈ [0, 1]. Then

P(Y ≤ y) = P[F(X) ≤ y] = P{F−1[F(X)] ≤ F−1(y)}
= P[X ≤ F−1(y)] = F[F−1(y)] = y,

so that Y ∼ U(0, 1). ▲

THEOREM 11
Let F be a given increasing d.f., and let the r.v. Y ∼ U(0, 1). Define the
r.v. X by: X = F−1(Y). Then X ∼ F .

PROOF For x ∈ �,

P(X ≤ x) = P[F−1(Y) ≤ x] = P{F[F−1(Y)] ≤ F(x)}
= P[Y ≤ F(x)] = F(x),

as was to be seen. ▲

In the form of a verification of Theorems 10 and 11, consider the following
simple examples.

EXAMPLE 6 Let the r.v. X have the Negative Exponential distribution with parameter λ.
Then, for x > 0, F(x) = 1 − e−λx. Let Y be defined by: Y = 1 − e−λX . Then Y

should be ∼ U(0, 1).

DISCUSSION Indeed, for 0 < y < 1,

P(Y ≤ y) = P(1 − e−λX ≤ y) = P(e−λX ≥ 1 − y) = P[−λX ≥ log(1 − y)]

= P

[
X ≤ −1

λ
log(1 − y)

]
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= 1 − exp
{

(−λ)
[
−1

λ
log(1 − y)

]}
= 1 − exp[log(1 − y)] = 1 − (1 − y) = y,

as was to be seen.

EXAMPLE 7 Let F be the d.f. of the Negative Exponential distribution with parameter
λ, so that F(x) = 1 − e−λx, x > 0. Let y = 1 − e−λx and solve for x to
obtain x = − 1

λ
log(1 − y), 0 < y < 1. Let Y ∼ U(0, 1) and define the r.v. X by:

X = − 1
λ

log(1 − Y). Then X should be ∼ F .

DISCUSSION Indeed,

P(X ≤ x) = P

[
−1

λ
log(1 − Y) ≤ x

]
= P[log(1 − Y) ≥ −λx]

= P(1 − Y ≥ e−λx) = P(Y ≤ 1 − e−λx) = 1 − e−λx,

as was to be seen.

Exercise

4.1 (i) Let X be a r.v. with continuous and (strictly) increasing d.f. F , and
define the r.v. Y by Y = F(X). Then use Theorem 2 in order to show
that Z = −2 log(1 − Y) ∼ χ2

2 .
(ii) If X1, . . . , Xn is a random sample with d.f. F as described in part (i) and

if Yi = F(Xi), i = 1, . . . , n, then show that the r.v. U =∑n

i=1 Zi ∼ χ2
2n,

where Zi = −2 log(1 − Yi), i = 1, . . . , n.

Hint: For part (i), use Theorem 10, according to which Y ∼ U(0, 1).

6.5 Order Statistics

In this section, an unconventional kind of transformation is considered, which,
when applied to r.v.’s, leads to the so-called order statistics. For the definition
of the transformation, consider n distinct numbers x1, . . . , xn and order them
in ascending order. Denote by x(1) the smallest number: x(1) = smallest of
x1, . . . , xn; by x(2) the second smallest, and so on until x(n) is the nth smallest
or, equivalently, the largest of the xi’s. In a summary form, we write: x( j) =
the jth smallest of the numbers x1, . . . , xn, where j = 1, . . . , n. Then, clearly,
x(1) < x(2) < · · · < x(n). For simplicity, set yj = x( j), j = 1, . . . , n, so that
again y1 < y2 < · · · < yn. The transformation under consideration is the one
which transforms the xi’s into the yj ’s in the way just described.

This transformation now applies to n r.v.’s as follows.
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Let X1, X2, . . . , Xn be i.i.d. r.v.’s with d.f. F . The jth order statistic of
X1, X2, . . . , Xn is denoted by X( j), or Yj for easier writing, and is defined as
follows:

Yj = j th smallest of the X1, X2, . . . , Xn, j = 1, . . . , n;
(that is, for each s ∈ S, look at X1(s), X2(s), . . . , Xn(s), and then Yj(s) is de-
fined to be the jth smallest among the numbers X1(s), X2(s), . . . , Xn(s), j =
1, 2, . . . , n). It follows that Y1 ≤ Y2 ≤ · · · ≤ Yn, and, in general, the Yj ’s are not
independent.

We assume now that the Xi’s are of the continuous type with p.d.f. f such
that f (x) > 0, (−∞≤)a < x < b(≤∞) and zero otherwise. One of the problems
we are concerned with is that of finding the joint p.d.f. of the Yj ’s. By means
of Theorem 6, it will be established that:

THEOREM 12
If X1, . . . , Xn are i.i.d. r.v.’s with p.d.f. f which is positive for a < x < b

and 0 otherwise, then the joint p.d.f. of the order statistics Y1, . . . , Yn is
given by:

g(y1, . . . , yn) =
{

n! f (y1) · · · f (yn), a < y1 < y2 < · · · < yn < b

0, otherwise.
(27)

PROOF The proof is carried out explicitly for n = 3, but it is easily seen,
with the proper change in notation, to be valid in the general case as well. In
the first place, since for i �= j,

P(Xi = X j) =
∫ ∫

(xi=xj)
f (xi) f (xj) dxi dxj =

∫ b

a

∫ xj

xj

f (xi) f (xj) dxi dxj = 0,

and therefore P(Xi = X j = Xk) = 0 for i �= j �= k, we may assume that
the joint p.d.f., f (·, ·, ·), of X1, X2, X3 is zero, if at least two of the arguments
x1, x2, x3 are equal. Thus, we have:

f (x1, x2, x3) =
{

f (x1) f (x2) f (x3), a < x1 �= x2 �= x3 < b

0, otherwise.

Therefore f (x1, x2, x3) is positive on the set S, where

S = {(x1, x2, x3) ∈ �3; a < xi < b, i = 1, 2, 3, x1, x2, x3 all different
}
.

Let Sijk ⊂ S be defined by:

Sijk = {(x1, x2, x3); a < xi < xj < xk < b}, i, j, k = 1, 2, 3, i �= j �= k.

Then we have that these six events are pairwise disjoint and (essentially)

S = S123 ∪ S132 ∪ S213 ∪ S231 ∪ S312 ∪ S321.
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Now on each one of the Sijk’s there exists a one-to-one transformation from
the xi’s to the yi’s defined as follows:

S123 : y1 = x1, y2 = x2, y3 = x3

S132 : y1 = x1, y2 = x3, y3 = x2

S213 : y1 = x2, y2 = x1, y3 = x3

S231 : y1 = x2, y2 = x3, y3 = x1

S312 : y1 = x3, y2 = x1, y3 = x2

S321 : y1 = x3, y2 = x2, y3 = x1.

Solving for the xi’s, we have then:

S123 : x1 = y1, x2 = y2, x3 = y3

S132 : x1 = y1, x2 = y3, x3 = y2

S213 : x1 = y2, x2 = y1, x3 = y3

S231 : x1 = y3, x2 = y1, x3 = y2

S312 : x1 = y2, x2 = y3, x3 = y1

S321 : x1 = y3, x2 = y2, x3 = y1.

The Jacobians are thus given by:

S123 : J123 =
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, S231 : J231 =
∣∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣ = 1,

S132 : J132 =
∣∣∣∣∣∣
1 0 0
0 0 1
0 1 0

∣∣∣∣∣∣ = −1, S312 : J312 =
∣∣∣∣∣∣
0 1 0
0 0 1
1 0 0

∣∣∣∣∣∣ = 1,

S213 : J213 =
∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1, S321 : J321 =
∣∣∣∣∣∣
0 0 1
0 1 0
1 0 0

∣∣∣∣∣∣ = −1.

Hence |J123| = · · · = |J321| = 1, and Theorem 6 gives

g(y1, y2, y3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (y1) f (y2) f (y3) + f (y1) f (y3) f (y2) + f (y2) f (y1) f (y3)
+ f (y3) f (y1) f (y2) + f (y2) f (y3) f (y1) + f (y3) f (y2) f (y1),

a < y1 < y2 < y3 < b

0, otherwise.
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That is,

g(y1, y2, y3) =
{

3! f (y1) f (y2) f (y3), a < y1 < y2 < y3 < b

0, otherwise. ▲

Notice that the proof in the general case is exactly the same. One has n!
regions forming S, one for each permutation of the integers 1 through n. From
the definition of a determinant and the fact that each row and column contains
exactly one 1 and the rest all 0, it follows that the n! Jacobians are either 1 or −1
and the remaining part of the proof is identical to the one just given except
that one adds up n! like terms instead of 3!.

The theorem is illustrated by the following two examples.

EXAMPLE 8 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as N(μ, σ 2). Then the joint p.d.f. of the
order statistics Y1, . . . , Yn is given by

g(y1, . . . , yn) = n!
(

1√
2πσ

)n

exp

[
− 1

2σ 2

n∑
j=1

(yj − μ)2

]
,

if −∞ < y1 < · · · < yn < ∞, and zero otherwise.

EXAMPLE 9 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as U(α, β). Then the joint p.d.f. of the
order statistics Y1, . . . , Yn is given by

g(y1, . . . , yn) = n!
(β − α)n

,

if α < y1 < · · · < yn < β, and zero otherwise.

From the joint p.d.f. in (27), it is relatively easy to derive the p.d.f. of Yj for
any j, as well as the joint p.d.f. of Yi and Yj for any 1 ≤ i < j ≤ n. We restrict
ourselves to the derivation of the distributions of Y1 and Yn alone.

THEOREM 13
Let X1, . . . , Xn be i.i.d. r.v.’s with d.f. F and p.d.f. f which is positive
and continuous for (−∞≤)a < x < b(≤∞) and zero otherwise, and let
Y1, . . . , Yn be the order statistics. Then the p.d.f.’s g1 and gn of Y1 and Yn,
respectively, are given by:

g1(y1) =
{

n[1 − F(y1)]n−1 f (y1), a < y1 < b

0, otherwise,
(28)

and

gn(yn) =
{

n[F(yn)]n−1 f (yn), a < yn < b

0, otherwise.
(29)
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PROOF First, derive the d.f.’s involved and then differentiate them to obtain
the respective p.d.f.’s. To this end,

Gn(yn) = P(Yn ≤ yn) = P[max(X1, . . . , Xn) ≤ yn]

= P(all X1, . . . , Xn ≤ yn) = P(X1 ≤ yn, . . . , Xn ≤ yn)

= P(X1 ≤ yn) · · · P(Xn ≤ yn) (by the independence of the Xi’s)

= [F(yn)]n.

That is, Gn(yn) = [F(yn)]n, so that

gn(yn) = d

dyn

Gn(yn) = n[F(yn)]n−1 d

dyn

F(yn) = n[F(yn)]n−1 f (yn).

Likewise,

1 − G1(y1) = P(Y1 > y1) = P[min(X1, . . . , Xn) > y1]

= P(all X1, . . . , Xn > y1) = P(X1 > y1, . . . , Xn > y1)

= P(X1 > y1) · · · P(Xn > y1) (by the independence of the Xi’s)

= [1 − P(X1 ≤ y1)] · · · [1 − P(X1 ≤ y1)] = [1 − F(y1)]n.

That is, 1 − G1(y1) = [1 − F(y1)]n, so that

−g1(y1) = d

dy1
[1 − G1(y1)] = n[1 − F(y1)]n−1 d

dy1
[1 − F(y1)]

= n[1 − F(y1)]n−1[− f (y1)] = −n[1 − F(y1)]n−1 f (y1),

and hence

g1(y1) = n[1 − F(y1)]n−1 f (y1). ▲

As an illustration of the theorem, consider the following example.

EXAMPLE 10 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1). Then, for
0 < y1, yn < 1:

g1(y1) = n(1 − y1)n−1 and gn(yn) = nyn−1
n .

DISCUSSION Here, for 0 < x < 1, f (x) = 1 and F(x) = x. Therefore
relations (28) and (29) give, for 0 < y1, yn < 1:

g1(y1) = n(1 − y1)n−1 · 1 = n(1 − y1)n−1 and gn(yn) = nyn−1
n ,

as asserted.
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As a further illustration of the theorem, consider the following example,
which is of interest in its own right.

EXAMPLE 11 If X1, . . . , Xn are independent r.v.’s having the Negative Exponential distribu-
tion with parameter λ, then Y1 has also the Negative Exponential distribution
with parameter nλ.

DISCUSSION Here f (x) = λe−λx and F(x) = 1 − e−λx for x > 0. Then,
for y1 > 0, formula (28) yields:

g1(y1) = n(e−λy1 )n−1 × λe−λy1 = (nλ)e−(n−1)y1e−λy1 = (nλ)e−(nλ)y1 ,

as was to be seen.

EXAMPLE 12 (i) In a complex system, n identical components are connected serially, so
that the system works, if and only if all n components function. If the
lifetime of said components is described by a r.v. X with d.f. F and p.d.f.
f , write out the expression for the probability that the system functions
for at least t time units.

(ii) Do the same as in part (i), if the components are connected in parallel,
so that the system functions, if and only if at least one of the components
works.

(iii) Simplify the expressions in parts (i) and (ii), if f is the Negative Expo-
nential with parameter λ.

DISCUSSION

(i) Clearly, P(system works for at least t time units)

= P(X1 ≥ t, . . . , Xn ≥ t) (where Xi is the lifetime of the
ith component)

= P(Y1 ≥ t) (where Y1 is the smallest order statistic)

=
∫ ∞

t

g1(y) dy (where g1 is the p.d.f. of Y1)

=
∫ ∞

t

n[1 − F(y)]n−1 f (y) dy (by (28)). (30)

(ii) Here
P(system works for at least t time units)

= P(at least one of X1, . . . , Xn ≥ t)

= P(Yn ≥ t) (where Yn is the largest order statistic)

=
∫ ∞

t

gn(y) dy (where gn is the p.d.f. of Yn)

=
∫ ∞

t

n[F(y)]n−1 f (y) dy (by (29)). (31)
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(iii) Here F(y) = 1 − e−λy and f (y) = λe−λy (y > 0) from Example 11. Also,
from the same example, the p.d.f. of Y1 is g1(y) = (nλ)e−(nλ)y, so that (30)
gives:

P(Y1 ≥ t) =
∫ ∞

t

(nλ)e−(nλ)y dy

= −
∫ ∞

t

de−(nλ)y dy

= −e−(nλ)y
∣∣∞
t

= e−nλt,

and, by (31),

P(Yn ≥ t) =
∫ ∞

t

n(1 − e−λy)n−1λe−λy dy.

For example, for n = 2, this last probability is equal to:∫ ∞

t

2(1 − e−λy)λe−λy dy = 2
∫ ∞

t

λe−λy dy −
∫ ∞

t

2λe−2λy dy

= −2
∫ ∞

t

de−λy +
∫ ∞

t

de−2λy

= −2e−λy
∣∣∞
t

+ e−2λy
∣∣∞
t

= 2e−λt − e−2λt.

Exercises

5.1 Let X1, . . . , Xn be independent r.v.’s with p.d.f. f (x) = cx−(c+1), x >

1 (c > 0), and set U = Y1 = min (X1, . . . , Xn), V = Yn = max (X1, . . . , Xn).
(i) Determine the d.f. F corresponding to the p.d.f. f .

(ii) Use Theorem 13 to determine the p.d.f.’s fU and fV .

5.2 Refer to Example 10 and calculate the expectations EY1 and EYn, and
also determine the lim EYn as n → ∞.

5.3 Let Y1 and Yn be the smallest and the largest order statistics based on a
random sample X1, . . . , Xn from the U(α, β) (α < β) distribution.
(i) For n = 3 and n = 4, show that the joint p.d.f. of Y1 and Yn is given,

respectively, by:

g13(y1, y3) = 3 × 2
(β − α)2

(y3 − y1), α < y1 < y3 < β,

g14(y1, y4) = 4 × 3
(β − α)3

(y4 − y1)2, α < y1 < y4 < β.

(ii) Generalize the preceding results and show that:

g1n(y1, yn) = n(n − 1)
(β − α)n

(yn − y1)n−2, α < y1 < yn < β.



200 Chapter 6 Transformation of Random Variables

Hint: For part (ii), all one has to do is to calculate the integrals:∫ yn

y1

∫ yn−1

y1

· · ·
∫ y4

y1

∫ y3

y1

dy2dy3 · · · dyn−2dyn−1,

which is done one at a time; also, observe the pattern emerging.

5.4 Let Y1 and Yn be the smallest and the largest order statistics based on a
random sample X1, . . . , Xn from the U(0, 1) distribution. Then show that:

Cov(Y1, Yn) = 1
(n + 1)2(n + 2)

.

Hint: Use the joint p.d.f. taken from Exercise 5.3(ii) for α = 0 and
β = 1.

5.5 If Y1 and Yn are the smallest and the largest order statistics based on a
random sample X1, . . . , Xn from the U(0, 1) distribution:
(i) Show that the p.d.f. of the sample range R = Yn − Y1 is given by:

fR(r) = n(n − 1)rn−2(1 − r), 0 < r < 1.

(ii) Also, calculate the expectation ER.

5.6 Refer to Example 11 and set Z = nY1. Then show that Z is distributed as
the Xi’s.

5.7 The lifetimes of two batteries are independent r.v.’s X and Y with the
Negative Exponential distribution with parameter λ. Suppose that the
two batteries are connected serially, so that the system works if and only
if both work.
(i) Use Example 11 (with n = 2) to calculate the probability that the

system works beyond time t > 0.
(ii) What is the expected lifetime of the system?

(iii) What do parts (i) and (ii) become for λ = 1/3?

5.8 Let Y1 and Yn be the smallest and the largest order statistics based on a
random sample X1, . . . , Xn from the Negative Exponential distribution
with parameter λ. Then, by Example 11, g1(y1) = (nλ)e−(nλ)y1 , y1 > 0.
(i) Use relation (29) (with a = 0 and b = ∞) to determine the p.d.f. gn

of the r.v. Yn.
(ii) Calculate the EYn for n = 2 and n = 3.

5.9 (i) Refer to Exercise 5.8(i) and show that:

EYn = n

λ

n−1∑
r=0

(−1)n−r−1

(
n−1

r

)
(n − r)2

.

(ii) Apply part (i) for n = 2 and n = 3 to recover the values found in
Exercise 5.8 (ii).
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Hint: Consider the binomial expansion: (a+b)k =∑k

r=0

(
k

r

)
arbk−r

and apply it to: (1 − e−λy)n−1 for a = 1, b = −e−λy, and k = n − 1.
Then carry out the multiplications indicated and integrate term by
term.

5.10 Let X1, . . . , Xn be a random sample of size n of the continuous type with
d.f. F and p.d.f. f , positive in −∞ ≤ a < x < b ≤ ∞, and let Y1 and Yn be
the smallest and the largest order statistics of the Xi’s. Use relation (27)
in order to show that the joint p.d.f. g1n of the r.v.’s Y1 and Yn is given by
the expression:

g1n(y1, yn) = n(n − 1)[F(yn) − F(y1)]n−2 f (y1) f (yn), a < y1 < yn < b.

Hint: The p.d.f. g1n is obtained by integrating g(y1, . . . , yn) in (27)
with respect to yn−1, yn−2, . . . , y2 as indicated below:

g1n(y1, yn) = n! f (y1) f (yn)
∫ yn

y1

· · ·
∫ yn

yn−3

∫ yn

yn−2

f (yn−1) f (yn−2) ×

· · · f (y2)dyn−1dyn−2 · · · dy2.

However,∫ yn

yn−2

f (yn−1)dyn−1 = F(yn) − F(yn−2) = [F(yn) − F(yn−2)]1

1!
,

∫ yn

yn−3

[F(yn) − F(yn−2)]1

1!
f (yn−2) dyn−2

= −
∫ yn

yn−3

[F(yn) − F(yn−2)]1

1!
d[F(yn)

−F(yn−2)] = − [F(yn) − F(yn−2)]2

2!

∣∣∣∣yn

yn−3

= [F(yn) − F(yn−3)]2

2!
,

and continuing on like this, we finally get:∫ yn

y1

[F(yn) − F(y2)]n−3

(n − 3)!
f (y2) dy2

= −
∫ yn

y1

[F(yn) − F(y2)]n−3

(n − 3)!
d[F(yn) − F(y2)]

= − [F(yn) − F(y2)]n−2

(n − 2)!

∣∣∣∣yn

y1

= [F(yn) − F(y1)]n−2

(n − 2)!
.

Since n!
(n−2)! = n(n − 1), the result follows.



Chapter 7

Some Modes
of Convergence

of Random Variables,
Applications

The first thing which is done in this chapter is to introduce two modes of con-
vergence for sequences of r.v.’s, convergence in distribution and convergence
in probability, and then to investigate their relationship.

A suitable application of these convergences leads to the most important
results in this chapter, which are the Weak Law of Large Numbers and the
Central Limit Theorem. These results are illustrated by concrete examples,
including numerical examples in the case of the Central Limit Theorem.

In the final section of the chapter, it is shown that convergence in probability
is preserved under continuity. This is also the case, in a limited sense, for
convergence in distribution. These statements are illustrated by two general
results and a specific application.

The proofs of some of the theorems stated are given in considerable detail;
in some cases, only a rough outline is presented, whereas in other cases, we
restrict ourselves to the statements of the theorems alone.

7.1 Convergence in Distribution or in Probability and their Relationship

In all that follows, X1, . . . , Xn are i.i.d. r.v.’s, which may be either discrete
or continuous. In applications, these r.v.’s represent n independent observa-
tions on a r.v. X, associated with an underlying phenomenon which is of im-
portance to us. In a probabilistic/statistical environment, our interest lies in
knowing the distribution of X, whether it is represented by the probabilities

202
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P(X ∈ B), B ⊆ �, or the d.f. F of the Xi’s, or their p.d.f. f. In practice,
this distribution is unknown to us. Something then that would be desir-
able would be to approximate the unknown distribution, in some sense, by
a known distribution. In this section, the foundation is set for such an
approximation.

DEFINITION 1
Let Y1, . . . , Yn be r.v.’s with respective d.f.’s. F1, . . . , Fn. The r.v.’s may
be either discrete or continuous and need be neither independent nor
identically distributed. Also, let Y be a r.v. with d.f. G. We say that the
sequence of r.v.’s {Yn}, n ≥ 1, converges in distribution to the r.v. Y as
n → ∞ and write Yn

d−→
n→∞ Y , if Fn(x) −→

n→∞ G(x) for all continuity points x

of G.

1

0.9

0.8

0.7

0.6

0.5

F
(x

)

0.4

0.3

0.2

−2.5 −2 −1 0
x

−1.5 −0.5 0.5 1.51 2

true d.f.

approximating d.f.s

2.5

0.1

0

,

Figure 7.1

The d.f. Represented by
the Solid Curve Is
Approximated by the
d.f.’s Represented by the
· · · · · · ·, · − · − · − ·,
and − − − − − Curves

The following example illustrates the definition.

EXAMPLE 1 For n ≥ 1, let the d.f.’s Fn and the d.f. G be given by:

Fn(x) =

⎧⎪⎨⎪⎩
0, if x < 1 − 1

n

1
2 , if 1 − 1

n
≤ x < 1 + 1

n

1, if x ≥ 1 + 1
n

, G(x) =
{

0, if x < 1

1, if x ≥ 1,

and discuss whether or not Fn(x) converges to G(x) as n → ∞.
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Fn(x)
Fn1

0 0 1

1

x

G(x)

x
1

1
2

11− n 1+ 1
n

Figure 7.2

The d.f. G Is
Approximated by the
d.f.’s Fn at all Points
x =� = 1

DISCUSSION The d.f. G is continuous everywhere except for the point
x = 1. For x < 1, let n0 > 1/(1 − x). Then x < 1 − 1

n0
and also x < 1 − 1

n

for all n ≥ n0. Thus, Fn(x) = 0, n ≥ n0. For x > 1, let n0 ≥ 1/(x − 1). Then
x ≥ 1+ 1

n0
and also x ≥ 1+ 1

n
for all n ≥ n0, so that Fn(x) = 1, n ≥ n0. Thus, for

x �= 1, Fn(x) → G(x), so, if Yn and Y are r.v.’s such that Yn ∼ Fn and Y ∼ G,
then Yn

d−→
n→∞ Y.

REMARK 1 The example also illustrates the point that, if x is a discontinuity
point of G, then Fn(x) need not converge to G(x). In Example 1, Fn(1) = 1

2 for
all n, and G(1) = 1.

The idea, of course, behind Definition 1 is the approximation of the (pre-
sumably unknown) probability P(Y ≤ x) = G(x) by the (presumably known)
probabilities P(Yn ≤ x) = Fn(x), for large enough n. Convergence in distribu-
tion also allows the approximation of probabilities of the form P(x < Y ≤ y)
by the probabilities P(x < Yn ≤ y), for x and y continuity points of G. This is
so because

P(x < Yn ≤ y) = P(Yn ≤ y) − P(Yn ≤ x) = Fn(y) − Fn(x)

−→
n→∞G(y) − G(x) = P(x < Y ≤ y).

Whereas convergence in distribution allows the comparison of certain
probabilities, calculated in terms of the individual r.v.’s Yn and Y , it does
not provide evaluation of probabilities calculated on the joint behavior of Yn

and Y. This is taken care of to a satisfactory extent by the following mode of
convergence.

DEFINITION 2
The sequence of r.v.’s {Yn}, n ≥ 1, converges in probability to the r.v.
Y as n→ ∞, if, for every ε > 0, P(|Yn − Y| > ε) −→

n→∞ 0; equivalently,

P(|Yn − Y| ≤ ε) −→
n→∞ 1. The notation used is: Yn

P−→
n→∞ Y .

Thus, if the event An(ε) is defined by: An(ε) = {s ∈ S;Y(s) − ε ≤ Yn(s) ≤
Y(s) + ε}, (that is, the event for which the r.v. Yn is within ε from
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the r.v. Y ), then P(An(ε)) −→
n→∞ 1 for every ε > 0. Equivalently, P(Ac

n(ε)) =
P({s ∈ S; Yn(s) < Y(s) − ε or Yn(s) > Y(s) + ε}) −→

n→∞ 0.

Y

Yn

Y − e Y + e

The probability that Yn lies within a small neighborhood around Y , such as
(Yn − ε, Yn + ε), is as close to 1 as one pleases, provided n is sufficiently large.

It is rather clear that convergence in probability is stronger than con-
vergence in distribution. That this is, indeed, the case is illustrated by the
following example, where we have convergence in distribution but not in
probability.

EXAMPLE 2 Let S = {1, 2, 3, 4}, and on the subsets of S, let P be the discrete uniform
probability function. Define the following r.v.’s:

Xn(1) = Xn(2) = 1, Xn(3) = Xn(4) = 0, n = 1, 2, . . . ,

and

X(1) = X(2) = 0, X(3) = X(4) = 1.

DISCUSSION Then

|Xn(s) − X(s)| = 1 for all s ∈ S.

Hence Xn does not converge in probability to X, as n → ∞. Now,

Fn(x) =

⎧⎪⎨⎪⎩
0, x < 0
1
2 , 0 ≤ x < 1, G(x) =

⎧⎪⎨⎪⎩
0, x < 0
1
2 , 0 ≤ x < 1

1, x ≥ 1,1, x ≥ 1

so that Fn(x) = G(x) for all x ∈ �. Thus, trivially, Fn(x) −→
n→∞ G(x) for all conti-

nuity points of G; that is, Xn

d−→
n→∞ X, but Xn does not converge in probability

to X.

The precise relationship between convergence in distribution and conver-
gence in probability is stated in the following theorem.
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THEOREM 1
Let {Yn}, n ≥ 1, be a sequence of r.v.’s and let Y be a r.v. Then Yn

P−→
n→∞ Y

always implies Yn

d−→
n→∞ Y. The converse is not true in general (as illus-

trated by Example 2). However, it is true if P(Y = c) = 1, where c is a
constant. That is, Yn

d−→
n→∞ c implies Yn

P−→
n→∞ c, so that Yn

P−→
n→∞ c if and

only if Yn

d−→
n→∞ c.

PROOF (outline) That Yn

P−→
n→∞ Y implies Yn

d−→
n→∞ Y is established by employ-

ing the concepts of lim inf (limit inferior) and lim sup(limit superior) of a
sequence of numbers, and we choose not to pursue it. For the proof of
the fact that Yn

d−→
n→∞ c implies Yn

P−→
n→∞ c, observe that F(x) = 0, for x< c and

F(x) = 1 for x ≥ c, where F is the d.f. of c so that c − ε and c + ε are continuity
points of F for all ε > 0. But P(|Yn − c| ≤ ε) = P(c − ε ≤ Yn ≤ c + ε) =
P(Yn ≤ c + ε) − P(Yn < c − ε) = Fn(c + ε) − P(Yn < c − ε). However,
Fn(c + ε) −→

n→∞ 1 and P(Yn < c − ε) ≤ P(Yn ≤ c − ε) = Fn(c − ε) −→
n→∞ 0, so that

P(Yn < c − ε) −→
n→∞ 0. Thus, P(|Yn − c| ≤ ε) −→

n→∞ 1 or Yn

P−→
n→∞ c. ▲

According to Definition 1, in order to establish that Yn

d−→
n→∞ Y , all one

has to do is to prove the (pointwise) convergence Fn(x) −→
n→∞ F(x) for ev-

ery continuity point x of F. As is often the case, however, definitions do not
lend themselves to checking the concepts defined. This also holds here. Ac-
cordingly, convergence in distribution is delegated to convergence of m.g.f.’s,
which, in general, is a much easier task to perform. That this can be done is
based on the following deep probabilistic result. Its justification is omitted
entirely.

THEOREM 2
(Continuity Theorem) For n = 1, 2, . . . , let Yn and Y be r.v.’s with
respective d.f.’s Fn and F , and respective m.g.f.’s Mn and M (which are
assumed to be finite at least in an interval (−c, c), some c > 0). Then:

(i) If Fn(x) −→
n→∞ F(x) for all continuity points x of F , it follows that

Mn(t) −→
n→∞ M(t) for all t ∈ (−c, c).

(ii) Let Mn(t) −→
n→∞ g(t), t ∈ (−c, c), some function g, which is con-

tinuous at t = 0. Then g is, actually, a m.g.f. and let F be the corre-
sponding d.f. It follows that Fn(x) −→

n→∞ F(x) for all continuity points x

of F .

Thus, according to this result, Yn

d−→
n→∞ Y or, equivalently, Fn(x) −→

n→∞
F(x) for all continuity points x of F , if and only if Mn(t) −→

n→∞ M(t), t ∈ (−c, c),
some c > 0. The fact that convergence of m.g.f.’s implies convergence of the
respective d.f.’s is the most useful part from a practical viewpoint.
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Exercises

1.1 For n= 1, 2, . . . , let Xn be a r.v. with d.f. Fn defined by: Fn(x) = 0 for x < n,
and Fn(x) = 1 for x ≥ n. Then show that Fn(x) −→

n→∞ F(x), which is identi-
cally 0 in � and hence it is not a d.f. of a r.v.

1.2 Let {Xn}, n ≥ 1, be r.v.’s with Xn taking the values 1 and 0 with respective
probabilities pn and 1 − pn; i.e., P(Xn = 1) = pn and P(Xn = 0) = 1 − pn.

Then show that Xn

P−→
n→∞ 0, if and only if pn −→

n→∞ 0.

1.3 For n = 1, 2, . . . , let Xn be a r.v. distributed as B(n, pn) and suppose that
npn −→

n→∞ λ ∈ (0, ∞). Then show that Xn

d−→
n→∞ X, where X is a r.v. dis-

tributed as P(λ), by showing that MXn
(t) −→

n→∞ MX(t), t ∈ �.

1.4 Let Y1,n and Yn,n be the smallest and the largest order statistics based on
the random sample X1, . . . , Xn from the U(0, 1) distribution. Then show
that:

(i) Y1,n
P−→

n→∞ 0; (ii) Yn,n
P−→

n→∞ 1.

Hint: For ε > 0, calculate the probabilities: P(|Y1,n| > ε) and P(|Yn,n−
1| > ε) and show that they tend to 0 as n → ∞. Use the p.d.f.’s of Y1,n

and Yn,n determined in Example 10 of Chapter 6.

1.5 Refer to Exercise 1.4 and set: Un = nY1,n, Vn = n(1 − Yn,n), and let U and
V be r.v.’s having the Negative Exponential distribution with parameter
λ = 1. Then:
(i) Derive the p.d.f.’s of the r.v.’s Un and Vn.

(ii) Derive the d.f.’s of the r.v.’s Un and Vn, and show that Un

d−→
n→∞ U by

showing that

FUn
(u) −→

n→∞ FU (u), u ∈ �.

Likewise for Vn.

1.6 We say that a sequence {Xn}, n ≥ 1, of r.v.’s converges to a r.v. X in
quadratic mean and write

Xn

q.m.−→
n→∞ X or Xn

(2)−→
n→∞ X, if E(Xn − X )2 −→

n→∞ 0.

Now, if X1, . . . , Xn are i.i.d. r.v.’s with (finite) expectation μ and (finite)
variance σ 2, show that the sample mean X̄n

q.m.−→
n→∞ μ.

1.7 In Theorem 1 of Chapter 4, the following, version of the Cauchy–Schwarz

inequality was established: For any two r.v.’s X and Y with EX = EY = 0
and Var(X ) = Var(Y ) = 1, it holds: |E(XY )| ≤ 1. (This is, actually, part
only of said inequality.) Another more general version of this inequality
is the following: For any two r.v.’s X and Y with finite expectations and
variances, it holds: |E(XY )| ≤ E|XY| ≤ E1/2|X|2 × E1/2|Y|2.
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(i) Prove the inequality in this setting.
(ii) For any r.v. X, show that |EX| ≤ E|X| ≤ E1/2|X|2.

Hint: For part (i), use the obvious result (x±y)2 = x 2+y 2±2xy ≥ 0 in
order to conclude that ±xy ≤ 1

2 (x2 + y2) and hence |xy| ≤ 1
2 (x2 + y2).

Next, replace x by X/E1/2|X|2, and y by Y/E1/2|Y|2 (assuming, of
course, that E|X|2 > 0, E|Y|2 > 0, because otherwise the inequal-
ity is, trivially, true), and take the expectations of both sides to arrive
at the desirable result.

1.8 Let {Xn} and {Yn}, n ≥ 1, be two sequences of r.v.’s such that: Xn

q.m.−→
n→∞ X,

some r.v., and Xn − Yn

q.m.−→
n→∞ 0. Then show that Yn

q.m.−→
n→∞ X.

Hint: Use appropriately the Cauchy–Schwarz inequality discussed in
Exercise 1.7.

7.2 Some Applications of Convergence in Distribution: The Weak Law of Large Numbers
and the Central Limit Theorem

As a first application of the concept of convergence in distribution, we have
the so-called Weak Law of Large Numbers (WLLN). This result is stated and
proved, an interpretation is provided, and then a number of specific applica-
tions are presented.

THEOREM 3
(Weak Law of Large Numbers, WLLN) Let X1, X2, . . . be i.i.d. r.v.’s
with (common) finite expectation μ, and let X̄n be the sample mean of
X1, . . . , Xn. Then X̄n

d−→
n→∞ μ, or (on account of Theorem 1) X̄n

P−→
n→∞ μ.

PROOF The proof is a one-line proof, if it happens that the Xi’s also have
a (common) finite variance σ 2 (which they are not required to have for the
validity of the theorem). Since EX̄n =μ and Var(X̄n) = σ 2

n
, the Tchebichev

inequality gives, for every ε > 0, P(|X̄n − μ| > ε) ≤ 1
ε2 × σ 2

n
−→
n→∞ 0, so that

X̄n

P−→
n→∞ μ.
Without reference to the variance, one would have to show that MX̄n

(t) −→
n→∞

Mμ(t) (for t ∈ (−c, c), some c > 0). Let M stand for the (common) m.g.f. of the
Xi’s. Then use familiar properties of the m.g.f. and independence of the Xi’s in
order to obtain:

MX̄n
(t) = M∑n

i=1 Xi

(
t

n

)
=

n∏
i=1

MXi

(
t

n

)
=
[

M

(
t

n

)]n
.

Consider the function M(z), and expand it around z= 0 according to
Taylor’s formula up to terms of first order to get:

M(z) = M(0) + z

1!
d

dz
M(z)|z=0 + R(z)

(
1
z

R(z) → 0 as z → 0
)

= 1 + zμ + R(z),
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since M(0) = 1 and d

dz
M(z)|z=0 = EX1 = μ. Replacing z by t/n, for fixed t, the

last formula becomes:

M

(
t

n

)
= 1 + t

n
μ + R

(
t

n

)
, where nR

(
t

n

)
→ 0 as n → ∞.

Therefore

MX̄n
(t) =
[

1 + μt + nR
(

t

n

)
n

]n
,

and this converges to eμt, as n → ∞, by Remark 2 below. Since eμt is the
m.g.f. of (the degenerate r.v.) μ, we have shown that MX̄n

(t) −→
n→∞ Mμ(t), as was

to be seen. ▲

REMARK 2 For every z ∈ �, one way of defining the exponential function
ez is: ez = limn→∞(1 + z

n
)n. It is a consequence of this result that, as n → ∞,

also (1 + zn

n
)n → ez whenever zn → z.

The interpretation and most common use of the WLLN is that, if μ is an
unknown entity, which is typically the case in statistics, then μ may be approx-
imated (in the sense of distribution or probability) by the known entity X̄n, for
sufficiently large n.

7.2.1 Applications of the WLLN

1. If the independent Xi’s are distributed as B(1, p), then EXi = p and there-
fore X̄n

P−→
n→∞ p.

2. If the independent Xi’s are distributed as P(λ), then EXi = λ and therefore
X̄n

P−→
n→∞ λ.

3. If the independent Xi’s are distributed as N(μ, σ 2), then EXi = μ and
therefore X̄n

P−→
n→∞ μ.

4. If the independent Xi’s are distributed as Negative Exponential with param-
eter λ, f (x) = λe−λx, x > 0, then EXi = 1/λ and therefore X̄n

P−→
n→∞ 1/λ.

A somewhat more involved application is that of the approximation of
an entire d.f. by the so-called empirical d.f. To this effect:

5. Let X1, X2, . . . , Xn be i.i.d. r.v.’s with d.f. F , and define the empirical d.f. Fn

as follows. For each x ∈ � and each s ∈ S,

Fn(x, s) = 1
n

[number of X1(s), . . . , Xn(s) ≤ x].

From this definition, it is immediate that, for each fixed x ∈ �, Fn(x, s) is a
r.v. as a function of s, and for each fixed s ∈ S, Fn(x, s) is a d.f. as a function of x.

Actually, if we set Yi(x, s) = 1 when Xi(s) ≤ x, and Yi(x, s) = 0 when Xi(s) > x,
then Yi(x, ·), . . . , Yi(x, ·) are r.v.’s which are independent and distributed as
B(1, F(x)), since P[Yi(x, ·) = 1] = P(Xi ≤ x) = F(x). Also, EYi(x, ·) = F(x).
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Then Fn(x, s) may be rewritten as:

Fn(x, s) = 1
n

n∑
i=1

Yi(x, s), the sample mean of Y1(x, s), . . . ,Yn(x, s).

By omitting the sample point s, as is usually the case, we write Fn(x) and
Yi(x), i= 1, . . . , n rather than Fn(x, s) and Yi(x, s), i= 1, . . . , n, respectively.
Then Fn(x)

P−→
n→∞ F(x) for each x ∈ �. Thus, for every x ∈ �, the value of F(x)

of the (potentially unknown) d.f. F is approximated by the (known) values
Fn(x) of the r.v.’s Fn(x).

REMARK 3 Actually, it can be shown that the convergence Fn(x)
P−→

n→∞ F(x)
is uniform in x ∈ �. This implies that, for every ε > 0, there is a positive
integer N(ε) such that Fn(x) − ε < F(x) < Fn(x) + ε with probability as close
to 1 as one pleases simultaneously for all x ∈ �, provided n > N(ε).

As another application of the concept of convergence in distribution, we
obtain, perhaps, the most celebrated theorem of Probability Theory; it is the
so-called Central Limit Theorem (CLT), which is stated and proved below.
Comments on the significance of the CLT follow, and the section is concluded
by applications and numerical examples.

THEOREM 4
(Central Limit Theorem, CLT) Let X1, X2, . . . be i.i.d. r.v.’s with finite
expectation μ and finite and positive variance σ 2, and let X̄n be the sample
mean of X1, . . . , Xn. Then:

X̄n − EX̄n√
Var(X̄n)

= X̄n − μ
σ√
n

=
√

n(X̄n − μ)
σ

d−→
n→∞ Z ∼ N(0, 1),

or

P

[√
n(X̄n − μ)

σ
≤ z

]
−→
n→∞ 
(z) =

∫ z

−∞

1√
2π

e− x 2

2 dx, z ∈ �. (1)

(Also, see Remark 4(iii).)

REMARK 4

(i) Denote by Sn the partial sum
∑n

i=1 Xi, Sn = ∑n

i=1 Xi, so that ESn = nμ

and Var(Sn) = nσ 2. Then:

Sn − ESn√
Var(Sn)

= Sn − nμ

σ
√

n
= X̄n − μ

σ/
√

n
=

√
n(X̄n − μ)

σ
.

Therefore, by (1):

P

(
Sn − nμ

σ
√

n
≤ z

)
−→
n→∞ 
(z), z ∈ �. (2)

(Although the notation Sn has been used before (relation (12) in Chapter
5) to denote the sample standard deviation of X1, . . . , Xn, there should be
no confusion; from the context, it should be clear what Sn stands for.)
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(ii) An interpretation of (1) and (2) is that, for sufficiently large n:

P

[√
n(X̄n − μ)

σ
≤ z

]
= P

(
Sn − nμ

σ
√

n
≤ z

)
� 
(z), z ∈ �. (3)

Often this approximation is also denoted (rather loosely) as follows:
√

n(X̄n − μ)
σ

� N(0, 1) or X̄n � N

(
μ,

σ 2

n

)
or Sn � N(nμ, nσ 2.)

(4)
(iii) Actually, it can be shown that the convergence in (1) or (2) is uniform in

z ∈ �. That is to say, if we set

Fn(z) = P

[√
n(X̄n − μ)

σ
≤ z

]
= P

(
Sn − nμ

σ
√

n
≤ z

)
, (5)

then

Fn(z) −→
n→∞ 
(z) uniformly in z ∈ �. (6)

To be more precise, for every ε > 0, there exists a positive integer N(ε)
independent of z ∈ �, such that

|Fn(z) − 
(z)| < ε for n ≥ N(ε) and all z ∈ �. (7)

(iv) The approximation of the probability Fn(z) by 
(z), provided by the CLT,
is also referred to as Normal approximation for obvious reasons.

(v) On account of (3), the CLT also allows for the approximation of probabil-
ities of the form P(a < Sn ≤ b) for any a < b. Indeed,

P(a < Sn ≤ b) = P(Sn ≤ b) − P(Sn ≤ a)

= P

(
Sn − nμ

σ
√

n
≤ b − nμ

σ
√

n

)
− P

(
Sn − nμ

σ
√

n
≤ a − nμ

σ
√

n

)
= P

(
Sn − nμ

σ
√

n
≤ b∗

n

)
− P

(
Sn − nμ

σ
√

n
≤ a∗

n

)
,

where

a∗
n = a − nμ

σ
√

n
and b∗

n = b − nμ

σ
√

n
. (8)

By (3),

P

(
Sn − nμ

σ
√

n
≤ b∗

n

)
� 
(b∗

n) and P

(
Sn − nμ

σ
√

n
≤ a∗

n

)
� 
(a∗

n),

so that

P(a < Sn ≤ b) � 
(b∗
n) − 
(a∗

n). (9)

The uniformity referred to in Remark 3(iii) is what, actually, validates
many of the applications of the CLT. This is the case, for instance, in
Remark 3(v).
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(vi) So, the convergence in (i) is a special case of the convergence depicted in
Figure 7.1, where the limiting d.f. is 
 and Fn is the d.f. of

√
n(X̄n−μ)

σ
. This

convergence holds for all x ∈ � since 
 is a continuous function in �.

EXAMPLE 3 From a large collection of bolts which is known to contain 3% defective bolts,
1,000 are chosen at random. If X is the number of the defective bolts among
those chosen, what is the (approximate) probability that X does not exceed
5% of 1,000?

DISCUSSION With the selection of the ith bolt, associate the r.v. Xi to take
the value 1, if the bolt is defective, and 0 otherwise. Then it may be assumed
that the r.v.’s Xi, i = 1, . . . , 1,000 are independently distributed as B(1, 0.03).
Furthermore, it is clear that X =∑1,000

i=1 Xi. Since 5% of 1,000 is 50, the required
probability is: P(X ≤ 50). Since EXi = 0.03, Var(Xi) = 0.03 × 0.97 = 0.0291,
the CLT gives:

P(X ≤ 50) = P(0 ≤ X ≤ 50) = P(−0.5 < X ≤ 50)

= P(X ≤ 50) − P(X ≤ −0.5) � 
(b∗
n) − 
(a∗

n),

where a∗
n = −0.5 − 1,000 × 0.03√

1,000 × 0.03 × 0.97
= − 30.5√

29.1
� − 30.5

5.394
� −5.65,

b∗
n = 50 − 1,000 × 0.03√

1,000 × 0.03 × 0.97
= 20√

29.1
� 20

5.394
� 3.71,

so that

P(X ≤ 50) � 
(3.71) − 
(−5.65) = 
(3.71) = 0.999896.

EXAMPLE 4 A certain manufacturing process produces vacuum tubes whose lifetimes in
hours are independent r.v.’s with Negative Exponential distribution with mean
1,500 hours. What is the probability that the total life of 50 tubes will exceed
80,000 hours?

DISCUSSION If Xi is the r.v. denoting the lifetime of the ith vacuum tube,
then Xi, i = 1, . . . , 50 are independent Negative Exponentially distributed
with EXi = 1

λ
= 1,500 and Var(Xi) = 1

λ2 = 1,5002. Since nEXi = 50 × 1,500 =
75,000, σ

√
n = 1,500

√
50, if we set S50 =∑50

i=1 Xi, then the required probability
is:

P(S50 > 80,000) = 1 − P(S50 ≤ 80,000) � 1 − 


(
80,000 − 75,000

1,500
√

50

)

= 1 − 


(√
50

15

)
� 1 − 
(0.47)

= 1 − 0.680822 = 0.319178 � 0.319.

The proof of the theorem is based on the same ideas as those used in the
proof of the WLLN and goes as follows.
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PROOF OF THEOREM 4 Set Zi = Xi−μ

σ
, so that Z1, . . . , Zn are i.i.d. r.v.’s with

EZi = 0 and Var(Zi) = 1. Also,

1√
n

n∑
i=1

Zi = 1

σ
√

n
(Sn − nμ) =

√
n(X̄n − μ)

σ
. (10)

With Fn defined by (5), we wish to show that (6) holds (except for the unifor-
mity assertion, with which we will not concern ourselves). Its justification is
provided by Lemma 1, pages 206–207, in the book “A Course in Mathematical
Statistics,” 2nd edition (1997), Academic Press, by G. G. Roussas. By Theorem
2, it suffices to show that, for all t,

M√
n(X̄n−μ)/σ (t) −→

n→∞ MZ(t) = et2/2. (11)

By means of (10), and with M standing for the (common) m.g.f. of the Zi’s, we
have:

M√
n(X̄n−μ)/σ (t) = M 1√

n

∑n
i=1 Zi

(t) = M∑n
i=1 Zi

(
t√
n

)
=

n∏
i=1

MZi

(
t√
n

)
=
[

M

(
t√
n

)]n
. (12)

Expand the function M(z) around z = 0 according to Taylor’s formula up to
terms of second order to get:

M(z) = M(0) + z

1!
d

dz
M(z)|z=0 + z2

2!
d2

dz2
M(z)|z=0 + R(z)

= 1 + zEZ1 + z2

2
EZ2

1 + R(z)

= 1 + z2

2
+ R(z), where

1
z2

R(z) → 0 as z → 0.

In this last formula, replace z by t/
√

n, for fixed t, in order to obtain:

M

(
t√
n

)
= 1 + t2

2n
+ R

(
t√
n

)
, nR

(
t√
n

)
→ 0 as n → ∞.

Therefore (12) becomes:

M√
n(X̄n−μ)/σ (t) =

[
1 + t2

2n
+ R

(
t√
n

)]n
=
⎧⎨⎩1 +

t2

2

[
1 + 2n

t2 R

(
t√
n

)]
n

⎫⎬⎭
n

,

and this converges to et2/2, as n → ∞, by Remark 2. This completes the proof
of the theorem. ▲

7.2.2 Applications of the CLT

In all of the following applications, it will be assumed that n is sufficiently
large, so that the CLT will apply.

1. Let the independent Xi’s be distributed as B(1, p), set Sn =∑n

i=1 Xi, and
let a, b be integers such that 0 ≤ a < b ≤ n. By an application of the CLT, we
wish to find an approximate value to the probability P(a < Sn ≤ b).
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If p denotes the proportion of defective items in a large lot of certain
items, then Sn is the number of actually defective items among the n sampled.
Then approximation of the probability P(a < S ≤ b) is meaningful when the
Binomial tables are not usable (either because of p or because of nor, perhaps,
because of both).

Here EXi = p, Var(Xi) = pq (q = 1 − p), and therefore by (9):

P(a < Sn ≤ b) � 
(b∗
n) − 
(a∗

n), where a∗
n = a − np√

npq
, b∗

n = b − np√
npq

. (13)

REMARK 5 If the required probability is of any one of the forms: P(a ≤
Sn ≤ b) or P(a ≤ Sn < b) or P(a < Sn < b), then formula (9) applies again,
provided the necessary adjustments are first made; namely, P(a ≤ Sn ≤ b) =
P(a − 1 < Sn ≤ b), P(a ≤ Sn < b) = P(a − 1 < Sn ≤ b − 1), P(a < Sn < b) =
P(a < Sn ≤ b − 1). However, if the underlying distribution is continuous, then
P(a < Sn ≤ b) = P(a ≤ Sn ≤ b) = P(a ≤ Sn < b) = P(a < Sn < b), and no
adjustments are required for the approximation in (9) to hold.

EXAMPLE 5 (Numerical) For n = 100 and p = 1
2 or p = 5

16 , find the probability P(45 ≤
Sn ≤ 55).

DISCUSSION

(i) For p = 1
2 , it is seen (from tables) that the exact value is equal to: 0.7288.

For the Normal approximation, we have: P(45 ≤ Sn ≤ 55) = P(44 < Sn ≤
55) and, by (13):

a∗ = 44 − 100 × 1
2√

100 × 1
2 × 1

2

= −6
5

= −1.2, b∗ = 55 − 100 × 1
2√

100 × 1
2 × 1

2

= 5
5

= 1.

Therefore 
(b∗) − 
(a∗) = 
(1) − 
(−1.2) = 
(1) + 
(1.2) − 1 =
0.841345 + 0.884930 − 1 = 0.7263. So:

Exact value: 0.7288, Approximate value: 0.7263,

and the exact probability is underestimated by 0.0025, or the approximat-
ing probability is about 99.66% of the exact probability.

(ii) For p = 5
16 , the exact probability is almost 0; 0.0000. For the approximate

probability, we find a∗ = 2.75 and b∗ = 4.15, so that 
(b∗) − 
(a∗) =
0.0030. Thus:

Exact value: 0.0000, Approximate value: 0.0030,

and the exact probability is overestimated by 0.0030.

2. If the underlying distribution is P(λ), then ESn = Var(Sn) = nλ and
formulas (8) and (9) become:

P(a < Sn ≤ b) � 
(b∗
n) − 
(a∗

n), a∗
n = a − nλ√

nλ
, b∗

n = b − nλ√
nλ

.

The comments made in Remark 4 apply here also.
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EXAMPLE 6 (Numerical) In the Poisson distribution P(λ), let n and λ be so that nλ = 16
and find the probability P(12 ≤ Sn ≤ 21)(= P(11 < Sn ≤ 21)).

DISCUSSION The exact value (found from tables) is: 0.7838. For the
Normal approximation, we have:

a∗ = 11 − 16√
16

= −5
4

= −1.25, b∗ = 21 − 16√
16

= 5
4

= 1.25,

so that 
(b∗) −
(a∗) =
(1.25) − 
(−1.25) = 2
(1.25) − 1 = 2 × 0.894350 − 1
= 0.7887. So:

Exact value: 0.7838, Approximate value: 0.7887,

and the exact probability is overestimated by 0.0049, or the approximating
probability is about 100.63% of the exact probability.

7.2.3 The Continuity Correction

When a discrete distribution is approximated by the Normal distribution, the
error committed is easy to see in a geometric picture. This is done, for instance
in Figure 7.3, where the p.d.f. of the B(10, 0.2) distribution is approximated
by the p.d.f. of the N(10 × 0.2, 10 × 0.2 × 0.8) = N(2, 1.6) distribution (see
relation (4)). From the same figure, it is also clear how the approximation may
be improved.

0.3

0.2

0.1

0 1 2 3 4 5

N(2, 1.6)

Figure 7.3

Exact and
Approximate Values
for the Probability
P(a ≤ Sn ≤ bn) =

P(a− 1 < Sn ≤
bn) = P(1< Sn ≤ 3)

Now

P(1 < Sn ≤ 3) = P(2 ≤ Sn ≤ 3) = fn(2) + fn(3)

= shaded area,

while the approximation without correction is the area bounded by the Normal
curve, the horizontal axis, and the abscissas 1 and 3. Clearly, the correction,
given by the area bounded by the Normal curve, the horizontal axis, and the
abscissas 1.5 and 3.5, is closer to the exact area.

To summarize, under the conditions of the CLT, and for discrete r.v.’s, P(a <

Sn ≤ b) � 
(b∗)−
(a∗), where a∗ = a − nμ

σ
√

n
and b∗ = b − nμ

σ
√

n
without continuity

correction, and P(a < Sn ≤ b) � 
(b′) − 
(a′), where a′ = a + 0.5 − nμ

σ
√

n
and

b′ = b + 0.5 − nμ

σ
√

n
with continuity correction.



216 Chapter 7 Some Modes of Convergence of Random Variables, Applications

For integer-valued r.v.’s and probabilities of the form P(a ≤ Sn ≤ b), we
first rewrite the expression as follows:

P(a ≤ Sn ≤ b) = P(a − 1 < Sn ≤ b),

and then apply the preceding approximations in order to obtain:

P(a ≤ Sn ≤ b) � 
(b∗) − 
(a∗), where

a∗ = a−1−nμ

σ
√

n
and b∗ = b−nμ

σ
√

n
without continuity correction, and P(a ≤ Sn ≤

b) � 
(b′) − 
(a′), where a′ = a−0.5−nμ

σ
√

n
and b′ = b+0.5−nμ

σ
√

n
with continuity

correction. Similarly for the intervals [a, b) and (a, b).
The improvement brought about by the continuity correction is demon-

strated by the following numerical examples.

EXAMPLE 5 (continued)

DISCUSSION

(i) For p = 1
2 , we get:

a′ = 44 + 0.5 − 100 × 1
2√

100 × 1
2 × 1

2

= −5.5
5

= −1.1,

b′ = 55 + 0.5 − 100 × 1
2√

100 × 1
2 × 1

2

= 5.5
5

= 1.1,

so that:


(b′) − 
(a′) = 
(1.1) − 
(−1.1) = 2
(1.1) − 1

= 2 × 0.864334 − 1 = 0.7286.

Thus, we have:

Exact value: 0.7288,

Approximate value with continuity correction: 0.7286,

and the approximation underestimates the probability by only 0.0002, or
the approximating probability (with continuity correction) is about 99.97%
of the exact probability.

(ii) For p = 5
16 , we have a′ = 2.86, b′ = 5.23 and 
(b′) − 
(a′) = 0.0021.

Then:

Exact value: 0.0000,

Approximate value with continuity correction: 0.0021,

and the probability is overestimated by only 0.0021.
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EXAMPLE 6 (continued)

DISCUSSION Here:

a′ = 11 + 0.5 − 16√
16

= −4.5
4

= −1.125, b′ = 21 + 0.5 − 16√
16

= 5.5
4

= 1.375,

so that:


(b′) − 
(a′) = 
(1.375) − 
(−1.125) = 
(1.375) + 
(1.125) − 1 = 0.7851.

Thus:

Exact value: 0.7838,
Approximate value with continuity correction: 0.7851,

and the approximation overestimates the probability by only 0.0013, or the
approximating probability (with continuity correction) is about 100.17% of the
exact probability.

Exercises

2.1 Let X1, . . . , Xn be i.i.d. r.v.’s, and for a positive integer k, suppose that
EXk

1 is finite. Form the kth sample mean X̄(k)
n defined by

X̄(k)
n = 1

n

n∑
i=1

Xk
i .

Then show that:

X̄(k)
n

P−→
n→∞ EXk

1 .

2.2 Let X be a r.v. with p.d.f. fX(x) = cα x, x = 0, 1, . . . (0 < α < 1). Then
c = 1 − α by Exercise 2.8 in Chapter 2.

(i) Show that the m.g.f. of X is: MX(t) = 1−α
1−αet , t < − log α.

(ii) Use the m.g.f. to show that EX = α
1−α

.
(iii) If X1, . . . , Xn is a random sample from fX , show that the WLLN

holds by showing that

MX̄n
(t) −→

n→∞ eαt/(1−α) = MEX(t), t < − log α.

Hint: Expand et around 0 up to second term, according to Taylor’s
formula, et = 1 + t + R(t), where 1

t
R(t)−→

t→0
0, replace t by t

n
, and

use the fact that (1 + xn

n
)n → e x, if xn → x as n → ∞.

2.3 Let the r.v. X be distributed as B(150, 0.6). Then:
(i) Write down the formula for the exact probability P(X ≤ 80).

(ii) Use the CLT in order to find an approximate value for the above
probability. (Do not employ the continuity correction.)



218 Chapter 7 Some Modes of Convergence of Random Variables, Applications

2.4 A binomial experiment with probability p of a success is repeated in-
dependently 1,000 times, and let X be the r.v. denoting the number of
successes. For p = 1

2 and p = 1
4 , find:

(i) The exact probability P(1,000p − 50 ≤ X ≤ 1,000p + 50)
(ii) Use the CLT to find an approximate value for this probability.

2.5 Let X1, . . . , X100 be independent r.v.’s distributed as B(1, p). Then:
(i) Write out the expression for the exact probability P(

∑100
i=1 Xi = 50).

(ii) Use of CLT in order to find an approximate value for this probability.
(iii) What is the numerical value of the probability in part (ii) for p = 0.5?

Hint: For part (ii), first observe that P(X = 50) = P(49.5 < X ≤ 50),
and then apply the CLT.

2.6 Fifty balanced dice are tossed once, and let X be the r.v. denoting the
sum of the upturned spots. Use the CLT to find an approximate value of
the probability P(150 ≤ X ≤ 200).

Hint: With the ith die, associate the r.v. Xi which takes on the values
1 through 6, each with probability 1/6. These r.v.’s may be assumed to
be independent and X =∑50

i=1 Xi.

2.7 One thousand cards are drawn (with replacement) from a standard deck
of 52 playing cards, and let X be the r.v. denoting the total number of
aces drawn. Use the CLT to find an approximate value of the probability
P(65 ≤ X ≤ 90).

2.8 From a large collection of bolts which is known to contain 3% defec-
tive bolts, 1,000 are chosen at random, and let X be the r.v. denoting
the number of defective bolts among those chosen. Use the CLT to find
an approximate value of the probability that X does not exceed 5% of
1,000.

Hint: With the ith bolt drawn, associate the r.v. Xi which takes on
the value 1, if the bolt drawn is defective, and 0 otherwise. Since the
collection of bolts is large, we may assume that after each drawing, the
proportion of the remaining defective bolts remains (approximately)
the same. This implies that the independent r.v.’s X1, . . . , X1,000 are
distributed as B(1, 0.03) and that X =∑1,000

i=1 Xi ∼ B(1,000, 0.3).

2.9 A manufacturing process produces defective items at the constant (but
unknown to us) proportion p. Suppose that n items are sampled inde-
pendently, and let X be the r.v. denoting the number of defective items
among the n, so that X ∼ B(n, p). Determine the smallest value of the
sample size n, so that

P

(∣∣∣∣Xn − p

∣∣∣∣ < 0.05
√

pq

)
≥ 0.95 (q = 1 − p):
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(i) By utilizing the CLT.
(ii) By using the Tchebichev inequality.

(iii) Compare the answers in parts (i) and (ii).

2.10 Suppose that 53% of the voters favor a certain legislative proposal. How
many voters must be sampled so that the observed relative frequency of
those favoring the proposal will not differ from the assumed frequency
by more than 2% with probability 0.99?

Hint: With the ith voter sampled, associate the r.v. Xi which takes
on the value 1, if the voter favors the proposal, and 0 otherwise. Then
it may be assumed that the r.v.’s X1, . . . , Xn are independent and their
common distribution is B(1, 0.53). Furthermore, the number of the
voters favoring the proposal is X = ∑n

i=1 Xi. Use the CLT in order to
find the required probability.

2.11 In playing a game, you win or lose $1 with probability 0.5, and you play
the game independently 1,000 times. Use the CLT to find an approximate
value of the probability that your fortune (i.e., the total amount you won
or lost) is at least $10.

Hint: With the ith game, associate the r.v. Xi which takes on the
value 1 if $1 is won, and −1 if $1 is lost. Then the r.v.’s X1, . . . , X1,000

are independent, and the fortune X is given by
∑1,000

i=1 Xi.

2.12 It is known that the number of misprints in a page of a certain publication
is a r.v. X having the Poisson distribution with parameter λ. If X1, . . . , Xn

are the misprints counted in n pages, use the CLT to determine the (ap-
proximate) probability that the total number of misprints is:

(i) Not more than λn.
(ii) At least λn.

(iii) Between λn/2 and 3λn/2.
(iv) Give the numerical values in parts (i)–(iii) for λn = 100 (which may

be interpreted, e.g., as one misprint per 4 pages (λ = 0.25) in a book
of 400 pages).

2.13 Let the r.v. X be distributed as P(100). Then:
(i) Write down the formula for the exact probability P(X ≤ 116).

(ii) Use the CLT appropriately in order to find an approximate value for
the above probability. (Do not use the continuity correction.)

Hint: Select n large and λ small, so that nλ = 100 and look at X as
the sum

∑n

i=1 Xi of n independent r.v.’s X1, . . . , Xn distributed
as P(λ).

2.14 A certain manufacturing process produces vacuum tubes whose life-
times in hours are independently distributed r.v.’s with Negative Expo-
nential distribution with mean 1,500 hours. Use the CLT in order to find an
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approximate value for the probability that the total life of 50 tubes will
exceed 80,000 hours.

2.15 The lifespan of an electronic component in a (complicated) system is a
r.v. X having the Negative Exponential distribution with parameter λ.

(i) What is the probability that said lifespan will be at least t time
units?

(ii) If the independent r.v.’s X1, . . . , Xn represent the lifespans of nspare
items such as the one described above, then Y = ∑n

i=1 Xi is the
combined lifespan of these n items. Use the CLT in order to find
an approximate value of the probability P(t1 ≤ Y ≤ t2), where
0 < t1 < t2 are given time units.

(iii) Compute the numerical answer in part (i), if t = −log(0.9)/λ.
(iv) Do the same for part (ii), if λ = 1/10, n = 36, t1 = 300, and t2 = 420.

2.16 Let the independent r.v.’s X1, . . . , Xn be distributed as U(0, 1).
(i) Use the CLT to find an approximate value for the probability P(a ≤

X̄ ≤ b) (a < b).
(ii) What is the numerical value of this probability for n = 12, a = 7/16,

and b = 9/16?

2.17 If the independent r.v.’s X1, . . . , X12 are distributed as U(0, θ) (θ > 0),
use the CLT to show that the probability P( θ

4 < X̄ < 3θ
4 ) is approximately

equal to 0.9973.

2.18 Refer to Exercise 3.42 in Chapter 3 and let Xi, i = 1, . . . , n be the di-
ameters of n ball bearings. If EXi = μ = 0.5 inch and s.d. (Xi) = σ =
0.0005 inch, use the CLT to determine the smallest value of n for which
P(|X̄ − μ| ≤ 0.0001) = 0.99, where X̄ is the sample mean of the Xi’s.

2.19 The i.i.d. r.v.’s X1, . . . , X100 have (finite) mean μ and variance σ 2 = 4. Use
the CLT to determine the value of the constant c for which P(|X̄ − μ| ≤
c) = 0.90, where X̄ is the sample means of the Xi’s.

2.20 Let X1, . . . , Xn be i.i.d. r.v.’s with (finite) expectation μ and (finite and
positive) variance σ 2, and let X̄n be the sample mean of the Xi’s. Deter-
mine the smallest value of the sample size n, in terms of k and p, for
which P(|X̄n − μ| < kσ ) ≥ p, where p ∈ (0, 1), k > 0. Do so by using:

(i) The CLT.
(ii) The Tchebichev inequality.

(iii) Find the numerical values of n in parts (i) and (ii) for p = 0.90, 0.95,
0.99 and k = 0.50, 0.25, 0.10 for each value of p.

2.21 Refer to Exercise 3.41 in Chapter 3, and suppose that the r.v. X consid-
ered there has EX = 2,000 and s.d.(X ) = 200, but is not necessarily Nor-
mally distributed. Also, consider another manufacturing process produc-
ing light bulbs whose mean lifespan is claimed to be 10% higher than the
mean lifespan of the bulbs produced by the existing process; it is assumed
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that the s.d. remains the same for the new process. How many bulbs
manufactured by the new process must be examined to establish the
claim of their superiority (should that be the case) with probability
0.95?

Hint: Let Y be the r.v. denoting the lifespan of a light bulb man-
ufactured by the new process. We do not necessarily assume that
Y is Normally distributed. If the claim made is correct, then EY =
2,000 + 10% × 2,000 = 2,200, whereas s.d.(Y ) = 200. A random sample
from Y produces the sample mean Ȳn for which EȲn = 2,200 (under
the claim) and Var(Ȳn) = 2002/n, and we must determine n, so that
P(Ȳn > 2,000) = 0.95. If the new process were the same as the old
one, then, for all sufficiently large n, P(Ȳn > 2,000) � 0.50. So, if
P(Ȳn > 2,000) = 0.95, the claim made would draw support.

2.22 (i) Consider the i.i.d. r.v.’s X1, . . . , Xn and Y1, . . . , Yn with expectation
μ and variance σ 2, both finite, and let X̄n and Ȳn be the respective
sample means. Use the CLT in order to determine the sample size n,
so that P(|X̄n − Ȳn| ≤ 0.25σ ) = 0.95.

(ii) Let the random samples X1, . . . , Xn and Y1, . . . , Yn be as in part (i), but
we do not assume that they are coming from the same distribution.
We do assume, however, that they have the same mean and the same
variance σ 2, both finite. Then determine nas required above by using
the Tchebichev inequality.

Hint: Set Zi = Xi − Yi and then work as in Exercise 2.20(ii) with the
i.i.d. r.v.’s Z1, . . . , Zn. Finally, revert to the Xi’s and the Yi’s.

2.23 Let Xi, i = 1, . . . , n, Yi, i = 1, . . . , n be independent r.v.’s such that the
Xi’s are identically distributed with EXi = μ1, Var(Xi) = σ 2, both finite,
and the Yi’s are identically distributed with EYi = μ2 and Var(Yi) = σ 2,
both finite. If X̄n and Ȳn are the respective sample means of the Xi’s and
the Yi’s, then:
(i) Show that E(X̄n − Ȳn) =μ1 −μ2,Var(X̄n − Ȳn) = 2σ 2

n
.

(ii) Use the CLT in order to show that
√

n[(X̄n−Ȳn)−(μ1−μ2)]
σ
√

2
is asymptotically

distributed as N(0, 1).

Hint: Set Zi = Xi − Yi and work with the i.i.d. r.v.’s Z1, . . . , Zn; then
revert to the Xi’s and the Yi’s.

2.24 An academic department in a university wishes to admit 20 first-year
graduate students. From past experience, it follows that, on the average,
40% of the students admitted will, actually, accept the admission offer. It
may be assumed that acceptance and rejection of admission offers by the
various students are independent events, and let Yn be the r.v. denoting
the number of those students, actually, accepting admission.
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(i) Use the CLT in order to determine n, so that the probability
P(|Yn − 20| ≤ 2) is maximum. Use a rough geometric argument.

(ii) Compute the (approximate) probability P(|Yn − 20| ≤ 2) once n is
determined.

(iii) Derive in a more rigorous way a relation through which n is to
be determined subject to the maximization of the probability
P(|Yn − 20| ≤ 2).

Hint: With each one of the n students offered admission, associate
a r.v. Xi, which takes on the value 1, if the ith student accepts the
offer, and 0 otherwise. Then the r.v.’s X1, . . . , Xn are independent, and
also assume that they have the same distribution; i.e., P(Xi = 1) =
p(= 0.40 here) for all i’s. Then the Xi’s are distributed as B(1, p) and
Yn = ∑n

i=1 Xi. Then, for part (i), draw the N(0, 1) p.d.f. curve, and
by symmetry and geometric considerations conclude that seemingly
(but not precisely) the required probability is minimized for the value
of n for which 18 − np = −(22 − np). (Do not use any continuity
correction.)

For part (iii), pretend that n is a continuous variable, differentiate
with respect to it, and equate to 0 in order to arrive at the following
relationship, after some cancellations and modifications:

80 − 1.6n

0.24n
= log

0.4n + 22
0.4n + 18

.

Remark: The problem may also be posed by replacing 20, 2, and 40%
by c, d, and 100p%, say.

7.3 Further Limit Theorems

Convergence in probability enjoys some of the familiar properties of the usual
pointwise convergence. One such property is stated below in the form of a
theorem whose proof is omitted.

THEOREM 5

(i) For n ≥ 1, let Xn and X be r.v.’s such that Xn

P−→
n→∞ X, and let g be

a continuous real-valued function; that is, g : � → � continuous.
Then the r.v.’s g(Xn), n≥ 1, also converge in probability to g(X ); that
is, g(Xn)

P−→
n→∞ g(X ). More generally:

(ii) For n ≥ 1, let Xn, Yn, X, and Y be r.v.’s such that Xn

P−→
n→∞ X, Yn

P−→
n→∞ Y ,

and let g be a continuous real-valued function; that is, g : �2 → �
continuous. Then the r.v.’s. g(Xn, Yn), n ≥ 1, also converge in
probability to g(X, Y); that is, g(Xn, Yn)

P−→
n→∞ g(X, Y). (This part
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also generalizes in an obvious manner to k sequences {X(i)
n },

n ≥ 1, i = 1, . . . , k.)

To this theorem, there is the following important corollary.

COROLLARY If Xn

P−→
n→∞ X and Yn

P−→
n→∞ Y , then:

(i) aXn + bYn

P−→
n→∞ aX + bY , where a and b are constants; and, in particular,

Xn + Yn

P−→
n→∞ X + Y.

(ii) XnYn

P−→
n→∞ XY .

(iii) Xn

Yn

P−→
n→∞

X

Y
, provided P(Yn �= 0) = P(Y �= 0) = 1.

PROOF Although the proof of the theorem was omitted, the corollary can be
proved. Indeed, all one has to do is to take: g : �2 → � as follows, respectively,
for parts (i)–(iii) and observe that it is continuous: g(x, y) = ax + by (and, in
particular, g(x, y) = x+ y); g(x, y) = xy; g(x, y) = x/y, y �= 0. ▲

Actually, a special case of the preceding corollary also holds for conver-
gence in distribution. Specifically, we have

THEOREM 6
(Slutsky) Let Xn

d−→
n→∞ X and let Yn

d−→
n→∞ c, a constant c rather than a

(proper) r.v. Y . Then:

(i) Xn+Yn

d−→
n→∞ X + c; (ii) XnYn

d−→
n→∞ cX; (iii) Xn

Yn

d−→
n→∞

X

c
, provided P(Yn �=

0) = 1 and c �= 0.

In terms of d.f.’s, these convergences are written as follows, always
as n→∞ and for all z ∈ � for which: z − c is a continuity point of FX

for part (i); z/c is a continuity point of FX for part (ii); cz is a continuity
point of FX for part (iii):

P(Xn + Yn ≤ z) → P(X + c ≤ z) = P(X ≤ z − c), or

FXn+Yn
(z) → FX(z − c);

P(XnYn ≤ z) → P(cX ≤ z) =
{

P(X ≤ z

c
), c > 0

P(X ≥ z

c
), c < 0

, or

FXnYn
(z) →

{
FX

(
z

c

)
, c > 0

1 − P(X < z

c
)(=1 − FX( z

c
), if FX is continuous), c < 0;

P

(
Xn

Yn

≤ z

)
→ P

(
X

c
≤ z

)
=
{

P(X ≤ cz), c > 0

P(X ≥ cz), c < 0
, or
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F Xn
Yn

(z) →
{

FX(cz), c > 0

1 − P(X < cz)(=1 − FX(cz), if FX is continuous), c < 0.

The proof of this theorem, although conceptually not complicated, is, nev-
ertheless, long and is omitted. Recall, however, that Yn

d−→
n→∞ c if and only if

Yn

P−→
n→∞ c, and this is another way the convergence of Yn is stated.
As a simple concrete application of Theorem 5, consider the following

example.

EXAMPLE 7 Suppose Xn

d−→ X ∼ N(μ, σ 2), and let cn, c, dn, and d be constants such that
cn → c and dn → d. Then cnXn + dn

d−→ Y ∼ N(cμ + d, c2σ 2).

DISCUSSION Trivially, cn

d−→ c and dn

d−→ d, so that, by Theorem 6(ii),
cnXn

d−→ cX, and by Theorem 6(i), cnXn + dn

d−→ cX + d. However, X ∼
N(μ, σ 2) implies that cX +d ∼ N(cμ+d, c2σ 2). Thus, cnXn+dn

d−→ cX +d =
Y ∼ N(cμ + d, c2σ 2).

The following result is an application of Theorems 5 and 6 and is of much
use in statistical inference. For its formulation, let X1, . . . , Xn be i.i.d. r.v.’s
with finite mean μ and finite and positive variance σ 2, and let X̄n and S 2

n be
the sample mean and the “adjusted” (in the sense that μ is replaced by X̄n)
sample variance (which we have denoted by S̄ 2

n in relation (13) of Chapter 5);
that is, X̄n = 1

n

∑n

i=1 Xi, S 2
n = 1

n

∑n

i=1(Xi − X̄n)2.

THEOREM 7
Under the assumptions just made and the notation introduced, it holds:

(i) S2
n

P−→
n→∞ σ 2; (ii)

√
n(X̄n−μ)

Sn

d−→
n→∞ Z ∼ N(0, 1).

PROOF (i) Recall that
∑n

i=1(Xi − X̄n)2 = ∑n

i=1 X 2
i − nX̄ 2

n, so that S 2
n =

1
n

∑n

i=1 X 2
i − X̄ 2

n. Since EX 2
i = Var(Xi) + (EXi)2 = σ 2 + μ2, the WLLN ap-

plies to the i.i.d. r.v.’s X 2
1, . . . , X 2

n and gives: 1
n

∑n

i=1 X 2
i

P−→
n→∞ σ 2 + μ2. Also,

X̄n

P−→
n→∞ μ, by the WLLN again, and then X̄ 2

n

P−→
n→∞ μ2 by Theorem 5(i). Then,

by Theorem 5(ii),

1
n

n∑
i=1

X 2
i − X̄ 2

n

P−→
n→∞ (σ 2 + μ2) − μ2 = σ 2,

which is what part (i) asserts.
(ii) Part (i) and Theorem 5(i) imply that Sn

P−→
n→∞ σ, or Sn

σ

P−→
n→∞ 1. By

Theorem 4,
√

n(X̄n−μ)
σ

d−→
n→∞ Z ∼ N(0, 1). Then Theorem 6(iii) applies and



7.3 Further Limit Theorems 225

gives:
√

n(X̄n − μ)/σ
Sn/σ

=
√

n(X̄n − μ)
Sn

d−→
n→∞ Z ∼ N(0, 1). ▲

REMARK 6 Part (ii) of the theorem states, in effect, that for sufficiently large
n, σ may be replaced in the CLT by the adjusted sample standard deviation Sn

and the resulting expression still has a distribution which is close to the N(0, 1)
distribution.

The WLLN states that X̄n

d−→
n→∞ μ, which, for a real-valued continuous func-

tion g, implies that

g(X̄n)
P−→

n→∞ g(μ). (14)

On the other hand, the CLT states that:
√

n(X̄n − μ)
σ

d−→
n→∞ N(0, 1) or

√
n(X̄n − μ)

d−→
n→∞ N(0, σ 2).

The question then arises what happens to the distribution of g(X̄n). In other
words, is there a result analogous to (14) when the distribution of g(X̄n) is
involved? The question is answered by the following result.

THEOREM 8
Let X1, . . . , Xn be i.i.d. r.v.’s with finite mean μ and variance σ 2 ∈ (0, ∞),
and let g : � → � be differentiable with derivative g′ continuous at μ.
Then:

√
n[g(X̄n) − g(μ)]

d−→
n→∞ N(0, [σg′(μ)]2). (15)

The proof of this result involves the employment of some of the theorems
established in this chapter, including the CLT, along with a Taylor expansion.
The proof itself will not be presented, and this section will be concluded with
an application to Theorem 8. The method of establishing asymptotic normality
for g(X̄n) is often referred to as the delta method, and it also applies in cases
more general than the one described here.

APPLICATION Let the independent r.v.’s X1, . . . , Xn be distributed as
B(1, p). Then:

√
n[X̄n(1 − X̄n) − pq]

d−→
n→∞ N(0, pq(1 − 2p)2) (q = 1 − p). (16)

PROOF Here μ = p, σ 2 = pq, and g(x) = x(1 − x), so that g′(x) = 1 − 2x

continuous for all x. Since g(X̄n) = X̄n(1 − X̄n), g(μ) = p(1 − p) = pq, and
g′(μ) = 1 − 2p, the convergence in (15) becomes as stated in (16). ▲
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Exercise

3.1 Let X1, . . . , Xn be i.i.d. r.v.’s with finite EXi = μ, and Var(Xi) = σ 2 ∈
(0, ∞) so that the CLT holds; that is,

√
n(X̄n − μ)

σ

d−→
n→∞ Z ∼ N(0, 1), where X̄n = 1

n

n∑
i=1

Xi.

Then use Theorem 6 in order to show that the WLLN also holds.



Chapter 8

An Overview of
Statistical Inference

A review of the previous chapters reveals that the main objectives throughout
have been those of calculating probabilities or certain summary characteristics
of a distribution, such as mean, variance, median, and mode. However, for
these calculations to result in numerical answers, it is a prerequisite that the
underlying distribution be completely known. Typically, this is rarely, if ever,
the case. The reason for this is that the parameters which appear, for example,
in the functional form of the p.d.f. of a distribution are simply unknown to us.
The only thing known about them is that they lie in specified sets of possible
values for these parameters, the parameter space.

It is at this point where statistical inference enters the picture. Roughly
speaking, the aim of statistical inference is to make certain determinations
with regard to the unknown constants (parameters) figuring in the underlying
distribution. This is to be done on the basis of data, represented by the ob-
served values of a random sample drawn from said distribution. Actually, this
is the so-called parametric statistical inference as opposed to the nonpara-

metric statistical inference. The former is applicable to distributions, which
are completely determined by the knowledge of a finite number of parame-
ters. The latter applies to distributions not determined by any finite number of
parameters.

The remaining part of this book is, essentially, concerned with statistical
inference and mostly with parametric statistical inference. Within the frame-
work of parametric statistical inference, there are three main objectives, de-
pending on what kind of determinations we wish to make with regard to the
parameters. If the objective is to arrive at a number, by means of the avail-
able data, as the value of an unknown parameter, then we are talking about
point estimation. If, on the other hand, we are satisfied with the statement
that an unknown parameter lies within a known random interval (that is, an
interval with r.v.’s as its end-points) with high prescribed probability, then we
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are dealing with interval estimation or confidence intervals. Finally, if the
objective is to decide that an unknown parameter lies in a specified subset of
the parameter space, then we are in the area of testing hypotheses.

These three subjects — point estimation, interval estimation, and testing
hypotheses — are briefly discussed in the following three sections. In the sub-
sequent three sections, it is pointed out what the statistical inference issues are
in specific models — a regression model and two analysis of variance mod-

els. The final section touches upon some aspects of nonparametric statistical

inference.

8.1 The Basics of Point Estimation

The problem here, briefly stated, is as follows. Let X be a r.v. with a p.d.f. f

which, however, involves a parameter. This is the case, for instance, in the
Binomial distribution B(1, p), the Poisson distribution P(λ), the Negative Ex-
ponential f (x) = λe−λx, x > 0 distribution, the Uniform distribution U(0, α),
and the Normal distribution N(μ, σ 2) with one of the quantities μ and σ 2

known. The parameter is usually denoted by θ , and the set of its possible val-
ues is denoted by � and is called the parameter space. In order to emphasize
the fact that the p.d.f. depends on θ , we write f (·; θ). Thus, in the distributions
mentioned above, we have for the respective p.d.f.’s and the parameter spaces:

f (x ; θ) = θ x(1 − θ)1−x, x = 0, 1, θ ∈ � = (0, 1).

The situations described in Examples 5, 6, 8, 9, and 10 of Chapter 1 may be
described by a Binomial distribution.

f (x ; θ) = e−θ θ x

x!
, x = 0, 1, . . . , θ ∈ � = (0, ∞).

The Poisson distribution can be used appropriately in the case described in
Example 12 of Chapter 1.

f (x ; θ) = θe−θx, x > 0, θ ∈ � = (0, ∞).

f (x ; θ) =
{

1
θ
, 0 < x < θ

0, otherwise,
θ ∈ � = (0, ∞).

f (x ; θ) = 1√
2πσ

e
− (x−θ)2

2σ2 , x ∈ �, θ ∈ � = �, σ 2 known,

and

f (x ; θ) = 1√
2πθ

e− (x−μ)2

2θ , x ∈ �, θ ∈ � = (0, ∞), μ known.

Normal distributions are suitable for modeling the situations described in
Examples 16 and 17 of Chapter 1.

Our objective is to draw a random sample of size n, X1, . . . , Xn, from the
underlying distribution, and on the basis of it to construct a point estimate

(or estimator) for θ , that is, a statistic θ̂ = θ̂(X1, . . . , Xn), which is used for
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estimating θ , where a statistic is a known function of the random sample
X1, . . . , Xn. If x1, . . . , xn are the actually observed values of the r.v.’s X1, . . . , Xn,
respectively, then the observed value of our estimate has the numerical value
θ̂(x1, . . . , xn). The observed values x1, . . . , xn are also referred to as data. Then,
on the basis of the available data, it is declared that the value of θ is θ̂(x1, . . . , xn)
from among all possible points in �. A point estimate is often referred to just as
an estimate, and the notation θ̂ is used indiscriminately, both for the estimate
θ̂(X1, . . . , Xn) (which is a r.v.) and for its observed value θ̂(x1, . . . , xn) (which
is just a number).

The only obvious restriction on θ̂(x1, . . . , xn) is that it lies in � for all
possible values of X1, . . . , Xn. Apart from it, there is any number of estimates
one may construct — thus, the need to assume certain principles and/or invent
methods for constructing θ̂ . Perhaps, the most widely accepted principle is
the so-called principle of Maximum Likelihood (ML). This principle dictates
that we form the joint p.d.f. of the xi’s, for the observed values of the Xi’s,
look at this joint p.d.f. as a function of θ (and call it the likelihood function),
and maximize the likelihood function with respect to θ . The maximizing point
(assuming it exists and is unique) is a function of x1, . . . , xn, and is what we
call the Maximum Likelihood Estimate (MLE) of θ . The notation used for the
likelihood function is L(θ | x1, . . . , xn). Then, we have that:

L(θ | x1, . . . , xn) = f (x1; θ) · · · f (xn; θ), θ ∈ �.

The MLE will be studied fairly extensively in Chapter 9.
Another principle often used in constructing an estimate for θ is the prin-

ciple of unbiasedness. In this context, an estimate is usually denoted by
U = U(X1, . . . , Xn). Then the principle of unbiasedness dictates that U should
be constructed so as to be unbiased; that is, its expectation (mean value)
should always be θ , no matter what the value of θ in �. More formally, EθU = θ

for all θ ∈ �. (In the expectation sign E, the parameter θ was inserted to indi-
cate that this expectation does depend on θ , since it is calculated by using the
p.d.f. f (·; θ).) Now, it is intuitively clear that, in comparing two unbiased esti-
mates, one would pick the one with the smaller variance, since it would be more
closely concentrated around its mean θ . Envision the case that, within the class
of all unbiased estimates, there exists one which has the smallest variance (and
that is true for all θ ∈ �). Such an estimate is called a Uniformly Minimum

Variance Unbiased (UMVU) estimate and is, clearly, a desirable estimate. In
the next chapter, we will see how we go about constructing such estimates.

The principle (or rather the method) based on sample moments is another
way of constructing estimates. The method of moments, in the simplest case,
dictates to form the sample mean X̄ and equate it with the (theoretical) mean
Eθ X. Then solve for θ (assuming it can be done, and, indeed, uniquely) in order
to arrive at a moment estimate of θ .

A much more sophisticated method of constructing estimates of θ is the
so-called decision-theoretic method. This method calls for the introduction of
a host of concepts, terminology, and notation, and it will be taken up in the
next chapter.
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Finally, another relatively popular method (in particular, in the context of
certain models) is the method of Least Squares (LS). The method of LS leads
to the construction of an estimate for θ , the Least Squares Estimate (LSE) of
θ , through a minimization (with respect to θ) of the sum of certain squares.
This sum of squares represents squared deviations between what we actually
observe after experimentation is completed and what we would expect to have
on the basis of an assumed model. Once again, details will be presented later
on, more specifically, in Chapter 13.

In all of the preceding discussion, it was assumed that the underlying p.d.f.
depended on a single parameter, which was denoted by θ . It may very well be
the case that there are two or more parameters involved. This may happen, for
instance, in the Uniform distribution U(α, β), −∞ < α < β <∞, where both α

and β are unknown; the Normal distribution, N(μ, σ 2), where both μ and σ 2

are unknown; and it does happen in the Multinomial distribution, where the
number of parameters is k, p1, . . . , pk (or more precisely, k − 1, since the kth
parameter, for example, pk = 1 − p1 − · · · − pk−1). For instance, Examples 20
and 21 of Chapter 1 refer to situations where a Multinomial distribution is ap-
propriate. In such multiparameter cases, one simply applies to each parameter
separately what was said above for a single parameter. The alternative option
to use the vector notation for the parameters involved does simplify things in
a certain way but also introduces some complications in other ways.

8.2 The Basics of Interval Estimation

Suppose we are interested in constructing a point estimate of the mean μ in
the Normal distribution N(μ, σ 2) with known variance; this is to be done on
the basis of a random sample of size n, X1, . . . , Xn, drawn from the underlying
distribution. This amounts to constructing a suitable statistic of the Xi’s, call
it V = V (X1, . . . , Xn), which for the observed values xi of Xi, i = 1, . . . , n is
a numerical entity, and declare it to be the (unknown) value of μ. This looks
somewhat presumptuous, since from the set of possible values for μ, −∞ <

μ < ∞, just one is selected as its value. Thinking along these lines, it might
be more reasonable to aim instead at a random interval which will contain the
(unknown) value of μ with high (prescribed) probability. This is exactly what
a confidence interval does.

To be more precise and in casting the problem in a general setting, let
X1, . . . , Xn be a random sample from the p.d.f. f (·; θ), θ ∈ � ⊆ �, and let
L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn) be two statistics of the Xi’s such
that L < U . Then the interval with end-points L and U, [L, U ], is called a
random interval. Let α be a small number in (0, 1), such as 0.005, 0.01, 0.05,
and suppose that the random interval [L, U ] contains θ with probability equal
to 1 − α (such as 0.995, 0.99, 0.95) no matter what the true value of θ in � is.
In other words, suppose that:

Pθ (L ≤ θ ≤ U) = 1 − α for all θ ∈ �. (1)
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If relation (1) holds, then we say that the random interval [L, U ] is a confidence

interval for θ with confidence coefficient 1 − α.
The interpretation of the significance of a confidence interval is based on

the relative frequency interpretation of the concept of probability, and it goes
like this: Suppose n independent r.v.’s are drawn from the p.d.f. f (·; θ), and let
x1, . . . , xn be their observed values. Also, let [L1, U1] be the interval resulting
from the observed values of L = L(X1, . . . , Xn) and U = U(X1, . . . , Xn); that
is, L1 = L(x1, . . . , xn) and U1 = U(x1, . . . , xn). Proceed to draw independently
a second set of n r.v.’s as above, and let [L2, U2] be the resulting interval.
Repeat this process independently a large number of times, N, say, with the
corresponding interval being [LN , UN]. Then the interpretation of (1) is that,
on the average, about 100(1 − α)% of the above N intervals will, actually,
contain the true value of θ . For example, for α = 0.05 and N = 1,000, the
proportion of such intervals will be 95%; that is, one would expect 950 out
of the 1,000 intervals constructed as above to contain the true value of θ .
Empirical evidence shows that such an expectation is valid.

We may also define an upper confidence limit for θ , U = U(X1, . . . , Xn),
and a lower confidence limit for θ , L = L(X1, . . . , Xn), both with confidence

coefficient 1 − α, if, respectively, the intervals (−∞, U ] and [L, ∞) are confi-
dence intervals for θ with confidence coefficient 1 − α. That is to say:

Pθ (−∞ < θ ≤ U) = 1 − α, Pθ (L ≤ θ < ∞) = 1 − α for all θ ∈ �. (2)

Confidence intervals and upper and/or lower confidence limits can be sought,
for instance, in Examples 5, 6, 8, 9, and 10 (Binomial distribution), 12 (Poisson
distribution), and 16 and 17 (Normal distribution) in Chapter 1.

There are some variations of (1) and (2). For example, when the underlying
p.d.f. is discrete, then equalities in (1) and (2) rarely obtain for given α and
have to be replaced by inequalities ≥. Also, except for special cases, equalities
in (1) and (2) are valid only approximately for large values of the sample size
n (even in cases where the underlying r.v.’s are continuous). In such cases, we
say that the respective confidence intervals (confidence limits) have confidence

coefficient approximately 1 − α.
Finally, the parameters of interest may be two (or more) rather than one,

as we assumed so far. In such cases, the concept of a confidence interval is
replaced by that of a confidence region (in the multidimensional parameter
space �). This concept will be illustrated by an example in Chapter 10. In the
same chapter, we will also expand considerably on what was briefly discussed
here.

8.3 The Basics of Testing Hypotheses

Often, we are not interested in a point estimate of a parameter θ or even a
confidence interval for it, but rather whether said parameter lies or does not
lie in a specified subset ω of the parameter space �. To clarify this point, we
refer to some of the examples described in Chapter 1. Thus, in Example 5, all
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we might be interested in is whether Jones has ESP at all or not and not to
what degree he does. In statistical terms, this amounts to taking n independent
observations from a B(1, θ) distribution and, on the basis of these observations,
deciding whether θ ∈ ω = (0, 0.5] (as opposed to θ ∈ ωc = (0.5, 1)); here θ

is the probability that Jones correctly identifies the picture. The situation in
Example 6 is similar, and the objective might be to decide whether or not
θ ∈ ω = (θ0, 1); here θ is the true proportion of unemployed workers and θ0 is
a certain desirable or guessed value of θ . Examples 8, 9, and 10 in Chapter 1
fall into the same category.

In Example 12, the stipulated model is a Poisson distribution P(θ) and, on
the basis of n independent observations, we might wish to decide whether or
not θ ∈ (θ0, ∞), where θ0 is a known value of θ .

In Example 16, the stipulated underlying models may be Normal distribu-
tions N(μ1, σ 2) and N(μ2, σ 2) for the survival times X and Y , respectively, and
then the question of interest may be to decide whether or not μ2 ≤ μ1; σ 2 may
be assumed to be either known or unknown. Of course, we are going to arrive
at the desirable decision on the basis of two independent random samples
drawn from the underlying distributions. Example 17 is of the same type.

In Example 20, the statistical problem is that of comparing two Multino-
mial populations, by making appropriate statements about the probabilities
pAE, pAA, pAP and pBE, pBA, pBP; here pAE is the probability that any one of the
80 infants, subjected to diet A, is of “excellent” health, and similarly for the
remaining probabilities. Example 21 is of a similar type.

On the basis of the preceding discussion and examples, we may now pro-
ceed with the formulation of the general problem. To this effect, let X1, . . . , Xn

be i.i.d. r.v.’s with p.d.f. f (·; θ), θ ∈ � ⊆ �r , r ≥ 1, and by means of this ran-
dom sample, suppose we are interested in checking whether θ ∈ ω, a proper
subset of �, or θ ∈ ωc, the complement of ω with respect to �. The statements
that θ ∈ ω and θ ∈ ωc are called (statistical) hypotheses (about θ), and are
denoted thus: H0 : θ ∈ ω, HA : θ ∈ ωc. The hypothesis H0 is called a null hy-
pothesis and the hypothesis HA is called alternative (to H0) hypothesis. The
hypotheses H0 and HA are called simple, if they contain a single point, and
composite otherwise. The procedure of checking whether H0 is true or not, on
the basis of the observed values x1, . . . , xn of X1, . . . , Xn, is called testing the
hypothesis H0 against the alternative HA.

In the special case that � ⊆ �, some null hypotheses and the respective
alternatives are as follows:

H0 : θ = θ0 against HA : θ > θ0; H0 : θ = θ0 against HA : θ < θ0;

H0 : θ ≤ θ0 against HA : θ > θ0; H0 : θ ≥ θ0 against HA : θ < θ0;

H0 : θ = θ0 against HA : θ �= θ0.

The testing is carried out by means of a function ϕ : �n → [0, 1] which is
called a test function or just a test. The number ϕ(x1, . . . , xn) represents the
probability of rejecting H0, given that Xi = xi, i = 1, . . . , n. In its simplest form,
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ϕ is the indicator of a set B in �n, which is called the critical or rejection region;
its complement Bc is called the acceptance region. Thus, ϕ(x1, . . . , xn) = 1 if
x1, . . . , xn are in B, and ϕ(x1, . . . , xn) = 0, otherwise. Actually, such a test is
called a nonrandomized test as opposed to tests which also take values strictly
between 0 and 1 and are called randomized tests. In the case of continuous
distributions, nonrandomized tests suffice, but in discrete distributions, a test
will typically be required to take on one or two values strictly between 0 and 1.

By using a test ϕ, suppose that our data x1, . . . , xn lead us to the rejection of
H0. This will happen, for instance, if the test ϕ is nonrandomized with rejection
region B, and the xi’s lie in B. By rejecting the hypothesis H0, we may be doing
the correct thing, because H0 is false (that is, θ /∈ ω). On the other hand, we
may be taking the wrong action because it may happen that H0 is, indeed, true
(that is, θ ∈ ω), only the test and the data do not reveal it. Clearly, in so doing,
we commit an error, which is referred to as type I error. Of course, we would
like to find ways of minimizing the frequency of committing this error. To put it
more mathematically, this means searching for a rejection region B, which will
minimize the above frequency. In our framework, frequencies are measured
by probabilities, and this leads to a determination of B so that

P(of type I error) = P(of rejecting H0 whereas H0 is true)

= Pθ (X1, . . . , Xn lie in B whereas θ ∈ ω)

= Pθ (X1, . . . , Xn lie in B |θ ∈ ω)
def= α(θ) is minimum. (3)

Clearly, the probabilities α(θ) in (3) must be minimized for each θ ∈ ω, since
we don’t know which value in ω is the true θ. This will happen if we minimize
the maxθ∈ω α(θ)

def= α. This maximum probability of type I error is called
the level of significance of the test employed. Thus, we are led to selecting the
rejection region B so that its level of significance α will be minimum. Since
α ≥ 0, its minimum value would be 0, and this would happen if (essentially)
B = Ø. But then (essentially) the xi’s would always be in Bc = �n, and this
would happen with probability

Pθ(X1, . . . , Xn in �n) = 1 for all θ. (4)

This, however, creates a problem for the following reason. If the rejection
region B is Ø, then the acceptance region is �n; that is, we always accept H0.
As long as H0 is true (that is, θ ∈ ω), this is exactly what we wish to do, but
what about the case that H0 is false (that is, θ ∈ ωc)? When we accept a false
hypothesis H0, we commit an error, which is called the type II error. As in (3),
this error is also measured in terms of probabilities; namely,

P(of type II error) = P(of accepting H0 whereas H0 is false)

= Pθ(X1, . . . , Xn lie in Bc whereas θ ∈ ωc)

= Pθ(X1, . . . , Xn lie in Bc|θ ∈ ωc)
def= β(θ). (5)
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According to (5), these probabilities would be 1 for all θ ∈ ωc (actually,
for all θ ∈ �), if B = Ø. Clearly, this is undesirable. The preceding discussion
then leads to the conclusion that the rejection region B must be different from
Ø and then α will be > 0. The objective then becomes that of choosing B so
that α will have a preassigned acceptable value (such as 0.005, 0.01, 0.05) and,
subject to this restriction, the probabilities of type II error are minimized. That
is,

β(θ) = Pθ(X1, . . . , Xn lie in Bc) is minimum for each θ ∈ ωc. (6)

Since Pθ(X1, . . . , Xn lie in Bc) = 1 − Pθ(X1, . . . , Xn lie in B), the minimization
in (6) is equivalent to the maximization of

Pθ(X1, . . . , Xn lie in B) = 1 − Pθ(X1, . . . , Xn lie in Bc) for all θ ∈ ωc.

The function π(θ), θ ∈ ωc, defined by:

π(θ) = Pθ(X1, . . . , Xn lie in B), θ ∈ ωc, (7)

is called the power of the test employed. So, power of a test = 1− probability
of a type II error, and we may summarize our objective as follows: Choose a test
with a preassigned level of significance α, which has maximum power among
all tests with level of significance ≤ α. In other words, if ϕ is the desirable test,
then it should satisfy the requirements:

The level of significance of ϕ is α, and its power, to be denoted by πϕ(θ), θ ∈ ωc,
satisfies the inequality πϕ(θ) ≥ πϕ∗(θ) for all θ ∈ ωc and any test ϕ∗ with level
of significance ≤ α.

Such a test ϕ, should it exist, is called Uniformly Most Powerful (UMP) for
obvious reasons. (The term “most powerful” is explained by the inequality
πϕ(θ) ≥ πϕ∗(θ), and the term “uniformly” is due to the fact that this inequality
must hold for all θ ∈ ωc.) If ωc consists of a single point, then the concept of
uniformity is void, and we talk simply of a Most Powerful (MP) test.

The concepts introduced so far hold for a parameter of any dimensionality.
However, UMP tests can be constructed only when θ is a real-valued parameter,
and then only for certain forms of H0 and HA and specific p.d.f.’s f (·; θ). If the
parameter is multidimensional, desirable tests can still be constructed; they
are not going to be, in general, UMP tests, but they are derived, nevertheless,
on the basis of principles which are intuitively satisfactory. Preeminent among
such tests are the so-called Likelihood Ratio (LR) tests. Another class of tests
are the so-called goodness-of-fit tests, and still others are constructed on the
basis of decision-theoretic concepts. Some of the tests mentioned above will
be discussed more extensively in Chapters 11 and 12. Here, we conclude this
section with the introduction of a LR test.

On the basis of the random sample X1, . . . , Xn with p.d.f. f (·; θ), θ ∈ � ⊆
�r , r ≥ 1, suppose we wish to test the hypothesis H0 : θ ∈ ω (a proper) subset
of �. It is understood that the alternative is HA : θ ∈ ωc, but in the present
framework it is not explicitly stated. Let x1, . . . , xn be the observed values
of X1, . . . , Xn and form the likelihood function L(θ) = L(θ | x1, . . . , xn) =
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∏n

i=1 f (xi; θ). Maximize L(θ) and denote the resulting maximum by L(�̂).
This maximization happens when θ is equal to the MLE θ̂ = θ̂(x1, . . . , xn), so
that L(�̂) = L(θ̂). Next, maximize the likelihood L(θ) under the restriction
that θ ∈ ω, and denote the resulting maximum by L(ω̂). Denote by θ̂ω the MLE
of θ subject to the restriction that θ ∈ ω. Then L(ω̂) = L(θ̂ω). Assume now
that L(θ) is continuous (in θ), and suppose that the true value of θ, call it
θ0, is in ω. It is a property of a MLE that it gets closer and closer to the true
parameter as the sample size n increases. Under the assumption that θ0 ∈ ω,
it follows that both θ̂ and θ̂ω will be close to θ0 and therefore close to each
other. Then, by the assumed continuity of L(θ), the quantities L(θ̂) and L(θ̂ω)
are close together, so that the ratio

λ(x1, . . . , xn) = λ = L(θ̂ω)/L(θ̂) (8)

(which is always ≤1) is close to 1. On the other hand, if θ0 ∈ ωc, then θ̂ and θ̂ω

are not close together, and therefore L(θ̂) and L(θ̂ω) need not be close either.
Thus, the ratio L(θ̂ω)/L(θ̂) need not be close to 1. These considerations lend
to the following test:

Reject H0 when λ < λ0, where λ0 is a constant to be determined. (9)

By the monotonicity of the function y = log x, the inequality λ < λ0 is equiva-
lent to −2 log λ(X1, . . . , Xn) > C( = −2 log λ0). It is seen in Chapter 11 that an
approximate determination of C is made by the fact that, under certain condi-
tions, the distribution of −2 log λ(X1, . . . , Xn) is χ2

f , where f = dimension of
� − dimension of ω. Namely:

Reject H0 when −2 log λ > C, where C � χ2
f ; α. (10)

In closing this section, it is to be mentioned that the concept of P-value is
another way of looking at a test in an effort to assess how strong (or weak)
the rejection of a hypothesis is. The P-value (probability value) of a test is
defined to be the smallest probability at which the hypothesis tested would
be rejected for the data at hand. Roughly put, the P-value of a test is the
probability, calculated under the null hypothesis, when the observed value of
the test statistic is used as if it were the cut-off point of the test. The P-value of
a test often accompanies a null hypothesis which is rejected, as an indication
of the strength or weakness of rejection. The smaller the P-value, the stronger
the rejection of the null hypothesis, and vice versa. More about it in Chapter 11.

8.4 The Basics of Regression Analysis

In the last three sections, we discussed the general principles of point esti-
mation, interval estimation, and testing hypotheses in a general setup. These
principles apply, in particular, in specific models. Two such models are Regres-

sion models and Analysis of Variance models.
A regression model arises in situations such as those described in Examples

22 and 23 in Chapter 1. Its simplest form is as follows: At fixed points x1, . . . , xn,
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respective measurements y1, . . . , yn are taken, which may be subject to an as-
sortment of random errors e1, . . . , en. Thus, the yi’s are values of r.v.’s Yi’s,
which may often be assumed to have the structure: Yi = β1 + β2xi + ei, i =
1, . . . , n; here β1 and β2 are parameters (unknown constants) of the model. For
the random errors ei, it is not unreasonable to assume that Eei = 0; we also
assume that they have the same variance, Var (ei) = σ 2 ∈ (0, ∞). Furthermore,
it is reasonable to assume that the ei’s are i.i.d. r.v.’s, which implies indepen-
dence of the r.v.’s Y1, . . . , Yn. It should be noted, however, that the Yi’s are not

identically distributed, since, for instance, they have different expectations:
EYi = β1 + β2xi, i = 1, . . . , n. Putting these assumptions together, we arrive
at the following simple linear regression model.

Yi = β1 + β2xi + ei, the ei’s are i.i.d. with Eei = 0 and

Var (ei) = σ 2, i = 1, . . . , n. (11)

The quantities β1, β2, and σ 2 are the parameters of the model; the Yi’s are in-
dependent but not identically distributed; also, EYi = β1 +β2xi and Var (Yi) =
σ 2, i = 1, . . . , n.

The term “regression” derives from the way the Yi’s are produced from the
xi’s, and the term “linear” indicates that the parameters β1 and β2 enter into
the model raised to the first power.

The main problems in connection with model (11) are to estimate the pa-
rameters β1, β2, and σ 2; construct confidence intervals for β1 and β2; test hy-
potheses about β1 and β2; and predict the expected value EYi0 (or the value
itself Yi0 ) corresponding to an xi0 , distinct, in general, from x1, . . . , xn. Esti-
mates of β1 and β2, the Least Squares Estimates (LSE’s), can be constructed
without any further assumptions; the same for an estimate of σ 2. For the
remaining parts, however, there is a need to stipulate a distribution for the
ei’s. Since the ei’s are random errors, it is reasonable to assume that they are
Normally distributed; this then implies Normal distribution for the Yi’s. Thus,
model (11) now becomes:

Yi = β1 + β2xi + ei, the ei’s are independently

distributed as N(0, σ 2), i = 1, . . . , n. (12)

Under model (12), the MLE’s of β1, β2, and σ 2 are derived, and their distri-
butions are determined. This allows us to pursue the resolution of the parts of
constructing confidence intervals, testing hypotheses, and of prediction. The
relevant discussion is presented in Chapter 13.

8.5 The Basics of Analysis of Variance

Analysis of Variance (ANOVA) is a powerful technique, which provides the
means of assessing and/or comparing several entities. ANOVA can be used
effectively in many situations; in particular, it can be used in assessing and/or
comparing crop yields corresponding to different soil treatments; crop yields
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corresponding to different soils and fertilizers; for the comparison of a certain
brand of gasoline with or without an additive by using it in several cars; the
comparison of different brands of gasoline by using them in several cars; the
comparison of the wearing of different materials; the comparison of the effect
of different types of oil on the wear of several piston rings, etc.; the comparison
of the yields of a chemical substance by using different catalytic methods;
the comparison of the strengths of certain objects made of different batches
of some material; the comparison of test scores from different schools and
different teachers, etc.; and identification of the melting point of a metal by
using different thermometers. Example 24 in Chapter 1 provides another case
where ANOVA techniques are appropriate.

Assessment and comparisons are done by way of point estimation, interval
estimation, and testing hypotheses, as these techniques apply to the specific
ANOVA models to be considered. The more factors involved in producing an
outcome, the more complicated the model becomes. However, the basic ideas
remain the same throughout.

For the sake of illustrating the issues involved, consider the so-called one-

way layout or one-way classification model. Consider one kind of gasoline,
for example, unleaded regular gasoline, and suppose we supply ourselves with
amounts of this gasoline, purchased from I different companies. The objective
is to compare these I brands of gasoline from yield viewpoint. To this end, a
car (or several but pretty similar cars) operates under each one of the I brands
of gasoline for J runs in each case. Let Yij be the number of miles per hour
for the jth run when the ith brand of gasoline is used. Then the Yij ’s are r.v.’s
for which the following structure is assumed: For a given i, the actual number
of miles per hour for the jth run varies around a mean value μi, and these
variations are due to an assortment of random errors eij . In other words, it
makes sense to assume that Yij = μi + eij . It is also reasonable to assume
that the random errors eij are independent r.v.’s distributed as N(0, σ 2), some
unknown variance σ 2. Thus, we have stipulated the following model:

Yij = μi + eij , where the eij ’s are independently

∼N(0, σ 2), i = 1, . . . , I(≥2), j = 1, . . . , J(≥2). (13)

The quantities μi, i = 1, . . . , I, and σ 2 are the parameters of the model.
It follows that the r.v.’s Yij are independent and Yij ∼ N(μi, σ 2), j =

1, . . . , J, i = 1, . . . , I.
The issues of interest here are those of estimating the μi’s (mean number

of miles per hour for the ith brand of gasoline) and σ 2. Also, we wish to test the
hypothesis that there is really no difference between these I different brands of
gasoline; in other words, test H0 : μ1 = · · · = μI(= μ, say, unknown). Should
this hypothesis be rejected, we would wish to identify the brands of gasoline
which cause the rejection. This can be done by constructing a confidence
interval for certain linear combinations of the μi’s called contrasts. That is,∑I

i=1 ciμi, where c1, . . . , cI are constants with
∑I

i=1 ci = 0.
Instead of having one factor (gasoline brand) affecting the outcome (num-

ber of miles per hour), there may be two (or more) such factors. For example,
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there might be some chemical additives meant to enhance the mileage. In this
framework, suppose there are J such chemical additives, and let us combine
each one of the I brands of gasoline with each one of the J chemical additives.
For simplicity, suppose we take just one observation, Yij , on each one of the
I J pairs. Then it makes sense to assume that the r.v. Yij is the result of the
following additive components: A basic quantity (grand mean) μ, the same
for all i and j; an effect αi due to the ith brand of gasoline (the ith row effect);
an effect β j due to the jth chemical additive (the ith column effect); and, of
course, the random error eij due to a host of causes. So, the assumed model
is then: Yij = μ + αi + β j + eij . As usually, we assume that the eij ’s are inde-
pendent ∼ N(0, σ 2) with some (unknown) variance σ 2, which implies that the
Yij ’s are independent r.v.’s and Yij ∼ N(μ + αi + β j , σ 2). We further assume
that some of αi effects are ≥ 0, some are < 0, and on the whole

∑I

i=1 αi = 0;
and likewise for the β j effects:

∑J

j=1 β j = 0. Summarizing these assumptions,
we have then:

Yij = μ + αi + β j + eij , where the eij ’s are independently

∼ N(0, σ 2), i = 1, . . . , I(≥2), j = 1, . . . , J(≥2),

I∑
i=1

αi = 0,
J∑

j=1

β j = 0. (14)

The quantities μ, αi, i = 1, . . . , I, β j , j = 1, . . . , J and σ 2 are the parameters

of the model.
As already mentioned, the implication is that the r.v.’s Yij are independent

and Yij ∼ N(μ + αi + β j , σ 2), i = 1, . . . , I, j = 1, . . . , J.
The model described by (14) is called two-way layout or two-way classi-

fication, as the observations are affected by two factors.
The main statistical issues are those of estimating the parameters involved

and testing irrelevance of either one of the factors involved — that is, testing
H0A : α1 = · · · = αI = 0, H0B : β1 = · · · = βJ = 0. Details will be presented in
Chapter 14. There, an explanation of the term “ANOVA” will also be given.

8.6 The Basics of Nonparametric Inference

All of the problems discussed in the previous sections may be summarized as
follows: On the basis of a random sample of size n, X1, . . . , Xn, drawn from the
p.d.f. f (·; θ), θ ∈ � ⊆ �, construct a point estimate for θ , a confidence interval
for θ , and test hypotheses about θ . In other words, the problems discussed were
those of making (statistical) inference about θ . These problems are suitably
modified for a multidimensional parameter. The fundamental assumption in
this framework is that the functional form of the p.d.f. f (·; θ) is known; the
only thing which does not render f (·; θ) completely known is the presence of
the (unknown constant) parameter θ .

In many situations, stipulating a functional form for f (·; θ) either is dictated
by circumstances or is the product of accumulated experience. In the absence
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of these, we must still proceed with the problems of estimating important
quantities, either by points or by intervals, and testing hypotheses about them.
However, the framework now is nonparametric, and the relevant inference is
referred to as nonparametric inference.

Actually, there have been at least three cases so far where nonparametric

estimation was made without referring to it as such. Indeed, if X1, . . . , Xn are
i.i.d. r.v.’s with unknown mean μ, then the sample mean X̄n may be taken as
an estimate of μ, regardless of what the underlying distribution of the Xi’s is.
This estimate is recommended on the basis of at least three considerations.
First, it is unbiased, EX̄n = μ no matter what the underlying distribution is;
second, X̄n is the moment estimate of μ; and third, by the WLLN, X̄n

P−→
n→∞ μ, so

that X̄n is close to μ, in the sense of probability, for all sufficiently large n. Now
suppose that the Xi’s also have (an unknown) variance σ 2 ∈ (0, ∞). Then the
sample variance S2

n can be used as an estimate of σ 2, because it is unbiased
(Section 8.1) and also S2

n

P−→
n→∞ σ 2. Furthermore, by combining X̄n and S2

n and
using Theorem 7(ii) in Chapter 7, we have that

√
n(X̄n − μ)/Sn � N(0, 1) for

large n. Then, for such n, [X̄n − zα/2
Sn√

n
, X̄n + zα/2

Sn√
n

] is a confidence interval for
μ with confidence coefficient approximately 1 − α.

Also, the (unknown) d.f. F of the Xi’s has been estimated at every point
x ∈ � by the empirical d.f. Fn (see relation (1) in Chapter 7). The estimate Fn

has at least two desirable properties. For all x ∈ � and regardless of the form
of the d.f. F : EFn(x) = F(x) and Fn(x)

P−→
n→∞ F(x).

What has not been done so far is to estimate the p.d.f. f (x) at each x ∈ �,
under certain regularity conditions, which do not include postulation of a
functional form for f . There are several ways of doing this; in Chapter 15, we
are going to adopt the so-called kernel method of estimating f . Some desirable
results of the proposed estimate will be stated without proofs.

Regarding testing hypotheses, the problems to be addressed in Chapter 15
will be to test the hypothesis that the (unknown) d.f. F is, actually, equal to a
known one F0; that is H0 : F = F0, the alternative HA being that F(x) �= F0(x)
for at least one x ∈ �. Actually, from a practical viewpoint, it is more important
to compare two (unknown) d.f.’s F and G, by stipulating H0 : F = G. The alter-
native can be any one of the following: HA : F �= G, H′

A : F > G, H′′
A : F < G,

in the sense that F(x) ≥ G(x) or F(x) ≤ G(x), respectively, for all x ∈ �, and
strict inequality for at least one x. In carrying out the appropriate tests, one
has to use some pretty sophisticated asymptotic results regarding empirical
d.f.’s. An alternative approach to using empirical d.f.’s is to employ the concept
of a rank test or the concept of a sign test. These things will be discussed
to some extent in Chapter 15. That chapter is concluded with the basics of
regression estimation but in a nonparametric framework. In such a situation,
what is estimated is an entire function rather than a few parameters. Some
basic results are stated in Chapter 15.



Chapter 9

Point Estimation

In the previous chapter, the basic terminology and concepts of parametric
point estimation were introduced briefly. In the present chapter, we are going
to elaborate extensively on this matter. For brevity, we will use the term es-
timation rather than parametric point estimation. The methods of estimation
to be discussed here are those listed in the first section of the previous chap-
ter; namely, maximum likelihood estimation, estimation through the concepts
of unbiasedness and minimum variance (which lead to uniformly minimum
variance estimates), estimation based on decision-theoretic concepts, and es-
timation by the method of moments. The method of estimation by way of the
principle of least squares is commonly used in the so-called linear models.
Accordingly, it is deferred to Chapter 13.

Before we embark on the mathematical derivations, it is imperative to keep
in mind the big picture; namely, why do we do what we do? A brief description
is as follows. Let X be a r.v. with p.d.f. f (·; θ), where θ is a parameter lying
in a parameter space �. It is assumed that the functional form of the p.d.f. is
completely known. So, if θ were known, then the p.d.f. would be known, and
consequently we could calculate, in principle, all probabilities related to X, the
expectation of X, its variance, etc. The problem, however, is that most often in
practice (and in the present context) θ is not known. Then the objective is to
estimate θ on the basis of a random sample of size n from f (·; θ), X1, . . . , Xn.
Then, replacing θ in f (·; θ) by a “good” estimate of it, one would expect to
be able to use the resulting p.d.f. for the purposes described above to a satis-
factory degree.

9.1 Maximum Likelihood Estimation: Motivation and Examples

The following simple example is meant to shed light to the intuitive, yet quite
logical, principle of Maximum Likelihood Estimation.

240
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EXAMPLE 1 Let X1, . . . , X10 be i.i.d. r.v.’s from the B(1, θ) distribution, 0 < θ < 1, and let
x1, . . . , x10 be the respective observed values. For convenience, set t =
x1 + · · · + x10. Further, suppose that in the 10 trials, 6 resulted in successes,
so that t = 6. Then the likelihood function involved is: L(θ | x) = θ6(1 − θ)4,
0 < θ < 1, x = (x1, . . . , x10). Thus, L(θ | x) is the probability of observing ex-
actly 6 successes in 10 independent Binomial trials, the successes occurring
on those trials for which xi = 1, i = 1, . . . , 10; this probability is a function of
the (unknown) parameter θ . Let us calculate the values of this probability for
θ ranging from 0.1 to 0.9. We find:

Values of θ Values of L(θ | x)

0.1 0.000006656
0.2 0.000026200
0.3 0.000175000
0.4 0.000531000
0.5 0.000976000
0.6 0.003320000
0.7 0.003010000
0.8 0.000419000
0.9 0.000053000

We observe that the values of L(θ | x) keep increasing, it attains its maximum
value at θ = 0.6, and then the values keep decreasing. Thus, if these 9 values
were the only possible values for θ (which they are not!), one would reason-
ably enough choose the value of 0.6 as the value of θ . The value θ = 0.6 has
the distinction of maximizing (among the 9 values listed) the probability of
attaining the 6 already observed successes.

We observe that 0.6 = 6
10 = t

n
, where n is the number of trials and t is the

number of successes. It will be seen in Example 2 that the value t

n
, actually,

maximizes the likelihood function among all values of θ with 0 < θ < 1. Then
t

n
will be the Maximum Likehood Estimate of θ to be denoted by θ̂ ; i.e., θ̂ = t

n
.

In a general setting, let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f (·; θ) with θ ∈ �,
and let x1, . . . , xn be the respective observed values and x = (x1, . . . , xn). The
likelihood function, L(θ | x), is given by L(θ | x) =∏n

i=1 f (xi; θ), and a value
of θ which maximizes L(θ | x) is called a Maximum Likelihood Estimate

(MLE) of θ. Clearly, the MLE depends on x, and we usually write θ̂ = θ̂(x).
Thus,

L(θ̂ | x) = max{L(θ | x); θ ∈ �}. (1)

The justification for choosing an estimate as the value of the parameter which
maximizes the likelihood function is the same as that given in Example 1,
when the r.v.’s are discrete. The same interpretation holds true for r.v.’s of
the continuous type, by considering small intervals around the observed
values.
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Once we decide to adopt the Maximum Likelihood Principle (i.e., the prin-
ciple of choosing an estimate of the parameter through the process of maxi-
mizing the likelihood function), the actual identification of an MLE is a purely
mathematical problem; namely, that of maximizing a function. This maximiza-
tion, if possible at all, often (but not always) is done through differentiation.
Examples to be discussed below will illustrate various points.

Before embarking on specific examples, it must be stressed that, whenever
a maximum is sought by differentiation, the second-order derivative(s) must
also be examined in search of a maximum. Also, it should be mentioned that
maximization of the likelihood function, which is the product of n factors, is
equivalent to maximization of its logarithm (always with base e), which is the
sum of n summands, thus much easier to work with.

REMARK 1 Let us recall that a function y = g(x) attains a maximum at a
point x = x0, if d

dx
g(x)|x=x0 = 0 and d2

dx2 g(x)|x=x0 < 0.

EXAMPLE 2 In terms of a random sample of size n, X1, . . . , Xn from the B(1, θ) distribution
with observed values x1, . . . , xn, determine the MLE θ̂ = θ̂(x) of θ ∈ (0, 1),
x = (x1, . . . , xn).

DISCUSSION Since f (xi; θ) = θ xi(1 − θ)1−xi , xi = 0 or 1, i = 1, . . . , n,
the likelihood function is

L(θ | x) =
n∏

i=1

f (xi; θ) = θ t(1 − θ)n−t, t = x1 + · · · + xn,

so that t = 0, 1, . . . , n. Hence log L(θ | x) = t log θ + (n − t) log(1 − θ). From
the likelihood equation ∂

∂θ
log L(θ | x) = t

θ
− n− t

1 − θ
= 0, we obtain θ = t

n
.

Next, ∂2

∂θ2 log L(θ | x) = − t

θ2 − n− t

(1 − θ)2 , which is negative for all θ and hence for
θ = t/n. Therefore, the MLE of θ is θ̂ = t

n
= x̄.

EXAMPLE 3 Determine the MLE θ̂ = θ̂(x) of θ ∈ (0, ∞) in the P(θ) distribution in terms of
the random sample X1, . . . , Xn with observed values x1, . . . , xn.

DISCUSSION Here f (xi; θ) = e−θ θ xi

xi!
, xi = 0, 1, . . . , i = 1, . . . , n, so that

log L(θ | x) = log

(
n∏

i=1

e−θ θ xi

xi!

)
= log

(
e−nθ

n∏
i=1

θ xi

xi!

)

= −nθ + (log θ)
n∑

i=1

xi − log

(
n∏

i=1

xi!

)

= −nθ + (n log θ)x̄ − log

(
n∏

i=1

xi!

)
.

Hence ∂
∂θ

log L(θ | x) = −n+ nx̄

θ
= 0, which gives θ = x̄, and ∂2

∂θ2 log L(θ | x) =
−nx̄

θ2 < 0 for all θ and hence for θ = x̄. Therefore the MLE of θ is θ̂ = x̄.
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EXAMPLE 4 Determine the MLE θ̂ = θ̂(x) of θ ∈ (0, ∞) in the Negative Exponential distri-
bution f (x ; θ) = θe−θx, x > 0, on the basis of the random sample X1, . . . , Xn

with observed values x1, . . . , xn.

DISCUSSION Since f (xi; θ) = θe−θxi , xi > 0, i = 1, . . . , n, we have

log L(θ | x) = log(θne−nθ x̄) = n log θ − nx̄θ , so that

∂
∂θ

log L(θ | x) = n

θ
− nx̄= 0, and hence θ = 1/x̄. Furthermore, ∂2

∂θ2 log L(θ | x) =
− n

θ2 < 0 for all θ and hence for θ = 1/x̄. It follows that θ̂ = 1/x̄.

EXAMPLE 5 Let X1, . . . , Xn be a random sample from the N(μ, σ 2) distribution, where only
one of the parameters is known. Determine the MLE of the other (unknown)
parameter.

DISCUSSION With x1, . . . , xn being the observed values of X1, . . . , Xn, we
have:

(i) Let μ be unknown. Then

log L(μ | x) = log

{
n∏

i=1

1√
2πσ

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]}

= −n log
(√

2πσ
)− 1

2σ 2

n∑
i=1

(xi − μ)2, so that

∂
∂μ

log L(μ | x) = n(x̄− μ)
σ 2 = 0, and hence μ = x̄. Furthermore, ∂2

∂μ2 log L(μ | x) =
− n

σ 2 < 0 for all μ and hence for μ = x̄. It follows that the MLE of μ is
μ̂ = x̄.
(ii) Let σ 2 be unknown. Then

log L(σ 2 | x) = log

{
n∏

i=1

1√
2πσ 2

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]}

= −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑
i=1

(xi − μ)2, so that

∂
∂σ 2 log L(σ 2 | x) = − n

2σ 2 + 1
2σ 4

∑n

i=1(xi −μ)2 = 0, and hence σ 2 = 1
n

∑n

i=1(xi −
μ)2; set 1

n

∑n

i=1(xi − μ)2 = s2. Then

∂2

∂(σ 2)2
log L(σ 2 | x) = n

2σ 4
− 2n

2σ 6

1
n

n∑
i=1

(xi − μ)2

= n

2(σ 2)2
− 2n

2(σ 2)3
s2, so that

∂2

∂(σ 2)2 log L(σ 2 | x)|σ 2=s2 = n

2(s2)2 − 2ns2

2(s2)3 = − n

2s4 < 0. It follows that the MLE of
σ 2 is σ̂ 2 = 1

n

∑n

i=1(xi − μ)2.

In all of the preceding examples, the MLE’s were determined through
differentiation. Below is a case where this method does not apply because,
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simply, the derivative does not exist. As an introduction to the problem, let
X ∼ U(0, θ) (θ > 0), so that the likelihood function is L(θ | x) = 1

θ
I[0,θ ](x)

where it is to be recalled that the indicator function IA is defined by IA(x) = 1
if x ∈ A, and IA(x) = 0 if x ∈ Ac. The picture of L(· | x) is shown in Figure 9.1.

L(q |x)

q
x0

1
x

L(q |x) = 
0 , q   < x
1/q�, q   ≥ x

Figure 9.1

EXAMPLE 6 Let X1, . . . , Xn be a random sample from the Uniform U(α, β) (α < β) distri-
bution, where only one of α and β is unknown. Determine the MLE of the
(unknown) parameter.

DISCUSSION

(i) Let α be unknown. Since

f (xi; α) = 1
β − α

I[α,β](xi), i = 1, . . . , n, it follows that

L(α | x) = 1
(β − α)n

n∏
i=1

I[α,β](xi) = 1
(β − α)n

I[α,β](x(1))I[α,β](x(n)),

where x(1) = min(x1, . . . , xn), x(n) = max(x1, . . . , xn); or

L(α | x) = 1
(β − α)n

I[α,∞)(x(1))I(−∞,β](x(n)). (2)

Maximization of L(α | x) with respect to α means two things: maximization of
I[α,∞)(x(1)) and maximization of 1/(β − α)n. The maximum value of the former
quantity is 1 and occurs as long as α ≤ x(1). The latter quantity gets larger and
larger as α gets closer and closer to β. But always α ≤ x(1) ≤ β, and α is subject
to the restriction α ≤ x(1). Thus, α gets closest to β, if α = x(1). In other words,
the MLE of α is α̂ = x(1).
(ii) Let β be unknown. Relation (2) then becomes

L(β | x) = 1
(β − α)n

I[α,∞)(x(1))I(−∞,β](x(n)),

whereas always α ≤ x(n) ≤ β. Then, arguing as in the first case, we have that
the MLE of β is β̂ = x(n).
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In the examples discussed so far, there was a single parameter to be esti-
mated. In the examples presented below, the parameters to be estimated will
be two or more. If the maximization is to be done through differentiation, then
the following remark reminds us how this method is implemented.

REMARK 2 The function y = g(x1, . . . , xk) attains a maximum at a point
(x01, . . . , x0k), if the point (x01, . . . , x0k) satisfies the system of the k equations
∂

∂xi
g(x1, . . . , xk) = 0, i = 1, . . . , k, and, in addition, the point (x01, . . . , x0k)

renders the k × k matrix of the second-order derivatives ( ∂2

∂xi∂xj
g(x1, . . . , xk)),

i, j = 1, . . . , k, negative definite. What is meant by the term “negative def-
inite” is that the real-valued quantity below is <0 for all nonzero vectors
(λ1, . . . , λk) (λ2

1 + · · · + λ2
k �= 0); namely,

(λ1, . . . , λk)

(
∂2

∂xi∂xj

g(x1, . . . , xk)

∣∣∣∣
(x1,...,xk)=(x01,...,x0k)

)⎛⎝ λ1
...

λk

⎞⎠ < 0.

EXAMPLE 7 Refer to Example 5 and suppose that both μ and σ 2 are unknown. Determine
their MLE’s.

DISCUSSION Here

log L(μ, σ 2 | x) = −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑
i=1

(xi − μ)2,

and then the two likelihood equations produce the unique solution μ = x̄ and
σ 2 = 1

n

∑n

i=1(xi − x̄)2, which we may denote by s2. Next, the 2 × 2 matrix of

the second-order derivatives, evaluated at (x̄, s2), becomes
(− n

s2 0

0 − n

2s4

)
, which

is negative definite (see Exercise 1.2 below). Thus, μ̂ = x̄ and σ̂ 2 = 1
n

∑n

i=1(xi−
x̄)2 are the MLE’s of μ and σ 2, respectively.

EXAMPLE 8 A Multinomial experiment is carried out independently n times, so that the
likelihood function is

L( p1, . . . , pr | x) = n!
x1! · · · xr!

p
x1
1 · · · pxr

r ,

where xi ≥ 0, i = 1, . . . , r integers, with x1 + · · · + xr = n, and 0 < pi < 1,
i = 1, . . . , r with p1 + · · · + pr = 1. Determine the MLE’s of pi, i = 1, . . . , r.

DISCUSSION The number of independent parameters is r − 1, since, for
example, pr = 1 − p1 − · · · − pr−1. Looking at the log L(p1, . . . , pr | x) and
taking partial derivatives with respect to pi, i = 1, . . . , r − 1 (and remember-
ing that pr = 1 − p1 − · · · − pr−1) we obtain

xi

1
pi

− xr

1
pr

= 0, i = 1, . . . , r − 1.

From these relations, the unique solution pi = xi

n
, i = 1, . . . , r follows.
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Next, the (r −1)× (r −1) matrix of the second-order derivatives, evaluated
at pi = xi/n, i = 1, . . . , r, is given by⎛⎜⎜⎜⎜⎜⎝

−n2

x1
− n2

xr
−n2

xr
· · · −n2

xr
−n2

xr

−n2

xr
− n2

x2
− n2

xr
· · · −n2

xr
−n2

xr

· · · · · · · · · · · · · · ·
−n2

xr
−n2

xr
· · · −n2

xr
− n2

xr−1
− n2

xr

⎞⎟⎟⎟⎟⎟⎠,

which is seen to be negative definite. Consequently, the MLE’s of pi, i =
1, . . . , r are p̂i = xi

n
, i = 1, . . . , r. (Also, see Exercise 1.3 below.)

EXAMPLE 9 Refer to Example 6, assume that both α and β are unknown, and determine
their MLE’s.

DISCUSSION Expression (1) becomes here as follows:

L(α, β | x) = 1
(β − α)n

I[α,∞)(x(1))I(−∞,β](x(n)). (3)

Since always α ≤ x(1) ≤ x(n) ≤ β, the right-hand side of (3) is maximized
if I[α,∞)(x(1)) = 1 and I(−∞,β](x(n)) = 1, which happen if α ≤ x(1), x(n) ≤ β

and also if α and β are as close together as possible. Clearly, this happens for
α = x(1) and β = x(n). In other words, the MLE’s of α and β are α̂ = x(1) and
β̂ = x(n).

Exercises

1.1 Refer to Example 6(ii) and justify the statement made there that x(n) is,
indeed, the MLE of β.

1.2 Show that the matrix
(

−n/s2 0
0 −n/2s4

)
in Example 7 is, indeed, negative

definite.

1.3 In reference to Example 8, show that:
(i) pi = xi

n
, i = 1, . . . , r, is, indeed, the unique solution of the system of

equations considered there.
(ii) The (r − 1) × (r − 1) matrix exhibited there is the matrix of the

second-order derivatives as stated.
(iii) The matrix in part (ii) is negative definite.

1.4 In reference to Example 18 below, show that Varθ (S2) = 2σ 4

n− 1 as stated
there.

1.5 If X1, . . . , Xn are independent r.v.’s distributed as B(k, θ), θ ∈ � = (0, 1),
with respective observed values x1, . . . , xn, show that θ̂ = x̄

k
is the MLE

of θ , where x̄ is the sample mean of the xi’s.
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1.6 If the independent r.v.’s. X1, . . . , Xn have the Geometric p.d.f. f (x ; θ) =
θ(1 − θ)x−1, x = 1, 2, . . . , θ ∈ � = (0, 1), and respective observed values
x1, . . . , xn, then show that θ̂ = 1/x̄ is the MLE of θ .

1.7 On the basis of a random sample of size n from the p.d.f. f (x; θ) =
(θ + 1)xθ , 0 < x < 1, θ ∈ � = (−1, ∞), derive the MLE of θ .

1.8 On the basis of a random sample of size n from the p.d.f. f (x; θ) =
θxθ−1, 0 < x < 1, θ ∈ � = (0, ∞), derive the MLE of θ .

1.9 (i) Show that the function f (x ; θ) = 1
2θ

e−|x|/θ , x ∈ �, θ ∈ � = (0, ∞) is
a p.d.f. (the so-called Double Exponential p.d.f.), and draw its picture.

(ii) On the basis of a random sample from this p.d.f., derive the MLE
of θ .

1.10 (i) Verify that the function f (x ; θ) = θ2xe−θx, x > 0, θ ∈ � = (0, ∞)
is a p.d.f., by observing that it is the Gamma p.d.f. with parameters
α = 2, β = 1/θ .

(ii) On the basis of a random sample of size n from this p.d.f., derive the
MLE of θ .

1.11 (i) Show that the function f (x ; α, β) = 1
β

e−(x−α)/β , x ≥ α, α ∈ �, β > 0,
is a p.d.f., and draw its picture.

On the basis of a random sample of size n from this p.d.f., deter-
mine the MLE of:

(ii) α when β is known.
(iii) β when α is known.
(iv) α and β when both are unknown.

1.12 Refer to the Bivariate Normal distribution discussed in Chapter 4,
Section 5, whose p.d.f. is given by:

fX,Y(x, y) = 1

2πσ1σ2

√
1 − ρ2

e−q/2, x, y ∈ �,

where

q = 1
1 − ρ2

[(
x − μ1

σ1

)2

− 2ρ

(
x − μ1

σ1

)(
y − μ2

σ2

)
+
(

y − μ2

σ2

)2]
;

μ1, μ2 ∈ �, σ 2
1 , σ 2

2 > 0 and −1 ≤ ρ ≤ 1 are the parameters of the distri-
bution. The objective here is to find the MLE’s of these parameters. This
is done in two stages, in the present exercise and the exercises following.

For convenient writing, set θ = (μ1, μ2, σ 2
1 , σ 2

2 , ρ), and form the like-
lihood function for a sample of size n, (Xi, Yi), i = 1, . . . , n, from the
underlying distribution; i.e.,

L(θ | x, y) =
(

1

2πσ1σ2

√
1 − ρ2

)n

exp

(
− 1

2

n∑
i=1

qi

)
,
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where

qi = 1
1 − ρ2

[(
xi − μ1

σ1

)2

− 2ρ

(
xi − μ1

σ1

)(
yi − μ2

σ2

)
+
(

yi − μ2

σ2

)2]
,

and x = (x1, . . . , xn), y = (y1, . . . , yn), the observed values of the Xi’s
and the Yi’s. Also, set

λ(θ) = λ(θ | x, y) = log L(θ | x, y)

= −n log(2π) − n

2
log σ 2

1 − n

2
log σ 2

2 − n

2
log (1 − ρ2) − 1

2

n∑
i=1

qi.

(i) Show that the first order partial derivatives of q given above are
provided by the following expressions:

∂q

∂μ1
= − 2(x − μ1)

σ 2
1 (1 − ρ2)

+ 2ρ(y − μ2)
σ1σ2(1 − ρ2)

,

∂q

∂μ2
= − 2(y − μ2)

σ 2
2 (1 − ρ2)

+ 2ρ(x − μ1)
σ1σ2(1 − ρ2)

,

∂q

∂σ 2
1

= − (x − μ1)2

σ 4
1 (1 − ρ2)

+ ρ(x − μ1)(y − μ2)

σ 3
1 σ2(1 − ρ2)

,

∂q

∂σ 2
2

= − (y − μ2)2

σ 4
2 (1 − ρ2)

+ ρ(x − μ1)(y − μ2)

σ1σ
3
2 (1 − ρ2)

,

∂q

∂ρ
= 2

(1 − ρ2)2

{
ρ

[(
x − μ1

σ1

)2

+
(

y − μ2

σ2

)2]
− (1 + ρ2)

(
x − μ1

σ1

)(
y − μ2

σ2

)}
.

(ii) Use the above obtained expressions and λ(θ) in order to show that:

∂λ(θ)
∂μ1

= n

σ 2
1 (1 − ρ2)

(x̄ − μ1) − nρ

σ1σ2(1 − ρ2)
(ȳ − μ2),

∂λ(θ)
∂μ2

= n

σ 2
2 (1 − ρ2)

(ȳ − μ2) − nρ

σ1σ2(1 − ρ2)
(x̄ − μ1),

∂λ(θ)

∂σ 2
1

= − n

2σ 2
1

+
∑n

i=1(xi − μ1)2

2σ 4
1 (1 − ρ2)

− ρ
∑n

i=1(xi − μ1)(yi − μ2)

2σ 3
1 σ2(1 − ρ2)

,

∂λ(θ)

∂σ 2
2

= − n

2σ 2
2

+
∑n

i=1(yi − μ2)2

2σ 4
2 (1 − ρ2)

− ρ
∑n

i=1(xi − μ1)(yi − μ2)

2σ1σ
3
2 (1 − ρ2)

,

∂λ(θ)
∂ σ

= nρ

1 − ρ2
− ρ
∑n

i=1(xi − μ1)2

σ 2
1 (1 − ρ2)

− ρ
∑n

i=1(yi − μ2)2

σ 2
2 (1 − ρ2)

+ (1 + ρ2)
∑n

i=1(xi − μ1)(yi − μ2)
σ1σ2(1 − ρ2)2

.
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(iii) Setting ∂λ(θ)
∂μ1

= ∂λ(θ)
∂μ2

= 0, and solving for μ1 and μ2, show that there
is a unique solution given by: μ̃1 = x̄ and μ̃2 = ȳ.

(iv) By setting ∂λ(θ)
∂σ 2

1
= ∂λ(θ)

∂σ 2
2

= ∂λ(θ)
∂ρ

= 0 and replacing μ1 and μ2 by the
respective expressions x̄ and ȳ, show that we arrive at the equations:

Sx

σ 2
1

− ρSxy

σ1σ2
= 1 − ρ2,

Sy

σ 2
2

− ρSxy

σ1σ2
= 1 − ρ2,

Sx

σ 2
1

+ Sy

σ 2
2

− (1 + ρ2)Sxy

ρσ1σ2
= 1 − ρ2,

where Sx = 1
n

∑n

i=1(xi − x̄)2, Sy = 1
n

∑n

i=1(yi − ȳ)2 and Sxy =
1
n

∑n

i=1(xi − x̄)(yi − ȳ).
(v) In the equations obtained in part (iv), solve for σ 2

1 , σ 2
2 , and ρ in order

to obtain the unique solution:

σ̃ 2
1 = Sx, σ̃ 2

2 = Sy, ρ̃ = Sxy/S1/2
x S1/2

y .

1.13 The purpose of this exercise is to show that the values μ̃1, μ̃2, σ̃ 2
1 , σ̃ 2

2 , and
ρ̃ are actually the MLE’s of the respective parameters. To this end:
(i) Take the second-order partial derivatives of λ(θ), as indicated below,

and show that they are given by the following expressions:

∂2λ(θ)

∂μ2
1

= − n

σ 2
1 (1 − ρ2)

def= d11,
∂2λ(θ)
∂μ1 ∂μ2

= nρ

σ1σ2(1 − ρ2)
def= d12,

∂2λ(θ)

∂μ1 ∂σ 2
1

= − n(x̄ − μ1)

σ 4
1 (1 − ρ2)

+ nρ(ȳ − μ2)

2σ 3
1 σ2(1 − ρ2)

def= d13,

∂2λ(θ)

∂μ1 ∂σ 2
2

= nρ(ȳ − μ2)

2σ1σ
3
2 (1 − ρ2)

def= d14,

∂2λ(θ)
∂μ1 ∂ρ

= 2ρn(x̄ − μ1)

σ 2
1 (1 − ρ2)2

− n(1 + ρ2)(ȳ − μ2)
σ1σ2(1 − ρ2)2

def= d15.

(ii) In d1i, i = 1, . . . , 5, replace the parameters involved by their re-
spective estimates, and denote the resulting expressions by d̃1i, i =
1, . . . , 5. Then show that:

d̃11 = − nSy

SxSy − S2
xy

, d̃12 = nSxy

SxSy − S2
xy

, d̃13 = d̃14 = d̃15 = 0,

where Sx, Sy, and Sxy are given in Exercise 1.12(iv).
(iii) Work as in part (i) in order to show that:

d21
def= ∂2λ(θ)

∂μ2 ∂μ1
= ∂2λ(θ)

∂μ1 ∂μ2
= d12, d22

def= ∂2λ(θ)

∂μ2
2

= − n

σ 2
2 (1 − ρ2)

,

d23
def= ∂2λ(θ)

∂μ2 ∂σ 2
1

= nρ(x̄ − μ1)

2σ 3
1 σ (1 − ρ2)

,
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d24
def= ∂2λ(θ)

∂μ2 ∂σ 2
2

= − n(ȳ − μ2)

σ 4
2 (1 − ρ2)

+ nρ(x̄ − μ1)

2σ1σ
3
2 (1 − ρ2)

,

d25
def= ∂2λ(θ)

∂μ2 ∂ρ
= 2ρn(ȳ − μ2)

σ 2
2 (1 − ρ2)2

− n(1 + ρ2)(x̄ − μ1)
σ1σ2(1 − ρ2)2

.

(iv) In part (iii), replace the parameters by their respective estimates and
denote by d̃2i, i = 1, . . . , 5 the resulting expressions. Then, show that:

d̃21 = d̃12, d̃22 = − nSx

SxSy − S 2
xy

, and d̃23 = d̃24 = d̃25 = 0.

(v) Work as in parts (i) and (iii), and use analogous notation in order to
obtain:

d31
def= ∂2λ(θ)

∂σ 2
1 ∂μ1

= d13, d32
def= ∂2λ(θ)

∂σ 2
1 ∂μ2

= d23,

d33
def= ∂2λ(θ)

∂(σ 2
1 )2

= n

2σ 4
1

−
∑n

i=1(xi −μ1)2

σ 6
1 (1 − ρ2)

+ 3ρ
∑n

i=1(xi − μ1)(yi −μ2)

4σ 5
1 σ2(1 − ρ2)

,

d34
def= ∂2λ(θ)

∂σ 2
1 ∂σ 2

2

= ρ
∑n

i=1(xi − μ1)(yi − μ2)

4σ 3
1 σ 3

2 (1 − ρ2)
,

d35
def= ∂2λ(θ)

∂σ 2
1 ∂ρ

= ρ
∑n

i=1(xi −μ1)2

σ 4
1 (1 − ρ2)2

− (1 + ρ2)
∑n

i=1(xi − μ1)(yi −μ2)

2σ 3
1 σ2(1 − ρ2)2

.

(vi) Work as in parts (ii) and (iv), and use analogous notation in order to
obtain: d̃31 = d̃32 = 0, and

d̃33 = − n
(
2SxSy − S2

xy

)
4S 2

x

(
SxSy − S2

xy

) , d̃34 = nS2
xy

4SxSy

(
SxSy − S2

xy

) ,
d̃35 = nS

1/2
y Sxy

2S
1/2
x

(
SxSy − S2

xy

) .
(vii) Work as in part (v) in order to obtain:

d41
def= ∂2λ(θ)

∂σ 2
2 ∂μ1

= d14, d42
def= ∂2λ(θ)

∂σ 2
2 ∂μ2

= d24, d43
def= ∂2λ(θ)

∂σ 2
2 ∂σ 2

1

= d34,

d44
def= ∂2λ(θ)

∂(σ 2
2 )2

= n

2σ 4
2

−
∑n

i=1(yi − μ2)2

σ 6
2 (1 − ρ2)

+ 3ρ
∑n

i=1(xi − μ1)(yi − μ2)

4σ1σ
5
2 (1 − ρ2)

,

d45
def= ∂2λ(θ)

∂σ 2
2 ∂ρ

= ρ
∑n

i=1(yi − μ2)2

σ 4
2 (1 − ρ2)2

− (1 + ρ2)
∑n

i=1(xi − μ1)(yi − μ2)

2σ1σ
3
2 (1 − ρ2)2

.

(viii) Work as in part (vi) in order to get:

d̃41 = d̃42 = 0, d̃43 = d̃34, and

d̃44 = − n
(
2SxSy − S2

xy

)
4S2

y

(
SxSy − S2

xy

) , d̃45 = nS
1/2
x Sxy

2S
1/2
y

(
SxSy − S2

xy

) .
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(ix) Work as in part (v), and use analogous notation in order to get:

d51 = d15, d52 = d25, d53 = d35, d54 = d45, and

d55 = n(1 + ρ2)
(1 − ρ2)2

− 1 + 3ρ2

(1 − ρ2)3

[
1

σ 2
1

n∑
i=1

(xi − μ1)2 + 1

σ 2
2

n∑
i=1

(yi − μ2)2

+ 2ρ(3 + ρ2)
σ1σ2(1 − ρ2)3

n∑
i=1

(xi − μ1)(yi − μ2)

]
.

(x) Work as in part (vi) in order to obtain:

d̃ 51 = d̃15, d̃ 52 = d̃ 25, d̃ 53 = d̃ 35, d̃ 54 = d̃ 45, and

d̃55 = −nSxSy

(
SxSy + S2

xy

)(
SxSy − S2

xy

)2 .

1.14 In this exercise, it is shown that the solution values of μ̃1 = x̄, μ̃2 = ȳ,
σ̃ 2

1 = Sx, σ̃ 2
2 = Sy, and ρ̃ = Sxy/S

1/2
x S

1/2
y are, indeed, the MLE’s of the respec-

tive parameters. To this effect, set D̃ for the determinant

D̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

d̃11 d̃12 d̃13 d̃14 d̃15

d̃21 d̃22 d̃23 d̃24 d̃25

d̃31 d̃32 d̃33 d̃34 d̃35

d̃41 d̃42 d̃43 d̃44 d̃45

d̃51 d̃52 d̃53 d̃54 d̃55

∣∣∣∣∣∣∣∣∣∣∣∣
,

and let Di be the determinants taken from D̃ by eliminating the last
5 − i, i = 1, . . . , 5 rows and columns; also, set D̃0 = 1. Thus,

D̃1 = d̃11, D̃2 =
∣∣∣∣∣d̃11 d̃12

d̃21 d̃22

∣∣∣∣∣ ,

D̃3 =

∣∣∣∣∣∣∣
d̃11 d̃12 d̃13

d̃21 d̃22 d̃23

d̃31 d̃32 d̃33

∣∣∣∣∣∣∣ , D̃4 =

∣∣∣∣∣∣∣∣∣
d̃11 d̃12 d̃13 d̃14

d̃21 d̃22 d̃23 d̃24

d̃31 d̃32 d̃33 d̃34

d̃41 d̃42 d̃43 d̃44

∣∣∣∣∣∣∣∣∣ ,
and D̃5 = D̃.

(i) Use parts (ii), (iv), (vi), (viii), and (x) in Exercise 1.13 in order to
conclude that the determinants D̃(=D̃5) and D̃i, i = 1, . . . , 4 take
the following forms:

D̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

d̃11 d̃12 0 0 0

d̃21 d̃22 0 0 0

0 0 d̃33 d̃34 d̃35

0 0 d̃43 d̃44 d̃45

0 0 d̃53 d̃54 d̃55

∣∣∣∣∣∣∣∣∣∣∣∣
,
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D̃1 = d̃11, D̃2 =
∣∣∣∣∣d̃11 d̃12

d̃21 d̃22

∣∣∣∣∣ ,

D̃3 =

∣∣∣∣∣∣∣
d̃11 d̃12 0

d̃21 d̃22 0

0 0 d̃33

∣∣∣∣∣∣∣, D̃4 =

∣∣∣∣∣∣∣∣∣
d̃11 d̃12 0 0

d̃21 d̃22 0 0

0 0 d̃33 d̃34

0 0 d̃43 d̃44

∣∣∣∣∣∣∣∣∣.
(ii) Expand the determinants D̃i, i = 1, . . . , 4, and also use parts (iv)

and (viii) of Exercise 1.13 in order to obtain:

D̃1 = d̃11, D̃2 = d̃11d̃22 − (d̃12)2, D̃3 = d̃33 D̃2,

D̃4 = [d̃33d̃44 − (d34)2]D̃2.

(iii) Expand the determinant D̃5(=D̃), and also use parts (viii) and (x)
of Exercise 1.13 in order to get:

D̃5 = D̃2(d̃33 A − d̃34 B + d̃35C),

where

A = d̃44d̃55 − (d̃45)2, B = d̃34d̃55 − d̃45d̃35, C = d̃34d̃45 − d̃44d̃35.

(iv) For convenience, set: Sx = α, Sy = β, Sxy = γ , and SxSy − S2
xy =

αβ − γ 2 = δ, so that α, β > 0 and also δ > 0 by the Cauchy–Schwarz
inequality (see Theorem 1(ii) in Chapter 4). Then use parts (ii),
(vi), and (viii) in Exercise 1.13 in order to express the determinants
D̃i, i = 1, . . . , 4 in part (ii) in terms of α, β, γ , and δ and obtain:

D̃1 = −nβ

δ
, D̃2 = n2

δ
, D̃3 = −n3(2αβ − γ 2)

4α2δ2
= −n3(αβ + δ)

4α2δ2
,

D̃4 = n4

4αβδ2
.

(v) Use the definition of A, B, and C in part (iii), as well as the expres-
sions of d̃34, d̃35, d̃44, d̃45, and d̃55 given in parts (vi), (viii), and (x) of
Exercise 1.13, in conjunction with the notation introduced in part
(iv) of the present exercise, in order to show that:

A = α3βn2

2δ3
, B = −αβγ 2n2

2δ3
, C = α1/2γ n2

4β1/2δ2
.

(vi) Use parts (iii) and (v) here, and parts (ii) and (iv) in Exercise 1.13 in
order to obtain:

D̃5 = D̃2(d̃33 A − d̃34 B + d̃35C) = n2

δ

(
−αβn3

4δ3

)
= −αβn5

4δ4
.
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(vii) From parts (iv) and (vi) and the fact that D̃0 = 1, conclude that:

D̃0 > 0, D̃1 < 0, D̃2 > 0, D̃3 < 0, D̃4 > 0, and D̃5 < 0.

Then use a calculus result about the maximum of a function in more
than one variable (see, e.g., Theorem 7.9, pages 151–152, in the book
Mathematical Analysis, Addison-Wesley (1957), by T. M. Apostol)
in order to conclude that μ̃1, μ̃2, σ̃ 2

1, σ̃ 2
2, and ρ̃ are, indeed, the MLE’s

of the respective parameters; i.e.,

μ̂1 = x̄, μ̂2 = ȳ, σ̂ 2
1 = Sx, σ̂ 2

2 = Sy, ρ̂ = Sxy/S1/2
x S1/2

y ,

where

Sx = 1
n

n∑
i=1

(xi − x̄)2, Sy = 1
n

n∑
i=1

(yi − ȳ)2,

Sxy = 1
n

n∑
i=1

(xi − x̄)(yi − ȳ).

9.2 Some Properties of Maximum Likelihood Estimates

Refer to Example 3 and suppose that we are interested in estimating the prob-
ability that 0 events occur; that is, Pθ (X = 0) = e−θ θ0

0! = e−θ , call it g1(θ). Thus,
the estimated quantity is a function of θ rather than θ itself. Next, refer to
Example 4 and recall that, if X ∼ f (x ; θ) = θe−θx, x > 0, then Eθ X = 1/θ .
Thus, in this case it would be, perhaps, more reasonable to estimate 1/θ and
call it g2(θ), rather than θ . Finally, refer to Examples 5(ii) and 7, and consider
the problem of estimating the s.d. σ = +

√
σ 2 rather than the variance σ 2. This

is quite meaningful, since, as we know, the s.d. is used as the yardstick for
measuring distances from the mean. In this last case, set g3(σ ) = +

√
σ 2.

The functions g1, g2, and g3 have the common characteristic that they
are one-to-one functions of the parameter involved. The estimation problems
described above are then formulated in a unified way as follows.

THEOREM 1
Let θ̂ = θ̂(x) be the MLE of θ on the basis of the observed values x1, . . . , xn

of the random sample X1, . . . , Xn from the p.d.f. f (·; θ), θ ∈ � ⊆ �. Also,
let θ∗ = g(θ) be a one-to-one function defined on � onto �∗ ⊆ �. Then
the MLE of θ∗, θ̂∗(x), is given by θ̂∗(x) = g[θ̂(x)].

PROOF The equation θ∗ = g(θ) can be solved for θ , on the basis of the as-
sumption made, and let θ = g−1(θ∗). Then

L(θ | x) = L[g−1(θ∗) | x] = L∗(θ∗ | x), say.

Thus,

max{L(θ | x); θ ∈ �} = max{L∗(θ∗ | x); θ∗ ∈ �∗}. (4)
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Since the left-hand side in (4) is maximized for θ̂ = θ̂(x), clearly, the right-hand
side is maximized for θ̂∗ = g(θ̂). ▲

REMARK 3 On the basis of Theorem 1, then, we have: The MLE of exp(−θ)
is exp(−x̄); the MLE of 1/θ is 1/x̄ ; and the MLE of σ is [ 1

n

∑n

i=1(xi −μ)2]1/2 for
Example 5(ii), and [ 1

n

∑n

i=1(xi − x̄)2]1/2 for Example 7.
However, in as simple a case as that of the B(1, θ) distribution, the function

g in Theorem 1 may not be one-to-one, and yet we can construct the MLE of
θ∗ = g(θ). This is the content of the next theorem.

THEOREM 2
Let θ̂ = θ̂(x) be the MLE of θ on the basis of the observed values x1, . . . , xn

of the random sample X1, . . . , Xn from the p.d.f. f (·; θ), θ ∈ � ⊆ �. Also,
let θ∗ = g(θ) be an arbitrary function defined on � into �∗ ⊆ �, where,
without loss of generality, we may assume that �∗ is the range of g, so
that the function g is defined on � onto �∗. Then the MLE of θ∗, θ̂∗(x), is
still given by θ̂∗(x) = g[θ̂(x)].

PROOF For each θ∗ ∈ �∗, there may be several θ in � mapped to the same
θ∗ under g. Let �θ∗ be the set of all such θ ’s; i.e.,

�θ∗ = {θ ∈ �; g(θ) = θ∗}.
On �∗, define the real-valued function L∗ by:

L∗(θ∗) = sup{L(θ); θ ∈ �θ∗ }.
The function L∗ may be called the likelihood function induced by g. Now,
since g is a function, it follows that g(θ̂) = θ̂∗ for a unique θ̂∗ in �∗, and
L∗(θ̂∗) = L(θ̂) from the definition of L∗. Finally, for every θ∗ ∈ �∗,

L∗(θ∗) = sup{L(θ); θ ∈ �θ∗ } ≤ max{L(θ); θ ∈ �} = L(θ̂) = L∗(θ̂∗).

This last inequality justifies calling θ̂∗ = g(θ̂) the MLE of θ∗. ▲

(Theorem 2 was adapted from a result established by Peter W. Zehna in the
Annals of Mathematical Statistics, Vol. 37 (1966), page 744.)

EXAMPLE 10 Refer to Example 2 and determine the MLE ĝ(θ) of the function g(θ) = θ(1−θ).

DISCUSSION Here the function g : (0, 1) → (0, 1
4 ) is not one-to-one. How-

ever, by Theorem 2, the MLE ĝ(θ) = x̄(1 − x̄), since θ̂ = x̄.

REMARK 4 Theorem 1 is, of course, a special case of Theorem 2. A suitable
version of Theorem 2 holds for multidimensional parameters. This property
of the MLE is referred to as the invariance property of the MLE for obvious
reasons.

Reviewing the examples in the previous section, we see that the data
x1, . . . , xn are entering into the MLE’s in a compactified form, more, precisely,
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as a real-valued quantity. From this point on, this is all we have at our dis-
posal; or, perhaps, that is all that was revealed to us by those who collected
the data. In contemplating this situation, one cannot help but wonder what we
are missing by knowing, for example, only x̄ rather than the complete array
of data x1, . . . , xn. The almost shocking fact of the matter is that, in general,
we are missing absolutely nothing, in terms of information carried by the data
x1, . . . , xn, provided the data are condensed in the right way. This is precisely
the concept of sufficiency to be introduced below. For a motivation of the
definition, consider the following example.

EXAMPLE 11 In Example 1, each xi, i = 1, . . . , 10 takes on the value either 0 or 1, and
we are given that x̄ = 0.6. There are 210 = 1,024 arrangements of 10 0’s or
1’s with respective probabilities given by θ xi(1 − θ)1−xi for each one of the
1,024 arrangements of 0’s and 1’s. These probabilities, of course, depend on θ .
Now, restrict attention to the

( 10
6

) = 210 arrangements of 0’s and 1’s only, which
produce a sum of 6 or an average of 0.6; their probability is 210θ6(1−θ)4. Finally,
calculate the conditional probability of each one of these arrangements, given
that the average is 0.6 or that the sum is 6. In other words, calculate

Pθ (Xi = xi, i = 1, . . . , 10 | T = 6), T =
10∑

i=1

Xi. (5)

Suppose that all these conditional probabilities have the same value, which,
in addition, is independent of θ . This would imply two things: First, given
that the sum is 6, all possible arrangements, summing up to 6, have the same
probability independent of the location of occurrences of 1’s; and second, this
probability has the same numerical value for all values of θ in (0, 1). So, from
a probabilistic viewpoint, given the information that the sum is 6, it does not
really matter either what the arrangement is or what the value of θ is; we can
reconstruct each one of all those arrangements giving sum 6 by choosing each
one of the 210 possible arrangements, with probability 1/210 each. It is in this
sense that, restricting ourselves to the sum and ignoring or not knowing the
individual values, we deprive ourselves of no information about θ .

We proceed now with the calculation of the probabilities in (5). Although we
can refer to existing results, let us derive the probabilities here.

Pθ (Xi = xi, i= 1, . . . , 10 | T = 6) = Pθ (Xi = xi, i= 1, . . . , 10, T = 6)/Pθ (T = 6)

= Pθ (Xi = xi, i = 1, . . . , 10)/Pθ (T = 6)

(since Xi = xi, i = 1, . . . , 10 implies T = 6)

= θ6(1 − θ)4/

(
10
6

)
θ6(1 − θ)4 (since T ∼ B(10, θ))

= 1/

(
10
6

)
= 1/210 (� 0.005).

Thus, what was supposed above is, actually, true.
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This example and the elaboration associated with it lead to the following def-
inition of sufficiency.

DEFINITION 1
Let X1, . . . , Xn be a random sample with p.d.f. f (·; θ), θ ∈ � ⊆ �, and
let T = T(X1, . . . , Xn) be a statistic (i.e., a known function of the Xi’s).
Then, if the conditional distribution of the Xi’s, given T = t, does not
depend on θ , we say that T is a sufficient statistic for θ .

REMARK 5 If g is a real-valued one-to-one function defined on the range
of T , it is clear that knowing T is equivalent to knowing T∗ = g(T), and vice
versa. Thus, if T is a sufficient statistic for θ , so is T∗. In particular, if T =∑n

i=1 Xi or 1
n

∑n

i=1(Xi − μ)2 (or 1
n

∑n

i=1(Xi − X̄ )2) is a sufficient statistic for θ

so is X̄ or
∑n

i=1(Xi − μ)2 (or
∑n

i=1(Xi − X̄ )2).

REMARK 6 The definition given for one parameter also applies for more
than one parameter, but then we also need a multidimensional sufficient statis-
tic, usually, with dimensionality equal to the number of the parameters. In all
cases, we often use simply the term “sufficient” instead of “sufficient statis-

tic(s) for θ ,” if no confusion is possible.
As is often the case, definitions do not lend themselves easily to identifying

the quantity defined. This is also the case in Definition 1. A sufficient statistic
is, actually, found by way of the theorem stated below.

THEOREM 3
(Fisher-Neyman Factorization Theorem) Let X1, . . . , Xn be a ran-
dom sample with p.d.f. f (·; θ), θ ∈ � ⊆ �, and let T = T(X1, . . . , Xn)
be a statistic. Then T is a sufficient statistic for θ , if and only if the joint
p.d.f. of the Xi’s may be written as follows:

fX1,..., Xn
(x1, . . . , xn; θ) = g[T(x1, . . . , xn); θ ]h(x1, . . . , xn). (6)

The way this theorem applies is the following: One writes out the joint p.d.f.
of the Xi’s and then one tries to rewrite it as the product of two factors, one
factor, g[T(x1, . . . , xn); θ], which contains the xi’s only through the function
T(x1, . . . , xn) and the parameter θ , and another factor, h(x1, . . . , xn), which
involves the xi’s in whatever form but not θ in any form.

REMARK 7 The theorem just stated also holds for multidimensional param-
eters θ , but then the statistic T is also multidimensional, usually of the same
dimension as that of θ . A rigorous proof of the theorem can be given, at least
for the case of discrete Xi’s, but we choose to omit it.
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In all of the Examples 2–10, the MLE’s are, actually, sufficient statistics or
functions thereof, as demonstrated below. This fact should certainly reinforce
our appreciation for these MLE’s.

APPLICATION In Example 2, the p.d.f. is written as follows in a compact
form f (xi; θ) = θ xi(1 − θ)1−xi I{0,1}(xi), so that the joint p.d.f. becomes:

L(θ | x) = θ t(1 − θ)n−t ×
n∏

i=1

I{0,1}(xi), t =
n∑

i=1

xi.

Then g[T(x1, . . . , xn); θ ] = θ t(1 − θ)n−t, and h(x1, . . . , xn) = ∏n

i=1 I{0,1}(xi). It
follows that T =∑n

i=1 Xi is sufficient and so is T

n
= X̄.

Examples 3 and 4 are treated similarly.
In Example 5(i),

L(θ | x) = exp
[

nμ(2x̄ − μ)
2σ 2

]
×
(

1√
2πσ

)n

exp

(
− 1

2σ 2

n∑
i=1

x2
i

)
,

so that X̄ is sufficient for μ. Likewise, in Example 5(ii),

L(σ 2 | x) =
(

1√
2πσ 2

)n

exp

[
− 1

2σ 2

n∑
i=1

(xi − μ)2

]
× 1,

so that
∑n

i=1(Xi − μ)2 is sufficient for σ 2 and so is 1
n

∑n

i=1(Xi − μ)2.
Example 6 is treated similarly.
In Example 7,

L(μ, σ 2 | x) =
(

1√
2πσ 2

)n

exp

[
− 1

2σ 2

n∑
i=1

(xi − x̄)2 − 1
2σ 2

n(x̄ − μ)2

]
× 1

because
∑n

i=1(xi−μ)2 =∑n

i=1[(xi− x̄)+(x̄−μ)]2 =∑n

i=1(xi− x̄)2 +n(x̄−μ)2.
It follows that the pair of statistics (X̄,

∑n

i=1(Xi − X̄ )2) is sufficient for the pair
of parameters (μ, σ 2).

Examples 8, 9, and 10 are treated similarly.

REMARK 8 Under certain regularity conditions, it is always the case that a
MLE is only a function of a sufficient statistic.

Here is another example, in four parts, where a sufficient statistic is deter-
mined by way of Theorem 3.

EXAMPLE 12 On the basis of a random sample of size n, X1, . . . , Xn, from each one of the
p.d.f.’s given below with observed values x1, . . . , xn, determine a sufficient
statistic for θ .

(i) f (x ; θ) = θ
xθ+1 , x ≥ 1, θ ∈ � = (0, ∞).

(ii) f (x ; θ) = x

θ
e−x 2/2θ , x > 0, θ ∈ � = (0, ∞).

(iii) f (x ; θ) = (1 + θ)xθ , 0 < x < 1, θ ∈ � = (−1, ∞).
(iv) f (x ; θ) = θ

x2 , x ≥ θ , θ ∈ � = (0, ∞).
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DISCUSSION In the first place, the functions given above are, indeed,
p.d.f.’s (see Exercise 2.12). Next, rewriting each one of the p.d.f.’s by using the
indicator function, we have:

(i) f (x ; θ) = θ
xθ+1 I[1,∞)(x), so that:

n∏
i=1

f (xi; θ) = θn(∏n

i=1 xi

)θ+1 ×
n∏

i=1

I[1,∞)(xi) = θn(∏n

i=1 xi

)θ+1 × I[1,∞)(x(1)),

and therefore
∏n

i=1 Xi is sufficient for θ .
(ii) f (x ; θ) = x

θ
e−x2/2θ I(0,∞)(x), so that:

n∏
i=1

f (xi; θ) = 1
θn

n∏
i=1

xie
− 1

2θ

∑n
i=1 x2

i

n∏
i=1

I(0,∞)(xi)

= 1
θn

e− 1
2θ

∑n
i=1 x2

i ×
(

n∏
i=1

xi

)
I(0,∞)(x(1)),

and therefore
∑n

i=1 X 2
i is sufficient for θ .

(iii) f (x ; θ) = (1 + θ)xθ I(0,1)(x), so that

n∏
i=1

f (xi; θ) = (1 + θ)n

(
n∏

i=1

xi

)θ
n∏

i=1

I(0,1)(xi)

= (1 + θ)n

(
n∏

i=1

xi

)θ

× I(0,1)(x(1))I(0,1)(x(n)),

and therefore
∏n

i=1 Xi is sufficient for θ .
(iv) f (x ; θ) = θ

x2 I[θ ,∞)(x), so that:

n∏
i=1

f (xi ; θ) = θn(∏n

i=1 x2
i

) n∏
i=1

I[θ ,∞)(xi) = θnI[θ ,∞)(x(1)) × 1(∏n

i=1 x2
i

) ,
and therefore X (1) is sufficient for θ .

This section is concluded with two desirable asymptotic properties of a
MLE. The first is consistency (in the probability sense), and the other is asymp-
totic normality. However, we will not bother either to list the conditions needed
or to justify the results stated.

THEOREM 4
Let θ̂n = θ̂n(X1, . . . , Xn) be the MLE of θ ∈ � ⊆ � based on the ran-
dom sample X1, . . . , Xn with p.d.f. f (·, θ). Then, under certain regularity
conditions, {θ̂n} is consistent in the probability sense; that is, θ̂n → θ in
Pθ -probability as n → ∞.
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The usefulness of this result is, of course, that, for sufficiently large n, θ̂n is
as close to (the unknown) θ as we please with probability as close to 1 as we
desire. The tool usually employed in establishing Theorem 4 is either the Weak
Law of Large Numbers (WLLN) or the Tchebichev inequality. In exercises at
the end of this section, the validity of Theorem 4 is illustrated in some of the
examples of the previous section.

THEOREM 5
In the notation of Theorem 4, and under suitable regularity conditions, the
MLE θ̂n is asymptotically normal. More precisely, under Pθ -probability,

√
n(θ̂n − θ)

d−→ N
(
0, σ 2

θ

)
, as n → ∞,

where σ 2
θ = 1/I(θ) and I(θ) = Eθ

[
∂

∂θ
log f (X; θ)

]2

, X ∼ f (·; θ). (7)

To state it loosely, θ̂n � N(θ , σ 2
θ /n) for sufficiently large n. That is, the

MLE θ̂n is approximately Normally distributed around θ , and therefore various
probabilities related to it may be approximately calculated in principle. The
justification of the theorem is done by using a Taylor expansion of the derivative
∂
∂θ

log L(θ | X ) up to terms of third-order, employing the fact that ∂
∂θ

log L(θ |
X ) |θ=θ̂n

= 0, and suitably utilizing the WLLN and the Central Limit Theorem
(CLT). For some applications of this theorem, see, e.g., Example 21, page 324,
of the book A Course in Mathematical Statistics, 2nd edition, Academic Press
(1977), by G. G. Roussas.

REMARK 9 The quantity I(θ) is referred to as the Fisher information

carried by the random sample X1, . . . , Xn about the parameter θ . A justification
for the “information” stems by the fact that σ 2

θ = 1/I(θ), so that the larger I(θ)
is the smaller the variance σ 2

θ is, and therefore the more concentrated θ̂ is
about θ . The opposite happens for small values of I(θ).

Exercises

2.1 Let X1, . . . , Xn be i.i.d. r.v.’s with the Negative Exponential p.d.f. f (x ; θ) =
θe−θx, x > 0, θ ∈ � = (0, ∞). Then:
(i) Show that 1/X̄ is the MLE of θ .

(ii) Use Theorem 1 in order to conclude that the MLE of θ∗ in the
parameterized form f (x ; θ∗) = 1

θ∗ e−x/θ∗
, x > 0, is X̄.

2.2 Let X be a r.v. denoting the life span of an equipment. Then the reliability

of the equipment at time x, R(x), is defined as the probability that X > x ;
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i.e., R(x) = P(X > x). Now, suppose that X has the Negative Exponential
p.d.f. f (x ; θ) = 1

θ
e−x/θ , x > 0, θ ∈ � = (0, ∞). Then:

(i) Calculate the reliability R(x ; θ) based on this r.v. X.
(ii) Use Theorem 1 in order to determine the MLE of R(x ; θ), on the basis

of a random sample X1, . . . , Xn from the underlying p.d.f.

2.3 Let X be a r.v. describing the lifetime of a certain equipment, and suppose
that the p.d.f. of X is f (x ; θ) = θe−θx, x > 0, θ ∈ � = (0, ∞).
(i) Show that the probability that X is greater than or equal to t time

units is g(θ) = e−tθ .
(ii) We know (see Exercise 2.1) that the MLE of θ , based on a random

sample of size n from the above p.d.f., is θ̂ = 1/X̄. Then determine
the MLE of g(θ).

2.4 Consider the independent r.v.’s X1,. . . , Xn with the Weibull p.d.f. f (x ; θ) =
γ

θ
xγ−1 exp(−xγ /θ), x > 0, θ ∈ � = (0, ∞), γ > 0 known, and:

(i) Show that θ̂ = (
∑n

i=1 X
γ

i )/n is the MLE of θ .
(ii) Take γ = 1 and relate the result in part (i) to the result in Exercise

2.1(ii).

2.5 Let X1, . . . , Xn be a random sample of size n from the N(μ, σ 2) distribu-
tion, where both μ and σ 2 are unknown. Set θ = (μ, σ 2) and let p be a
(known) number with 0 < p < 1. Then:
(i) Show that the point c for which Pθ(X̄ ≤ c) = p is given by: c =

μ + σ√
n

−1(p).

(ii) Given that the MLE’s of μ and σ 2 are, respectively, μ̂ = X̄ and σ̂ 2

S2 = 1
n

∑n

i=1(Xi − X̄ )2, determine the MLE of c, call it ĉ.
(iii) Express ĉ in terms of the Xi’s, if n = 25 and p = 0.95.

2.6 (i) Show that the function f (x ; θ) = θx−(θ+1), x ≥ 1, θ ∈ � = (0, ∞) is
a p.d.f.

(ii) On the basis of a random sample of size n from this p.d.f., show
that the statistic X1 · · · Xn is sufficient for θ , and so is the statistic∑n

i=1 log Xi.

2.7 Let X be a r.v. having the Geometric p.d.f. f (x ; θ) = θ(1 − θ)x−1, x =
1, 2, . . . , θ ∈ � = (0, 1). Then show that X is sufficient for θ .

2.8 In reference to Exercise 1.9, show that
∑n

i=1 |Xi| is a sufficient statistic
for θ .

2.9 (i) In reference to Example 3, use Theorem 3 in order to find a sufficient
statistic for θ .

(ii) Do the same in reference to Example 4.
(iii) Do the same in reference to Example 6(i), (ii).

2.10 Same as in Exercise 2.9 in reference to Examples 8 and 9.

2.11 Refer to Exercise 1.11, and determine:
(i) A sufficient statistic for α when β is known.
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(ii) Also, a sufficient statistic for β when α is known.
(iii) A set of sufficient statistics for α and β when they are both unknown.

2.12 Show that the functions (i)–(iv) given in Example 12 are, indeed, p.d.f.’s.

9.3 Uniformly Minimum Variance Unbiased Estimates

Perhaps the second most popular method of estimating a parameter is that
based on the concepts of unbiasedness and variance. This method will be
discussed here to a certain extent and will also be illustrated by specific
examples.

To start with, let X1, . . . , Xn be a random sample with p.d.f. f (·; θ), θ ∈ � ⊆
�, and let us introduce the notation U =U(X1, . . . , Xn) for an estimate of θ .

DEFINITION 2
The estimate U is said to be unbiased if EθU = θ for all θ ∈ �.

Some examples of unbiased estimates follow.

EXAMPLE 13 Let X1, . . . , Xn be having any one of the following distributions:

(i) B(1, θ), θ ∈ (0, 1). Then the sample mean X̄ is an unbiased estimate of θ .
(ii) P(θ), θ > 0. Then again X̄ is an unbiased estimate of θ . Here, since Eθ X1 =

Varθ (X1) = θ , X̄ is also an unbiased estimate of the variance,
(iii) N(θ , σ 2), θ ∈ �, σ known. Then, once again, X̄ is an unbiased estimate

of θ .
(iv) N(μ, θ), μ known, θ > 0. Then the sample variance 1

n

∑n

i=1(Xi −μ)2 is an
unbiased estimate of θ . This is so because

∑n

i=1

(
Xi−μ√

θ

)2 ∼ χ2
n, so that

Eθ

[
n∑

i=1

(
Xi − μ√

θ

)2
]

= n or Eθ

[
1
n

n∑
i=1

(Xi − μ)2

]
= θ.

(v) Gamma with α = θ and β = 1. Then X̄ is an unbiased estimate of θ . This
is so because, in the Gamma distribution, the expectation is αβ, so that
for α = θ and β = 1, Eθ X1 = θ and hence Eθ X̄ = θ .

(vi) Gamma with α = 1 and β = θ , θ > 0 (which gives the reparameterized
Negative Exponential distribution). Then X̄ is an unbiased estimate of θ

as explained in part (v).

EXAMPLE 14 Let X1, . . . , Xn be a random sample from the U(0, θ) (θ > 0). Determine an
unbiased estimate of θ .

DISCUSSION Let Yn = max(X1, . . . , Xn); i.e., the largest order statistic of
the Xi’s. Then, by (29) in Chapter 6, the p.d.f. of Yn is given by:

g(y) = n[F(y)]n−1 f (y), for 0 < y < θ (and 0 otherwise),
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where:

f (y) = 1
θ

, 0 < y < θ , F(y) =

⎧⎪⎨⎪⎩
0, y ≤ 0
y

θ
, 0 < y < θ

1, y ≥ θ.

Then, for 0 < y < θ , g(y) = n
(

y

θ

)n−1 ( 1
θ

) = n

θn yn−1, so that

EθYn =
∫ θ

0
y · n

θn
yn−1 dy = n

θn

∫ θ

0
yn dy = n

(n + 1)θn
· yn+1

∣∣∣∣θ
0

= n

n + 1
θ.

It follows that Eθ

(
n+ 1

n
Yn

) = θ , so that n+ 1
n

Yn is an unbiased estimate of θ .
The desirability of unbiasedness of an estimate stems from the interpreta-

tion of the expectation as an average value. Typically, one may construct many
unbiased estimates for the same parameter θ . This fact then raises the question
of selecting one such estimate from the class of all unbiased estimates. Here is
where the concept of the variance enters the picture. From two unbiased es-
timates U1 = U1(X1, . . . , Xn) and U2 = U2(X1, . . . , Xn) of θ , one would select
the one with the smaller variance. This estimate will be more concentrated
around θ than the other. Pictorially, this is illustrated by Figure 9.2.

0 q

h1(u ; q)

u
0 q

h2(u ; q)

u

(a) (b)

Figure 9.2

(a) p.d.f. of U1 (for a
Fixed θ); (b) p.d.f. of U2

(for a Fixed θ)

The next natural step is to look for an unbiased estimate which has the
smallest variance in the class of all unbiased estimates, and this should happen
for all θ ∈ �. Thus, we are led to the following concept.

DEFINITION 3
The unbiased estimate U = U(X1, . . . , Xn) of θ is said to be Uniformly

Minimum Variance Unbiased (UMVU), if for any other unbiased esti-
mate V = V (X1, . . . , Xn), it holds that:

Var θ (U) ≤ Var θ (V ) for all θ ∈ �.

That a UMVU estimate is desirable is more or less indisputable (see, how-
ever, Exercise 3.18). The practical question which then arises is how one goes
about finding such an estimate. The process of seeking a UMVU estimate is
facilitated by the Cramér–Rao inequality stated next. First, this inequality is
stated, and then we describe how it is used.
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THEOREM 6
(Cramér–Rao inequality) Let X1, . . . , Xn be a random sample with
p.d.f. f (·; θ), θ ∈ � ⊆ �, and suppose certain regularity conditions are
met. Then, for any unbiased estimate U = U(X1, . . . , Xn) of θ , it holds
that:

Var θ (U) ≥ 1/nI(θ), for all θ ∈ �, (8)

where

I(θ) = Eθ

[
∂

∂θ
log f (X ; θ)

]2

, X ∼ f (·; θ). (9)

REMARK 10 The unspecified conditions mentioned in the formulation of
the theorem include the assumption that the domain of x in the p.d.f. f (x ; θ)
does not depend on θ ; thus, the U(0, θ) distribution, for example, is left out.
Also, the conditions include the validity of interchanging the operations of
differentiation and integration in certain expressions. The proof of Theorem 6
is relatively long and involves an extensive list of regularity conditions. It may
be found in considerable detail in Subsection 12.4.1 of Chapter 12 of the book
A Course in Mathematical Statistics, 2nd edition, Academic Press (1997),
by G. G. Roussas. Actually, in the reference just cited what is proved is a
generalized version of Theorem 6, where the estimated function is a real-valued
function of θ , g(θ), rather than θ itself.

REMARK 11 It can by shown that, under suitable conditions, the quantity
I(θ) in (9) may also be calculated as follows:

I(θ) = −Eθ

[
∂2

∂θ2
log f (X; θ)

]
. (10)

This expression is often easier to calculate.
The Cramér–Rao inequality is used in the following way.

(i) Calculate the Fisher information either through (9) or by way of (10).
(ii) Form the Cramér–Rao (C-R) lower bound figuring in inequality (8).

(iii) Try to identify an unbiased estimate whose variance is equal to the C-R
lower bound (for all θ ∈ �). If such an estimate is found,

(iv) Declare the estimate described in (iii) as the UMVU estimate of θ.

In connection with steps (i)–(iv), it should be noted that it is possible that
a UMVU estimate exists and yet such an estimate is not located through this
process. The reason for such a failure is that the C-R inequality provides,
simply, a lower bound for the variances of unbiased estimates, which may be
strictly smaller than the variance of a UMVU estimate. It is, nevertheless, a
good try!

The use of the inequality will be illustrated by two examples; other cases
are left as exercises.
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EXAMPLE 15 Refer to Example 2 and seek a UMVU estimate of θ through the C-R inequality.

DISCUSSION Here f (x ; θ) = θ x(1 − θ)1−x, x = 0, 1, so that:

(i) log f (X; θ) = X log θ + (1 − X ) log(1 − θ),

∂

∂θ
log f (X; θ) = X

θ
− 1 − X

1 − θ
and

∂2

∂θ2
log f (X; θ) = − X

θ2
− 1 − X

(1 − θ)2
,

I(θ) = −Eθ

[
∂2

∂θ2
log f (X; θ)

]
= θ

θ2
+ 1 − θ

(1 − θ)2
= 1

θ(1 − θ)
, since Eθ X = θ.

(ii) The C-R lower bound = 1
nI(θ) = θ(1 − θ)/n .

(iii) Consider U = X̄. Then Eθ X̄ = θ , so that X̄ is unbiased, and next σ 2
θ (X̄ ) =

θ(1 − θ)/n = 1/nI(θ), since σ 2
θ (X ) = θ(1 − θ).

(iv) The estimate X̄ is UMVU.

EXAMPLE 16 Refer to Example 4 and use the following parameterization:

X ∼ f (x ; θ) = 1
θ

e− x
θ , x > 0, so that Eθ X = θ , σ 2

θ (X ) = θ2.

Then seek a UMVU estimate for θ through the C-R inequality.

DISCUSSION Here

(i) log f (X; θ) = −log θ − X

θ
,

∂

∂θ
log f (X; θ) = −1

θ
+ X

θ2
and

∂2

∂θ2
log f (X; θ) = 1

θ2
− 2X

θ3
,

I(θ) = −Eθ

[
∂2

∂θ2
log f (X; θ)

]
= − 1

θ2
+ 2θ

θ3
= 1

θ2
.

(ii) The C-R lower bound = 1
nI(θ) = θ2/n.

(iii) Consider U = X̄. Then EθU = θ , so that X̄ is unbiased, and σ 2
θ (X̄) = θ2

n
=

1/nI(θ).
(iv) The estimate X̄ is UMVU.

There is an alternative way of looking for UMVU estimates, in particular,
when the approach by means of the Cramér–Rao inequality fails to produce
such an estimate. This approach hinges heavily on the concept of sufficiency al-
ready introduced and also an additional technical concept, so-called complete-

ness. The concept of completeness is a technical concept, and it says, in effect,
that the only unbiased estimate of 0 is essentially the 0 statistics. More techni-
cally, if T is a r.v. with p.d.f. fT (·; θ), θ ∈ � ⊆ �, the family { fT (·; θ); θ ∈ �}(or
the r.v. T) is said to be complete if, for h : � → �, Eθh(T) = 0 for all θ ∈ �

implies h(t) is, essentially, equal to 0. For the precise definition and a num-
ber of illustrative examples, the reader is referred to Section 11.2 of Chapter
11 in the reference cited in Remark 10 here. The concepts of sufficiency and
completeness combined lead constructively to a UMVU estimate by means
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of two theorems, the Rao–Blackwell and the Lehmann–Scheffé theorem. The
procedure is summarized in the following result.

THEOREM 7
(Rao–Blackwell, Lehmann–Scheffé) Let X1, . . . , Xn be a random
sample with p.d.f. f (·; θ), θ ∈ � ⊆ �, and let T = T(X1, . . . , Xn) be
a sufficient statistic for θ (which is complete). Let U = U(X1, . . . , Xn) be
any unbiased estimate of θ , and define the statistic ϕ(T) by the relation:

ϕ(T) = Eθ (U | T). (11)

Then ϕ(T) is unbiased, Varθ [ϕ(T)] ≤ Var θ (U) for all θ ∈ �, and, indeed,
ϕ(T) is a UMVU estimate of θ . If U is already a function of T only, then
the conditioning in (11) is superfluous.

PROOF (ROUGH OUTLINE) That ϕ(T) is independent of θ (and hence a statis-
tic), despite the fact that we use quantities depending on θ in forming the con-
ditional expectation, is due to the sufficiency of T . Recall that sufficiency of
T means that the conditional distribution of U , given T , is independent of θ ,
and hence so is the expectation of U formed by using this conditional distribu-
tion. That ϕ(T) is unbiased is due to a property of the conditional expectation
(namely, for two r.v.’s X and Y : E[E(X | Y )] = EX), and the inequality in-
volving the variances is also due to a property of the variance for conditional
expectations (namely, Var[E(X | Y )] ≤ Var(X )). The concept of complete-
ness guarantees, through the Lehmann–Scheffé theorem, that no matter which
unbiased estimate U we start out with, we end up (essentially) with the same
UMVU estimate ϕ(T) through the procedure (11), which is known as Rao–

Blackwellization. ▲

REMARK 12 This theorem also applies suitably to multidimensional pa-
rameters θ , although, it must be stated here that a version of the Cramér–Rao
inequality also exists for such parameters.

The following examples illustrate how one goes about applying Theorem 7
in concrete cases.

EXAMPLE 17 Determine the UMVU estimate of θ on the basis of the random sample X1, . . . ,
Xn from the distribution P(θ).

DISCUSSION Perhaps, the simplest unbiased estimate of θ is X1, and we
already know that T = X1 + · · · + Xn is sufficient for θ . For the Rao–
Blackwellization of X1, we need the conditional distribution of X1, given T = t.
It is known, however (see Exercise 2.10(ii), in Chapter 5), that this condi-
tional distribution is B(t, 1

n
); that is, Pθ (X1 = x | T = t) = ( t

x
)( 1

n
)x(1 − 1

n
)t−x.

It follows that Eθ (X1 | T = t) = t

n
, so that ϕ(T) = Eθ (X1 | T) = T

n
= X̄.

It so happens that the conditions of Theorem 7 hold (see Exercise 3.17) and
therefore X̄ is the UMVU estimate of θ .
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A well-known case where Theorem 7 works whereas Theorem 6 does not
(or more properly, their suitable versions for two parameters do or do not) is
illustrated by the following example.

EXAMPLE 18 Let X1, . . . , Xn be a random sample from the N(μ, σ 2) distribution, where both
μ and σ are unknown.

By an application of either theorem, it is seen that X̄ is the UMVU estimate
of μ. Working with the Cramér–Rao inequality regarding σ 2 as the estimated
parameter, it is seen that the C-R lower bound is equal to 2σ 4/n. Next,
Theorem 7 leads to the UMVU estimate of σ 2, S2 = 1

n−1

∑n

i=1(Xi − X̄ )2. Fur-
thermore, it has been seen (Exercise 1.4) that Varσ 2 (S2) = 2σ 4

n−1 , which is strictly
larger than 2σ 4

n
. This is the reason the Cramér–Rao inequality approach fails.

For a little more extensive discussion on this example, see, e.g., Example 9,
pages 299–301, in the reference cited in Remark 10.

Exercises

3.1 If X is a r.v. distributed as B(n, θ), θ ∈ � = (0, 1), show that there is no
unbiased estimate of 1/θ .

Hint: If h(X ) were such an estimate, then Eθh(X ) = 1
θ

for all θ(∈
(0, 1)). Write out the expectation, set θ

1−θ
= t, and by expanding the

right-hand side, conclude that
(

n+ 1
n+ 1

)
(= 1) = 0, which, of course, is a

contradiction.

3.2 Let X1, . . . , Xn be independent r.v.’s with p.d.f. f (x; θ) = θe−θx, x >

0, θ ∈ � = (0, ∞), and let Y1 be the smallest order statistic of the Xi’s.
Then, by Example 11 in Chapter 6, the p.d.f. of Y1 is g1(y) = (nθ)e−(nθ)y,
y > 0.

(i) Show that both X̄ and nY1 are unbiased estimates of 1/θ .
(ii) On the basis of variance considerations, which of these two estimates

would you prefer?

3.3 Let X1, . . . , Xn be a random sample of size n from the U(0, θ) distribution,
θ ∈ � = (0, ∞), and let Yn be the largest order statistic of the Xi’s. Then:
(i) Employ formula (29) in Chapter 6 in order to obtain the p.d.f. of Yn.

(ii) Use part (i) in order to construct an unbiased estimate of θ depending
only on Yn.

(iii) By Example 6 here (with α = 0 and β = θ) in conjunction with
Theorem 3, show that the unbiased estimate in part (ii) depends
only on a sufficient statistic for θ .

3.4 Let X1, . . . , Xn be a random sample of size n from the U(θ1, θ2) distri-
bution, θ1 < θ2, and let Y1 and Yn be the smallest and the largest order
statistics of the Xi’s.
(i) Use formulas (28) and (29) in Chapter 6 to obtain the p.d.f.’s of Y1 and

Yn, and then, by calculating the EθY1 and EθYn, construct unbiased
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estimates of the mean (θ1 + θ2)/2 and of the range θ2 − θ1 depending
only on Y1 and Yn.

(ii) Employ Example 6 here (with α = θ1 and β = θ2) in conjunction with
Theorem 3 and Remark 7 in order to show that the unbiased estimates
in part (i) depend only on a set of sufficient statistics for (θ1, θ2).

3.5 Let X1, . . . , Xn be a random sample of size n from the U(θ , 2θ) distri-
bution, θ ∈ � = (0, ∞), and set:

U1 = n + 1
2n + 1

Yn and U2 = n + 1
5n + 4

(2Yn + Y1),

where Y1 and Yn are the smallest and the largest order statistics, respec-
tively, of the Xi’s.
(i) Use relations (28) and (29) in Chapter 6 in order to obtain the p.d.f.’s

g1 and gn of Y1 and Yn, respectively.
(ii) By using part (i), show that:

EθY1 = n + 2
n + 1

θ , EθYn = 2n + 1
n + 1

θ.

(iii) By means of part (ii), conclude that both U1 and U2 are unbiased
estimates of θ .

3.6 Refer to Exercise 3.5, and show that:

(i) EθY 2
1 = n2 + 5n+ 8

(n+ 1)(n+ 2)θ
2, Var θ (Y1) = n

(n+ 1)2(n+ 2)θ
2.

(ii) EθY 2
n = 2(2n2 + 4n+ 1)

(n+ 1)(n+ 2) θ2, Var θ (Yn) = n

(n+ 1)2(n+ 2)θ
2.

3.7 Refer to Exercise 3.5, and:
(i) Use Exercise 5.3 (ii) in Chapter 6 in order to show that the joint p.d.f.

g1n of Y1 and Yn is given by:

g1n(y1, yn) = n(n − 1)
θn

(yn − y1)n−2, θ ≤ y1 < yn ≤ 2θ.

(ii) Employ part (i) here and also part (ii) of Exercise 3.5 in order to show
that:

Eθ (Y1Yn) = 2n2 + 7n + 5
(n + 1)(n + 2)

θ2, Covθ (Y1, Yn) = θ2

(n + 1)2(n + 2)
.

3.8 Refer to Exercise 3.5, and:
(i) Use Exercises 3.6 and 3.7 (ii) in order to show that:

Varθ (U1) = n

(2n + 1)2(n + 2)
θ2, Varθ (U2) = 1

(5n + 4)(n + 2)
θ2.

(ii) From part (i), conclude that Varθ (U2) ≤ Var θ (U1) for all θ (with
equality holding only for n = 1), so that the (unbiased) estimate U2 is
uniformly better (in terms of variance) than the (unbiased) estimate
U1.

3.9 Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples with the
same mean θ and known variances σ 2

1 and σ 2
2 , respectively. For any fixed
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c with 0 ≤ c ≤ 1, set Uc = cX̄ + (1 − c)Ȳ , where X̄ and Ȳ are the sample
means of the Xi’s and of the Yi’s, respectively. Then:
(i) Show that Uc is an unbiased estimate of θ for every c as specified

above.
(ii) Calculate the variance of Uc, and show that it is minimized for c =

c0 = mσ 2
2 /(nσ 2

1 + mσ 2
2 ).

3.10 Let X1, . . . , Xn be i.i.d. r.v.’s with mean μ and variance σ 2, both unknown.
Then for any known constants c1, . . . , cn, consider the linear estimate of
μ defined by: Uc =∑n

i=1 ciXi.
(i) Identify the condition that the ci’s must satisfy, so that Uc is an unbi-

ased estimate of μ.
(ii) Show that the sample mean X̄ is the unbiased linear estimate of

μ with the smallest variance (among all unbiased linear estimates
of μ).

Hint: For part (ii), one has to minimize the expression
∑n

i=1 c2
i subject

to the side restriction that
∑n

i=1 ci = 1. For this minimization, use
the Lagrange multipliers method, which calls for the minimization of
the function φ(c1, . . . , cn) = ∑n

i=1 c2
i + λ(

∑n

i=1 ci − 1) with respect to
c1, . . . , cn, where λ is a constant (Lagrange multiplier). Alternatively,
one may employ a geometric argument to the same effect.

In all of the following Exercises 3.11–3.15, employ steps (i)–(iv)
listed after Remark 11 in an attempt to determine UMVU estimates.
Use relation (10) whenever possible.

3.11 If X1, . . . , Xn is a random sample from the Poisson distribution P(θ),
show that the sample mean X̄ is the UMVU estimate of θ .

3.12 Let X1, . . . , Xn be i.i.d. r.v.’s distributed as N(μ, σ 2).
(i) If μ = θ ∈ � = � and σ is known, show that X̄ is the UMVU estimate

of θ .
(ii) If σ 2 = θ ∈ � = (0, ∞) and μ is known show that S2 = 1

n

∑n

i=1(Xi −
μ)2 is the UMVU estimate of σ 2.

Hint: For part (ii), recall that Y = ∑n

i=1

(
Xi−μ√

θ

)2 ∼ χ2
n, and hence

EθY = n, Var θ (Y ) = 2n.

3.13 Let X1, . . . , Xn be i.i.d. r.v.’s from the Gamma distribution with parameters
α known and β = θ ∈ � = (0, ∞) unknown.
(i) Determine the Fisher information I(θ).

(ii) Show that the estimateU = U(X1, . . . , Xn) = 1
nα

∑n

i=1 Xi is unbiased
and calculate its variance.

(iii) Show that Varθ (U) = 1/nI(θ), so that U is the UMVU estimate
of θ .

3.14 Let X1, . . . , Xn be i.i.d. r.v.’s from the Negative Exponential p.d.f. in the
following parametric form: f (x; θ) = 1

θ
e−x/θ , x > 0, θ ∈ � = (0, ∞), so
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that Eθ X1 = θ . Use Exercise 3.13 in order to show that X̄ is the UMVU
estimate of θ .

Hint: Recall that the Negative Exponential distribution is a special
case of the Gamma distribution.

3.15 Let X be a r.v. with p.d.f. f (x ; θ) = 1
2θ

e−|x|/θ , x ∈ �, θ ∈ � = (0, ∞).
Then:
(i) Show that Eθ |X| = θ , and Eθ X 2 = 2θ2.

(ii) Show that the statistic U =U(X1, . . . , Xn) = 1
n

∑n

i=1 |Xi| is an unbi-
ased estimate of θ , and calculate its variance.

(iii) Show that the Fisher information number I(θ) = −Eθ [ ∂2

∂θ2 log f (X;
θ)] = 1/θ2.

(iv) Conclude that U is the UMVU estimate of θ .

In Exercises 3.16–3.20, the purpose is to construct the UMVU estimates of
the parameters involved by invoking Theorem 7. Sufficiency can always
be established through Theorem 3; completeness sometimes will be es-
tablished, but it will always be assumed when appropriate.

3.16 If X1, . . . , Xn are independent r.v.’s distributed as B(1, θ), θ ∈ � = (0, 1),
then:
(i) Show that T =∑n

i=1 Xi is sufficient for θ .
(ii) Also, show that T is complete.

(iii) From parts (i) and (ii), conclude that X̄ is the UMVU estimate of θ .

3.17 Let X1, . . . , Xn be a random sample of size n from the P(θ) distribution,
θ ∈ � = (0, ∞). With T = ∑n

i=1 Xi, it has been seen that the condi-
tional distribution Pθ (X1 = x | T = t) is B(t, 1

n
) (see Exercise 2.10(ii) in

Chapter 5) and that T is sufficient for θ (see Exercise 2.9 here). Show
that T is complete, so that the conclusion reached in Example 17 will be
fully justified.

3.18 Let the independent r.v.’s X1, . . . , Xn have the Geometric p.d.f. f (x ; θ) =
θ(1 − θ)x−1, x = 1, 2, . . . , θ ∈ � = (0, 1).
(i) Show that X is both sufficient and complete.

(ii) Show that the estimate U defined by: U(X ) = 1 if X = 1, and
U(X ) = 0 if X = 0, is an unbiased estimate of θ .

(iii) Conclude that U is the UMVU estimate of θ and also an entirely
unreasonable estimate.

(iv) Prove that the variance of U is uniformly bigger than the Cramér–
Rao lower bound. (So, on account of this, the Cramér–Rao inequality
could not produce the UMVU estimate.)

Remark: We have stipulated that an estimate always takes values
in the appropriate parameter �. In order to be consistent with this
stipulation, we take � = [0, 1] in part (ii).

3.19 Let X1, . . . , Xn be independent r.v.’s with the Negative Exponential p.d.f.
f (x ; θ) = 1

θ
e− 1

θ
x, x > 0, θ ∈ � = (0, ∞). Then:
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(i) X̄ is sufficient (and complete, although completeness will not be es-
tablished here).

(ii) X̄ is the UMVU estimate of θ .

3.20 Let X1, . . . , Xn be independent r.v.’s distributed as U(0, θ), θ ∈ � =
(0, ∞). Then:
(i) The largest order statistic Yn of the Xi’s is sufficient (and complete,

although completeness will not be established here).
(ii) The unbiased estimate U = n+1

n
Yn is the UMVU estimate of θ .

(iii) Explain why the Cramér–Rao inequality approach is not applicable
here.

9.4 Decision-Theoretic Approach to Estimation

In this section, a brief discussion is presented of still another approach to
parameter estimation, which, unlike the previous two approaches, is kind of
penalty driven. In order to introduce the relevant concepts and notation, let
X1, . . . , Xn be a random sample with p.d.f. f (·; θ), θ ∈ � ⊆ �, and let δ be a
function defined on �n into �; i.e., δ : �n → �. If x1, . . . , xn are the observed
values of X1, . . . , Xn, then the value δ(x1, . . . , xn) is the proposed estimate of θ .
The quality of this estimate is usually measured by its squared distance from the
estimated quantity θ ; that is, [θ−δ(x1, . . . , xn)]2. Denote it by L[θ ; δ(x1, . . . , xn)]
and call it a loss function. So L[θ ; δ(x1, . . . , xn)] = [θ − δ(x1, . . . , xn)]2. The
closer the estimate δ(x1, . . . , xn) is to θ (on either side of it) the smaller is the
loss we suffer, and vice versa. The objective here is to select δ in some optimal
way to be discussed below. The first step to this effect is that δ be selected
so that it minimizes the average loss we suffer by using this estimate. For this
purpose, consider the r.v. L[θ ; δ(X1, . . . , Xn)] = [θ − δ(X1, . . . , Xn)]2 and take
its expectation to be denoted by R(θ ; δ); namely,

R(θ ; δ) = Eθ [θ − δ(X1, . . . , Xn)]2

=

⎧⎪⎪⎨⎪⎪⎩
∫∞
−∞ · · · ∫∞

−∞[θ − δ(x1, . . . , xn)]2 f (x1; θ) · · · f (xn; θ)dx1 · · · dxn,
for the continuous case,∑

x1
· · ·∑xn

[θ − δ(x1, . . . , xn)]2 f (x1; θ) · · · f (xn; θ),
for the discrete case.

(12)

The average loss R(θ ; δ) is called the risk function, corresponding to δ. The
value R(θ ; δ) is the average loss suffered corresponding to the point θ , when
δ is used. At this point, there are two options available to us in pursuing the
issue of selecting δ. One is to choose δ, so as to minimize the worst which
can happen to us. More formally, choose δ so that, for any other estimate δ∗, it
holds that:

sup[R(θ ; δ); θ ∈ �] ≤ sup[R(θ ; δ∗); θ ∈ �].

Such an estimate, if it exists, is called minimax (by the fact that it minimizes the
maximum risk). The second option would be to average R(θ ; δ), with respect
to θ , and then choose δ to minimize this average. The implementation of this
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plan goes as follows. Let λ(θ) be a p.d.f. on � and average R(θ ; δ) by using this
p.d.f.; let r(δ) be the resulting average. Thus,

r(δ) = Eλ R(θ ; δ) =
⎧⎨⎩
∫
�

R(θ ; δ)λ(θ) dθ , for the continuous case,∑
θ∈� R(θ ; δ)λ(θ), for the discrete case.

(13)

Then select δ to minimize r(δ). Such an estimate is called a Bayes estimate,
corresponding to the p.d.f. λ, and it may be denoted by δλ. In this context,
the parameter θ is interpreted as a r.v. taking values in � according to the
p.d.f. λ(θ), which is called a prior or a priori p.d.f. It so happens that, un-
der minimal assumptions, a Bayes estimate always exists and is given by an
explicit formula.

THEOREM 8
Suppose θ is a r.v. of the continuous type with prior p.d.f. λ(θ), and
that the three quantities

∫
�

f (x1; θ) · · · f (xn; θ)λ(θ) dθ ,
∫
�

θ f (x1; θ) ×
· · · f (xn; θ)λ(θ) dθ , and

∫
�

θ2 f (x1; θ) · · · f (xn; θ)λ(θ) dθ are finite. Then
the Bayes estimate corresponding to λ(θ), δλ, is given by the expression

δλ(x1, . . . , xn) =
∫
�

θ f (x1; θ) · · · f (xn; θ)λ(θ) dθ∫
�

f (x1; θ) · · · f (xn; θ)λ(θ) dθ
. (14)

If θ is a discrete r.v., all integrals above are to be replaced by summation
signs.

This theorem has the following corollary.

COROLLARY The Bayes estimate δλ(x1, . . . , xn) defined in relation (14) can
also be calculated thus:

δλ(x1, . . . , xn) =
∫

�

θh(θ | x1, . . . , xn) dθ , (15)

where h(θ | x1, . . . , xn) is the conditional p.d.f. of θ , given Xi = xi, i = 1, . . . , n,
which is also called the posterior p.d.f. The integral is to be replaced by a
summation sign in the discrete case.

PROOF Observe that f (x1; θ) . . . f (xn; θ) is, actually, the joint conditional
p.d.f. of X1, . . . , Xn, given θ , so that the product f (x1, θ) . . . f (xn; θ)λ(θ) is the
joint p.d.f. of X1, . . . , Xn and θ . Then its integral over � is the marginal ( joint)
p.d.f. of X1, . . . , Xn, and therefore

f (x1; θ) . . . f (xn; θ)λ(θ)/
∫

�

f (x1; θ) · · · f (xn; θ)λ(θ) dθ

is h(θ | x1, . . . , xn) as described above. Then expression (14) completes the
proof. ▲

So, in computing δλ(x1, . . . , xn), one may use relation (14) or, alternatively,
first calculate h(θ | x1, . . . , xn) and then apply formula (15).

We now proceed with the justification of (14).
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PROOF OF THEOREM 8 All operations below are valid without any further
explanation. The derivations are carried out for the continuous case; in the
discrete case, the integrals are to be replaced by summation signs. By rela-
tion (13),

r(δ) =
∫

�

R(θ ; δ)λ(θ)dθ =
∫

�

{∫ ∞

−∞
· · ·
∫ ∞

−∞
[θ − δ(x1, . . . , xn)]2×

f (x1; θ) · · · f (xn; θ)dx1 · · · dxn

}
λ(θ)dθ

=
∫ ∞

−∞
. . .

∫ ∞

−∞

{∫
�

[θ − δ(x1, . . . , xn)]2λ(θ) f (x1; θ) · · · f (xn; θ)dθ

}
× dx1 . . . dxn.

Then, in order to minimize r(δ), it suffices to minimize the inner integral for
each x1, . . . , xn. However,∫

�

[θ − δ(x1, . . . , xn)]2λ(θ) f (x1; θ) . . . f (xn; θ)dθ

= δ2(x1, . . . , xn)
[∫

�

f (xn; θ) . . . f (xn; θ)λ(θ)dθ

]
− 2δ(x1, . . . , xn)

[∫
�

θ f (x1; θ) . . . f (xn; θ)λ(θ)dθ

]
+
[∫

�

θ2 f (x1; θ) · · · f (xn; θ)λ(θ)dθ

]
,

and this is of the form: g(t) = at2 − 2bt + c, where

a =
∫

�

f (x1; θ) · · · f (xn; θ)λ(θ)dθ ,

b =
∫

�

θ f (x1; θ) · · · f (xn; θ)λ(θ)dθ ,

c =
∫

�

θ2 f (x1; θ) · · · f (xn; θ)λ(θ)dθ ,

and

t = δ(x1, . . . , xn).

The quadratic expression g(t) = at2 − 2bt + c is minimized for t = b

a
, since

g′(t) = 2at − 2b = 0 gives t = b

a
and g′′(t) = 2a > 0. But b

a
is equal to the

right-hand side in expression (14). The proof is complete. ▲

REMARK 13 In the context of the present section, the function δ and the
estimate δ(x1, . . . , xn) are also referred to as a decision function and a deci-

sion (associated with the specific outcome x1, . . . , xn). Hence the title of the
section.

REMARK 14 The Bayes approach presents us with both advantages and
disadvantages. An issue which often arises is how the prior p.d.f. λ(θ) is to
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be chosen. People have given various considerations in selecting λ(θ), includ-
ing mathematical convenience. Perhaps the most significant advantage of this
approach is that, in selecting the prior λ(θ), we have flexibility in incorporating
whatever information we may have about the parameter θ .

The theorem is illustrated with one example.

EXAMPLE 19 Let X1, . . . , Xn be a random sample from the B(1, θ) distribution, θ ∈ � =
(0, 1), and choose λ(θ) to be the so-called Beta density with parameters α and
β; that is,

λ(θ) =
{

�(α+β)
�(α)�(β)θ

α−1(1 − θ)β−1, if θ ∈ (0, 1)

0, otherwise.
(16)

(For a proof that λ is, indeed, p.d.f., see, e.g., pages 70–71 in the book
A Course in Mathematical Statistics, 2nd edition (1997), Academic Press, by
G. G. Roussas.) Then the Bayes estimate is given by relation (20) below.

DISCUSSION Now, from the definition of the p.d.f. of a Beta distribution
with parameters α and β, we have∫ 1

0
xα−1(1 − x)β−1 dx = �(α)�(β)

�(α + β)
, (17)

and, of course, �(γ ) = (γ − 1)�(γ − 1). Then, for simplicity, writing
∑

j xj

rather than
∑n

j=1 xj when this last expression appears as an exponent, we have

I1 =
∫

�

f (x1; θ) · · · f (xn; θ)λ(θ) dθ

= �(α + β)
�(α)�(β)

∫ 1

0
θ
∑

j xj (1 − θ)n−∑ j xj θα−1(1 − θ)β−1dθ

= �(α + β)
�(α)�(β)

∫ 1

0
θ(α+∑ j xj)−1(1 − θ)(β+n−∑ j xj)−1dθ ,

which, by means of (17), becomes as follows:

I1 = �(α + β)
�(α)�(β)

× �
(
α +∑n

j=1 xj

)
�
(
β + n −∑n

j=1 xj

)
�(α + β + n)

. (18)

Next,

I2 =
∫

�

θ f (x1; θ) · · · f (xn; θ)λ(θ) dθ

= �(α + β)
�(α)�(β)

∫ 1

0
θθ
∑

j xj (1 − θ)n−∑ j xj θα−1(1 − θ)β−1dθ

= �(α + β)
�(α)�(β)

∫ 1

0
θ(α+∑ j xj+1)−1(1 − θ)(β+n−∑ j xj)−1dθ.

Once more, relation (17) gives

I2 = �(α + β)
�(α)�(β)

× �
(
α +∑n

j=1 xj + 1
)
�
(
β + n −∑n

j=1 xj

)
�(α + β + n + 1)

. (19)



274 Chapter 9 Point Estimation

Relations (18) and (19) imply, by virtue of (14),

δ(x1, . . . , xn) = �(α + β + n)�
(
α +∑n

j=1 xj + 1
)

�(α + β + n + 1)�
(
α +∑n

j=1 xj

) = α +∑n

j=1 xj

α + β + n
;

that is,

δ(x1, . . . , xn) =
∑n

j=1 xj + α

n + α + β
. (20)

REMARK 15 When α = β = 1, the Beta distribution becomes U(0, 1), as
follows from (16), since �(2) = 1 × �(1) = 1. In this case, the corresponding
Bayes estimate is δ(x1, . . . , xn) = (

∑n

i=1 xi + 1)/(n + 2).
A minimax estimate is usually found indirectly, by showing that a Bayes

estimate is also minimax. The following theorem tells the story.

THEOREM 9
Let δλ(x1, . . . , xn) be the Bayes estimate corresponding to the prior p.d.f.
λ(θ), and suppose its risk R(θ ; δλ), as given in (12), is independent of
θ ∈ �. Then δλ(x1, . . . , xn) is minimax.

PROOF The justification is straightforward and goes like this. Set R(θ ; δλ) =
c, and let δ∗ = δ∗(x1, . . . , xn) be any other estimate. Then

sup[R(θ ; δλ); θ ∈ �] = c =
∫

�

cλ(θ) dθ

=
∫

�

R(θ ; δλ)λ(θ) dθ ≤
∫

�

R(θ ; δ∗)λ(θ) dθ (since δλ is Bayes)

≤ sup[R(θ ; δ∗); θ ∈ �] (since λ is a p.d.f. on �).

This completes the proof. ▲

The following example illustrates this theorem.

EXAMPLE 20 Let X1, . . . , Xn and λ(θ) be as in Example 19. Then the corresponding Bayes
estimate δ is given by (20), and the estimate δ∗ given in (21) is minimax.

DISCUSSION By setting X =∑n

j=1 X j and taking into consideration that
Eθ X = nθ and Eθ X 2 = nθ(1 − θ + nθ), we obtain

R(θ ; δ) = Eθ

(
θ − X + α

n + α + β

)2

= 1
(n + α + β)2

{[(α + β)2 − n]θ2 − (2α2 + 2αβ − n)θ + α2}.

By taking α = β = 1
2

√
n and denoting by δ∗ the resulting estimate, we have

(α + β)2 − n = 0, 2α2 + 2αβ − n = 0,
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so that

R(θ ; δ∗) = α2

(n + α + β)2
= n

4
(
n + √

n
)2 = 1

4(1 + √
n)2

.

Since R(θ ; δ∗) is independent of θ , Theorem 9 implies that

δ∗(x1, . . . , xn) =
∑n

j=1 xj + 1
2

√
n

n + √
n

= 2
√

nx̄ + 1

2(1 + √
n)

(21)

is minimax.

Exercises

4.1 Consider one observation from the p.d.f. f (x ; θ) = (1 − θ)θ x−1, x =
1, 2, . . . , θ ∈ � = (0, 1), and let the prior p.d.f. λ on (0, 1) be the U(0, 1)
distribution. Then, determine:
(i) The posterior p.d.f. of θ , given X = x.

(ii) The Bayes estimate of θ , by using relation (15).

4.2 If the r.v. X has the Beta distribution with parameters α and β; i.e., its
p.d.f. is given by expression (16), then without integration and by using the
recursive property of the Gamma function (�(γ ) = (γ −1)�(γ −1), γ > 1),
show that EX = α/(α + β).

4.3 In reference to Example 19:
(i) Show that the marginal p.d.f., h(x1, . . . , xn), defined by h(x1, . . . , xn) =∫ 1

0 f (x1; θ) · · · f (xn; θ)λ(θ) dθ with f (x ; θ) = θ x(1 − θ)1−x, x = 0, 1,
and λ(θ) as in relation (16), is given by:

h(x1, . . . , xn) = �(α + β)�(α + t)�(β + n − t)
�(α)�(β)�(α + β + t)

,

where t = x1 + · · · + xn. Do it without, actually, carrying out any
integrations, by taking notice of the form of a Beta p.d.f.

(ii) Show that the posterior p.d.f. of θ , given X1 = x1, . . . , Xn = xn,
h(θ | x1, . . . , xn), is the Beta p.d.f. with parameters α + t and β +n− t.

(iii) Use the posterior p.d.f. obtained in part (ii) in order to rederive the
Bayes estimate δ(x1, . . . , xn) given in (20) by utilizing relation (15). Do
it without carrying out any integrations, by using Exercise 4.2.

(iv) Construct a 100(1 − α)% Bayes confidence interval for θ ; that is, de-
termine a set {θ ∈ (0, 1); h(θ | x1, . . . , xn) ≥ c(x1, . . . , xn)}, where
c(x1, . . . , xn) is determined by the requirement that the Pλ-probability
of this set is equal to 1 − α.

4.4 Let X1, . . . , Xn be independent r.v.’s from the N(θ , 1) distribution, θ ∈
� = �, and on �, consider the p.d.f. λ to be that of N(μ, 1) with μ

known. Then show that the Bayes estimate of θ , δλ(x1, . . . , xn), is given
by: δ(x1, . . . , xn) = nx̄+μ

n+ 1 .
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Hint: By (14), we have to find suitable expressions for the integrals:

I1 =
∫ ∞

−∞

1

(
√

2π)n
exp

[
−1

2

n∑
i=1

(xi − θ)2

]
× 1√

2π
exp
[
− (θ − μ)2

2

]
dθ ,

I2 =
∫ ∞

−∞
θ · 1

(
√

2π)n
exp

[
−1

2

n∑
i=1

(xi − θ)2

]
× 1√

2π
exp
[
− (θ − μ)2

2

]
dθ.

The integrand of I1 is equal to (the constant for the integration):

1

(
√

2π)n
exp

[
−1

2

(
n∑

i=1

x2
i + μ2

)]

× 1√
2π

exp
{
−1

2
[(n + 1)θ2 − 2(nx̄ + μ)θ ]

}
.

However,

(n + 1)θ2 − 2(nx̄ + μ)θ = (n + 1)
(

θ2 − 2
nx̄ + μ

n + 1
θ

)

= (n+ 1)

[(
θ − nx̄ + μ

n + 1

)2

−
(

nx̄ + μ

n + 1

)2
]

=
(
θ − nx̄+ μ

n+ 1

)2
1/(

√
n + 1)2

− (nx̄ + μ)2

n + 1
,

so that
1√
2π

exp
{
−1

2
[(n + 1)θ2 − 2(nx̄ + μ)θ ]

}

= 1√
n + 1

exp
[
1
2

× (nx̄ + μ)2

n + 1

]
× 1√

2π(1/
√

n + 1)
exp

⎡⎣−(θ − nx̄+ μ

n+ 1

)2
2/(

√
n + 1)2

⎤⎦,

and the second factor is the p.d.f. of N(nx̄+μ

n+ 1 , 1
n+ 1 ). Therefore the inte-

gration produces the constant:

1√
n + 1

× 1

(
√

2π)n
exp

{
−1

2

[
n∑

i=1

x2
i + μ2 − (nx̄ + μ)2

n + 1

]}
.

Likewise, the integrand in I2 is rewritten thus:

1√
n + 1

× 1

(
√

2π)n
exp

{
−1

2

[
n∑

i=1

x2
i + μ2 − (nx̄ + μ)2

n + 1

]}

× 1√
2π(1/

√
n + 1)

θ exp

⎡⎣−
(
θ − nx̄+ μ

n+ 1

)2
2/(

√
n + 1)2

⎤⎦ ,

and the second factor, when integrated with respect to θ , is the mean
of N
(

nx̄+ μ

n+ 1 , 1
n+ 1

)
distribution, which is nx̄+μ

n+ 1 . Dividing then I2 by I1, we
obtain the desired result.
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4.5 Refer to Exercise 4.4, and:
(i) By utilizing the derivations in the hint, derive the posterior p.d.f.

h(θ | x1, . . . , xn).
(ii) Construct a 100(1 −α)% Bayes confidence interval for θ as in Exercise

4.3(iv).

4.6 Let X1, . . . , Xn be independent r.v.’s distributed as P(θ), θ ∈ � = (0, ∞),
and consider the estimate δ(x1, . . . , xn) = x̄ and the loss function L(θ ; δ) =
[θ − δ(x1, . . . , xn)]2/θ .

Calculate the risk R(θ ; δ) = 1
θ

Eθ L[θ − δ(X1, . . . , Xn)]2, and use
Theorem 9 in order to conclude that the estimate δ(x1, . . . , xn) = x̄ is,
actually, minimax.

9.5 Other Methods of Estimation

In addition to the methods of estimation discussed so far, there are also other
methods and approaches, such as the so-called minimum Chi-Square method,
the method of least squares, and the method of moments. The method of least
squares is usually associated with the so-called linear models, and therefore
we defer its discussion to a later chapter (see Chapter 13). Here, we are going
to present only a brief outline of the method of moments, and illustrate it with
three examples.

To this end, let X1, . . . , Xn be a random sample with p.d.f. f (·; θ), θ ∈ � ⊆
�, and suppose that Eθ X1 = m1(θ) is finite. The objective is to estimate θ by
means of the random sample at hand. By the WLLN,

1
n

n∑
i=1

Xi = X̄n

Pθ−→ m1(θ). (22)
n→ ∞

Therefore, for large n, it would make sense to set X̄n = m1(θ) (since it will
be approximately so with probability as close to 1 as one desires), and make
an attempt to solve for θ . Assuming that this can be done and that there is a
unique solution, we declare that solution as the moment estimate of θ .

This methodology applies in principle also in the case that there are r

parameters involved, θ1, . . . , θr , or, as we say, when θ has r coordinates, r ≥ 1.
In such a case, we have to assume that the r first moments of the Xi’s are finite;
that is,

EθXk
1 = mk(θ1, . . . , θr) ∈ �, k = 1, . . . , r, θ = (θ1, . . . , θr).

Then form the first r sample moments 1
n

∑n

i=1 Xk
i , k = 1, . . . , r, and equate

them to the corresponding (population) moments; that is,

1
n

n∑
i=1

X k
i = mk(θ1, . . . , θr), k = 1, . . . , r. (23)

The reasoning for doing this is the same as the one explained above in con-
junction with (22). Assuming that we can solve for θ1, . . . , θr in (23), and that
the solutions are unique, we arrive at what we call the moment estimates of
the parameters θ1, . . . , θr .
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The following examples should help shed some light on the above expo-
sition.

EXAMPLE 21 On the basis of the random sample X1, . . . , Xn from the B(1, θ) distribution,
find the moment estimate of θ .

DISCUSSION Here Eθ X1 = θ and there is only one parameter. Thus, it
suffices to set X̄ = θ , so that the moment estimate of θ is the same as the
MLE and the UMVU estimate, but (slightly) different from the Bayes (and the
minimax estimate).

EXAMPLE 22 On the basis of the random sample X1, . . . , Xn from the N(μ, σ 2) distribution
with both μ and σ 2 unknown, determine the moment estimates of μ and σ 2.

DISCUSSION The conditions referred to above are satisfied here, and,
specifically, EθX1 = μ, EθX 2

1 = σ 2 +μ2, θ= (μ, σ 2). Here we need the first two
sample moments, X̄ and 1

n

∑n

i=1 X 2
i . We have then: X̄ = μ and 1

n

∑n

i=1 X 2
i =

σ 2 + μ2. Hence μ = X̄ and σ 2 = 1
n

∑n

i=1 X 2
i − X̄ 2 = 1

n
(
∑n

i=1 X 2
i − nX̄2) = 1

n
×∑n

i=1(Xi − X̄)2. Thus, the moment estimates are μ̃ = X̄ and σ̃ 2 = 1
n

∑n

i=1(Xi −
X̄)2. The estimate μ̃ is identical with the MLE and the UMVU estimate, whereas
σ̃ 2 is the same as the MLE, but (slightly) different from the UMVU estimate.

EXAMPLE 23 Let the random sample X1, . . . , Xn be from the U(α, β) distribution, where
both α and β are unknown. Determine their moment estimates.

DISCUSSION Recall that EθX1 = α+β

2 and σ 2
θ (X1) = (α−β)2

12 , θ = (α, β), so
that:

X̄ = α + β

2
,

1
n

n∑
i=1

X 2
i = (α − β)2

12
+
(

α + β

2

)2

.

Hence (α−β)2

12 = 1
n

∑n

i=1 X 2
i − X̄ 2 = 1

n

∑n

i=1(Xi− X̄ )2, call it S2. Thus, β+α = 2X̄

and (α − β)2 = 12S2, or β − α = 2S
√

3, so that the moment estimates of α

and β are: α̃ = X̄ − S
√

3, β̃ = X̄ + S
√

3. These estimates are entirely different
from the MLE’s of these parameters.

Exercises

5.1 Refer to Exercise 1.6, and derive the moment estimate of θ . Also, compare
it with the MLE θ̂ = 1/X̄.

5.2 (i) Refer to Exercise 1.7, and derive the moment estimate of θ , θ̃ .
(ii) Find the numerical values of θ̃ and of the MLE θ̂ (see Exercise 1.7),

if: n = 10 and:

x1 = 0.92, x2 = 0.79, x3 = 0.90, x4 = 0.65, x5 = 0.86,

x6 = 0.47, x7 = 0.73, x8 = 0.97, x9 = 0.94, and x10 = 0.77.
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5.3 Refer to Exercise 1.8, and derive the moment estimate of θ .

5.4 Refer to Exercise 1.9 and show that Eθ |X| = θ , and therefore the moment
estimate of θ is θ̃ = 1

n

∑n

i=1 |Xi|.
5.5 Refer to Exercise 1.10 and find the expectation of the given p.d.f. by

recalling that, if X ∼ Gamma with parameters α and β, then EX = αβ

(and Var(X ) = αβ2). Then derive the moment estimate of θ , and compare
it with the MLE found in Exercise 1.10(ii).

5.6 Refer to Exercise 1.11, and:
(i) Show that EX = α + β and EX 2 = α2 + 2αβ + 2β2, where X is

a r.v. with the p.d.f. given in the exercise cited. Also, calculate the
Var(X ).

(ii) Derive the moment estimates of α and β.

5.7 Let X1, . . . , Xn be independent r.v.’s from the U(θ −a, θ +b) distribution,
where a and b are positive constants and θ ∈ � = �.

Determine the moment estimate θ̃ of θ , and compute its expectation
and variance.

5.8 If the independent r.v.’s X1, . . . , Xn have the U(−θ , θ) distribution, θ ∈
� = (0, ∞), how can one construct a moment estimate of θ?

5.9 If the independent r.v.’s X1, . . . , Xn have the Gamma distribution with
parameters α and β, show that the moment estimates of α and β are:
α̃ = X̄

2
/S2 and β̃ = S2/X̄, where S2 = 1

n

∑n

i=1(Xi − X̄ )2.

Hint: Recall that, if X ∼ Gamma with parameters α and β, then EX =
αβ, Var(X) = αβ2.

5.10 Let X be a r.v. with p.d.f. f (x; θ) = 2
θ2 (θ − x), 0 < x < θ , θ ∈ � = (0, ∞).

Then:
(i) Show that f (·; θ) is, indeed, a p.d.f.

(ii) Show that Eθ X = θ
3 and Varθ (X ) = θ2

18 .
(iii) On the basis of a random sample of size n from f (·; θ), find the

moment estimate of θ , θ̃ , and show that it is unbiased. Also, calculate
the variance of θ̃ .

5.11 Let X be a r.v. having the Beta p.d.f. with parameters α and β; i.e.,
f (x ; α, β) = �(α + β)

�(α)�(β) xα−1(1 − x)β−1, 0 < x< 1 (α, β > 0). Then, by Exer-
cise 4.2, EX = α/(α + β).
(i) Follow the same approach used in proving Exercise 4.2 in order to

establish that EX2 = α(α + 1)/(α + β)(α + β + 1).
(ii) On the basis of a random sample of size n from the underlying p.d.f.,

determine the moment estimates of α and β.

5.12 Let X and Y be any two r.v.’s with finite second moments, so that their cor-
relation coefficient,ρ(X, Y), is given byρ(X, Y) = Cov(X, Y )/σ (X )σ (Y ).
Let Xi and Yi, i = 1, . . . , n be i.i.d. r.v.’s distributed as the r.v.’s X and



280 Chapter 9 Point Estimation

Y , respectively. From the expression, Cov(X, Y ) = E[(X − EX ) ×
(Y − EY)], it makes sense to estimate ρ(X, Y ) by ρ̂n(X, Y ) give by:

ρ̂(X, Y ) = 1
n

m∑
i=1

(Xi − X̄)(Yi − Ȳ )/σ̂ (X)σ̂ (Y ),

where

σ̂ (x) =
√√√√1

n

n∑
i=1

(Xi − X̄)2 and σ̂ (Y ) =
√√√√1

n

n∑
i=1

(Yi − Ȳ)2.

Then set EX = μ1, EY = μ2, Var(X) = σ 2
1 , Var(Y ) = σ 2

2 , ρ(X, Y ) = ρ ,
and show that:
(i) 1

n

∑n

i=1(Xi − X̄ )(Yi − Ȳ ) = 1
n

∑n

i=1(XiYi) − X̄Ȳ .

(ii) E(XY ) = σ1σ2 Cov(X,Y ) + μ1μ2 = ρσ1σ2 + μ1μ2.

(iii) Use the WLLN (Theorem 3 in Chapter 7) in conjunction with the
Corollary to Theorem 5 in Chapter 7 in order to show that ρ̂n(X, Y )

P

n→ ∞→ ρ(X, Y ) = ρ , so that ρ̂n(X, Y ) is consistent (in the probability
sense) estimate of ρ.
(Notice that ρ̂n(X, Y ) is the same as the MLE of ρ for the case that
the pair (X, Y ) has the Bivariate Normal distribution; see Exercise
1.14 in this chapter.)

5.13 (i) For any n pairs of real numbers (αi, βi), i = 1, . . . ,n, show that:
(
∑n

i=1 αiβi)2 ≤ (
∑n

i=1 α2
i )(
∑n

i=1 β2
i ).

Hint: One way of proving it is to consider the function in λ, g(λ) =∑n

i=1(αi − λβi)2, and observe that g(λ) ≥ 0 for all real λ, and, in partic-
ular, for λ = (

∑n

i=1 αiβi)/(
∑n

i=1 βi), which is actually the minimizing
value for g(λ).

(ii) Use part (i) in order to show that [ρ̂n(X, Y )]2 ≤ 1.

5.14 In reference to Example 25 in Chapter 1, denote by xi and yi, i = 1, . . . , 15,
respectively, the observed measurements for the cross-fertilized and the
self-fertilized pairs. Then calculate the (observed) sample means x̄, ȳ,
sample variances s2

x, s2
y, and the sample s.d.’s sx, sy.



Chapter 10

Confidence Intervals
and Confidence

Regions

In Section 2 of Chapter 8, the basic concepts about confidence intervals etc.
were introduced; the detailed discussion was deferred to the present chapter.
The point estimation problem, in its simplest form, discussed extensively in
the previous chapter, is as follows: On the basis of a random sample X1, . . . , Xn

with p.d.f. f (·; θ), θ ∈ � ⊆ �, and its observed values x1, . . . , xn, construct a
point estimate of θ , call it θ̂ = θ̂(x1, . . . , xn). Thus, for example, in the N(θ , 1)
case, we are invited to pinpoint a value of θ ∈ � as the (unknown to us but)
true value of θ . Such estimates were, actually, constructed by way of at least
three methods. Also, certain desirable properties of estimates (fixed sample
size properties, as well as asymptotic properties) were established or stated.

Now, declaring that (the unknown value of) θ is, actually, x̄ may look
quite unreasonable. How is it possible to single out one value out of �, x̄,
and identify it as the true value of θ? The concept of a confidence interval
with a given confidence coefficient mitigates this seemingly unreasonable sit-
uation. It makes much more sense to declare that θ lies within an interval in
� with high confidence. This is, in effect, what we are doing in this chapter
by formulating the questions and problems in rigorous probabilistic/statistical
terms.

The chapter consists of four sections. The first section concerns itself with
confidence intervals of one real-valued parameter. The following section con-
siders the same kind of a problem when nuisance (unknown but of no interest
to us) parameters are present. In the third section, an example is discussed,
where a confidence region of two parameters is constructed; no general theory
is developed. (See, however, Theorem 4 in Chapter 12.) In the final section,
some confidence intervals are constructed with given approximate confidence
coefficient.

281
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10.1 Confidence Intervals

We formalize in the form of a definition some concepts already introduced in
the second section of Chapter 8.

DEFINITION 1
Let X1, . . . , Xn be a random sample with p.d.f. f (·; θ), θ ∈ � ⊆ �. Then:

(i) A random interval is an interval whose end-points are r.v.’s.
(ii) A confidence interval for θ with confidence coefficient 1 − α (0 <

α < 1, α small) is a random interval whose end-points are statistics
L(X1, . . . , Xn) and U(X1, . . . , Xn), say, such that L(X1, . . . , Xn) ≤
U(X1, . . . , Xn) and

Pθ [L(X1, . . . , Xn) ≤ θ ≤ U(X1, . . . , Xn)] ≥ 1 − α, for all θ ∈ �.

(1)

(iii) The statistic L(X1, . . . , Xn) is called a lower confidence limit for θ

with confidence coefficient 1 − α, if the interval [L(X1, . . . , Xn), ∞)
is a confidence interval for θ with confidence coefficient 1 − α.
Likewise, U(X1, . . . , Xn) is said to be an upper confidence limit for θ

with confidence coefficient 1−α, if the interval (−∞, U(X1, . . . , Xn)]
is a confidence interval for θ with confidence coefficient 1 − α.

REMARK 1 The significance of a confidence interval stems from the rel-
ative frequency interpretation of probability. Thus, on the basis of the ob-
served values x1, . . . , xn of X1, . . . , Xn, construct the interval with end-points
L(x1, . . . , xn) and U(x1, . . . , xn), and denote it by [L1, U1]. Repeat the underly-
ing random experiment independently another n times and likewise form the
interval [L2, U2]. Repeat this process a large number of times N independently
each time, and let [LN , UN] be the corresponding interval. Then the fact that
[L(X1, . . . , Xn), U(X1, . . . , Xn)] is a confidence interval for θ with confidence
coefficient 1−α means that approximately 100(1−α)% of the above N intervals
will cover θ , no matter what its value is.

REMARK 2 When the underlying r.v.’s are of the continuous type, the in-
equalities in the above definition, regarding the confidence coefficient 1 − α,
become equalities.

REMARK 3 If L(X1, . . . , Xn) is a lower confidence limit for θ with confi-
dence coefficient 1 − α

2 , and U(X1, . . . , Xn) is an upper confidence limit for
θ with confidence coefficient 1 − α

2 , then [L(X1, . . . , Xn), U(X1, . . . , Xn)] is a
confidence interval for θ with confidence coefficient 1 − α.
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Indeed, writing L and U instead of L(X1, . . . , Xn) and U(X1, . . . , Xn), and
keeping in mind that L ≤ U , we have:

Pθ (L ≤ θ) = Pθ (L ≤ θ , U ≥ θ) + Pθ (L ≤ θ , U < θ)

= Pθ (L ≤ θ ≤ U) + Pθ (U < θ), since (U < θ) ⊆ (L ≤ θ),

and

Pθ (θ ≤ U) = Pθ (U ≥ θ , L ≤ θ) + Pθ (U ≥ θ , L > θ)

= Pθ (L ≤ θ ≤ U) + Pθ (L > θ), since (L > θ) ⊆ (U ≥ θ).

Summing them up, we have then

Pθ (L ≤ θ) + Pθ (U ≥ θ) = 2Pθ (L ≤ θ ≤ U) + Pθ (U < θ) + Pθ (L > θ),

or

2Pθ (L ≤ θ ≤ U) = Pθ (L ≤ θ) + Pθ (U ≥ θ) − Pθ (U < θ) − Pθ (L > θ)

= Pθ (L ≤ θ) + Pθ (U ≥ θ) − 1 + Pθ (U ≥ θ) − 1 + Pθ (L ≤ θ)

= 2[Pθ (L ≤ θ) + Pθ (U ≥ θ) − 1],

or

Pθ (L ≤ θ ≤ U) = Pθ (L ≤ θ) + Pθ (U ≥ θ) − 1

≥ 1 − α

2
+ 1 − α

2
− 1 = 1 − α,

as was to be seen.
This section is concluded with the construction of confidence intervals in

some concrete examples. In so doing, we draw heavily on distribution theory
and point estimates. It would be, perhaps, helpful to outline the steps we
usually follow in constructing a confidence interval.

(a) Think of a r.v. which contains the parameter θ , the r.v.’s X1, . . . , Xn, prefer-
ably in the form of a sufficient statistic, and whose distribution is (exactly
or at least approximately) known.

(b) Determine suitable points a < b such that the r.v. in step (a) lies in [a, b]
with Pθ -probability ≥ 1 − α.

(c) In the expression of step (b), rearrange the terms to arrive at an interval
with the end-points being statistics and containing θ.

(d) The interval in step (c) is the required confidence interval.

EXAMPLE 1 Let X1, . . . , Xn be a random interval from the N(μ, σ 2) distribution, where
only one of μ or σ 2 is unknown. Construct a confidence interval for it with
confidence coefficient 1 − α.

DISCUSSION

(i) Let μ be unknown. The natural r.v. to think of is
√

n(X̄−μ)/σ, which
satisfies the requirements in step (a). Next, determine any two points a < b
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from the Normal tables for which P(a ≤ Z ≤ b) = 1 − α where Z ∼
N(0, 1). (See, however, Exercise 1.1 for the best choice of a and b.) Since√

n(X̄−μ)
σ

∼ N(0, 1), it follows that

Pμ

[
a ≤

√
n(X̄ − μ)

σ
≤ b

]
= 1 − α, for all μ,

so that step (b) is satisfied. Rearranging the terms inside the square brack-
ets, we obtain:

Pμ

(
X̄ − bσ√

n
≤ μ ≤ X̄ − aσ√

n

)
= 1 − α, for all μ,

so that step (c) is fulfilled. In particular, for b = zα/2 (recall P(Z ≥ zα/2) =
α
2 ) and a = −zα/2, we have

Pμ

(
X̄ − zα/2

σ√
n

≤ μ ≤ X̄ + zα/2
σ√
n

)
= 1 − α, for all μ.

It follows that[
X̄ − zα/2

σ√
n

, X̄ + zα/2
σ√
n

]
= X̄ ± zα/2

σ√
n

(for brevity) (2)

is the required confidence interval.
(ii) Let σ 2 be unknown. Set S2 = 1

n

∑n

i=1(Xi − μ)2 and recall that nS 2

σ 2 =∑n

i=1( Xi−μ

σ
)2 ∼ χ2

n. The r.v. nS 2

σ 2 satisfies the requirements of step (a). From
the Chi-Square tables, determine any pair 0 < a < b for which P(a ≤ X ≤
b) = 1 − α, where X ∼ χ2

n. Then

Pσ 2

(
a ≤ nS2

σ 2
≤ b

)
= 1 − α, for all σ 2, or Pσ 2

(
nS2

b
≤ σ 2 ≤ nS2

a

)
= 1 − α, for all σ 2 and steps (b) and (c) are satisfied.

In particular,

Pσ 2

(
nS2

χ2
n; α/2

≤ σ 2 ≤ nS2

χ2
n; 1−α/2

)
= 1 − α, for all σ 2,

where P(X ≤ χ2
n; 1−α/2) = P(X ≥ χ2

n; α/2) = α
2 . It follows that[

nS2

χ2
n; α/2

,
nS2

χ2
n; 1−α/2

]
, S2 = 1

n

n∑
i=1

(Xi − μ)2 (3)

is the required confidence interval.

Numerical Example Let n = 25 and 1 − α = 0.95. For part (i), we have
zα/2 = z0.025 = 1.96, so that X̄ ± zα/2

σ√
n

= X̄ ± 1.96 × σ
5 = X̄ ± 0.392σ. For

σ = 1, for example, the required interval is then: X̄ ± 0.392. For the second
part, we have χ2

n;α/2 = χ2
25;0.025 = 40.646, and χ2

n;1−α/2 = χ2
25;0.975 = 13.120. The

required interval is then:[
25S2

40.646
,

25S2

13.120

]
� [0.615S2, 1.905S2].
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EXAMPLE 2 On the basis of the random sample X1, . . . , Xn from the U(0, θ) (θ > 0) distri-
bution, construct a confidence interval for θ with confidence coefficient 1 −α.

DISCUSSION It has been seen (just apply Example 6(ii) in Chapter 9 with
α = 0 and β = θ) that X = X(n) is a sufficient statistic for θ. Also, the p.d.f. of X

is given by (see Example 14 in Chapter 9) fX(x ; θ) = n

θn xn−1, 0 ≤ x ≤ θ. Setting
Y = X/θ , it is easily seen that the p.d.f. of Y is: fY(y) = nyn−1, 0 ≤ y ≤ 1. The
r.v. Y satisfies the requirements of step (a). Next, determine any 0 ≤ a < b < 1
such that

∫ b

a
fY(y)dy = ∫ b

a
nyn−1dy = ∫ b

a
dyn = yn| b

a
= bn − an = 1 − α.

Then

Pθ (a ≤ Y ≤ b) = Pθ

(
a ≤ X

θ
≤ b

)
= Pθ

(
X

b
≤ θ ≤ X

a

)
= 1 − α, for all θ ,

so that steps (b) and (c) are satisfied. It follows that [ X

b
, X

a
] = [ X(n)

b
, X(n)

a
] is the

required confidence interval.
Looking at the length of this interval, X(n)( 1

a
− 1

b
), setting a = a(b) and

minimizing with respect to b, we find that the shortest interval is taken for
b = 1 and a = α1/n. That is, [X(n),

X(n)

α1/n ]. (See also Exercise 1.5.)
Numerical Example For n = 32 and 1−α = 0.95, we get (approximately)

[X(32), 1.098X(32)].

Exercises

1.1 Let 
 be the d.f. of the N(0, 1) distribution, and let a < b be such that

(b) − 
(a) = γ , some fixed number with 0 < γ < 1. Show that the
length b − a of the interval (a, b) is minimum, if, for some c > 0, b = c

and a = −c.

1.2 If X1, . . . , Xn are independent r.v.’s distributed as N(μ, σ 2) with μ un-
known and σ known, then a 100(1 − α)% confidence interval for μ is
given by X̄n ± zα

2

σ√
n

(see Example 1(i)). Suppose that the length of this
interval is 7.5 and we wish to halve it. What sample size m = m(n) will
be needed?

Hint: Set m = cn and determine c.

1.3 The stray-load loss (in watts) for a certain type of induction motor, when
the line current is held at 10 amps for a speed of 1,500 rpm, is a r.v.
X ∼ N(μ, 9).
(i) Compute a 99% confidence interval for μ when n = 100 and x̄ = 58.3.

(ii) Determine the sample size n, if the length of the 99% confidence
interval is required to be 1.

1.4 If the independent r.v.’s X1, . . . , Xn are distributed as N(θ , σ 2) with σ

known, the 100(1 − α)% confidence interval for θ is given by X̄n ± zα
2

σ√
n

(see Example 1(i)).
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(i) If the length of the confidence interval is to be equal to a preas-
signed number l, determine the sample size n as a function of l, σ,
and α.

(ii) Compute the numerical value of n, if l = 0.1, σ = 1, and α = 0.05.

1.5 Refer to Example 2 and show that the shortest length of the confidence
interval is, indeed, [X(n), X(n)/α

1/n] as asserted.

Hint: Set a = a(b), differentiate g(b) = 1
a

− 1
b
, with respect to b,

and use the derivative of bn − an = 1 − α in order to show that
dg(b)

db
< 0, so that g(b) is decreasing. Conclude that g(b) is minimized for

b = 1.

1.6 Let X1, . . . , Xn be independent r.v.’s with the Negative Exponential p.d.f.
given in the form f (x; θ) = 1

θ
e−x/θ , x > 0, θ ∈ � = (0, ∞). Then:

(i) By using the m.g.f. approach, show that the r.v. U =∑n

i=1 Xi has the
Gamma distribution with parameters α = n and β = θ .

(ii) Also, show that the r.v. V = 2U

θ
is distributed as χ2

2n.
(iii) By means of part (ii), construct a confidence interval for θ with

confidence coefficient 1 − α.

1.7 If X is a r.v. with the Negative Exponential p.d.f. f (x; θ) = 1
θ
e−x/θ , x >

0, θ ∈ � = (0, ∞), then, by Exercise 2.2 in Chapter 9, the reliability
R(x; θ) = Pθ (X > x) = e−x/θ . If X1, . . . , Xn is a random sample of size
n from this p.d.f., use Exercise 1.6(iii) in order to construct a confidence
interval for R(x; θ) with confidence coefficient 1 − α.

1.8 Let X1, . . . , Xn be a random sample of size n from the p.d.f. f (x; θ) =
e−(x−θ), x > θ , θ ∈ � = �, and let Y1 be the smallest order statistic of
the Xi’s.

(i) Use formula (28) in order to show that the p.d.f. of Y1, call it g, is
given by: g(y) = ne−n(y−θ), y > θ .

(ii) Set T(θ) = 2n(Y1 − θ) and show that T ∼ χ2
2 .

(iii) Use part (ii) in order to show that a 100(1 − α)% confidence interval
for θ , based on T(θ), is given by: [Y1 − b

2n
, Y1 − a

2n
], for suitable

0 < a < b; a special choice of a and b is: a = χ2
2;1− α

2
and b = χ2

2; α
2
.

1.9 Let the independent r.v.’s X1, . . . , Xn have the Weibull distribution with
parameters γ and θ with θ ∈ � = (0, ∞) and γ > 0 known; i.e., their
p.d.f. f (·; θ) is given by:

f (x ; θ) = γ

θ
xγ−1e−xγ/θ , x > 0.

(i) For i = 1, . . . , n, set Yi = X
γ

i and show that the p.d.f. of Yi, g(·; θ),
is Negative Exponential parameterized as follows: g(y; θ) = 1

θ
e−y/θ ,

y > 0.
(ii) For i = 1, . . . , n, set Ti(θ) = 2Yi

θ
and show that the p.d.f. of Ti(θ),

gT (·; θ), is that of a χ2
2 distributed r.v., and conclude that the r.v.

T(θ) =∑n

i=1 Ti(θ) ∼ χ2
2n.
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(iii) Show that a 100(1 − α)% confidence interval for θ , based on T(θ), is
of the form [ 2Y

b
, 2Y

a
], for suitable 0 < a < b, where Y =∑n

i=1 X
γ

i . In
particular, aand b may be chosen to beχ2

2n;1− α
2

andχ2
2n; α

2
, respectively.

1.10 If the independent r.v.’s X1, . . . , Xn have p.d.f. f (x ; θ) = 1
2θ

e−|x|/θ , x ∈
�, θ ∈ � = (0, ∞), then:

(i) The independent r.v.’s Yi = |Xi|, i = 1, . . . , n have the Negative
Exponential p.d.f. g(y; θ) = 1

θ
e−y/θ , y > 0.

(ii) The independent r.v.’s Ti(θ) = 2Yi

θ
, i = 1, . . . , n are χ2

2 -distributed,
so that the r.v. T(θ) = ∑n

i=1 Ti(θ) = 2
θ

∑n

i=1 Yi = 2Y

θ
∼ χ2

2n, where
Y =∑n

i=1 Yi =∑n

i=1 |Xi|.
(iii) A 100(1 − α)% confidence interval for θ , based on T(θ), is given by

[ 2Y

b
, 2Y

a
], for suitable 0 < a < b. In particular, a and b may be chosen

to be a = χ2
2n ;1− α

2
, b = χ2

2n ; α
2
.

1.11 Consider the p.d.f. f (x ; α, β) = 1
β

e−(x−α)/β , x ≥ α, α ∈ �, β > 0 (see Ex-
ercise 1.11 in Chapter 9), and suppose that β is known and α is unknown,
and denote it by θ . Thus, we have here:

f (x ; θ) = 1
β

e−(x−θ)/β , x ≥ θ , θ ∈ � = �.

(i) Show that the corresponding d.f., F(·; θ), is given by: F(x ; θ) =
1 − e−(x−θ)/β , x ≥ θ , so that 1 − F(x ; θ) = e−(x−θ)/β , x ≥ θ .

(ii) Let X1, . . . , Xn be independent r.v.’s drawn from the p.d.f. f (·; θ), and
let Y1 be the smallest order statistic. Use relation (28) in Chapter 6
in order to show that the p.d.f. of Y1 is given by:

fY1 (y; θ) = n

β
e−n(y−θ)/β , y ≥ θ.

(iii) Consider the r.v. T = Tn(θ) defined by: T = n(Y1 − θ)/β, and show
that its p.d.f. is given by: fT (t) = e−t, t ≥ 0.

1.12 In reference to Exercise 1.11:
(i) Determine 0 ≤ a < b, so that P(a ≤ T ≤ b) = 1 − α, for some

0 < α < 1.
(ii) By part (i), Pθ [a ≤ n(Y1 − θ)

β
≤ b] = 1 − α, since T has the p.d.f.

fT (t) = e−t, t ≥ 0. Use this relation to conclude that [Y1− bβ

n
, Y1− aβ

n
]

is a 100(1 − α)% confidence interval of θ .
(iii) The length l of the confidence interval in part (ii) is l = β

n
(b −a). Set

b = b(a) and show that the shortest confidence interval is given by:
[Y1 + b log α

n
, Y1].

Hint: For part (iii), set b = b(a), and from e−a − e−b = 1 − α, obtain
db

da
= eb−a by differentiation. Then replace db

da
in dl

da
and observe that it

is >0. This implies that l obtain its minimum at a = 0.
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1.13 Let X1, . . . , Xn be independent r.v.’s with d.f. F and p.d.f. f with f (x) > 0
for −∞ ≤ a < x < b ≤ ∞, and let Y1 and Yn be, respectively, the smallest
and the largest order statistics of the Xi’s.

(i) By using the hint given below, show that the joint p.d.f., fY1,Yn
, of Y1

and Yn is given by:

fY1,Yn
(y1, yn) = n(n − 1)[F(yn) − F(y1)]n−2 f (y1) f (yn),

a < y1 < yn < b.

Hint: P(Yn ≤ yn) = P(Y1 ≤ y1, Yn ≤ yn) + P(Y1 > y1, Yn ≤ yn) =
FY1,Yn

(y1, yn) + P(y1 < Y1 < Yn ≤ yn). But P(Yn ≤ yn) = P(all Xi’s ≤
yn) = P(X1 ≤ yn, . . . , Xn ≤ yn) = P(X1 ≤ yn) . . . P(Xn ≤ yn) =
[F(yn)]n, and: P(y1 < Y1 < Yn ≤ yn) = P (all Xi’s are >y1 and also
≤yn) = P(y1 < X1 ≤ yn, . . . , y1 < Xn ≤ yn) = P(y1 < X1 ≤ yn) . . .

P(y1 < Xn ≤ yn) = [P(y1 < X1 ≤ yn)]n = [F(yn) − F(y1)]n. Thus,

[F(yn)]n = FY1,Yn
(y1, yn) + [F(yn) − F(y1)]n, a < y1 < yn < b.

Solving for FY1,Yn
(y1, yn) and taking the partial derivatives with respect

to y1 and yn, we get the desired result.

(ii) Find the p.d.f. fY1,Yn
when the Xi’s are distributed as U(0, θ), θ ∈

� = (0, ∞).
(iii) Do the same for the case the Xi’s have the Negative Exponential

p.d.f. f (x) = 1
θ
e−θx, x > 0, θ ∈ � = (0, ∞).

1.14 Refer to Exercise 1.13(ii), and show that the p.d.f. of the range R = Yn−Y1

is given by:

fR(r ; θ) = n(n − 1)
θn

rn−2(θ − r), 0 < r < θ.

1.15 Refer to Exercise 1.13(iii), and show that the p.d.f. of the range R = Yn−Y1

is given by:

fR(r ; θ) = n − 1
θ

e− r
θ (1 − e− r

θ )n−2, r > 0.

1.16 In reference to Exercise 1.14:
(i) Set T = R

θ
and show that fT (t) = n(n − 1)tn−2(1 − t), 0 < t < 1.

(ii) Take 0 < c < 1 such that Pθ (c ≤ T ≤ 1) = 1 − α, and construct
a confidence interval for θ , based on the range R, with confidence
coefficient 1 − α. Also, show that c is a root of the equation cn−1 ×
[n − (n − 1)c] = α.

1.17 Consider the independent random samples X1, . . . , Xm from the
N(μ1, σ 2

1 ) distribution and Y1, . . . , Yn from the N(μ2, σ 2
2 ) distribution,

where μ1, μ2 are unknown and σ 2
1 , σ 2

2 are known, and define the r.v.
T = Tm,n(μ1 − μ2) by: Tm,n(μ1 − μ2) = (X̄m−Ȳn)−(μ1−μ2)√

(σ 2
1 /m)+(σ 2

2 /n)
.
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Then show that:
(i) A 100(1 − α)% confidence interval for μ1 − μ2, based on T , is given

by: [(X̄m − Ȳn) − b

√
σ 2

1
m

+ σ 2
2
n

, (X̄m − Ȳn) − a

√
σ 2

1
m

+ σ 2
2
n

] for suitable
constants a and b.

(ii) The confidence interval in part (i) with the shortest length is taken
for b = zα/2 and a = −zα/2.

1.18 Refer to Exercise 1.17, and suppose that μ1, μ2 are known and σ 2
1 , σ 2

2
are unknown. Then define the r.v. T̄ = T̄m,n(σ 2

1 /σ 2
2 ) = σ 2

1

σ 2
2

S 2
X

S 2
Y

, where S2
X =

1
m

∑m

i=1(Xi−μ1)2 and S2
Y = 1

n

∑n

j=1(Yj −μ2)2, and show that a 100(1−α)%
confidence interval for σ 2

1 /σ 2
2 , based on T̄ , is given by [a S 2

X

S 2
Y

, b
S 2

X

S 2
Y

] for
0 < a < b with P(a ≤ X ≤ b) = 1 − α, X ∼ Fn,m. In particular, we may
choose a = Fn,m;1− α

2
and b = Fn,m; α

2
.

1.19 Consider the independent random samples X1, . . . , Xm and Y1, . . . , Yn

from the Negative Exponential distributions f (x ; θ1) = 1
θ1

e−x/θ1 , x >

0, θ1 ∈ � = (0, ∞), and f (y; θ2) = 1
θ2

e−y/θ2 , y > 0, θ2 ∈ � = (0, ∞),
and set U = ∑m

i=1 Xi, V = ∑n

j=1 Yj . Then, by Exercise 1.6(ii), 2U

θ1
∼

χ2
2m, 2V

θ2
∼ χ2

2n and they are independent. It follows that
2V

θ2/2n

2U
θ1

/2m
= θ1

θ2
× mV

nU
=

θ1
θ2

× m
∑n

j=1 Yj

n
∑m

i=1 Xi
∼ F2n,2m.

Use this result in order to construct a 100(1−α)% confidence interval for
θ1/θ2.

10.2 Confidence Intervals in the Presence of Nuisance Parameters

In Example 1, the position was adopted that only one of the parameters in the
N(μ, σ 2) distribution was unknown. This is a rather artificial assumption as,
in practice, both μ and σ 2 are most often unknown. What was done in that
example did, however, pave the way to solving the problem here in its natural
setting.

EXAMPLE 3 Let X1, . . . , Xn be a random sample from the N(μ, σ 2) distribution, where both
μ and σ 2 are unknown. Construct confidence intervals for μ and σ 2, each with
confidence coefficient 1 − α.

DISCUSSION We have that:

√
n(X̄ − μ)

σ
∼ N(0, 1) and

(n − 1)S2

σ 2
=

n∑
i=1

(
Xi − X̄

σ

)2

∼ χ2
n−1,

where S2 = 1
n−1

∑n

i=1(Xi − X̄ )2, and these two r.v.’s are independent. It follows
that

√
n(X̄−μ)/σ√

(n−1)S 2/σ 2(n−1)
=

√
n(X̄−μ)

S
∼ tn−1. From the t-tables, determine any pair
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(a, b) with a < b such that P(a ≤ X ≤ b) = 1 − α, where X ∼ tn−1. It follows
that:

Pθ

[
a ≤

√
n(X̄ − μ)

S
≤ b

]
= 1 − α, for all θ = (μ, σ 2),

or

Pθ

(
X̄ − b

S√
n

≤ μ ≤ X̄ − a
S√
n

)
= 1 − α, for all θ.

In particular,

Pθ

(
X̄ − tn−1;α/2

S√
n

≤ μ ≤ X̄ + tn−1;α/2
S√
n

)
= 1 − α, for all θ,

where P(X ≥ tn−1; α/2) = α
2 (and X ∼ tn−1). It follows that the required

confidence interval for μ is:[
X̄ − tn−1;α/2

S√
n

, X̄ + tn−1;α/2
S√
n

]
= X̄ ± tn−1;α/2

S√
n

(for brevity). (4)

The construction of a confidence interval for σ 2 in the presence of (an
unknown) μ is easier. We have already mentioned that (n−1)S 2

σ 2 ∼ χ2
n−1. Then

repeat the process in Example 1(ii), replacing χ2
n by χ2

n−1, to obtain the confi-
dence interval.[

(n − 1)S2

χ2
n−1;α/2

,
(n − 1)S2

χ2
n−1;1−α/2

]
, S2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2. (5)

REMARK 4 Observe that the confidence interval in (4) differs from that in
(2) in that σ in (2) is replaced by an estimate S, and then the constant zα/2

in (2) is adjusted to tn−1;α/2. Likewise, the confidence intervals in (3) and (5)
are of the same form, with the only difference that (the unknown) μ in (3) is
replaced by its estimate X̄ in (5). The constants n, χ2

n;α/2, and χ2
n;1−α/2 are also

adjusted as indicated in (5).
Numerical Example Let n = 25 and 1−α = 0.95.Then tn−1;α/2 = t24;0.025 =

2.0639, and the interval in (4) becomes X̄±0.41278S. Also, χ2
n−1;α/2 = χ2

24;0.025 =
39.364, χ2

n−1;1−α/2 = χ2
24;0.975 = 12.401, so that the interval in (5) is [ 24S 2

39.364 ,
24S 2

12.401 ] � [0.610S2, 1.935S2].
Actually, a somewhat more important problem from a practical viewpoint

is that of constructing confidence intervals for the difference of the means
of two normal populations and the ratio of their variances. This is a way of
comparing two normal populations. The precise formulation of the problem
is given below.

EXAMPLE 4 Let X1, . . . , Xm and Y1, . . . , Yn be two independent random samples from the
N(μ1, σ 2

1 ) and N(μ2, σ 2
2 ) distributions, respectively, with all μ1, μ2, σ 2

1 , and σ 2
2

unknown. We wish to construct confidence intervals for μ1 − μ2 and σ 2
1 /σ 2

2 .
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DISCUSSION

(i) Confidence interval for μ1−μ2. In order to be able to resolve this problem,
we have to assume that the variances, although unknown, are equal; i.e.,
σ 2

1 = σ 2
2 = σ 2, say.

Let us review briefly some distribution results. Recall that X̄ − μ1 ∼
N(0, σ 2

m
), Ȳ − μ2 ∼ N(0, σ 2

n
), and by independence,

[(X̄ − Ȳ ) − (μ1 − μ2)]/σ

√
1
m

+ 1
n

∼ N(0, 1). (6)

Also, if

S2
X = 1

m− 1

m∑
i=1

(Xi − X̄ )2, S2
Y = 1

n − 1

n∑
j=1

(Yj − Ȳ )2,

then (m− 1)S 2
X

σ 2 ∼ χ2
m−1, (n− 1)S 2

Y

σ 2 ∼ χ2
n−1, and by independence,

(m− 1)S2
X + (n − 1)S2

Y

σ 2
∼ χ2

m+n−2. (7)

From (6) and (7), we obtain then:

(X̄ − Ȳ ) − (μ1 − μ2)√
(m− 1)S 2

X + (n− 1)S 2
Y

m+ n− 2

(
1
m

+ 1
n

) ∼ tm+n−2. (8)

Then working with (8) as in Example 1(i), we arrive at the following con-
fidence interval[

(X̄ − Ȳ ) − tm+n−2;α/2

√
(m− 1)S2

X + (n − 1)S2
Y

m+ n − 2

(
1
m

+ 1
n

)
,

(X̄ − Ȳ ) + tm+n−2;α/2

√
(m− 1)S2

X + (n − 1)S2
Y

m+ n − 2

(
1
m

+ 1
n

)]

= (X̄ − Ȳ ) ± tm+n−2;α/2

√
(m− 1)S2

X + (n − 1)S2
Y

m+ n − 2

(
1
m

+ 1
n

)
. (9)

(ii) Confidence interval for σ 2
1 /σ 2

2 . By the fact that (m− 1)S 2
X

σ 2
1

∼χ2
m−1, (n− 1)S 2

Y

σ 2
2

∼
χ2

n−1, and independence, we have S 2
Y/σ 2

2

S 2
X/σ 2

1
= σ 2

1

σ 2
2

× S 2
Y

S 2
X

∼ Fn−1,m−1. From the
F -tables, determine any pair (a, b) with 0 < a < b such that P(a ≤ X ≤ b) =
1 − α, where X ∼ Fn−1,m−1. Then, for all θ = (μ1, μ2, σ 2

1 , σ 2
2 ),

Pθ

(
a ≤ σ 2

1

σ 2
2

× S2
Y

S2
X

≤ b

)
= 1 − α, or Pθ

(
a

S2
X

S2
Y

≤ σ 2
1

σ 2
2

≤ b
S2

X

S2
Y

)
= 1 − α.

In particular, for all θ,

Pθ

(
S2

X

S2
Y

Fn−1,m−1;1−α/2 ≤ σ 2
1

σ 2
2

≤ S2
X

S2
Y

Fn−1,m−1;α/2

)
= 1 − α,
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where P(X ≤ Fn−1,m−1;1−α/2) = P(X ≥ Fn−1,m−1;α/2) = α
2 (and X ∼

Fn−1,m−1). The required confidence interval is then[
S2

X

S2
Y

Fn−1,m−1;1−α/2,
S2

X

S2
Y

Fn−1,m−1;α/2

]
. (10)

Numerical Example Let m = 13, n = 14, and 1 − α = 0.95. Then
tm+n−2;α/2 = t25;0.025 = 2.0595, so that the interval in (9) becomes

(X̄−Ȳ) ± 2.0595

√
12S2

X + 13S2
Y

25

(
1
13

+ 1
14

)
� (X̄−Ȳ) ± 0.1586

√
12S2

X + 13S2
Y .

Next, Fn−1,m−1;α/2 = F13,12;0.025 = 3.2388, Fn−1,m−1;1−α/2 = F13,12;0.975 = 1
F12,13;0.025

=
1

3.1532 � 0.3171. Therefore the interval in (10) is [0.3171 S 2
X

S 2
Y

, 3.2388 S 2
X

S 2
Y

].

Exercises

2.1 If the independent r.v.’s X1, . . . , Xn are N(μ, σ 2) distributed with both μ

and σ 2 unknown, construct a 100(1 − α)% confidence interval for σ .

2.2 Refer to Exercise 1.18 and suppose that all μ1, μ2, and σ 2
1 , σ 2

2 are unknown.
Then construct a 100(1 − α)% confidence interval for σ 2

1 /σ 2
2 .

10.3 A Confidence Region for (μ, σ2) in the N(μ, σ2) Distribution

Refer again to Example 1 and suppose that both μ and σ 2 are unknown, as is
most often the case. In this section, we wish to construct a confidence region

for the pair (μ, σ 2); i.e., a subset of the plane determined in terms of statistics
and containing (μ, σ 2) with probability 1 − α. This problem is resolved in the
following example.

EXAMPLE 5 On the basis of the random sample X1, . . . , Xn from the N(μ, σ 2) distribution,
construct a confidence region for the pair (μ, σ 2) with confidence coefficient
1 − α.

DISCUSSION In solving this problem, we draw heavily on what we have
done in the previous example. Let X̄ be the sample mean and define S2 by
S2 = 1

n−1

∑n

i=1 (Xi − X̄)2. Then
√

n(X̄ − μ)
σ

∼ N(0, 1),
(n − 1)S2

σ 2
∼ χ2

n−1 (11)

and the two r.v.’s involved here are independent. From the Normal tables,
define c > 0 so that P(−c ≤ Z ≤ c) = √

1 − α, Z ∼ N(0, 1); c is uniquely
determined. From the χ2-tables, determine a pair (a, b) with 0 < a < b and
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P(a ≤ X ≤ b) = √
1 − α, where X ∼ χ2

n−1. Then, by means of (11), and with
θ = (μ, σ 2), we have:

Pθ

[
− c ≤

√
n(X̄ − μ)

σ
≤ c

]
= √

1 − α,

(12)

Pθ

[
a ≤ (n − 1)S2

σ 2
≤ b

]
= √

1 − α.

These relations are rewritten thus:

Pθ

[
−c ≤

√
n(X̄ − μ)

σ
≤ c

]
= Pθ

[
(μ − X̄ )2 ≤ c2σ 2

n

]
(=√

1 − α), (13)

Pθ

[
a ≤ (n − 1)S2)

σ 2
≤ b

]
= Pθ

[
(n − 1)S2

b
≤ σ 2 ≤ (n − 1)S2

a

]
(=√

1 − α),

(14)

so that, by means of (12)–(14) and independence, we have:

Pθ

[
−c ≤

√
n(X̄ − μ)

σ
≤ c, a ≤ (n − 1)S2

σ 2
≤ b

]

= Pθ

[
−c ≤

√
n(X̄ − μ)

σ
≤ c

]
Pθ

[
a ≤ (n − 1)S2

σ 2
≤ b

]

= Pθ

[
(μ − X̄)2 ≤ c2

n
σ 2
]

Pθ

[
(n − 1)S2

b
≤ σ 2 ≤ (n − 1)S2

a

]
= 1 − α. (15)

Let x̄ and s2 be the observed values of X̄ and S2. Then in a system of orthogonal
(μ, σ 2)-axis, the equation (μ − x̄)2 = c2

n
σ 2 is the equation of a parabola with

vertex V located at the point (x̄, 0), with focus F with coordinates (x̄, c2

4n
), and

with directrix L with equation σ 2 = − c2

4n
(see Figure 10.1). Then the part of

the plane for which (μ− x̄)2 ≤ c2σ 2

n
is the inner part of the parabola along with

the points on the parabola. Since

σ 2 = (n − 1)s2

b
= 1

b

n∑
i=1

(xi − x̄)2 and σ 2 = (n − 1)s2

a
= 1

a

n∑
i=1

(xi − x̄)2

are straight lines parallel to the μ-axis, the set of points (μ, σ 2) in the plane,
which satisfy simultaneously all inequalities:

(μ − x̄)2 ≤ c2σ 2

n
,

1
b

n∑
i=1

(xi − x̄)2 ≤ σ 2 ≤ 1
a

n∑
i=1

(xi − x̄)2

is the part of the plane between the straight lines mentioned above and the
inner part of the parabola (along with the points on the parabola) (see shaded
area in Figure 10.1).

From relation (15), it follows then that, when replacing x̄ by X̄ and s2 by S2,
the shaded region with random boundary (determined completely as described
above) becomes the required confidence region for (μ, σ 2). What is depicted
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s 2

m
0

confidence region for
( m, s 2) with confidence
coefficient 1 -  a

x
–

s 2 (xj − x
–

n)2Σ
n

j=1

1
a

=

s 2 (xj − x
–

n)2Σ
n

j=1

1
b

=

( m − x
–

n)2 c2s 2

n
=

Figure 10.1

Confidence Region for
(μ, σ2) with Confidence
Coefficient 1 − α

in Figure 10.1 is a realization of such a confidence region, evaluated for the
observed values of the Xi’s.

Actually, the point c above is zγ , where γ = (1−√
1 − α)/2, and for definite-

ness, we may choose to split the probability 1−√
1 − α equally among the two

tails of the Chi-Square distribution. Thus, we take b = χ2
n−1;γ and a = χ2

n−1;1−γ .
Then the confidence region is:

(μ − X̄ )2 ≤ z2
γ

n
σ 2,

1

χ2
n−1;γ

n∑
i=1

(Xi − X̄ )2 ≤ σ 2 ≤ 1

χ2
n−1;1−γ

n∑
i=1

(Xi − X̄ )2,

γ = (1 − √
1 − α)/2. (16)

Numerical Example As a numerical example, take n = 25 and α = 0.05,
so that γ � 0.012661, and (by linear interpolation) zγ � 2.236, χ2

24;γ �
42.338, χ2

24;1−γ � 11.130, and the confidence region becomes:

(μ−X̄)2 ≤ 0.199988σ 2, 0.023619
25∑

i=1

(Xi−X̄ )2 ≤ σ 2 ≤ 0.089847
25∑

i=1

(Xi−X̄ )2

or, approximately,

(μ − X̄ )2 ≤ 0.2σ 2, 0.024
25∑

i=1

(Xi − X̄ )2 ≤ σ 2 ≤ 0.09
25∑

i=1

(Xi − X̄ )2.

REMARK 5 A somewhat general theory for constructing confidence regions
is discussed in Chapter 12 (see Theorem 4 there and the examples following
it).

10.4 Confidence Intervals with Approximate Confidence Coefficient

It is somewhat conspicuous that in this chapter we have not yet dealt with
examples, such as the Binomial, the Poisson, and the Negative Exponential.
There is a reason, however, behind it, and that is that the expressions which
would serve as the basis for constructing confidence intervals do not have
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a known exact distribution. They do have, however, an approximate Normal
distribution, and this fact leads to the construction of confidence intervals with
approximate (rather than exact) confidence coefficient 1 − α. The remainder
of this section is devoted to constructing such intervals.

EXAMPLE 6 On the basis of the random sample X1, . . . , Xn from the B(1, θ) distribution,
construct a confidence interval for θ with confidence coefficient approximately
1 − α.

DISCUSSION The tools employed here, as well as in the following two
examples, are the CLT and the WLLN in conjunction with either Theorem 7(ii)
or Theorem 6(iii) in Chapter 7. It will be assumed throughout that n is large
enough, so that these theorems apply.

Recall that Eθ X1 = θ and σ 2
θ (X1) = θ(1 − θ), so that, by the CLT,

√
n(X̄n − θ)√
θ(1 − θ)

� N(0, 1). (17)

In the denominator in (17), replace θ(1 − θ) by S2
n, where S2

n = 1
n

×∑n

i=1(Xi − X̄n)2 = 1
n

(
∑n

i=1 X2
i − nX̄

2
n) = 1

n
(
∑n

i=1 Xi − nX̄
2
n) = X̄ − X̄

2 =
X̄(1 − X̄), in order to obtain (by Theorem 7(ii) in Chapter 7),

√
n(X̄n − θ)√
X̄n(1 − X̄n)

� N(0, 1). (18)

It follows from (18) that

Pθ

[
−zα/2 ≤

√
n(X̄n − θ)√
X̄n(1 − X̄n)

≤ zα/2

]
� 1 − α, for all θ.

This expression is equivalent to:

Pθ

⎡⎣X̄n − zα/2

√
X̄n(1 − X̄n)

n
≤ θ ≤ X̄n + zα/2

√
X̄n(1 − X̄n)

n

⎤⎦� 1 − α, for all θ ,

which leads to the confidence interval⎡⎣X̄n − zα/2

√
X̄n(1 − X̄n)

n
, X̄n + zα/2

√
X̄n(1 − X̄n)

n

⎤⎦ = X̄n ± zα/2

√
X̄n(1 − X̄n)

n

(19)
with confidence coefficient approximately 1 − α.

Numerical Example For n = 100 and 1 − α = 0.95, the confidence inter-

val in (19) becomes: X̄n ± 1.96
√

X̄n(1−X̄n)
100 = X̄n ± 0.196

√
X̄n(1 − X̄n).
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EXAMPLE 7 Construct a confidence interval for θ with confidence coefficient approxi-
mately 1 − α on the basis of the random sample X1, . . . , Xn from the P(θ)
distribution.

DISCUSSION Here Eθ X1 = σ 2
θ (X1) = θ , so that, working as in the previous

example, and employing Theorem 6(iii) in Chapter 7, we have
√

n(X̄n − θ)√
θ

� N(0, 1), or

√
n(X̄n − θ)√

X̄n

� N(0, 1).

Hence Pθ [−zα/2 ≤
√

n(X̄n−θ)√
X̄n

≤ zα/2] � 1−α, for all θ , which leads to the required
confidence interval⎡⎣X̄n − zα/2

√
X̄n

n
, X̄n + zα/2

√
X̄n

n

⎤⎦ = X̄n ± zα/2

√
X̄n

n
. (20)

Numerical Example For n = 100 and 1−α = 0.95, the confidence interval
in (20) becomes: X̄n ± 0.196

√
X̄n.

EXAMPLE 8 Let X1, . . . , Xn be a random sample from the Negative Exponential distribu-
tion in the following parameterization: f (x ; θ) = 1

θ
e−x/θ , x > 0. Construct a

confidence interval for θ with confidence coefficient approximately 1 − α.

DISCUSSION In the adopted parameterization above, Eθ X1 = θ and
σ 2

θ (X1) = θ2. Then working as in the previous example, we have that
√

n(X̄n − θ)
θ

� N(0, 1), or

√
n(X̄n − θ)

X̄n

� N(0, 1).

It follows that the required confidence interval is given by:[
X̄n − zα/2

X̄n√
n

, X̄n + zα/2
X̄n√

n

]
= X̄n ± zα/2

X̄n√
n
. (21)

Numerical Example For n = 100 and 1−α = 0.95, the confidence interval
in (21) becomes: X̄n ± 0.196X̄n.

Exercises

4.1 Let the independent r.v.’s X1, . . . , Xn have unknown (finite) mean μ and
known (finite) variance σ 2, and suppose that n is large. Then:

(i) Use the CLT in order to construct a confidence interval for μ with
approximate confidence coefficient 1 − α.

(ii) Provide the form of the interval in part (i) for n = 100, σ = 1, and
α = 0.05.
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(iii) Refer to part (i) and suppose that σ = 1 and α = 0.05. Then determine
the sample size n, so that the length of the confidence interval is 0.1.

(iv) Observe that the length of the confidence interval in part (i) tends to
0 as n → ∞, for any σ and any α.

4.2 Refer to Exercise 4.1, and suppose that both μ and σ 2 are unknown. Then:
(i) Construct a confidence interval for μ with approximate confidence

coefficient 1 − α.
(ii) Provide the form of the interval in part (i) for n = 100 and α = 0.05.

(iii) Show that the length of the interval in part (i) tends to 0 in probability
as n → ∞.

Hint: For part (i), refer to Theorem 7(ii) in Chapter 7, and for part (iii),
refer to Theorem 7(i) and Theorem 6(ii) in the same chapter.

4.3 (i) Let X ∼ N(μ, σ 2), and for 0 < α < 1, let xα and x1−α be the αth and
(1 − α)th quantiles, respectively, of X; i.e., P(X ≤ xα) = P(X ≥
x1−α) = α, so that P(xα ≤ X ≤ x1−α) = 2α. Show that xα = μ +
σ
−1(α), x1−α = μ+σ
−1(1−α), so that [xα , x1−α] = [μ+σ
−1(α),
μ + σ
−1(1 − α)].

(ii) Refer to Exercise 4.5(i) of Chapter 9 (see also Exercise 4.4 there),
where it is found that the posterior p.d.f. of θ , given X1 = x1, . . . , Xn =
xn, h(· | x1, . . . , xn), is N(nx̄+μ

n+1 , 1
n+1 ).

Use part (i) in order to find the expression of the interval [xα , x1−α]
here.

Remark: In the present context, the interval [xα , x1−α] is called a pre-

diction interval for θ with confidence coefficient 1 − 2α.

(iii) Compute the prediction interval in part (ii) when n = 9, μ = 1, x̄ =
1.5, and α = 0.025.

4.4 Let X1, . . . , Xn be independent r.v.’s with strictly increasing d.f. F , and let
Yi be the ith order statistic of the Xi’s, 1 ≤ i ≤ n. For 0 < p < 1, let xp be
the (unique) pth quantile of F . Then:

(i) Show that for any i and j with 1 ≤ i < j ≤ n − 1,

P(Yi ≤ xp ≤ Yj) =
j−1∑
k=i

(
n

k

)
pkqn−k (q = 1 − p).

Thus, [Yi, Yj] is a confidence interval for xp with confidence coefficient∑ j−1
k=i

(
n

k

)
pkqn−k. This probability is often referred to as probability of

coverage of xp.
(ii) For n = 10 and p = 0.25, identify the respective coverage probabilities

for the pairs (Y1, Y3), (Y1, Y4), (Y2, Y4), (Y2, Y5).
(iii) For p = 0.50, do the same as in part (ii) for the pairs (Y3, Y9), (Y4, Y7),

(Y4, Y8), (Y5, Y7).
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(iv) For p = 0.75, do the same as in part (ii) for the pairs (Y8, Y10), (Y7, Y10),
(Y7, Y9), (Y6, Y9).

Hint: For part (i), observe that: P(Yi ≤ xp) = P(at least i of X1, . . . ,
Xn ≤ xp) =∑n

k=i

(
n

k

)
pkqn−k, since P(Xk ≤ xp) = p and q = 1 − p. Also,

P(Yi ≤ xp) = P(Yi ≤ xp, Yj ≥ xp) + P(Yi ≤ xp, Yj < xp) = P(Yi ≤ xp ≤
Yj) + P(Yj < xp), so that P(Yi ≤ xp ≤ Yj) = P(Yi ≤ xp) − P(X j ≤ xp).

For part (iv), observe that
(

n

k

)
pkqn−k = ( n

n−r

)
qr pn−r = (n

r

)
qr pn−r (by setting

n − k = r and recalling that
(

n

n−r

) = (n
r

)
).

4.5 Let X be a r.v. with a strictly increasing d.f. F , and let p be a number with
0 < p < 1. Consider the event: Ap = {F(X) ≤ p} = {s ∈ S; F(X(s)) ≤
p} = {s ∈ S; X(s) ≤ F−1(p)}. So, Ap is the event in the underlying sample
space S for the sample points s of which F(X(s)) ≤ p. Since for each
fixed x, F(x) represents the proportion of the (unit) distribution mass of
F which is covered (or carried) by the interval (−∞, x], it follows that the
random interval (−∞, X] covers (carries) the (random) proportion F(X)
of the distribution mass of F , and on the event Ap, the random interval
(−∞, X] covers (carries) at most 100p% of the mass of F . Equivalently,
the random interval (X, ∞) covers (carries) at least 100(1 − p) of the
distribution mass of F .

x

F −1( p)

p

1
F(x)

Use Theorem 10 in Chapter 6 in order to show that P(Ap) = p; i.e.,
(−∞, X] covers at most 100p% of the distribution mass of F with probabil-
ity p. Equivalently, the random interval (X, ∞) covers at least 100(1 − p)%
of the distribution mass of F with probability p.



Chapter 11

Testing Hypotheses

In this chapter, the problem of testing hypotheses is considered to some ex-
tent. Additional topics are discussed in Chapter 12. The chapter consists of
four sections, the first of which is devoted to some general concepts and the
formulation of a null hypothesis and its alternative. A number of examples
discussed provide sufficient motivation for what is done in this section.

Section 2 is somewhat long and enters into the essence of the testing
hypotheses issue. Specifically, the Neyman–Pearson Fundamental Lemma is
stated, and the main points of its proof are presented for the case that the un-
derlying r.v.’s are of the continuous type. It is stated that this result by itself is
of limited use; nevertheless, it does serve as the stepping stone in establishing
other more complicated and truly useful results. This is obtained when the
underlying family of distributions is the so-called family of distributions of the
exponential type. Thus, the definition of an exponential type p.d.f. follows, and
it is next illustrated by means of examples that such families occur fairly often.
In an exponential type p.d.f. (in the real-valued parameter θ), uniformly most
powerful (UMP) tests are presented for one-sided and two-sided hypotheses,
which arise in practice in a natural way. This is done in Theorems 2 and 3.

In the following section, Theorems 2 and 3 are applied to concrete cases,
such as the Binomial distribution, the Poisson distribution, and the Normal
distribution. All applications are accompanied by numerical examples.

The last section of this chapter, Section 4, is also rather extensive and
deals with Likelihood Ratio (LR) tests. General concepts, the necessary nota-
tion, and some motivation for the tests used are given. The better part of the
section is devoted to deriving LR tests in Normal distributions. The problem
is divided into two parts. The first part considers the case where we are deal-
ing with one sample from an underlying Normal distribution, and LR tests are
derived for the mean and the variance of the distribution. In the second part,
two independent random samples are available coming from two underlying
Normal populations. Then LR tests are derived in comparing the means and the
variances of the distributions. In all cases, the results produced are illustrated
by means of numerical examples.

299
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11.1 General Concepts, Formulation of Some Testing Hypotheses

In order to motivate the formulation of a null hypothesis and its alternative,
consider some specific examples. Most of them are taken from Chapter 1.

EXAMPLE 1 In reference to Example 6 in Chapter 1, let θ be the unknown proportion of
unemployed workers, and let θ0 be an acceptable level of unemployment, e.g.,
θ0 = 6.25%. Then the parameter space is split into the sets (0.0625, 1) and
(0, 0.0625], and one of them will be associated with the (null) hypothesis.
It is proposed that that set be (0.0625, 1); i.e., H0: θ > 0.0625 (and there-
fore HA: θ ≤ 0.0625). The rule of thumb for selecting H0 is this: “Select as
null hypothesis that hypothesis whose false rejection has the most serious
consequences.” Indeed, if θ is, actually, greater than 6.25% and is (falsely)
rejected, then human suffering may occur, due to the fact that the authorities
in charge had no incentives to take the necessary measures. On the other hand,
if θ ≤ 0.0625 was selected as the null hypothesis and was falsely rejected, then
the most likely consequence would be for the authorities to undertake some
unnecessary measures and, perhaps, waste some money. However, the former
consequence is definitely more serious than the latter. Another way of look-
ing at the problem of determining the null hypothesis is to formulate as such
a position, which we wish to challenge, and which we are willing to accept
only in the face of convincing evidence, provided by the interested party. To
summarize then, if X is the r.v. denoting the number of unemployed workers
among n sampled, then X ∼ B(n, θ) and the hypothesis to be tested is H0:
θ > 0.0625 against the alternative HA: θ ≤ 0.0625 at (some given) level of
significance α.

EXAMPLE 2 In reference to Example 8 in Chapter 1, if X is the r.v. denoting those young
adults, among the n sampled, who listen to this particular weekend music
program, then X ∼ B(n, θ). Then, arguing as in the previous example, we have
that the hypothesis to be tested is H0: θ ≤ θ0 (=100p%) against the alternative
HA: θ > θ0 at level of significance α.

EXAMPLE 3 Refer to Example 12 of Chapter 1, and let X be the r.v. denoting the mean
bacteria count per unit volume of water at a lake beach. Then X ∼ P(θ) and
the hypothesis to be tested is H0: θ > 200 against HA: θ ≤ 200 at level of
significance α.

EXAMPLE 4 Suppose that the mean θ of a r.v. X represents the dosage of a drug which is
used for the treatment of a certain disease. For this medication to be both safe
and effective, θ must satisfy the requirements θ1 < θ < θ2, for two specified
values θ1 and θ2. Then, on the basis of previous discussions, the hypothesis
to be tested here is H0: θ ≤ θ1 or θ ≥ θ2 against the alternative HA: θ1 <

θ < θ2 at the level of significance α. Of course, we have to assume a certain
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distribution for the r.v. X, which for good reasons is taken to be N(θ , σ 2), σ

known.

EXAMPLE 5 Refer to Example 16 in Chapter 1, and suppose that the survival time for a ter-
minal cancer patient treated with the standard treatment is a r.v. X ∼ N(θ1, σ 2

1 ).
Likewise, let the r.v. Y stand for the survival time for such a patient subject
to the new treatment, and let Y ∼ N(θ2, σ 2

2 ). Then the hypothesis to be tested
here is H0: θ2 = θ1 against the alternative HA: θ2 > θ1 at level of significance α.

REMARK 1 The hypothesis to be tested could also be θ2 ≤ θ1, but the possi-
bility that θ2 < θ1 may be excluded; it can be assumed that the new treatment
cannot be inferior to the existing one. The supposition that θ2 = θ1, there is
no difference between the two treatments, leads to the term “null” for the
hypothesis H0: θ2 = θ1.

Examples 1–4 have the following common characteristics. A r.v. X is
distributed according to the p.d.f. f (·; θ), θ ∈ � ⊆ �, and we are interested in
testing one of the following hypotheses, each one at some specified level of sig-
nificance α: H0: θ > θ0 against HA: θ ≤ θ0; H0: θ ≤ θ0 against HA: θ > θ0; H0: θ ≤
θ1 or θ ≥ θ2 against HA: θ1 < θ < θ2. It is understood that in all cases θ remains
in �. In Example 5, two Normally distributed populations are compared in
terms of their means, and the hypothesis tested is H0: θ2 = θ1 against HA:
θ2 > θ1. An example of a different nature would lead to testing the hypothesis
H0: θ2 < θ1 against HA: θ2 = θ1.

In the first four examples, the hypotheses stated are to be tested by means
of a random sample X1, . . . , Xn from the underlying distribution. In the case of
Example 5, the hypothesis is to be tested by utilizing two independent random
samples X1, . . . , Xm and Y1, . . . , Yn from the underlying distributions.

Observe that in all cases the hypotheses tested are composite, and so are the
alternatives. We wish, of course, for the proposed tests to be optimal in some
satisfactory sense. If the tests were to be UMP (uniformly most powerful), then
they would certainly be highly desirable. In the following section, a somewhat
general theory will be provided, which, when applied to the examples under
consideration, will produce UMP tests.

Exercises

1.1 In the following examples, indicate which statements constitute a simple
and which a composite hypothesis:

(i) X is a r.v. whose p.d.f. f is given by f (x) = 2e−2x, x > 0.
(ii) When tossing a coin, let X be the r.v. taking the value 1 if the head ap-

pears and 0 if the tail appears. Then the statement is: The coin is
biased.

(iii) X is a r.v. whose expectation is equal to 5.

1.2 Let X1, . . . , Xn be i.i.d. r.v.’s with p.d.f. f which may be either Normal,
N(μ, σ 2), to be denoted by fN , or Cauchy with parameters μ and σ 2, to be
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denoted by fC , where, we recall that:

fN(x; μ, σ 2) = 1√
2πσ

e−(x−μ)2/2σ 2
, x ∈ �, μ ∈ �, σ > 0,

fC(x; μ, σ 2) = σ

π
× 1

(x − μ)2 + σ 2
, x ∈ �, μ ∈ �, σ > 0.

Consider the following null hypotheses and the corresponding alternatives:
(i) H01: f is Normal, HA1: f is Cauchy.

(ii) H02: f is Normal with μ ≤ μ0, HA2: f is Cauchy with μ ≤ μ0.
(iii) H03: f is Normal with μ = μ0, HA3: f is Cauchy with μ = μ0.
(iv) H04: f is Normal with μ = μ0, σ ≥ σ0, HA4: f is Cauchy with μ = μ0,

σ ≥ σ0.
(v) H05: f is Normal with μ = μ0, σ < σ0, HA5: f is Cauchy with μ = μ0,

σ = σ0.
(vi) H06: f is Normal with μ = μ0, σ = σ0, HA6: f is Cauchy with μ = μ0,

σ = σ0.
State which of the H0i and which of the HAi, i = 1, . . . , 6, are simple
and which are composite.

11.2 Neyman--Pearson Fundamental Lemma, Exponential Type Families,
Uniformly Most Powerful Tests for Some Composite Hypotheses

In reference to Example 1, one could certainly consider testing the simple
hypothesis H0: θ = θ0 (e.g., 0.05) against the simple alternative HA: θ = θ1,
for some fixed θ1 either >θ0 or <θ0. However, such a testing framework would
be highly unrealistic. It is simply not reasonable to isolate two single values
from the continuum of values (0, 1) and test one against the other. What is
meaningful is the way we actually formulated H0 in this example. Nevertheless,
it is still true that a long journey begins with the first step, and this applies here
as well. Accordingly, we are going to start out with the problem of testing a
simple hypothesis against a simple alternative, which is what the celebrated
Neyman–Pearson Fundamental Lemma is all about.

THEOREM 1
(Neyman–Pearson Fundamental Lemma) Let X1, . . . , Xn be a ran-
dom sample with p.d.f. f unknown. We are interested in testing the
simple hypothesis H0: f = f0 (specified) against the simple alternative
HA: f = f1 (specified) at level of significance α (0 < α < 1). To this end,
define the test ϕ as follows:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if f1(x1) . . . f1(xn) > C f0(x1) . . . f0(xn)

γ if f1(x1) . . . f1(xn) = C f0(x1) . . . f0(xn)

0 if f1(x1) . . . f1(xn) < C f0(x1) . . . f0(xn),

(1)
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where the constants C and γ (C > 0, 0 ≤ γ ≤ 1) are defined through the
relationship:

E f0ϕ(X1, . . . , Xn) = Pf0 [ f1(X1) · · · f1(Xn) > C f0(X1) · · · f0(Xn)]

+ γ Pf0 [ f1(X1) · · · f1(Xn) = C f0(X1) · · · f0(Xn)] = α.

(2)

Then the test ϕ is MP among all tests with level of significance ≤ α.

REMARK 2 The test ϕ is a randomized test, if 0 < γ < 1. The necessity
for a randomized test stems from relation (2), where the left-hand side has
to be equal to α. If the Xi’s are discrete, the presence of γ (0 < γ < 1)
is indispensable. In case, however, the Xi’s are of the continuous type, then
γ = 0 and the test is nonrandomized.

The appearance of f0 as a subscript indicates, of course, that expectations
and probabilities are calculated by using the p.d.f. f0 for the Xi’s.

PROOF OF THEOREM 1 (Outline for Xi ’s of the Continuous Type) To simplify
the notation, write 0 (or 1) rather than f0 (or f1) when f0 (or f1) occurs
as a subscript. Also, it would be convenient to use the vector notation X =
(X1, . . . , Xn) and x = (x1, . . . , xn). First, we show that the test ϕ is of level
α. Indeed, let T = {x ∈ �n; L0(x) > 0}, where L0(x) = f0(x1) . . . f0(xn), and
likewise L1(x) = f1(x1) . . . f1(xn). Then, if D = X−1(T); i.e., D = {s ∈ S;
X(s) ∈ T}, so that Dc = {s ∈ S; X(s) ∈ Tc}, it follows that P0(Dc) =
P0(X ∈ Tc) = ∫

Tc L0(x) dx = 0. Therefore, in calculating probabilities by using
the p.d.f. L0, it suffices to restrict ourselves to the set D. Then, by means of (2),

E0ϕ(X ) = P0[L1(X ) > C L0(X )]

= P0{[L1(X ) > C L0(X )] ∩ D}

= P0

{[
L1(X )
L0(X )

> C

]
∩ D

}
(since L0(X ) > 0 on D)

= P0(Y > C) = 1 − P0(Y ≤ C) = g(C), say,

where Y = L1(X )
L0(X ) on D, and arbitrary on Dc. The picture of 1 − P0(Y ≤ C) is

depicted in Figure 11.1, and it follows that, for each α (0 < α < 1), there is
(essentially) a unique C such that 1 − P0(Y ≤ C) = α. That is, Eθϕ(X ) = α,
which shows that the test ϕ is of level α.

Next, it is shown that ϕ is MP as described by showing that, if ϕ∗ is any
other test with E0ϕ

∗(X ) = α∗ ≤ α, then πϕ(1) = E1ϕ(X ) ≥ E1ϕ
∗(X ) = πϕ∗(1)

(i.e., the power of ϕ is not smaller than the power of any such test ϕ∗ of level
of significance ≤ α). Indeed, define B+ and B− by:

B+ = {x ∈ �n; ϕ(x) − ϕ∗(x) > 0} = (ϕ > ϕ∗),

B− = {x ∈ �n; ϕ(x) − ϕ∗(x) < 0} = (ϕ < ϕ∗).
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g(C )

C
C

1

0

a

Figure 11.1

The Graph of the
Function of (C) =

1 − P0(γ ≤ C)

Then, clearly, B+ ∩ B− = Ø, and, by means of (1),

B+ = (ϕ > ϕ∗) ⊆ (ϕ = 1) ⊆ (L1 > C L0),
(3)

B− = (ϕ < ϕ∗) ⊆ (ϕ = 0) ⊆ (L1 < C L0).

Therefore ∫
�n

[ϕ(x) − ϕ∗(x)][L1(x) − C L0(x)]dx

=
∫

B+
[ϕ(x) − ϕ∗(x)][L1(x) − C L0(x)]dx

+
∫

B−
[ϕ(x) − ϕ∗(x)][L1(x) − C L0(x)]dx ≥ 0 by (3).

Hence ∫
�n

ϕ(x)L1(x)dx −
∫

�n

ϕ∗(x)L1(x)dx

≥ C

[ ∫
�n

ϕ(x)L0(x)dx −
∫

�n

ϕ∗(x)L0(x)dx

]
= C(α − α∗) ≥ 0 (since α∗ ≤ α).

Hence
∫
�n ϕ(x)L1(x)dx = E1ϕ(X ) ≥ E1ϕ

∗(X ) = ∫�n ϕ∗(x)L1(x) dx. ▲

This theorem has the following corollary, according to which the power
of the MP test ϕ cannot be < α; not very much to be sure, but yet somewhat
reassuring.

COROLLARY For the MP test ϕ, πϕ(1) = E1ϕ(x) ≥ α.

PROOF Just compare the power of ϕ with that of ϕ∗ ≡ α whose level of
significance and power are both equal to α. ▲

REMARK 3 The theorem was formulated in terms of any two p.d.f.’s f0 and
f1 as the two possible options for f . In a parametric setting, where f is of the
form f (·; θ), θ ∈ � ⊆ �r , r ≥ 1, the p.d.f.’s f0 and f1 will correspond to two
specified values of θ; θ0 and θ1, say. That is, f0 = f (·; θ0) and f1 = f (·; θ1).
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The following examples will help illustrate how the Neyman–Pearson
Fundemental Lemma actually applies in concrete cases.

EXAMPLE 6 On the basis of a random sample of size 1 from the p.d.f. f (x ; θ) = θxθ−1, 0 <

x < 1 (θ > 1):

(i) Use the Neyman–Pearson Fundamental Lemma to derive the MP test for
testing the hypothesis H0: θ = θ0 against the alternative HA: θ = θ1 at
level of significance α.

(ii) Derive the formula for the power π(θ1).
(iii) Give numerical values for parts (i) and (ii) when θ0 = 4 and θ1 = 6, θ1 = 2;

take α = 0.05.

DISCUSSION In the first place, the given function is, indeed, a p.d.f., since∫ 1
0 θxθ−1dx = xθ |10 = 1. Next:

(i) H0 is rejected, if for some positive constant C∗:

θ1xθ1−1

θ0xθ0−1
> C∗, or xθ1−θ0 >

θ0C∗

θ1
, or (θ1 − θ0) log x > log

(
θ0C∗

θ1

)
.

Now, if θ1 > θ0, this last inequality is equivalent to:

log x > log
(

θ0C∗

θ1

)1/(θ1−θ0)

= log C

(
C =
(

θ0C∗

θ1

)1/(θ1−θ0)
)

,

or x > C . If θ1 < θ0, the final form of the inequality becomes x < C . For
θ1 > θ0, the cutoff point is calculated by:

Pθ0 (X > C) =
∫ 1

C

θ0xθ0−1dx = xθ0 |1C = 1−Cθ0 = α, or C = (1−α)1/θ0 .

For θ1 < θ0, we have:

Pθ0 (X < C) = xθ0 |C0 = Cθ0 = α, or C = α1/θ0 .

Then, for θ1 > θ0, reject H0 when x > (1 − α)1/θ0 ; and, for θ1 < θ0, reject
H0 when x < α1/θ0 .

(ii) For θ1 > θ0, the power of the test is given by:

π(θ1) = Pθ1 (X > C) =
∫ 1

C

θ1xθ1−1dx = xθ1 |1C = 1 − Cθ1 , or

π(θ1) = 1 − (1 − α)θ1/θ0 . For θ1 < θ0, we have:

π(θ1) = Pθ1 (X < C) =
∫ C

0
θ1xθ1−1dx = xθ1 |C0 = Cθ1 = αθ1/θ0 .

That is,

π(θ1) = 1 − (1 − α)θ1/θ0 for θ1 > θ0; π(θ1) = αθ1/θ0 for θ1 < θ0.

(iii) For θ1 = 6, the cutoff point is:

(1 − 0.05)1/4 = 0.950.25 � 0.987,
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and the power is: π(6) = 1 − (0.95)1.5 � 1 − 0.926 = 0.074. For θ1 = 2,
the cutoff point is: (0.05)1/4 = (0.05)0.25 � 0.473, and the power is: π(2) =
(0.05)1/2 � 0.224.

EXAMPLE 7 Refer to Example 6 and:

(i) Show that the Neyman–Pearson test which rejects the (simple) hypothesis
H0: θ = θ0 when tested against the (simple) alternative HA,θ1: θ = θ1, for
some fixed θ1 > θ0, at level of significance α, is, actually, UMP for testing
H0 against the composite alternative HA: θ > θ0 at level of significance α.

(ii) Also, show that the Neyman–Pearson test which rejects the hypothesis
H0: θ = θ0 when tested against the (simple) alternative H′

A,θ1
: θ = θ1, for

some fixed θ1 < θ0, at level of significance α, is, actually, UMP for testing
H0 against the composite alternative H′

A: θ < θ0 at level of significance α.
(iii) Show that there is no UMP test for testing the hypothesis H0: θ = θ0

against the (double-sided) composite alternative H′′
A: θ �= θ0 at level of

significance α.

DISCUSSION

(i) Indeed, by part (i) of Example 6, the MP test for testing H0: θ = θ0 against
HA,θ1: θ = θ1 rejects H0 when x > (1 − α)1/θ0 , regardless of the specific

value of θ1, provided θ1 > θ0. Thus, this test becomes a UMP test when
HA,θ1 is replaced by HA: θ > θ0.

(ii) Likewise, by Example 6(i), the MP test for testing H0: θ = θ0 against
H′

A,θ1
: θ = θ1 rejects H0 when x < α1/θ0 , regardless of the specific value

θ1, provided θ1 < θ0. Thus, this test becomes a UMP test when H′
A,θ1

is
replaced by H′

A: θ < θ0.
(iii) The rejection region for testing the hypotheses H0: θ = θ0 against the

alternative HA: θ > θ0 is R1 = ((1 − α)1/θ0 , 1), and the rejection region for
testing H0 against H′

A: θ < θ0 is R2 = (0, α1/θ0 ). Since these MP regions
depend on which side of θ0 lie the alternative θ ’s and are different, there
cannot exist a UMP test for testing H0 against H′′

A: θ �= θ0.

EXAMPLE 8 On the basis of a random sample of size 1 from the p.d.f. f (x; θ) = 1 + θ2(1
2 −

x), 0 < x < 1, −1 ≤ θ ≤ 1:

(i) Use the Neyman–Pearson Fundamental Lemma to derive the MP test for
testing the hypothesis H0: θ = 0 (i.e., the p.d.f. is U(0, 1)) against the
alternative HA: θ = θ1 at level of significance α.

(ii) Investigate whether or not the test derived in part (i) is a UMP test for
testing H0: θ = 0 against the alternative H′

A: θ �= 0.
(iii) Determine the test in part (i) for α = 0.05.
(iv) Determine the power of the test in part (i).

DISCUSSION First, the function given is a p.d.f., because it is nonnegative
and
∫ 1

0 [1 + θ2(1
2 − x)]dx = 1 + θ2(1

2 − 1
2 ) = 1. Next:
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(i) H0 is rejected whenever 1 + θ2
1 (1

2 − x) > C∗, or x < C , where C =
1
2 − (C∗ − 1)/θ2

1 , and C is determined by P0(X < C) = α, so that C = α,
since X ∼ U(0, 1) under H0. Thus, H0 is rejected when x < α.

(ii) Observe that the test is independent of θ1, and since it is MP against each
fixed θ1, it follows that it is UMP for testing H0 against H′

A: θ �= 0.
(iii) For α = 0.05, the test in part (i) rejects H0 whenever x < 0.05.
(iv) For θ �= 0, the power of the test is:

π(θ) = Pθ (X < α) =
∫ α

0

[
1 + θ2

(
1
2

− x

)]
dx = 1

2
α(1 − α)θ2 + α.

Thus, e.g., π(±1) = 1
2α(1 − α) + α, π(± 1

2 ) = 1
8α(1 − α) + α, which for

α = 0.05 become: π(±1) � 0.074, π(± 1
2 ) � 0.056.

11.2.1 Exponential Type Families of p.d.f.’s

The remarkable thing here is that, if the p.d.f. f (·; θ) is of a certain general
form to be discussed below, then the apparently simple-minded Theorem 1
leads to UMP tests; it is the stepping stone for getting to those tests.

DEFINITION 1
The p.d.f. f (·; θ), θ ∈ � ⊆ �, is said to be of the exponential type, if

f (x; θ) = C(θ)eQ(θ)T(x) × h(x), x ∈ �, (4)

where Q is strictly monotone and h does not involve θ in any way; C(θ)
is simply a normalizing constant.

Most of the p.d.f.’s we have encountered so far are of the form (4). Here
are some examples.

EXAMPLE 9 The B(n, θ) p.d.f. is of the exponential type.

DISCUSSION Indeed,

f (x; θ) =
(
n
x

)
θ x(1 − θ)n−xIA(x), A = {0, 1, . . . , n},

where, we recall that IA is the indicator of A; i.e., IA(x) = 1 if x ∈ A, and
IA(x) = 0 if x ∈ Ac.

Hence

f (x; θ) = (1 − θ)n · e[log( θ
1−θ

)]x ×
(
n
x

)
IA(x),

so that f (x ; θ) is of the form (4) with C(θ) = (1 − θ)n, Q(θ) = log( θ
1−θ

)
strictly increasing (since d

dθ
( θ

1−θ
) = 1

(1−θ)2 > 0 and log(·) is strictly increasing),
T(x) = x, and h(x) = (n

x

)
IA(x).
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EXAMPLE 10 The P(θ) p.d.f. is of the exponential type.

DISCUSSION Here

f (x; θ) = e−θ θ x

x!
IA(x), A = {0, 1, . . .}.

Hence

f (x; θ) = e−θ × e(log θ)x × 1
x!

IA(x),

so that f (x; θ) is of the form (4) with C(θ) = e−θ , Q(θ) = log θ strictly increas-
ing, T(x) = x, and h(x) = 1

x! IA(x).

EXAMPLE 11 The N(θ , σ 2) (σ known) p.d.f. is of the exponential type.

DISCUSSION In fact,

f (x; θ) = 1√
2πσ

e
− (x−θ)2

2σ2 = 1√
2πσ

e
− θ2

2σ2 × e
θ

σ2 x × e
− x2

2σ2 ,

and this is of the form (4) with C(θ) = 1√
2πσ

e
− θ2

2σ2 , Q(θ) = θ
σ 2 strictly increasing,

T(x) = x, and h(x) = e−x2/2σ 2
.

EXAMPLE 12 The N(μ, θ) (μ known) p.d.f. is of the exponential type.

DISCUSSION Here

f (x; θ) = 1√
2πθ

e− 1
2θ

(x−μ)2
,

and this is of the form (4) with C(θ) = 1√
2πθ

, Q(θ) = − 1
2θ

strictly increasing

(since d

dθ
(−1

2θ
) = 1

2θ2 > 0), T(x) = (x − μ)2, and h(x) = 1.

11.2.2 Uniformly Most Powerful Tests for Some Composite Hypotheses

We may now proceed with the formulation of the following important results.

THEOREM 2
Let X1, . . . , Xn be a random sample with exponential type p.d.f. f (×; θ),
θ ∈ � ⊆ �; i.e.,

f (x; θ) = C(θ)eQ(θ)T(x) × h(x), x ∈ �,

and set V (x1, . . . , xn) = ∑n

i=1 T(xi). Then each one of the tests defined
below is UMP of level α for testing the hypothesis specified against the
respective alternative among all tests of level ≤ α. Specifically:
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(i) Let Q be strictly increasing.
Then for testing H0: θ ≤ θ0 against HA: θ > θ0, the UMP test is

given by:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if V (x1, . . . , xn) > C

γ if V (x1, . . . , xn) = C

0 if V (x1, . . . , xn) < C,
(5)

where the constants C and γ (C > 0, 0 ≤ γ ≤ 1) are determined by:

Eθ0ϕ(X1, . . . , Xn) = Pθ0 [V (X1, . . . , Xn) > C]

+ γ Pθ0 [V (X1, . . . , Xn) = C] = α. (6)

The power of the test is given by:

πϕ(θ) = Pθ [V (X1, . . . , Xn) > C] + γ Pθ [V (X1, . . . , Xn) = C] (θ > θ0).

(7)

If the hypothesis to be tested is H0: θ ≥ θ0, so that the alternative
is HA: θ < θ0, then the UMP test is given by (5) and (6) with reversed
inequalities; i.e.,

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if V (x1, . . . , xn) < C

γ if V (x1, . . . , xn) = C

0 if V (x1, . . . , xn) > C,
(8)

where the constants C and γ (C > 0, 0 ≤ γ ≤ 1) are determined by:

Eθ0ϕ(X1, . . . , Xn) = Pθ0 [V (X1, . . . , Xn) < C]

+ γ Pθ0 [V (X1, . . . , Xn) = C] = α. (9)

The power of the test is given by:

πϕ(θ) = Pθ [V (X1, . . . , Xn) < C] + γ Pθ [V (X1, . . . , Xn) = C] (θ < θ0).

(10)

(ii) Let Q be strictly decreasing.
Then for testing H0: θ ≤ θ0 against HA: θ > θ0, the UMP test is

given by (8) and (9), and the power is given by (10).
For testing H0: θ ≥ θ0 against HA: θ < θ0, the UMP test is given

by (5) and (6), and the power is given by (7).

PROOF (Just Pointing Out the Main Points) The proof of this theorem is based
on Theorem 1 and also the specific form assumed for the p.d.f. f (·; θ). As
a rough illustration, consider the case that Q is strictly increasing and the
hypothesis to be tested is H0: θ ≤ θ0. For an arbitrary θ1 < θ0, it is shown that
Eθ1ϕ(X1, . . . , Xn) < α. This establishes that Eθϕ(X1, . . . , Xn) ≤ α for all θ ≤ θ0,
so that ϕ is of level α. Next, take an arbitrary θ1 > θ0 and consider the problem
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of testing the simple hypothesis H0: θ = θ0 against the simple alternative HA,1:
θ = θ1. It is shown that the MP test, provided by Theorem 1, actually, coincides
with the test ϕ given by (5) and (6). This shows that the test ϕ is UMP. The
same reasoning applies for the remaining cases. ▲

Figures 11.2 and 11.3 depict the form of the power of the UMP tests for the
one-sided hypotheses H0: θ ≤ θ0 and H0: θ ≥ θ0.

p (q )

q 0
q

a

0

1

Figure 11.2

H0: θ ≤ θ0, HA:
θ > θ0: The Power
Curve

p (q )

q 0
q

a

0

1

Figure 11.3

H0: θ ≥ θ0, HA:
θ < θ0: The Power
Curve
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THEOREM 3
Let X1, . . . , Xn be a random sample with p.d.f. as in Theorem 2, and let
V (x1, . . . , xn) be as in the same theorem. Consider the problem of testing
the hypothesis H0: θ ≤ θ1 or θ ≥ θ2 against the alternative HA: θ1 < θ < θ2

at level of significance α. Then the tests defined below are UMP of level
α among all tests of level ≤α. Specifically:

(i) If Q is strictly increasing, the UMP test is given by:

ϕ(x1, . . . , xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if C1 < V (x1, . . . , xn) < C2

γ1 if V (x1, . . . , xn) = C1

γ2 if V (x1, . . . , xn) = C2

0 otherwise,

(11)

where the constants C1, C2 and γ1, γ2 (C1 > 0, C2 > 0, 0 ≤ γ1 ≤ 1,
0 ≤ γ2 ≤ 1) are determined through the relationships:

Eθ1ϕ(X1, . . . , Xn) = Pθ1 [C1 < V (X1, . . . , Xn) < C2]

+ γ1 Pθ1 [V (X1, . . . , Xn) = C1]

+ γ2 Pθ1 [V (X1, . . . , Xn) = C2] = α, (12)

Eθ2ϕ(X1, . . . , Xn) = Pθ2 [C1 < V (X1, . . . , Xn) < C2]

+ γ1 Pθ2 [V (X1, . . . , Xn) = C1]

+ γ2 Pθ2 [V (X1, . . . , Xn) = C2] = α. (13)

The power of the test is given by:

πϕ(θ) = Pθ [C1 < V (X1, . . . , Xn) < C2] + γ1 Pθ [V (X1, . . . , Xn) = C1]

+ γ2 Pθ [V (X1, . . . , Xn) = C2] (θ1 < θ < θ2). (14)

(ii) If Q is strictly decreasing, then the UMP test is given by (11) and
(12)–(13) with reversed inequalities; i.e.,

ϕ(x1, . . . , xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if V (x1, . . . , xn) < C1 or V (x1, . . . , xn) > C2

γ1 if V (x1, . . . , xn) = C1

γ2 if V (x1, . . . , xn) = C2

0 otherwise,
(15)

and the constants C1, C2 and γ1, γ2 are determined by:

Eθ1ϕ(X1, . . . , Xn) = Pθ1 [V (X1, . . . , Xn) < C1 or V (X1, . . . , Xn) > C2]

+ γ1 Pθ1 [V (X1, . . . , Xn) = C1]

+ γ2 Pθ1 [V (X1, . . . , Xn) = C2] = α, (16)
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Eθ2ϕ(X1, . . . , Xn) = Pθ2 [V (X1, . . . , Xn) < C1 or V (X1, . . . , Xn) > C2]

+ γ1 Pθ2 [V (X1, . . . , Xn) = C1]

+ γ2 Pθ2 [V (X1, . . . , Xn) = C2] = α. (17)

The power of the test is given by:

πϕ(θ) = Pθ [V (X1, . . . , Xn) < C1 or V (X1, . . . , Xn) > C2]

+ γ1 Pθ [V (X1, . . . , Xn) = C1] + γ2 Pθ [V (X1, . . . , Xn) = C2]

(θ1 < θ < θ2). (18)

The power of the UMP test is depicted in Figure 11.4.
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Figure 11.4

H0: θ ≤ θ1 or θ ≥
θ2, HA:
θ1 < θ < θ2: The
Power Curve

Exercises

2.1 If X1, . . . , X16 are independent r.v.’s:
(i) Construct the MP test of the hypothesis H0: the common distribu-

tion of the Xi’s is N(0, 9) against the alternative HA: the common
distribution of the Xi’s is N(1, 9); take α = 0.05.

(ii) Also, determine the power of the test.

2.2 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ 2), where μ is
unknown and σ is known.
(i) For testing the hypothesis H0: μ = 0 against the alternative HA: μ = 1,

show that the sample size ncan be determined to achieve a given level
of significance α and given power π(1).

(ii) What is the numerical value of nfor α = 0.05, π(1) = 0.9 when σ = 1?
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2.3 (i) Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ 2), where
μ is unknown and σ is known. Derive the MP test for testing the
hypothesis H0: μ = μ1 against the alternative HA: μ = μ2 (μ2 > μ1)
at level of significance α.

(ii) Find an expression for computing the power of the test.
(iii) Carry out the testing hypothesis and compute the power for n= 100,

σ 2 = 4, μ1 = 3, μ2 = 3.5, x̄ = 3.2, and α = 0.01.

2.4 Let X1, . . . , Xn be independent r.v.’s distributed as N(μ, σ 2) with μ un-
known and σ known. Suppose we wish to test the hypothesis H0: μ = μ0

against the alternative HA: μ = μ1 (μ1 > μ0).
(i) Derive the MP test for testing H0 against HA.

(ii) For a given level of significance αn(< 0.5) and given power πn(> 0.5),
determine the cutoff point Cn and the sample size for which both αn

and πn are attained.
(iii) Show that αn → 0 and πn → 1 as n → ∞.
(iv) Determine the sample size nand the cutoff point Cn forμ0 = 0, μ1 = 1,

σ = 1, αn = 0.001, and πn = 0.995.

2.5 Let X1, . . . , Xn be independent r.v.’s having the Gamma distribution with
α known and β unknown.

(i) Construct the MP test for testing the hypothesis H0: β = β1 against
the alternative HA: β = β2 (β2 > β1) at level of significance α.

(ii) By using the m.g.f. approach, show that, if X ∼ Gamma (α, β), then
X1 +· · ·+ Xn ∼ Gamma (nα, β), where the Xi’s are independent and
distributed as X.

(iii) Use the CLT to carry out the test when n = 30, α = 10, β1 = 2, β2 =
3, and α = 0.05.

(iv) Compute the power of the test, also by using the CLT.

2.6 Let X be a r.v. with p.d.f. f (x; θ) = 1
θ
e−x/θ , x > 0, θ ∈ � = (0, ∞).

(i) Refer to Definition 1 in order to show that f (·; θ) is of the exponential
type.

(ii) Use Theorem 2 in order to derive the UMP test for testing the hy-
pothesis H0: θ ≥ θ0 against the alternative HA: θ < θ0 at level of
significance α, on the basis of the random sample X1, . . . , Xn from
the above p.d.f.

(iii) Use the m.g.f. approach in order to show that the r.v. Y = 2 ×
(
∑n

i=1 Xi)/θ is distributed as χ2
2n.

(iv) Use parts (ii) and (iii) in order to find an expression for the cutoff
point C and the power function of the test.

(v) If θ0 = 1,000 and α = 0.05, determine the sample size n, so that the
power of the test at θ1 = 500 is at least 0.95.

2.7 The life of an electronic equipment is a r.v. X whose p.d.f. is f (x; θ) =
θe−θx, x > 0, θ ∈ � = (0, ∞), and let � be its expected lifetime. On the
basis of the random sample X1, . . . , Xn from this distribution:



314 Chapter 11 Testing Hypotheses

(i) Derive the MP test for testing the hypothesis H0: � = �0 against the
alternative HA: � = �1 (�1 > �0) at level of significance α, and write
the expression giving the power of the test.

(ii) Use the m.g.f. approach in order to show that the r.v. Y = 2θ ×
(
∑n

i=1 Xi) is distributed as χ2
2n.

(iii) Use part (ii) in order to relate the cutoff point and the power of the
test to χ2-percentiles.

(iv) Employ the CLT (assuming that n is sufficiently large) in order to
find (approximate) values for the cutoff point and the power of the
test.

(v) Use parts (iii) and (iv) in order to carry out the test and also calculate
the power when n = 22, �0 = 10, �1 = 12.5, and α = 0.05.

2.8 Let X be a r.v. whose p.d.f. f is either the U(0, 1), to be denoted by
f0, or the Triangular over the interval [0, 1], to be denoted by f1 (that
is, f1(x) = 4x for 0 ≤ x < 1

2 ; f1(x) = 4 − 4x for 1
2 ≤ x ≤ 1, and 0

otherwise).
(i) Test the hypothesis H0: f = f0 against the alternative HA: f = f1 at

level of significance α = 0.05.
(ii) Compute the power of the test.

(iii) Draw the picture of f1 and compute the power by means of geometric
consideration.

2.9 The number of times that an electric light switch can be turned on
and off until failure occurs is a r.v. X, which may be assumed to have
the Geometric p.d.f. with parameter θ ; i.e., f (x; θ) = θ(1 − θ)x−1, x =
1, 2, . . . , θ ∈ � = (0, 1).

(i) Refer to Definition 1 in order to show that f (·; θ) is of the exponential
type.

(ii) Use Theorem 2 in order to derive the UMP test for testing the hy-
pothesis H0: θ = θ0 against the alternative HA: θ > θ0 at level of sig-
nificance α, on the basis of a random sample of size n from the p.d.f.
f (·; θ).

(iii) Use the CLT to find an approximate value for the cutoff point C .
(iv) Carry out the test if n = 15, the observed sample mean x̄ = 15,150,

θ0 = 10−4, and α = 0.05.

2.10 Let X be a r.v. with p.d.f. f which is either the P(1) (Poisson with λ = 1),
to be denoted by f0, or the f1(x) = 1/2x+1, x = 0, 1, . . . . For testing the
hypothesis H0: f = f0 against the alternative HA: f = f1 on the basis of
one observation X:
(i) Show that the rejection region is defined by: {x ≥ 0 integer; 1.36 ×

x!
2x

≥ C} for some positive number C .
(ii) Determine the level of significance α of the test when C = 2.

Hint: Observe that the function g(x) = x!
2x is nondecreasing for x

integer ≥ 1.
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11.3 Some Applications of Theorems 2 and 3

APPLICATION 1 The Binomial Case In reference to Example 9 with n =
1, we have T(x) = x where x = 0, 1, and then in Theorem 2, V (x1, . . . , xn) =∑n

i=1 xi and V (X1, . . . , Xn) = ∑n

i=1 Xi ∼ B(n, θ). Since Q(θ) = log( θ
1−θ

)
is strictly increasing, consider relations (5) and (6), which, for testing the
hypothesis H0: θ ≤ θ0 against the alternative HA: θ > θ0, become here:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if

∑n

i=1 xi > C

γ if
∑n

i=1 xi = C

0 if
∑n

i=1 xi < C,
(19)

Eθ0ϕ(X1, . . . , Xn) = Pθ0 (X > C) + γ Pθ0 (X = C) = α, X ∼ B(n, θ0). (20)

Relation (20) is rewritten below to allow the usage of the Binomial tables for
the determination of C and γ ; namely,

Pθ0 (X ≤ C) − γ Pθ0 (X = C) = 1 − α, X ∼ B(n, θ0). (21)

The power of the test is:

πϕ(θ) = Pθ (X > C) + γ Pθ (X = C) = 1 − Pθ (X ≤ C) + γ Pθ (X = C),

(θ > θ0), X ∼ B(n, θ). (22)

Numerical Example Refer to Example 2 and suppose that n = 25, θ0 =
100p% = 0.125, and α = 0.05.

DISCUSSION Here, for θ = θ0, X ∼ B(25, 0.125), and (21) becomes

P0.125(X ≤ C) − γ P0.125(X = C) = 0.95.

From the Binomial tables, the value of C which renders P0.125(X ≤ C) just
above 0.95 is 6 and P0.125(X ≤ 6) = 0.9703. Also, P0.125(X = 6) = 0.9703 −
0.9169 = 0.0534, so that γ = 0.9703 − 0.95

0.0534 = 0.0203
0.0534 � 0.38. Thus, the test in (19)

is:

ϕ(x1, . . . , xn) =
⎧⎨⎩

1 if x > 6
0.38 if x = 6
0 if x < 6.

Reject outright the hypothesis that 100p% = 12.5% if the number of listeners
among the sample of 25 is 7 or more, reject the hypothesis with probability
0.38 if this number is 6, and accept the hypothesis if this number is 5 or smaller.

The power of the test is calculated to be as follows, by relation (22):

πϕ(0.1875) � 1 − 0.8261 + 0.38 × 0.1489 � 0.230,

πϕ(0.25) � 1 − 0.5611 + 0.38 × 0.1828 � 0.508,

πϕ(0.375) � 1 − 0.1156 + 0.38 × 0.0652 � 0.909.
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If we suppose that the observed value of X is 7, then the P-value is:

1 − P0.125(X ≤ 7) + 0.38P0.125(X = 7) = 1 − 0.9910 + 0.38 × 0.0207 � 0.017,

so that the result is statistically significant.
Next, for testing the hypothesis H0: θ ≥ θ0 against the alternative HA: θ < θ0,

relations (8) and (9) become:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if

∑n

i=1 xi < C

γ if
∑n

i=1 xi = C

0 if
∑n

i=1 xi > C,

(23)

and

Pθ0 (X ≤ C − 1) + γ Pθ0 (X = C) = α, X =
n∑

i=1

Xi ∼ B(n, θ0). (24)

The power of the test is:

πϕ(θ) = Pθ (X ≤ C − 1) + γ Pθ (X = C) (θ < θ0), X ∼ B(n, θ). (25)

Numerical Example Refer to Example 1 and suppose that n = 25,
θ0 = 0.0625, and α = 0.05.

DISCUSSION Here, under θ0, X ∼ B(25, 0.0625), and (24) becomes

P0.0625(X ≤ C − 1) + γ P0.0625(X = C) = 0.05,

so that C = 0, and γ P0.0625(X = 0) = 0.1992 γ = 0.05. It follows that γ � 0.251.
Therefore the hypothesis is rejected with probability 0.251, if x = 0, and is
accepted otherwise.

APPLICATION 2 The Poisson Case In reference to Example 10, we have
T(x) = x, x = 0, 1, . . . , and then in Theorem 2, V (x1, . . . , xn) = ∑n

i=1 xi and
V (X1, . . . , Xn) = ∑n

i=1 Xi ∼ P(nθ). Since Q(θ) = log θ is strictly increasing,
consider relations (8) and (9) for testing H0: θ > θ0 against HA: θ ≤ θ0. They
become here:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if

∑n

i=1 xi < C

γ if
∑n

i=1 xi = C

0 if
∑n

i=1 xi > C,

(26)

Eθ0ϕ(X1, . . . , Xn) = Pθ0 (X < C) + γ Pθ0 (X = C) =α, X =
n∑

i=1

Xi ∼ P(nθ0),

or

Pθ0 (X ≤ C − 1) + γ Pθ0(X = C) = α, X ∼ P(nθ0). (27)

The power of the test is:

πϕ(θ) = Pθ (X ≤ C − 1) + γ Pθ (X = C) (θ ≤ θ0), X ∼ P(nθ). (28)
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Unfortunately, no numerical application for Example 3 can be given as the
Poisson tables do not provide entries for θ0 = 200. In order to be able to apply
the test defined by (26) and (27), consider the following example.

EXAMPLE 13 Let X1, . . . , X20 be i.i.d. r.v.’s denoting the number of typographical errors in 20
pages of a book. We may assume that the Xi’s are independently distributed as
P(θ), and let us test the hypothesis H0: θ > 0.5 (the average number of errors
is more than 1 per couple of pages) against the alternative HA: θ ≤ 0.5 at level
α = 0.05.

DISCUSSION In (27), X ∼ P(10), so that

P0.5(X ≤ C − 1) + γ P0.5(X = C) = 0.05,

and hence C−1 = 4 and P0.5(X ≤ 4) = 0.0293, P0.5(X = 5) = 0.0671−0.0293 =
0.0378. It follows that γ = 0.05−0.0293

0.0378 � 0.548. Therefore by (26), reject the
hypothesis outright if x ≤ 4, reject it with probability 0.548 if x = 5, and
accept it otherwise. The power of the test is: For θ = 0.2, X ∼ P(4) and:

πϕ(0.2) = P0.2(X ≤ 4) + 0.548P0.2(X = 5) = 0.6288 + 0.548 × 0.1563 � 0.714.

If the observed value x is 6, then the P-value is (for X ∼ P0.5(10)): P(X ≤ 5) +
0.548P0.5(X = 6) � 0.102.

APPLICATION 3 The Normal Case: Testing Hypotheses About the

Mean Refer to Example 11 and observe that T(x) = x and Q(θ) is strictly
increasing. Therefore the appropriate test for testing H0: θ ≤ θ0 against HA:
θ > θ0 at level of significance α is given by (5) and (6) with γ = 0. That is,

ϕ(x1, . . . , xn) =
{

1 if
∑n

i=1 xi > C

0 otherwise,
(29)

or

ϕ(x1, . . . , xn) =
{

1 if
√

n(x̄−θ0)
σ

> zα

0 otherwise,
(29′)

because

α = Eθ0ϕ(X1, . . . , Xn) = Pθ0

(
n∑

i=1

Xi > C

)

= Pθ0

[√
n(X̄ − θ0)

σ
>

C − nθ0

σ
√

n

]
,

so that C−nθ0

σ
√

n
= zα and therefore

C = nθ0 + zασ
√

n; (30)

this is so, because
√

n(X̄−θ0)
σ

= Z ∼ N(0, 1), and recall that P(Z > zα) = α.
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0

a

za

N(0, 1)

Figure 11.5

Rejection Region of
the Hypothesis H0:
θ ≤ θ0 (the Shaded
Area) in the Form
(29′) and the
Respective
Probability

The power of the test is given by:

πϕ(θ) = 1 − 


[
zα +

√
n(θ0 − θ)

σ

]
, θ > θ0, (31)

because, on account of (30):

πϕ(θ) = Pθ

(
n∑

i=1

Xi > C

)
= Pθ

[
n∑

i=1

Xi − nθ > n(θ0 − θ) + zασ
√

n

]

= Pθ

[∑n

i=1 Xi − nθ

σ
√

n
> zα +

√
n(θ0 − θ)

σ

]
= P

[
Z > zα +

√
n(θ0 − θ)

σ

]
= 1 − 


[
zα +

√
n(θ0 − θ)

σ

]
,

since
∑n

i=1 Xi−nθ

σ
√

n
= Z ∼ N(0, 1).

Numerical Example In reference to Example 5, focus on patients treated
with the new treatment, and call Y ∼ N(θ , σ 2) (σ known) the survival time.
On the basis of observations on n = 25 such patients, we wish to test the
hypothesis H0: θ ≤ 5 (in years) against HA: θ > 5 at level of significance α =
0.01. For simplicity, take σ = 1.

DISCUSSION Here zα = z0.01 = 2.33, so that C = 25 × 5 + 2.33 × 1 × 5 =
136.65. Thus, reject H0 if the total of survival years is >136.65, and accept H0

otherwise.
The power of the test is given by (31) and is:

For θ = 5.5, πϕ(5.5) = 1 − 
[2.33 + 5(5 − 5.5)] = 1 − 
(−0.17)

= 
(0.17) = 0.567495;

and for θ = 6, πϕ(6) = 1 − 
[2.33 + 5(6 − 5.5)] = 1 − 
(−2.67)

= 
(2.67) = 0.996207.
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If we suppose that the observed value of
∑25

i=1 xi is equal to 138, then the
P-value is P(

∑25
i=1 Xi > 138) = 1 − 
(138−125

5 ) = 1 − 
(2.6) = 1 − 0.995339 =
0.004661, so that the result is highly statistically significant.

APPLICATION 4 The Normal Case (continued) Testing Hypotheses

About the Variance Refer to Example 12, where T(x) = (x−μ)2 (μ known)
and Q is strictly increasing. Then, for testing the hypothesis H0: σ 2 ≥ σ 2

0 against
the alternative HA: σ 2 < σ 2

0 (or θ ≥ θ0 against θ < θ0 with θ = σ 2 and θ0 = σ 2
0 )

at level of significance α, the appropriate test is given by (8) and (9) (with
γ = 0), and it is here:

ϕ(x1, . . . , xn) =
{

1 if
∑n

i=1(xi − μ)2 < C

0 otherwise,
(32)

or

ϕ(x1, . . . , xn) =
{

1 if
∑n

i=1

(
xi−μ

σ0

)2
< χ2

n;1−α

0 otherwise,
(32′)

because

α = Eσ 2
0
ϕ(X1, . . . , Xn) = Pσ 2

0

[
n∑

i=1

(Xi − μ)2 < C

]

= Pσ 2
0

[
n∑

i=1

(
Xi − μ

σ0

)2

<
C

σ 2
0

]
,

so that C

σ 2
0

= χ2
n;1−α and therefore

C = σ 2
0 χ2

n;1−α ; (33)

this is so, because
∑n

i=1( Xi−μ

σ0
)2 ∼ χ2

n.

c2
n

a

0 c2
n; 1−a

Figure 11.6

Rejection Region of
the Hypothesis H0:
σ2 ≥ σ2

0 (the
Shaded Area) in the
Form (32′) and the
Respective
Probability

By slightly abusing the notation and denoting by χ2
n also a r.v. which has

the χ2
n distribution, the power of the test is given by:

πϕ(σ 2) = P

(
χ2

n <
σ 2

0

σ 2
χ2

n;1−α

)
, σ 2 < σ 2

0 , (34)
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because, on account of (33):

πϕ(σ 2) = Pσ 2

[
n∑

i=1

(Xi − μ)2 < C

]
= Pσ 2

[
n∑

i=1

(
Xi − μ

σ

)2

<
C

σ 2

]

= Pσ 2

[
n∑

i=1

(
Xi − μ

σ

)2

<
σ 2

0

σ 2
χ2

n;1−α

]
= P

(
χ2

n <
σ 2

0

σ 2
χ2

n;1−α

)
,

since
∑n

i=1( Xi−μ

σ
)2 ∼ χ2

n.

Numerical Example Suppose n = 40, σ0 = 2, and α = 0.025. For sim-
plicity, take μ = 0.

DISCUSSION Here χ2
n;1−α = χ2

40;0.975 = 24.433 and C = 4 × 24.433 =
97.732. Thus, by means of (32), the hypothesis is rejected if

∑40
i=1 x2

i < 97.732,
and it is accepted otherwise.

For σ = 1.25, for example, the power of the test is, by means of (34),

πϕ(σ 2) = πϕ(2.25) = P

(
χ2

40 <
97.732
1.5625

)
= P
(
χ2

40 < 62.548
) = 0.986

(by linear interpolation).
If we suppose that the observed value of

∑40
i=1 x2

i is 82.828, then the P-value
is

P4

(
40∑

i=1

X 2
i < 82.828

)
= P4

[
40∑

i=1

(
Xi

2

)2

< 20.707

]
= 0.05,

which indicates strong rejection.

APPLICATION 5 The Normal Case (continued) Testing Further

Hypotheses About the Mean In reference to Example 11, T(x) = x and
Q(θ) is strictly increasing. Therefore, for testing H0: θ ≤ θ1 or θ ≥ θ2 against
HA: θ1 < θ < θ2 at level of significance α, the test to be employed is the one
given by (11) and (12)–(13), which here becomes (γ1 = γ2 = 0):

ϕ(x1, . . . , xn) =
{

1 if C1 ≤∑n

i=1 xi ≤ C2

0 otherwise,
(35)

Eθ1ϕ(X1, . . . , Xn) = Pθ1

(
C1 ≤

n∑
i=1

Xi ≤ C2

)
= α,

(36)

Eθ2ϕ(X1, . . . , Xn) = Pθ2

(
C1 ≤

n∑
i=1

Xi ≤ C2

)
= α,

and
∑n

i=1 Xi ∼ N(nθi, nσ 2), i = 1, 2.
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For the purpose of utilizing the Normal tables, (36) are rewritten thus:




(
C2 − nθi

σ
√

n

)
− 


(
C1 − nθi

σ
√

n

)
= α, i = 1, 2. (37)

The power of the test is calculated as follows:

πϕ(θ) = 


(
C2 − nθ

σ
√

n

)
− 


(
C1 − nθ

σ
√

n

)
, (θ1 < θ < θ2). (38)

Numerical Example In reference to Example 4, suppose n = 25, θ1 =
1, θ2 = 3, and α = 0.01. For simplicity, let us take σ = 1.

DISCUSSION Here nθ1 = 25, nθ2 = 75, and (37) yields:




(
C2 − 25

5

)
− 


(
C1 − 25

5

)
= 


(
C2 − 75

5

)
− 


(
C1 − 75

5

)
= 0.01. (39)

Placing the four quantities C1−75
5 , C2−75

5 , C1−25
5 , and C2−25

5 under the N(0, 1)
curve, we observe that relation (39) obtains only for:

C1 − 25
5

= −C2 − 75
5

and
C2 − 25

5
= −C1 − 75

5
,

which imply that C1 + C2 = 100. Setting C1 = C , we have then that C2 = 100 − C ,
and (39) gives:




(
75 − C

5

)
− 


(
C − 25

5

)
= 0.01. (40)

From the Normal tables, we find that (40) is closely satisfied for C = 36.5.
So C1 = 36.5 and hence C2 = 63.5, and the test rejects the hypothesis H0

whenever
∑25

i=1 xi is between 36.5 and 63.5 and accepts it otherwise.
The power of the test, calculated through (38), is, for example, for θ = 2.5

and θ = 2:

πϕ(1.5) = πϕ(2.5) = 0.57926 and βϕ(2) = 0.99307.

Exercises

3.1 (i) In reference to Example 8 in Chapter 1, the appropriate model is
the Binomial model with Xi = 1 if the ith young adult listens to the
program, and Xi = 0 otherwise, where P(Xi = 1) = p, and the Xi’s
are independent, so that X =∑n

i=1 Xi ∼ B(n, p).
(ii) The claim is that p > p0 some specified number 0 < p0 < 1, and the

claim is checked by testing the hypothesis H0: p ≤ p0 against the
alternative HA: p > p0 at level of significance α.

(iii) For p0 = 5%, n = 100, and α = 0.02, use the CLT to carry out the
test.

3.2 (i) In reference to Example 9 in Chapter 1, the appropriate model is
the Binomial model with Xi = 1 if the ith item is defective, and 0
otherwise, where P(Xi = 1) = p, and the Xi’s are independent, so
that X =∑n

i=1 Xi ∼ B(n, p).
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(ii) The process is under control if p ≤ p0, where p0 is a specified
number with 0 < p0 < 1, and the hypothesis to be checked is H0:
p > p0 against the alternative HA: p ≤ p0 at level of significance α.

(iii) For p0 = 0.0625, n = 100, and α = 0.10, use the CLT to carry out the
test.

3.3 (i) In reference to Example 10 in Chapter 1, the appropriate model is the
Binomial model with Xi = 1 if the ith flawed specimen is identified
as such, and Xi = 0, otherwise, where P(Xi = 1) = p, and the Xi’s
are independent, so that X =∑n

i=1 Xi ∼ B(n, p).
(ii) The electronic scanner is superior to the mechanical testing if p >

p0, some specified p0 with 0 < p0 < 1, and this is checked by testing
the hypothesis H0: p ≤ p0 against the alternative HA: p > p0 at level
of significance α.

(iii) For p0 = 90%, n = 100, and α = 0.05, use the CLT to carry out the
test.

3.4 (i) In a certain university, 400 students were chosen at random and
it was found that 95 of them were women. On the basis of this,
test the hypothesis H0: the proportion of women is 25% against the
alternative HA: the proportion of women is less than 25% at level of
significance α = 0.05.

(ii) Use the CLT in order to determine the cutoff point.

3.5 Let X1, . . . , Xn be independent r.v.’s distributed as B(1, p). For testing the
hypothesis H0: p ≤ 1

2 against the alternative HA: p > 1
2 , use the CLT in

order to determine the sample size n for which the level of significance
and power are, respectively, α = 0.05 and π(7/8) = 0.95.

3.6 Let X be a r.v. distributed as B(n, θ), θ ∈ � = (0, 1).
(i) Use relations (19) and (20) to set up the UMP test for testing the

hypothesis H0: θ ≤ θ0 against the alternative HA: θ > θ0 at level of
significance α.

(ii) Specify the test in part (i) for n = 10, θ0 = 0.25, and α = 0.05.
(iii) Compute the power of the test for θ1 = 0.375, 0.500.
(iv) For θ > 0.5, show that: Pθ (X ≤ C) = 1 − P1−θ (X ≤ n − C − 1) and

hence Pθ (X = C) = P1−θ (X ≤ n − C) − P1−θ (X ≤ n − C − 1).
(v) Use part (iv) to compute the power of the test for θ1 = 0.625, 0.875.

(vi) Use the CLT in order to determine the sample size n if θ0 = 0.125,
α = 0.1, and π(0.25) = 0.9.

3.7 (i) In reference to Example 12 in Chapter 1, the appropriate model to
be used is the Poisson model; i.e., X ∼ P(λ).

(ii) The safety level is specified by λ ≤ 200, and this is checked by testing
the hypothesis H0: λ > 200 against the alternative HA: λ ≤ 200 at
level of significance α.

(iii) On the basis of a random sample of size n = 100, use the CLT in
order to carry out the test for α = 0.05.
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3.8 The number of total traffic accidents in a certain city during a year is a
r.v. X, which may be assumed to be distributed as P(λ). For the last year,
the observed value of X was x = 4, whereas for the past several years,
the average was 10.
(i) Formulate the hypothesis that the average remains the same against

the alternative that there is an improvement.
(ii) Refer to Application 2 in order to derive the UMP test for testing the

hypothesis of part (i) at level α = 0.01.

3.9 (i) In reference to Example 16 in Chapter 1, a suitable model would
be to assume that X ∼ N(μ1, σ 2), Y ∼ N(μ2, σ 2) and that they are
independent.

(ii) Let μ0 be the known mean survival period (in years) for the existing
treatment. Then the claim is thatμ2 > μ0, and this is to be checked by
testing the hypothesis H0: μ2 ≤ μ0 against the alternative HA: μ2 >

μ0 at level of significance α.
(iii) Carry out the test if n = 100, μ0 = 5, and α = 0.05.

3.10 The life length of a 50-watt light bulb of a certain brand is a r.v. X, which
may be assumed to be distributed as N(μ, σ 2) with unknown μ and σ

known. Let X1, . . . , Xn be a random sample from this distribution and
suppose that we are interested in testing the hypothesis H0:μ =μ0 against
the alternative HA: μ < μ0 at level of significance α.

(i) Derive the UMP test.
(ii) Derive the formula for the power of the test.

(iii) Carry out the testing hypothesis problem when n = 25, μ0 = 1,800,
σ = 150 (in hours), α = 0.01, and x̄ = 1,730. Also, calculate the power
at μ = 1,700.

3.11 The rainfall at a certain station during a year is a r.v. X, which may be
assumed to be distributed as N(μ, σ 2) with μ unknown and σ = 3 inches.
For the past 10 years, the record provides the following rainfalls:

x1 = 30.5, x2 = 34.1, x3 = 27.9, x4 = 29.4, x5 = 35.0,

x6 = 26.9, x7 = 30.2, x8 = 28.3, x9 = 31.7, x10 = 25.8.

Test the hypothesis H0: μ = 30 against the alternative HA: μ < 30 at level
of significance α = 0.05.

3.12 Let Xi, i = 1, . . . , 4 and Yj , j = 1, . . . , 4 be two independent random
samples from the distributions N(μ1, σ 2

1 ) and N(μ2, σ 2
2 ), respectively.

Suppose that the observed values of the Xi’s and the Yj ’s are as follows:

x1 = 10.1, x2 = 8.4, x3 = 14.3, x4 = 11.7,

y1 = 9.0, y2 = 8.2, y3 = 12.1, y4 = 10.3.

Suppose that σ1 = 4 and σ2 = 3.
Then test the hypothesis that the two means differ in absolute value by
at least 1 unit. That is, if θ = μ1 − μ2, then the hypothesis to be tested
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is H0: |θ | ≤ 1, or, equivalently, H0: θ ≤ −1 or θ ≥ 1. The alternative is
HA: −1 < θ < 1. Take α = 0.05.

Hint: Set Zi = Xi−Yi, so that the Zi’s are independent and distributed
as N(μ, 25). Then use appropriately Theorem 3.

3.13 (i) On the basis of the independent r.v.’s X1, . . . , X25, distributed as N(0,
σ 2), test the hypothesis H0: σ ≤ 2 against the alternative HA: σ > 2
at level of significance α = 0.05.

(ii) Specify the test when the observed values xi’s of the Xi’s are such
that
∑25

i=1 x2
i = 120.

3.14 The diameters of bolts produced by a certain machine are independent
r.v.’s distributed as N(μ, σ 2) with μ known. In order for the bolts to be
usable for the intended purpose, the s.d. σ must not exceed 0.04 inch. A
random sample of size n = 16 is taken and it is found that s = 0.05 inch.
Formulate the appropriate testing hypothesis problem and carry out the
test at level of significance α = 0.05.

11.4 Likelihood Ratio Tests

In the previous sections, UMP tests were constructed for several important
hypotheses and were illustrated by specific examples. Those tests have the
UMP property, provided the underlying p.d.f. is of the exponential type given
in (4). What happens if either the p.d.f. is not of this form and/or the hypotheses
to be tested are not of the type for which UMP tests exist? One answer is for
sure that the testing activities will not be terminated here; other procedures
are to be invented and investigated. Such a procedure is one based on the
Likelihood Ratio, which gives rise to the so-called Likelihood Ratio (LR) tests.
The rationale behind this procedure was given in Section 3 of Chapter 8. What
we are doing in this section is to apply it to some specific cases and produce
the respective LR tests in a usable form.

As already explained, LR tests do have a motivation which is, at least intu-
itively, satisfactory, although they do not possess, in general, a property such as
the UMP property. The LR approach also applies to multidimensional parame-
ters and leads to manageable tests. In addition, much of the work needed to set
up a LR test has already been done in Section 1 of Chapter 9 about MLE’s. In our
discussions below, we restrict ourselves to the Normal case, where exact tests
do exist. In the next chapter, we proceed with the Multinomial distribution,
where we have to be satisfied with approximations.

The basics here, as we recall from Chapter 8, Section 8.3, are as follows:
X1, . . . , Xn is a random sample from the p.d.f. f (·; θ), θ ∈ � ⊆ �r , r ≥ 1,
and ω is a (proper) subset of �. On the basis of this random sample, test the
hypothesis H0: θ ∈ ω at level of significance α. (In the present framework, the
alternative is HA: θ /∈ ω, but is not explicitly stated.) Then, by relation (8) in
Chapter 8 and the discussion following it, reject H0 whenever

λ < λ0, where λ0 is a constant to be specified, (41)
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or

g(λ) > g(λ0), or g(λ) < g(λ0), for some strictly monotone function g; (42)

g(λ) = −2 log λ is such a function, and H0 may be rejected whenever

−2 log λ > C, a constant to be determined (43)

(see relation (10) in Chapter 8).
Recall that

λ = λ(x1, . . . , xn) = L(ω̂)

L(�̂)
, (44)

where, with x = (x1, . . . , xn), the observed value of (X1, . . . , Xn), L(�̂) is the
maximum of the likelihood function L(θ | x), which obtains if θ is replaced by
its MLE, and L(ω̂) is again the maximum of the likelihood function under the
restriction that θ lies in ω. Clearly, L(ω̂) = L(θ̂ω), where θ̂ω is the MLE of θ
under the restriction that θ lies in ω. Actually, much of the difficulty associated
with the present method stems from the fact that, in practice, obtaining θ̂ω is
far from a trivial problem.

The following two examples shed some light on how a LR test is actually
constructed. These examples are followed by a series of applications to normal
populations.

EXAMPLE 14 Determine the LR test for testing the hypothesis H0: θ = 0 (against the alterna-
tive HA: θ �= 0) at level of significance α on the basis of one observation from
the p.d.f. f (x ; θ) = 1

π
× 1

1+(x−θ)2 , x ∈ �, θ > 0 (the Cauchy p.d.f.)

DISCUSSION First, f (·; θ) is a p.d.f., since

1
π

∫ ∞

−∞

dx

1 + (x − θ)2
= 1

π

∫ ∞

−∞

dy

1 + y2
(by setting x − θ = y)

= 1
π

∫ π/2

−π/2
dt = 1(

by setting y = tan t, so that 1 + y2 = 1 + sin2 t

cos2 t
= 1

cos2 t
,

dy

dt
= d

dt

(
sin t

cos t

)
= 1

cos2 t
, and −π

2
< t <

π

2

)
.

Next, clearly, L(θ | x)(= f (x ; θ)) is maximized for θ = x, so that λ = 1
π

× 1
1+x2 /

1
π

= 1
1+x2 , and λ < λ0, if and only if x2 > 1

λ0
− 1 = C , or x < −C or x > C ,

where C is determined through the relation: P0(X < −C or X > C) = α, or
P(X > C) = α

2 due to the symmetry (around 0) of the p.d.f. f (x; 0). But

P(X > C) =
∫ ∞

C

1
π

× dx

1 + x2
= 1

π

∫ π/2

tan−1 C

dt = 1
π

(
π

2
− tan−1 C

)
= α

2
,
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or tan−1 C = (1−α)π
2 , and hence C = tan((1−α)π

2 ). So, H0 is rejected when-
ever x < − tan((1−α)π

2 ) or x > tan((1−α)π
2 ). For example, for α = 0.05, C =

tan(0.475π) � 12.706, and H0 is rejected when x < −12.706 or x > 12.706.

EXAMPLE 15 Let X1, . . . , Xn be a random sample of size n from the Negative Exponential
p.d.f. f (x ; θ) = θe−θx, x> 0 (θ > 0). Derive the LR test for testing the hypoth-
esis H0: θ = θ0 (against the alternative HA: θ �= θ0) at level of significance α.

DISCUSSION Here

L(θ | x) = θne−θt, where x = (x1, . . . , xn) and t =
n∑

i=1

xi.

We also know that the MLE of θ is θ̂ = 1/x̄ = n/t. Therefore the LR λ is
given by:

λ = θn
0 e−θ0t

/(
n

t

)n

e−n =
(

eθ0

n

)n

tne−θ0t,

and hence λ < λ0, if and only if te− θ0
n

t < C0(=nλ
1/n

0
eθ0

). We wish to determine the
cutoff point C0. To this end, set g(t) = te−dt (d = θ0/n) and observe that g(t) is
increasing for 0 < t < 1

d
= n

θ0
, decreasing for t > n

θ0
, and attains its maximum

at t = n/θ0 (see Figure 11.7). It follows that te−dt < C0, if and only if t < C1 or
t > C2. Therefore, by setting T =∑n

i=1 Xi, we have: Pθ0 (Te− θ0
n

T < C0) = α, if
and only if Pθ0 (T < C1 or T > C2) = α. For simplicity, let us take the two-tail
probabilities equal. Thus,

Pθ0 (T < C1) = P(T > C2) = α

2
.

g(t)

C0

0 C1 n/q0 C2

t

Figure 11.7

Graphical
Determination of the
Rejection Region

By the fact that the independent Xi’s have the f (x ; θ0) = θ0e−θ0x p.d.f.
(under H0), it follows that T is distributed as Gamma with α = n and β = 1

θ0
.

Therefore its p.d.f. is given by:

fT (t) = θn
0

�(n)
tn−1e−θ0t, t > 0.

Then C1 and C2 are determined by:∫ c1

0
fT (t)dt =

∫ ∞

C2

fT (t)dt = α

2
.
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In order to be able to proceed further, take, e.g., n = 2. Then

fT (t) = θ2
0 te−θ0t, t > 0,

and ∫ C1

0
θ2

0 te−θ0t dt = 1 − e−θ0C1 − θ0C1e−θ0C1 ,∫ ∞

C2

θ2
0 te−θ0t dt = e−θ0C2 + θ0C2e−θ0C2 .

Thus, the relations Pθ0 (T < C1) = Pθ0 (T > C2) = α

2
become, equivalently,

for α = 0.05:

0.975ep − p = 1, p = θ0C1; 0.025eq − q = 1, q = θ0C2.

By trial and error, we find: p = 0.242 and q = 5.568, so that C1 = 0.242/θ0

and C2 = 5.568/θ0. Thus, for n = 2 and by splitting the error α = 0.05 equally
between the two tails, the LR test rejects H0 when t(=x1 + x2) < 0.242/θ0 or
t > 5.568/θ0. For example, for θ0 = 1, the test rejects H0 when t < 0.242 or
t > 5.568.

APPLICATIONS TO THE NORMAL CASE The applications to be dis-
cussed here are organized as follows: First, we consider the one-sample case
and test a hypothesis about the mean, regardless of whether the variance is
known or unknown. Next, a hypothesis is tested about the variance, regardless
of whether the mean is known or not. Second, we consider the two-sample
problem and make the realistic assumption that all parameters are unknown.
Then the hypothesis is tested about the equality of the means, and, finally, the
variances are compared through their ratio.

11.4.1 Testing Hypotheses for the Parameters in a Single Normal Population

Here X1, . . . , Xn is a random sample from the N(μ, σ 2), and we are interested
in testing: (i) H0: μ = μ0, σ known; (ii) H0: μ = μ0, σ unknown; (iii) H0:
σ = σ0 (or σ 2 = σ 2

0 ), μ known; (iv) H0: σ = σ0 (or σ 2 = σ 2
0 ), μ unknown.

DISCUSSION

(i) H0: μ = μ0, σ known. Under H0,

L(ω̂) = (2πσ 2)−n/2 exp

[
− 1

2σ 2

n∑
i=1

(xi − μ0)2

]
,

and

L(�̂) = (2πσ 2)−n/2 exp

[
− 1

2σ 2

n∑
i=1

(xi − x̄)2

]
, since μ̂� = x̄.

Forming the likelihood ratio λ and taking −2 log λ, we have:

−2 log λ = 1
σ 2

n∑
i=1

[(xi − μ0)2 − (xi − x̄)2] =
[√

n(x̄ − μ0)
σ

]2

. (45)
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Then

−2 log λ > λ0, if and only if
[√

n(x̄ − μ0)
σ

]2

> C2 (some C = λ
1/2
0 > 0),

and this happens, if and only if
√

n(x̄ − μ0)
σ

< −C, or

√
n(x̄ − μ0)

σ
> C.

Under H0,
√

n(X̄−μ0)
σ

∼ N(0, 1), so that the relation

Pμ0

[√
n(X̄ − μ0)

σ
< −C, or

√
n(X̄ − μ0)

σ
> C

]
= α, gives C = zα/2.

Thus, the likelihood ratio test is:

ϕ(x1, . . . , xn) =
{

1 if
√

n(x̄−μ0)
σ

< −zα/2, or
√

n(x̄−μ0)
σ

> zα/2

0 otherwise.
(46)

0

N (0, 1)

a /2a /2

- za /2 za /2

Figure 11.8

Rejection Region of
the Hypothesis H0 in
(i) (the Shaded
Areas), and the
Respective
Probabilities of
Rejection

Since, for any μ,
√

n(x̄ − μ0)
σ

> zα/2 is equivalent to

√
n(x̄ − μ)

σ
>

√
n(μ0 − μ)

σ
+ zα/2, (47)

and likewise
√

n(x̄ − μ0)
σ

< −zα/2 is equivalent to

√
n(x̄ − μ)

σ
<

√
n(μ0 − μ)

σ
−zα/2, (48)

it follows that the power of the test is given by:

πϕ(μ) = 1 − 


[√
n(μ0 − μ)

σ
+ zα/2

]
+ 


[√
n(μ0 − μ)

σ
− zα/2

]
. (49)

Numerical Example Suppose n = 36, μ0 = 10, and let α = 0.01.
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DISCUSSION Here zα/2 = z0.005 = 2.58, and, if σ = 4, the power of the test
is:

For μ = 12,
√

n(μ0−μ)
σ

= 6(10−12)
4 = −3, so that

πϕ(12) = 1 − 
(−0.42) + 
(−5.58) � 
(0.42) = 0.662757;

and for μ = 6, πϕ(6) = 1 − 
(8.58) + 
(3.42) � 0.999687.

(ii) H0: μ = μ0, σ unknown. Under H0,

L(ω̂) = (2πσ̂ 2
ω

)−n/2
exp

[
− 1

2σ̂ 2
ω

n∑
i=1

(xi − μ0)2

]
= (2πσ̂ 2

ω

)−n/2
exp
(

−n

2

)
,

and

L(�̂) = (2πσ̂ 2
�

)−n/2
exp

[
− 1

2σ̂ 2
�

n∑
i=1

(xi − x̄)2

]
= (2πσ̂ 2

�

)−n/2
exp
(

−n

2

)
,

since σ̂ 2
ω = 1

n

∑n

i=1(xi − μ0)2 and σ̂ 2
� = 1

n

∑n

i=1(xi − x̄)2. Then

λ =
(

σ̂ 2
�

σ̂ 2
ω

)n/2

, or λ2/n =
∑n

i=1(xi − x̄)2∑n

i=1(xi − μ0)2
.

Observe that
n∑

i=1

(xi − μ0)2 =
n∑

i=1

[(xi − x̄) + (x̄ − μ0)]2 =
n∑

i=1

(xi − x̄)2 + n(x̄ − μ0)2,

and set t = √
n(x̄ − μ0)

/√
1

n−1

∑n

i=1(xi − x̄)2. Then

λ2/n =
∑n

i=1(xi − x̄)2∑n

i=1(xi − x̄)2 + n(x̄ − μ0)2
= 1

1 + n(x̄−μ0)2∑n
i=1(xi−x̄)2

= 1

1 + 1
n−1 × n(x̄−μ0)2

1
n−1

∑n
i=1(xi−x̄)2

= 1

1 + 1
n−1

[ √
n(x̄−μ0)√

1
n−1

∑n
i=1(xi−x̄)2

]2

= 1

1 + t2

n−1

.

Since g(λ) = λ2/n is a strictly increasing function of λ, the LR test rejects H0

when λ2/n > C1 or 1
1+ t2

n−1

> C1 or 1 + t2

n−1 < C2 or t2 < C3 or, finally, t < −C or

t > C . Under H0, the distribution of

t(X ) =
√

n(X̄ − μ0)√
1

n−1

∑n

i=1(Xi − X̄ )2

is tn−1. Since Pμ0 [t(X ) < −C, or t(X ) > C] = α, it follows that C = tn−1;α/2.
Therefore, the LR test is:

ϕ(x1, . . . , xn) =
{

1 if t < −tn−1;α/2, or t > tn−1;α/2

0 otherwise,
(50)
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where

t = t(x) = √
n(x̄ − μ0)

/√√√√ 1
n − 1

n∑
i=1

(xi − x̄)2. (51)

a
2

a
2

tn−1

−C 0 C

Figure 11.9

Rejection Region of
the Hypothesis H0 in
(ii) (the Shaded
Areas), and the
Respective
Probabilities; Here
C = tn−1;α/2

Numerical Example If n = 85 and α = 0.01, we find that tn−1;α/2 =
t84;0.005 = 2.6356. Thus, the test rejects H0 whenever t is<−2.6356 or t > 2.6356.

(iii) H0: σ = σ0 (or σ 2 = σ 2
0 ), μ known. Under H0,

L(ω̂) = (2πσ 2
0

)−n/2
exp

[
− 1

2σ 2
0

n∑
i=1

(xi − μ)2

]
,

and

L(�̂) = (2πσ̂ 2
�

)−n/2
exp

[
− 1

2σ̂ 2
�

n∑
i=1

(xi − μ)2

]
= (2πσ̂ 2

�

)−n/2
exp
(

−n

2

)
,

since σ̂ 2
� = 1

n

∑n

i=1(xi − μ)2. Therefore

λ =
(

σ̂ 2
�

σ 2
0

)n/2

en/2 exp

[
− 1

2σ 2
0

n∑
i=1

(xi − μ)2

]

= en/2

[
1
n

n∑
i=1

(
xi − μ

σ0

)2
]n/2

exp

[
−1

2

n∑
i=1

(
xi − μ

σ0

)2
]

= en/2un/2 exp
(
−nu

2

)
, where u = 1

n

n∑
i=1

(
xi − μ

σ0

)2

.

The function λ = λ(u), u ≥ 0, has the following properties:

λ(u) is strictly increasing for 0 ≤ u ≤ 1,
λ(u) is strictly decreasing for u > 1,
max{λ(u); 0 ≤ u < ∞} = λ(1) = 1, and
λ(u) → 0, as u → ∞, and, of course,
λ(0) = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (52)

On the basis of these observations, the picture of λ(u) is as in Figure 11.10.
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Graphical
Determination of the
Rejection Region

Therefore λ(u) ≤ λ0 if and only if u ≤ C1, or u ≥ C2, where C1 and C2 are
determined by the requirement that

Pμ0 (U ≤ C1, or U ≥ C2) = α, U = 1
n

n∑
i=1

(
Xi − μ

σ0

)2

.

However, under H0,
∑n

i=1( Xi−μ

σ0
)2 ∼ χ2

n, so that U = X

n
with X ∼ χ2

n. Then
Pμ0 (U ≤ C1, or U ≥ C2) = Pμ0 (X ≤ nC1, or X ≥ nC2) = α, and, for con-
venience, we may take the two-tail probabilities equal to α

2 . Then nC1 =
χ2

n;1−α/2, nC2 = χ2
n;α/2. Summarizing what we have done so far, we have:

ϕ(x1, . . . , xn) =
{

1 if
∑n

i=1

(
xi−μ

σ0

)2 ≤ χ2
n;1−α/2, or

∑n

i=1

(
xi−μ

σ0

)2
> χ2

n;α/2

0 otherwise.

(53)

0 C1 C2

a
2

a
2

c2
n

Figure 11.11

Rejection Region of
the Hypothesis H0 in
(iii) (the Shaded
Areas), and the
Respective
Probabilities; Here
C1 = χ2

n;1− α
2

, C2 =

χ2
n; α

2

Numerical Example For n = 40 andα = 0.01, we findχ2
n;1−α/2 = χ2

40;0.995 =
20.707 and χ2

n;α/2 = χ2
40;0.005 = 66.766. Therefore the test rejects H0 whenever∑40

i=1( xi−μ

σ0
)2 is either ≤ 20.707 or ≥ 66.766.

(iv) H0: σ = σ0 (or σ 2 = σ 2
0 ), μ unknown. Under ω,

L(ω̂) = (2πσ 2
0

)−n/2
exp

[
− 1

2σ 2
0

n∑
i=1

(xi − x̄)2

]
, since μ̂ω = x̄,
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and

L(�̂) = (2πσ̂ 2
�

)−n/2
exp

[
− 1

2σ̂ 2
�

n∑
i=1

(xi − x̄)2

]
= (2πσ̂ 2

�

)−n/2
exp
(

−n

2

)
,

since σ̂ 2
� = 1

n

∑n

i=1(xi − x̄)2. Therefore

λ =
(

σ̂ 2
�

σ 2
0

)n/2

en/2 exp

[
− 1

2σ 2
0

n∑
i=1

(xi − x̄)2

]
,

and then proceed exactly as in the previous case with u = 1
n

∑n

i=1( xi−x̄

σ0
)2, in

order to arrive at the following modified test; namely,

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if

∑n

i=1

(
xi−x̄

σ0

)2 ≤ χ2
n−1;1−α/2, or

∑n

i=1

(
xi−x̄

σ0

)2
≥χ2

n−1;α/2
0 otherwise.

(54)

0 C1 C2

a
2

a
2

c 2
n−1

Figure 11.12

Rejection Region of
the Hypothesis H0 in
(iv) (Shaded Areas),
and the Respective
Probabilities; Here
C1 = χ2

n−1;1− α
2

,
C2 = χ2

n−1; α
2

Numerical Example With the values of n and α as in the previous case
(n = 40, α = 0.01), we find χ2

n−1;1−α/2 = χ2
39;0.995 = 19.996 and χ2

n−1;α/2 =
χ2

39;0.005 = 65.476, so that the test rejects H0 whenever
∑n

i=1( xi−x̄

σ0
)2 is ≤ 19.996

or ≥ 65.476.

11.4.2 Comparing the Parameters of Two Normal Populations

Here, we have two independent random samples X1, . . . , Xm ∼ N(μ1, σ 2
1 ) and

Y1, . . . , Yn ∼ N(μ2, σ 2
2 ) with all parameters unknown. The two populations are

compared, first, by way of their means, and second, through their variances.
When comparing these populations through their means, it is necessary from a
mathematical viewpoint (i.e., in order to be able to derive an exact distribution
for the test statistic) that the variances, although unknown, be equal.

(i) H0: μ1 = μ2 = μ, say, unknown, σ1 = σ2 = σ , say, unknown.
The (joint) likelihood function of the Xi’s and the Yj ’s here is

(2πσ 2)−(m+n)/2 exp

{
− 1

2σ 2

[
m∑

i=1

(xi − μ1)2 +
n∑

j=1

(yj − μ2)2

]}
. (55)
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Maximizing (55) with respect to μ1, μ2, and σ 2, we find for their MLE’s:

μ̂1 = x̄, μ̂2 = ȳ, σ̂ 2
� = 1

m+ n

[
m∑

i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]
. (56)

Hence

L(�̂) = (2πσ̂ 2
�

)− m+n
2 exp

(
−m+ n

2

)
. (57)

Next, under H0, the (joint) likelihood function becomes

(2πσ 2)−(m+n)/2 exp

{
− 1

2σ 2

[
m∑

i=1

(xi − μ)2 +
n∑

j=1

(yj − μ)2

]}
, (58)

from the maximization (with respect to μ and σ 2) of which we obtain the MLE’s

μ̂ω = 1
m+ n

(
m∑

i=1

xi +
n∑

j=1

yj

)
= mx̄ + nȳ

m+ n
,

(59)

σ̂ 2
ω = 1

m+ n

[
m∑

i=1

(xi − μ̂ω)2 +
n∑

j=1

(yj − μ̂ω)2

]
.

Inserting these expressions in (58), we then have

L(ω̂) = (2πσ̂ 2
ω

)− m+n
2 exp

(
−m+ n

2

)
. (60)

Thus, the likelihood function becomes, on account of (57) and (60),

λ =
(

σ̂ 2
�

σ̂ 2
ω

)m+n
2

, or λ2/(m+n) = σ̂ 2
�

σ̂ 2
ω

. (61)

Next,
m∑

i=1

(xi − μ̂ω)2 =
m∑

i=1

[(xi − x̄) + (x̄ − μ̂ω)]2 =
m∑

i=1

(xi − x̄)2 + m(x̄ − μ̂ω)2

=
m∑

i=1

(xi − x̄)2 + m

(
x̄ − mx̄ + nȳ

m+ n

)2

=
m∑

i=1

(xi − x̄)2 + mn2(x̄ − ȳ)2

(m+ n)2
,

and likewise,
n∑

j=1

(yj − μ̂ω)2 =
n∑

j=1

(yj − ȳ)2 + m2n(x̄ − ȳ)2

(m+ n)2
.

Then, by means of (56) and (59), σ̂ 2
ω is written as follows:

σ̂ 2
ω = 1

m+ n

[
m∑

i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]
+ mn2(x̄ − ȳ)2 + m2n(x̄ − ȳ)2

(m+ n)3

= σ̂ 2
� + mn(x̄ − ȳ)2(m+ n)

(m+ n)3
= σ̂ 2

� + mn(x̄ − ȳ)2

(m+ n)2
. (62)
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Therefore (61) yields, by way of (62) and (56),

λ2/(m+n) = σ̂ 2
�

σ̂ 2
� + mn(x̄−ȳ)2

(m+ n)2

= 1

1 + mn(x̄−ȳ)2

(m+ n)2 × 1
σ̂ 2

�

=
[

1 + mn(x̄ − ȳ)2

(m+ n)2

/
σ̂ 2

�

]−1

=
{

1 + mn

m+ n
(x̄ − ȳ)2

/[
m∑

i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]}−1

=
{

1 + mn

m+ n
(x̄ − ȳ)2/(m+ n − 2) × 1

m+ n − 2

×
[

m∑
i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]}−1

=

⎡⎢⎣1 +
⎧⎨⎩

√
mn

m+ n
(x̄ − ȳ)√

1
m+ n− 2

[∑m

i=1(xi − x̄)2+∑n

j=1(yj − ȳ)2
]
⎫⎬⎭

2/
(m + n − 2)

⎤⎥⎦
−1

=
(

1 + t2

m+ n − 2

)−1

, where

t = t(x, y) =
√

mn

m+ n
(x̄− ȳ)

/√√√√ 1
m+ n − 2

[
m∑

i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]
.

(63)

So,λ2/(m+ n) = (1+ t2

m+ n− 2 )−1 and henceλ = (1+ t2

m+ n− 2 )− m+ n
2 . Sinceλ is strictly

decreasing in t2, the LR test rejects H0 whenever t2 > C0 or, equivalently,
t ≤ −C or t ≥ C . The constant C is to be determined by

PH0 [t(X, Y ) ≤ −C, or t(X, Y ) ≥ C] = α, (64)

where t(X, Y ) is taken from (63) with the xi’s and the yi’s being replaced by
the r.v.’s Xi’s and Yj ’s. However, under H0,

t(X, Y ) ∼ tm+n−2, (65)

so that (64) yields C = tm+n−2;α/2. In conclusion, then,

ϕ(x, y) =
{

1 if t(x, y) < −tm+n−2;α/2, or t(x, y) > tm+n−2;α/2

0 otherwise,
(66)

where t(x, y) is given by (63).
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−C C

tm+n−2

0

a
2

a
2

Figure 11.13

Rejection Region of
the Hypothesis H0 in
(i) (Shaded Areas),
and the Respective
Probabilities; Here
C = tm+n−2; α

2

Numerical Example For m = 40, n = 50, and α = 0.01, we get
tm+n− 2;α/2 = t88;0.005 = 2.6329, and hence the hypothesis about equality of
means is rejected whenever |t(x, y)| ≥ 2.6329.

(ii) H0: σ1 = σ2 = σ, say (or σ 2
1 = σ 2

2 = σ 2, say), μ1, μ2 unknown . The (joint)
likelihood function of the Xi’s and Yj ’s is here

(2π)− m+n
2
(
σ 2

1

)−m/2(
σ 2

2

)−n/2
exp

[
− 1

2σ 2
1

m∑
i=1

(xi − μ1)2 − 1

2σ 2
2

n∑
j=1

(yj − μ2)2

]
.

(67)

Maximizing (67) with respect to all four parameters, we find the following
MLE’s:

μ̂1,� = x̄, μ̂2,� = ȳ, σ̂ 2
1,� = 1

m

m∑
i=1

(xi − x̄)2, σ̂ 2
2,� = 1

n

n∑
j=1

(yj − ȳ)2. (68)

Then

L(�̂) = (2π)− m+n
2
(
σ̂ 2

1,�

)−m/2(
σ̂ 2

2,�

)−n/2
exp
(

−m+ n

2

)
. (69)

Under H0, the likelihood function has the form (55), and the MLE’s are already
available and given by (56). That is,

μ̂1,ω = x̄, μ̄2,ω = ȳ, σ̂ 2
1,ω = 1

m+ n

[
m∑

i=1

(xi − x̄)2 +
n∑

j=1

(yj − ȳ)2

]
. (70)

Therefore,

L(ω̂) = (2π)− m+n
2
(
σ̂ 2

1,ω

)− m+n
2 exp

(
−m+ n

2

)
. (71)



336 Chapter 11 Testing Hypotheses

For simplicity, set
∑m

i=1(xi − x̄)2 = a,
∑n

j=1(yj − ȳ)2 = b. Then the LR is,
by means of (68) through (71),

λ =
(
σ̂ 2

1,�

)m/2(
σ̂ 2

2,�

)n/2(
σ̂ 2

1,ω

)(m+ n)/2 = m−m/2n−n/2am/2bn/2

(m+ n)−(m+n)/2(a + b)(m+n)/2

= (m+ n)(m+n)/2

mm/2nn/2
× (a/b)m/2(

1 + a

b

)(m+n)/2 (dividing by b(m+n)/2)

= (m+ n)(m+n)/2

mm/2nn/2
×

[(
m− 1
n− 1

)(
a

m− 1

/
b

n− 1

)]m/2[
1 + (m− 1

n− 1

)(
a

m− 1

/
b

n− 1

)](m+n)/2

= (m+ n)(m+n)/2

mm/2nn/2
×

(
m− 1
n− 1 u
)m/2(

1 + m− 1
n− 1 u
)(m+n)/2 , where u = a

m− 1

/
b

n − 1
.

So

λ = λ(u) = (m+ n)(m+n)/2

mm/2nn/2
×

(
m− 1
n− 1 u
)m/2(

1 + m− 1
n− 1 u
)(m+n)/2 , u ≥ 0. (72)

The function λ(u) has the following properties:

λ(0) = 0 and λ(u) → 0, as u → ∞,
d

du
λ(u) = 0 for u = u0 = m(n− 1)

n(m− 1) , d

du
λ(u) > 0 for u < u0, and

d

du
λ(u) < 0 for u > u0, so that λ(u) is

maximized for u = u0, and λ(u0) = 1.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (73)

On the basis of these properties, the picture of λ(u) is as in Figure 11.14.

l(u)

l 0

1

0
u

C1 C2u0 =
m(n − 1)
n(m − 1)

Figure 11.14

The Graph of the
Function λ = λ(u)

Given in Relation
(72)



Exercises 337

Therefore λ(u) ≤ λ0, if and only if u ≤ C1 or u > C2, where C1 and C2 are
determined by the requirement that

PH0 (U ≤ C1, or U ≥ C2) = α, where U =
∑m

i=1(Xi − X̄ )2/(m− 1)∑n

j=1(Yj − Ȳ )2/(n − 1)
. (74)

0 C1 C2

Fm−1, n−1

a
2
— a

—
2

Figure 11.15

Rejection Region of
the Hypothesis H0 in
(ii) (Shaded Areas),
and the Respective
Probabilities; Here
C1 = Fm−1,n−1;1− α

2
,

C2 = Fm−1,n−1; α
2

Under H0, U ∼ Fm−1,n−1, and this allows the determination of C1, C2. For
simplicity, we may split the probability α equally among the two tails, in which
case

C1 = Fm−1,n−1;1−α/2, C2 = Fm−1,n−1;α/2.

To summarize then, the LR test is as follows:

ϕ(x, y) =
{

1 if u(x, y) ≤ Fm−1,n−1;1−α/2, or u(x, y) ≥ Fm−1,n−1;α/2

0 otherwise,
(75)

where

u(x, y) =
∑m

i=1(xi − x̄)2/(m− 1)∑n

j=1(yj − ȳ)2/(n − 1)
. (76)

Numerical Example Let m = 13, n = 19, and take α = 0.05.

DISCUSSION If X ∼ F12,18, then we get from the F -tables: P(X >

F12,18;0.025) = 0.025, or P(X ≤ F12,18;0.025) = 0.975, and hence F12,18;0.025 =
2.7689. Also, P(X ≤ F12,18;0.975) = 0.025, or P(X > F12,18;0.975) = 0.975, or P( 1

X
<

1
F12,18;0.975

) = 0.975. But then 1
X

∼ F18,12, and therefore 1
F12,18;0.975

= 3.1076, and
hence F12,18;0.975 � 0.3218. Thus, the hypothesis H0 is rejected whenever
u(x, y) ≤ 0.3218, or u(X, Y ) ≥ 2.7689, and it is accepted otherwise.

Exercises

4.1 A coin, with probability θ of falling heads, is tossed independently 100
times and 60 heads are observed. At level of significance α = 0.1:
(i) Use the LR test in order to test the hypothesis H0: θ = 1/2 (against

the alternative HA: θ �= 1/2).
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(ii) Employ the appropriate approximation (see relation (10) in Chapter
8) to determine the cutoff point.

4.2 Let X1, X2, X3 be independent r.v.’s distributed as B(1, θ), θ ∈ � = (0, 1),
and let t = x1 + x2 + x3, where the xi’s are the observed values of the
Xi’s.
(i) Derive the LR test λ for testing the hypothesis H0: θ = 0.25 (against

the alternative HA: θ �= 0.25) at level of significance α = 0.02.
(ii) Calculate the distribution of λ(T) and carry out the test, where T =

X1 + X2 + X3.

4.3 (i) In reference to Example 15 in Chapter 1, the appropriate model to
be employed is the Normal distribution N(μ, σ 2) (with μ > 0, of
course).

(ii) If μ0 is the stipulated average growth, then this will be checked by
testing the hypothesis H0: μ = μ0 (against the alternative HA: μ �=
μ0) at level of significance α.

(iii) On the basis of a random sample of size n, use the likelihood ratio
test to test H0 when n = 25, μ0 = 6 inch, and α = 0.05.

4.4 (i) In reference to Example 17 in Chapter 1, an appropriate model would
be the following. Let Xi and Yi be the blood pressure of the ith
individual before and after the use of the pill, and set Zi = Yi−Xi, i =
1, . . . , n. Furthermore, it is reasonable to assume that the Xi’s and
the Yi’s are independent and Normally distributed, so that the Zi’s
are independently distributed as N(μ, σ 2).

(ii) With μ denoting the difference of blood pressure after the usage of
the pill and before it, the claim is that μ < 0. This claim is checked by
testing the hypothesis H0: μ = 0 (against the alternative HA: μ �= 0,
with the only viable part of it here being μ > 0) at level of significance
α, by using the likelihood ratio test.

(iii) Carry out the test if n = 90 and α = 0.05.

4.5 In reference to Example 25 in Chapter 1:
(i) For i = 1, . . . , 15, let Xi and Yi be the heights of the cross-fertilized

plants and self-fertilized plants, respectively. It is reasonable to as-
sume that the Xi’s and the Yi’s are independent random samples with
respective distributions N(μ1, σ 2

1 ) and N(μ2, σ 2
2 ) (the estimates of

σ 2
1 and σ 2

2 do not justify the possible assumption of a common vari-
ance). Setting Zi = Xi − Yi, we have that the Zi’s are independent
and distributed as N(μ, σ 2), where μ = μ1 − μ2, σ 2 = σ 2

1 + σ 2
2 .

(ii) The claim is that μ > 0, and is to be checked by testing the hypothesis
H0: μ = 0 (against the alternative HA: μ �= 0, with the only viable
part of it being that μ > 0) at level of significance α, by using the
likelihood ratio test.

(iii) Carry out the test when α = 0.05 and α = 0.10.

4.6 The diameters of certain cylindrical items produced by a machine are
r.v.’s distributed as N(μ, 0.01). A sample of size 16 is taken and it is found



Exercises 339

that x̄ = 2.48 inches. If the desired value for μ is 2.5 inches, formulate
the appropriate testing hypothesis problem and carry out the test if α =
0.05.

4.7 A manufacturer claims that packages of certain goods contain 18 ounces.
In order to check his claim, 100 packages are chosen at random from a
large lot and it is found that

∑100
i=1 xi = 1,752 and

∑100
i=1 x2

i = 31,157.
Assume that the observations are Normally distributed, and formulate
the manufacturer’s claim as a testing hypothesis problem. Carry out the
test at level of significance α = 0.01.

4.8 The breaking powers of certain steel bars produced by processes A and B
are r.v.’s distributed as Normal with possibly different means but the same
variance. A random sample of size 25 is taken from bars produced by each
one of the processes, and it is found that x̄ = 60, sx = 6, ȳ = 65, sy = 7.
Test whether there is a difference between the two processes at the level
of significance α = 0.05.

4.9 (i) Let Xi, i = 1, . . . , 9 and Yj , j = 1, . . . , 10 be independent r.v.’s from
the distributions N(μ1, σ 2

1 ) and N(μ2, σ 2
2 ), respectively. Suppose that

the observed values of the sample s.d.’s are sx = 2, sy = 3. At level
of significance α = 0.05, test the hypothesis H0: σ1 = σ2 (against the
alternative HA: σ1 �= σ2.)

(ii) Find an expression for the computation of the power of the test for
σ1 = 2 and σ2 = 3.

4.10 Refer to Exercise 3.12, and suppose that the variances σ 2
1 and σ 2

2 are
unknown. Then test the hypothesis H0: σ1 = σ2 (against the alternative
HA: σ1 �= σ2) at level of significance α = 0.05.

4.11 The independent random samples Xi and Yi, i = 1, . . . , 5 represent resis-
tance measurements taken on two test pieces, and the observed values
(in ohms) are as follows:

x1 = 0.118, x2 = 0.125, x3 = 0.121, x4 = 0.117, x5 = 0.120,

y1 = 0.114, y2 = 0.115, y3 = 0.119, y4 = 0.120, y5 = 0.110.

Assume that the Xi’s and the Yi’s are Normally distributed, and test the
hypothesis H0: σ1 = σ2 (against the alternative HA: σ1 �= σ2) at level of
signifince α = 0.05.

4.12 Refer to Exercise 4.11, and assume now that σ1 = σ2 = σ , say, unknown
(which is supported by the fact that the hypothesis H0: σ1 = σ2 was not
rejected). Then test the hypothesis H0: μ1 = μ2 (against the alternative
HA: μ1 �= μ2) at level of significance α = 0.05.

4.13 Consider the independent random samples X1, . . . , Xm and Y1, . . . , Yn

from the respective distributions N(μ1, σ 2) and N(μ2, σ 2) where σ is
known, and suppose we are interested in testing the hypothesis H0: μ1 =
μ2 = μ, say, unknown (against the alternative HA: μ1 �= μ2) at level of
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significance α, by means of the likelihood ratio test. Set x = (x1, . . . , xm)
and y = (y1, . . . , yn) for the observed values of the Xi’s and the Yi’s.

(i) Form the joint likelihood function L(μ1, μ2 | x, y) of the Xi’s and
the Yi’s, as well as the likelihood function L(μ | x, y).

(ii) From part (i), conclude immediately that the MLE’s of μ1 and μ2

are μ̂1 = x̄ and μ̂2 = ȳ. Also, show that the MLE of μ is given by
μ̂ω = mx̄+nȳ

m+n
.

(iii) Show that −2 log λ = mn(x̄− ȳ)2/σ 2(m+n), where λ = L(ω̂)/L(�̂).
(iv) From part (iii), conclude that the likelihood ratio test −2 log λ > C0

is equivalent to |x̄ − ȳ| > C(=σ
√

(m+ n)C0/mn).

(v) Show that C = zα/2σ

√
1
m

+ 1
n

.
(vi) For any μ1 and μ2, show that the power of the test depends on μ1

and μ2 through their difference μ1 − μ2 = �, say, and is given by
the formula:

π(�) = 2 − 


⎛⎝ C − �

σ

√
1
m

+ 1
n

⎞⎠− 


⎛⎝ C + �

σ

√
1
m

+ 1
n

⎞⎠.

(vii) Determine the cutoff point when m = 10, n = 15, σ = 1, and
α = 0.05.

(viii) Determine the power of the test when � = 1 and � = 2.

4.14 In reference to Example 15, verify the results:

∫ C1

0
θ2

0 te−θ0tdt = 1 − e−θ0C1 − θ0C1e−θ0C1 ,

∫ ∞

C2

θ2
0 te−θ0tdt = e−θ0C2 + θ0C2e−θ0C2 .

4.15 Verify expression (49) for the power of the test.

4.16 Verify the assertions made in expressions (52) about the function λ =
λ(u), u ≥ 0.

4.17 Verify the assertion made in relation (56) that μ̂1, μ̂2, and σ̂ 2
� are the MLE’s

of μ1, μ2, and σ 2, respectively.

4.18 Show that the expressions in relation (59) are, indeed, the MLE’s of (μ1 =
μ2 =)μ and σ 2, respectively.

4.19 Show that λ = λ(t2) = (1 + t2

m+n−2 )− m+n
2 is, indeed, strictly increasing in

t2 as asserted right after relation (63).

4.20 Justify the statement made in relation (65) that t(X, Y) ∼ tm+n−2.

4.21 Show that the expressions in relation (68) are, indeed, the MLE’s ofμ1, μ2,
σ 2

1 , and σ 2
2 , respectively.
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4.22 Verify the assertions made in expression (73) about the function λ =
λ(u), u ≥ 0.

4.23 Refer to the Bivariate Normal distribution discussed in Chapter 4, Section
5, whose p.d.f. is given by:

fX,Y(x, y) = 1

2πσ1σ2

√
1 − ρ2

e−q/2, x, y ∈ �,

where q = 1
1−ρ2 [( x−μ1

σ1
)2 −2ρ( x−μ1

σ1
)( y−μ2

σ2
)+( y−μ2

σ2
)2], μ1, μ2 ∈ �, σ 2

1 , σ 2
2 >

0, and −1 ≤ ρ ≤ 1 are the parameters of the distribution. Also, recall that
independence between X and Y is equivalent to their being uncorrelated;
i.e., ρ = 0. In this exercise, a test is derived for testing the hypothe-
sis H0: ρ = 0 (against the alternative HA: ρ �= 0, the X and Y are not
independent). The test statistic is based on the likelihood ratio statistic.

(i) On the basis of a random sample of size n from a Bivariate Normal
distribution, (Xi, Yi), i = 1, . . . , n, the MLE’s of the parameters
involved are given by:

μ̂1 = x̄, μ̂2 = ȳ, σ̂ 2
1 = Sx, σ̂ 2

2 = Sy, ρ̂ = Sxy/
√

SxSy,

where Sx = 1
n

∑n

i=1(xi−x̄)2, Sy = 1
n

∑n

i=1(yi− ȳ)2, Sxy = 1
n

∑n

i=1(xi−
x̄)(yi − ȳ), and the xi’s and yi’s are the observed values of the Xi’s
and Yi’s. (See Exercise 1.14 (vii) in Chapter 9.)

(ii) Under the hypothesis H0: ρ = 0, the MLE’s of μ1, μ2, σ 2
1 , and σ 2

2 are
the same as in part (i).

Hint: It follows immediately, because the joint p.d.f. of the pairs fac-
torizes to the joint p.d.f. of the Xi’s times the joint p.d.f. of the Yi’s.

(iii) When replacing the parameters by their MLE’s, the likelihood func-
tion, call it L(x, y), is given by:

L(x, y) = [2π
(
SxSy − S2

xy

)]− n
2 e−n,

where x = (x1, . . . , xn), y = (y1, . . . , yn).
(iv) Under the hypothesis H0(ρ = 0), when the parameters are replaced

by their MLE’s, the likelihood function, call it L0(x, y), is given by:

L0(x, y) = (2πSxSy)− n
2 e−n.

(v) From parts (iii) and (iv), it follows that the likelihood ratio statistic
λ is given by:

λ = (1 − ρ̂2)n/2, ρ̂ = Sxy/
√

SxSy.

4.24 (i) By differentiation, show that the function f (r) = (1 − r)n/2 is de-
creasing in r. Therefore, in reference to Exercise 4.23(v), λ < λ0 is
equivalent to ρ̂2 > C1, some constant C1 (actually, C1 = 1 − λ

2/n

0 );
equivalently, ρ̂ < −C2 or ρ̂ > C2 (C2 = √

C1).
(ii) Since the LR test rejects the hypothesis H0 when λ < λ0, part (i)

states that the LR test is equivalent to rejecting H0 wherever ρ̂ < −C2

or ρ̂ > C2.
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(iii) In ρ̂, replace the xi’s and the yi’s by the respective r.v.’s Xi and Yi,
and set R for the resulting r.v. Then, in part (ii), carrying out the
test based on ρ̂, requires knowledge of the cutoff point C2, which
in turn, presupposes knowledge of the distribution of R (under H0).
Although the distribution of R can be determined (see, e.g., Corol-
lary to Theorem 7, page 474, in the book A Course in Mathematical

Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas), it
is not of any of the known forms, and hence no tables can be used.

(iv) Set W = W (R) =
√

n−2R√
1−R2 , and show that W is an increasing function

of R by showing that d

dr
W (r) is positive.

(v) By parts (ii) and (iv), it follows that the likelihood ratio test is
equivalent to rejecting H0 whenever W (r) < −C or W (r) > C ,
where C is determined by the requirement that PH0 [W (R) < C or
W (R) > C] = α (the given level of significance).

(vi) Under H0, it can be shown (see, e.g., pages 472–474, in the book cited
in part (iii) above) that W (R) has the tn−2 distribution. It follows that
C = tn−2; α

2
.

To summarize then, for testing H0: ρ = 0 at level of significance
α, reject H0 whenever W (r) < −tn−2; α

2
or W (r) > tn−2; α

2
, where

W (r) =
√

n−2r√
1−r2 , r = ρ̂ = Sxy/

√
SxSy; this test is equivalent to the

likelihood ratio test.



Chapter 12

More About Testing
Hypotheses

In this chapter, a few more topics are discussed on testing hypotheses prob-
lems. More specifically, LR tests are presented for the Multinomial distribution
with further applications to contingency tables. A brief section is devoted to
the so-called (Chi-Square) goodness-of-fit tests, and another also brief section
discusses the decision-theoretic approach to testing hypotheses. The chapter
is concluded with a result connecting testing hypotheses and construction of
confidence regions.

12.1 Likelihood Ratio Tests in the Multinomial Case and Contingency Tables

It was stated in Section 3 of Chapter 8 that the statistic −2 log λ is distributed
approximately as χ2

f with certain degrees of freedom f , provided some regu-
larity conditions are met. In this section, this result is stated in a more formal
way, although the required conditions will not be spelled out.

THEOREM 1
On the basis of the random sample X1, . . . , Xn from the p.d.f. f (·; θ),
θ ∈ � ⊆ �r , r ≥ 1, we wish to test the hypothesis H0:θ ∈ ω ⊂ � at level
of significance α and on the basis of the Likelihood Ratio statistic
λ = λ(X1, . . . , Xn). Then, provided certain conditions are met, it holds
that:

−2 log λ � χ2
r−m, for all sufficiently large n and θ ∈ ω;

more formally,

Pθ(−2 log λ ≤ x) → G(x), x≥ 0, as n → ∞, (1)

343
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where G is the d.f. of the χ2
r−m distribution; r is the dimensionality of

�, m is the dimensionality of ω, and θ ∈ ω.

The practical use of (1) is that (for sufficiently large n) we can use the
χ2

r−m distribution in order to determine the cutoff point C of the test, which
rejects H0 when −2 log λ ≥ C . Specifically, C � χ2

r−m; α . Thus, for testing the
hypothesis H0 at level of significance α, H0 is to be rejected whenever −2 log λ

is ≥χ2
r−m; α (always provided n is sufficiently large).

EXAMPLE 1 The Multinomial Case A multinomial experiment, with k possible out-
comes O1, . . . , Ok and respective unknown probabilities p1, . . . , pk, is carried
out independently n times, and let X1, . . . , Xk be the r.v.’s denoting the number
of times outcomes O1, . . . , Ok occur, respectively. Then the joint p.d.f. of the
Xi’s is:

f (x1, . . . , xk; θ) = n!
x1! · · · xk!

p
x1
1 · · · p

xk

k , (2)

for x1, . . . , xk ≥ 0 integers with x1 + · · · + xk = n, and θ = (p1, . . . , pk). The
parameter space � is (k − 1)-dimensional and is defined by:

� = {(p1, . . . , pk) ∈ �k; pi > 0, i = 1, . . . , k, p1 + · · · + pk = 1}.

DISCUSSION Suppose we wish to test the hypothesis H0 : pi = pi0, i =
1, . . . , k (specified) at level of significance α. Under H0,

L(ω̂) = n!
x1! · · · xk!

p
x1
10 · · · p

xk

k0,

and we know that the MLE’s of the pi’s are: p̂i = xi

n
, i = 1, . . . , k. Therefore

L(�̂) = n!
x1! · · · xk!

p̂
x1
1 · · · p̂

xk

k = n!
x1! · · · xk!

(
x1

n

)x1

· · ·
(

xk

n

)xk

= n−n n!
x1! · · · xk!

x
x1
1 · · · x

xk

k .

Therefore

λ = nn

(
p10

x1

)x1

· · ·
(

pk0

xk

)xk

, and H0 is rejected when −2 log λ ≥ χ2
k−1;α

since here r = k − 1 and m= 0.
Numerical Example The fairness of a die is to be tested on the basis of

the following outcomes of 30 independent rollings: x1 = 4, x2 = 7, x3 = 3, x4 =
8, x5 = 4, x6 = 4. Take α = 0.05.
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DISCUSSION Here H0: pi = 1
6 , i = 1, . . . , 6 and the LR λ is given by:

λ = 3030
(

1
6 × 4

)4

×
(

1
6 × 7

)7

×
(

1
6 × 3

)3

×
(

1
6 × 8

)8

×
(

1
6 × 4

)4

×
(

1
6 × 4

)4

= 3030 × 6−30 × 4−4 × 7−7 × 3−3 × 8−8 × 4−4 × 4−4.

It follows that −2 log λ � 3.826, whereas χ2
5; 0.05 = 11.071. Thus, the

hypothesis H0 is not rejected.

(i, j)th cell

r × s Contingency Table
columns

1

1
2

2 j

i

ss − 1

r − 1
r

rows

. . . . . .

..
.

..
.

Figure 12.1

An r × s

Contingency Table

Application to Contingency Tables Consider a multinomial experiment
with r ×s possible outcomes arranged in a rectangular array with r rows and s

columns. Such a rectangular array is referred to as an r × s contingency table.
The r rows and s columns generate r × s cells. (See Figure 12.1.) Denote by
pij the probability that an outcome will fall into the (i, j)th cell. Carry out the
multinomial experiment under consideration n independent times, and let Xij

be the r.v. denoting the number of outcomes falling into the (i, j)th cell. Define
pi. and p. j by the formulas:

pi. =
s∑

j=1

pij , i = 1, . . . , r, p. j =
r∑

i=1

pij , j = 1, . . . , s. (3)

Then, clearly, pi. is the probability that an outcome falls in the ith row re-
gardless of column, and p. j is the probability that an outcome falls in the jth col-
umn regardless of row. Of course,

∑r

i=1 pi. = ∑s

j=1 p. j = ∑r

i=1

∑s

j=1 pij = 1.
Also, define the r.v.’s Xi. and X. j as follows:

Xi. =
s∑

j=1

Xij , i = 1, . . . , r, X. j =
r∑

i=1

Xij , j = 1, . . . , s. (4)

Thus, clearly, Xi. denotes the number of outcomes falling in the ith row
regardless of column, and X. j denotes the number of outcomes falling in the
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jth column regardless of row. It is also clear, that

r∑
i=1

Xi. =
s∑

j=1

X. j =
r∑

i=1

s∑
j=1

Xij = n.

The parameters pij , i = 1, . . . , r, j = 1, . . . , s are, in practice, unknown
and are estimated by the MLE’s p̂ij = xij

n
. In the testing hypotheses framework,

one could test the hypothesis H0: pij = pij0, i = 1, . . . , r, j = 1, . . . , s, speci-
fied. However, from a practical viewpoint, this is not an interesting hypothesis.
What is of true interest here is to test independence of rows and columns. In
order to provide some motivation, suppose that some subjects (e.g., human
beings) are classified according to two characteristics to be denoted by A and
B (e.g., human beings are classified according to gender, characteristic A, and
whether or not they are cigarette smokers, characteristic B). Suppose that
characteristic A has r levels and characteristic B has s levels. (In the concrete
example at hand, r = 2 (Male, Female) and s = 2 (Smoker, Nonsmoker).) We
agree to have the r rows in an r × s contingency table represent the r levels
of characteristic A and the s columns of the contingency table represent the s

levels of characteristic B. Then independence of rows and columns, as men-
tioned earlier, is restated as independence of characteristics A and B or, more
precisely, independence of the r levels of characteristic A and the s levels of
characteristic B. (In the concrete example this would mean that gender and
smoking/nonsmoking are independent events.) The probabilistic formulation
of the independence stated is as follows:

Observe that P(Ai∩Bj) = pij , P(Ai) = pi., and P(Bj) = p. j . Independence
of Ai and Bj for all i and j means then that

P(Ai ∩ Bj) = P(Ai)P(Bj), all i and j, or pij = pi. p. j , all i and j.

To put it differently, we wish to test the hypothesis that there exist (prob-
abilities) pi > 0, i = 1, . . . , r, p1 + · · · + pr = 1 and q j > 0, j = 1, . . . , s,
q1 + · · · + qs = 1, such that

H0: pij = piq j , i = 1, . . . , r, j = 1, . . . , s. (5)

(Of course, then pi = pi. and q j = p. j , all i and j.) The MLE of pij is p̂ij =
xij

n
, i = 1, . . . , r, j = 1, . . . , s. Therefore, writing

∏
i, j for

∏r

i=1

∏s

j=1 and setting
θ for (pij , i = 1, . . . , r, j = 1, . . . , s), we have, for the likelihood function

L(θ|xij , i = 1, . . . , r, j = 1, . . . , s) = n!∏
i, j xij!

∏
i, j

p
xij

ij , (6)

and

L(�̂) = n!∏
i, j xij!

∏
i, j

(
xij

n

)xij

= n!
nn
∏

i, j xij!

∏
i, j

x
xij

ij . (7)
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Under H0, the likelihood function becomes
n!∏

i, j xij!

∏
i, j

(piq j)xij = n!∏
i, j xij!

∏
i

∏
j

p
xij

i q
xij

j

= n!∏
i, j xij!

∏
i

p
xi.

i q
xi1
1 · · · qxis

s = n!∏
i, j xij!

(∏
i

p
xi.

i

)(∏
j

q
x. j

j

)
, (8)

because∏
i

p
xi.

i q
xi1
1 · · · qxis

s = (px1.

1 q
x11
1 · · · qx1s

s

) · · · (pxr.

r q
xr1
1 · · · qxrs

s

)
= (px1.

1 · · · pxr.

r

)(
q

x11
1 · · · q

xr1
1

) · · · (qx1s

s · · · qxrs

s

)
=
(∏

i

p
xi.

i

)(
q

x.1
1 · · · qx.s

s

) = (∏
i

p
xi.

i

)(∏
j

q
x. j

j

)
.

The MLE’s of pi and q j are given by

p̂i = xi.

n
, i = 1, . . . , r, q̂ j = x. j

n
, j = 1, . . . , s, (9)

so that

L(ω̂) = n!∏
i, j xij!

∏
i

(
xi.

n

)xi.∏
j

(
x. j

n

)x. j

= n!
n2n
∏

i, j xij!

(∏
i

x
xi.

i.

)(∏
j

x
x. j

. j

)
.

(10)

By (7) and (10), we have then

λ =
(∏

i x
xi.

i.

)(∏
j x

x. j

. j

)
nn
∏

i, j x
xij

ij

, (11)

and

−2 log λ = 2

[(
n log n+

r∑
i=1

s∑
j=1

xij log xij

)
−
(

r∑
i=1

xi. log xi. +
s∑

j=1

x. j log x. j

)]
.

(12)

Here the dimension of � is rs−1 because we have rs pij , i = 1, . . . , r, j =
1, . . . , s, which, however, satisfy the relationship

∑r

i=1

∑s

j=1 pij = 1. In or-
der to determine the dimension of ω, observe that we have r + s parameters
pi, i = 1, . . . , r and q j , j = 1, . . . , s, which, however, satisfy two relation-
ships; namely,

∑r

i=1 pi = 1 and
∑s

j=1 q j = 1. Therefore the dimension of ω is
r + s − 2 and

dim � − dim ω = (rs − 1) − (r + s − 2) = (r − 1)(s − 1).

Furthermore, it so happens that the (unspecified) conditions of Theorem 1
are satisfied here, so that, under H0, −2 log λ is distributed approximately (for
all sufficiently large n) as χ2

(r−1)(s−1). It follows that the hypothesis (5) about
independence is rejected, at level of significance α, whenever

−2 log λ ≥ χ2
(r−1)(s−1); α. (13)
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Numerical Example A population consisting of n= 100 males (M) and
females (F) is classified according to their smoking (S) or nonsmoking (NS)
cigarettes habit. Suppose the resulting 2×2 contingency table is as given below.
Then test independence of gender and smoking/nonsmoking habit at the level
of significance α = 0.05.

S NS
M 20 35 55
F 15 30 45

35 65 100

DISCUSSION The values xij are shown in the cells and the xi., x. j are
shown in the margins, and they are: x11 = 20, x12 = 35, x21 = 15, x22 = 30, x1. = 55,
x2. = 45, x.1 = 35, x.2 = 65. Replacing these values in the expression of −2 log λ

given by (12), we find −2 log λ = 0.061. Here r = s = 2, so that χ2
(r−1)(s−1); α =

χ2
1; 0.05 = 3.841. Therefore the hypothesis is not rejected.

Exercises

1.1 (i) In reference to Example 18 in Chapter 1, the appropriate probability
model is the Multinomial distribution with parameters n and pA, pB,
pAB, pO , where pA through pO are the probabilities that an individual,
chosen at random from among the n persons has blood type either A

or B or AB or O , respectively.
(ii) Let pA0, pB0, pAB0, and pO0 be a priori stipulated numbers. Then, check-

ing agreement of the actual probabilities with the stipulated values
amounts to testing the hypothesis

H0: pA = pA0, pB = pB0, pAB = pAB0, pO = pO0.

(iii) The hypothesis H0 is tested by means of either the log-LR test (see
Example 1 here) or the χ2 goodness-of-fit test. (See also Exercise 2.1.)

1.2 (i) In reference to Example 19 in Chapter 1, the appropriate probability
model is the Multinomial distribution with parameters n = 41,208 and
pi, i = 1, . . . , 12, where pi = P(a birth chosen at random from among
the n births falls in the ith month).

(ii) Checking uniform distribution of the n births over the 12 months
amounts to testing the hypothesis

H0: pi = pi0 = 1
12

, i = 1, . . . , 12.

(iii) The hypothesis H0 is tested by means of either the log-LR test (see
Example 1 here) or the χ2 goodness-of-fit test. (See also Exercise 2.2.)
The hypothesis H0 is rejected when −2 log λ > χ2

11;α .
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1.3 (i) In reference to Example 20 in Chapter 1, the appropriate probability
model is the 2 × 3 contingency table setup in the example.

(ii) If pij is the probability that a randomly chosen subject from among the
150 falls into the (i, j)th cell, then independence between the factors
health and diet is checked by testing the hypothesis

H0: pij = piq j , i = 1, 2 and j = 1, 2, 3.

An appropriate test statistic for testing the hypothesis H0 is either the
log-LR test or the χ2 goodness-of-fit-statistic. (See also Exercise 2.3.)

1.4 (i) In reference to Example 21 in Chapter 1, the appropriate probability
model is the 3 × 4 contingency table setup in the example.

(ii) If pij is the probability that a randomly chosen subject from among the
200 falls into the (i, j)th cell, then checking the stipulation that change
of bone minerals does not vary for different groups amounts to testing
the hypothesis

H0: pij = piq j , i = 1, 2, 3 and j = 1, 2, 3.

The hypothesis H0 may be checked by means of either the log-LR
test or the χ2 goodness-of-fit test. (See also Exercise 2.4.)

1.5 In reference to Example 1 of Chapter 1, the n landfills are classified ac-
cording to two levels of concentration (High and Low) and three levels
of hazardous chemicals (Arsenic, Barium, and Mercury) to produce the
following 2 × 3 contingency table:

HAZARDOUS CHEMICALS

Arsenic Barium Mercury Totals

Level of High x11 x12 x13 x1.

Concentration Low x21 x22 x23 x2.

Totals x.1 x.2 x.3 x.. = n

Then, if pij is the probability that a landfill chosen at random from
among the n landfills falls into the (i, j)th cell, part (ii) of the example
becomes that of testing the hypothesis H0: pij = pij0, where pij0, i = 1, 2
and j = 1, 2, 3 are a priori stipulated numbers. The hypothesis H0 is tested
by means of either the log-LR test or the χ2 goodness-of-fit test. (See also
Exercise 2.5.)

12.2 A Goodness-of-Fit Test

This test applies primarily to the Multinomial distribution, although other dis-
tributions can also be suitably reduced to a multinomial framework. In the
notation of the previous section, we have that, for each fixed i= 1, . . . , k,
Xi ∼ B(n, pi), so that EθXi = npi, i = 1, . . . , k, θ = (p1, . . . , pk). Thus, the
ith outcome would be expected to appear npi times, whereas the actual num-
ber of times it appears is Xi. It then makes sense to compare what we expect
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and what we, actually, observe, and do this simultaneously for all i = 1, . . . , k.
One way of doing this is to look at the quantity

∑k

i=1(Xi − npi)2. Small values
of this quantity would indicate agreement between expected and observed
values, and large values would indicate the opposite. For distributional rea-
sons, the above expression is modified as indicated below, and in this form it
is denoted by χ2; namely,

χ2 =
k∑

i=1

(Xi − npi)2

npi

. (14)

Expression (14) is the basis for constructing test statistics for testing var-
ious hypotheses. In this setting, we will consider the hypothesis H0: pi = pi0,
i = 1, . . . , k, specified as we did in the previous section. Under H0, (14) is
denoted by χ2

ω and is equal to:

χ2
ω =

k∑
i=1

(Xi − npi0)2

npi0
. (15)

This is a statistic and is used for testing H0. Accordingly, H0 is rejected,
at level of significance α, if χ2

ω ≥ C , where C is determined by the require-
ment PH0 (χ2

ω ≥ C) = α. It can be seen that, under H0, χ2
ω � χ2

k−1 for all
sufficiently large n. Consequently, C � χ2

k−1; α . The test used here is called a
test of goodness-of-fit for obvious reasons. It is also referred to as chi-square

(or χ2) goodness-of-fit test, because of the symbol used in relation (15), and
because its asymptotic distribution (under the null hypothesis) is chi-square
with certain degrees of freedom. Thus, the (Chi-Square) goodness-of-fit test
rejects H0 whenever χ2

ω ≥ χ2
k−1; α .

For illustrative and also comparison purposes, let us consider the first
numerical example in the previous section.

Numerical Example Here np10 = · · · = np60 = 30
6 = 5, and then the

observed value of χ2
ω is:

χ2
ω = 1

5
[(4 − 5)2 + (7 − 5)2 + (3 − 5)2 + (8 − 5)2 + (4 − 5)2 + (4 − 5)2] = 4.

For α = 0.05, χ2
k−1; α = χ2

5; 0.05 = 11.071, and since χ2
ω = 4 < 11.071, the

hypothesis H0 is not rejected, as was also the case with the LR test.
In the framework of a contingency table, expression (14) becomes

χ2 =
r∑

i=1

s∑
j=1

(Xij − npij)2

npij

. (16)

Under the hypothesis of independence stated in (5), expression (16) takes the
form

χ2
ω =

r∑
i=1

s∑
j=1

(Xij − npiq j)2

npiq j

. (17)
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From (17), we form the test statistic χ2
ω̂

defined below:

χ2
ω̂ =

r∑
i=1

s∑
j=1

(Xij − np̂iq̂ j)2

np̂iq̂ j

, (18)

where p̂i, i = 1, . . . , r and q̂ j , j = 1, . . . , s are given in (9). Once again, it may
be seen that, under H0, χ2

ω̂
� χ2

(r−1)(s−1) for all sufficiently large n. Thus, the
hypothesis H0 is rejected, at level of significance α, whenever χ2

ω̂
≥ χ2

(r−1)(s−1); α .
The contingency table numerical example of the previous section is as below.

Numerical Example Here p̂1 = 0.55, p̂2 = 0.45, q̂1 = 0.35, q̂2 = 0.65,
so that

np̂1q̂1 = 19.25, np̂1q̂2 = 35.75, np̂2q̂1 = 15.75, np̂2q̂2 = 29.25.

DISCUSSION Therefore

χ2
ω̂ = (20 − 19.25)2

19.25
+ (35 − 35.75)2

35.75
+ (15 − 15.75)2

15.75
+ (30 − 29.25)2

29.25
� 0.0998.

Since χ2
(r−1)(s−1); α = χ2

1; 0.05 = 3.841, the hypothesis H0 is not rejected, as was
also the case with the LR test.

Exercises

2.1 Same as Exercise 1.1.

2.2 Same as Exercise 1.2.

2.3 Same as Exercise 1.3.

2.4 Same as Exercise 1.4.

2.5 Same as Exercise 1.5.

2.6 A coin, with probability p of falling heads, is tossed independently 100
times, and 60 heads are observed.
(i) Test the hypothesis H0: p = 1/2 (against the alternative HA: p �= 1/2)

at level of significance α = 0.1, by using the appropriate χ2 goodness-
of-fit test.

(ii) Determine the P-value of the test (use linear interpolation).

2.7 A die is cast independently 600 times, and the numbers 1 through 6 appear
with the frequencies recorded below.

1 2 3 4 5 6
100 94 103 89 110 104

Use the appropriate χ2 goodness-of-fit test to test fairness for the die
at level of significance α = 0.1.
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2.8 In a certain genetic experiment, two different varieties of a certain species
are crossed and a specific characteristic of the offspring can occur at
only three levels A, B, and C , say. According to a proposed model, the
probabilities for A, B, and C are 1

12 , 3
12 , and 8

12 , respectively. Out of 60
offspring, 6, 18, and 36 fall into levels A, B, and C , respectively. Test the
validity of the proposed model at the level of significance α = 0.05. Use
the appropriate χ2 goodness-of-fit test.

2.9 Course work grades are often assumed to be Normally distributed. In a
certain class, suppose that letter grades are given in the following man-
ner: A for grades in the range from 90 to 100 inclusive, B for grades in the
range from 75 to 89 inclusive, C for grades in the range from 60 to 74 inclu-
sive, D for grades in the range from 50 to 59 inclusive, and F for grades in
the range from 0 to 49. Use the data given below to check the assumption
that the data are coming from an N(75, 92) distribution. For this purpose,
employ the appropriate χ2 goodness-of-fit test, and take α = 0.05.

A B C D F

3 12 10 4 1

Hint: Assuming that the grade of a student chosen at random is a r.v.
X ∼ N(75, 81), compute the probabilities of an A, B, C, D, and F . Then
use these probabilities in applying the χ2 goodness-of-fit test.

2.10 It is often assumed that the I.Q. scores of human beings are Normally
distributed. On the basis of the following data, test this claim at level of
significance α = 0.05 by using the appropriate χ2 goodness-of-fit test.
Specifically, if X is the r.v. denoting the I.Q. score of an individual chosen
at random, then:
(i) Set p1 = P(X ≤ 90), p2 = P(90 < X ≤ 100), p3 = P(100 < X ≤

110), p4 = P(110 < X ≤ 120), p5 = P(120 < X ≤ 130), p6 =
P(X > 130).

(ii) Calculate the probabilities pi, i = 1, . . . , 6 under the assumption that
X ∼ N(100, 152) and call them pi0, i = 1, . . . , 6. Then set up the
hypothesis H0: pi = pi0, i = 1, . . . , 6.

(ii) Use the appropriate χ2 goodness-of-fit test to test the hypothesis at
level of significance α = 0.05.

The available data are given below, where x denotes the observed
number of individuals lying in a given interval.

x≤ 90 90 < x≤ 100 100 < x≤ 110 110 < x≤ 120 120 < x≤ 130 x> 130
10 18 23 22 18 9

2.11 Consider a group of 100 people living and working under very similar
conditions. Half of them are given a preventive shot against a certain
disease and the other half serve as controls. Of those who received the
treatment, 40 did not contract the disease whereas the remaining 10 did
so. Of those not treated, 30 did contract the disease and the remaining
20 did not. Test effectiveness of the vaccine at the level of significance
α = 0.05, by using the appropriate χ2 goodness-of-fit test.
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Hint: For an individual chosen at random from the target population
of 100 individuals, denote by T1, T2 and D1, D2 the following events:
T1 = “treated,” T2 = “not treated,” D1 = “diseased,” D2 = “not dis-
eased,” and set up the appropriate 2 × 2 contingency table.

2.12 On the basis of the following scores, appropriately taken, test whether
there are gender-associated differences in mathematical ability (as is of-
ten claimed!). Take α = 0.05, and use the appropriate χ2 goodness-of-fit
test.

Boys: 80 96 98 87 75 83 70 92 97 82
Girls: 82 90 84 70 80 97 76 90 88 86

Hint: Group the grades into the following intervals: [70, 75), [75, 80),
[80, 85), [85, 90), [90, 95), [95, 100), and count the grades of boys and
girls falling into each one of these intervals. Then form a 2 × 6 conti-
gency table with rows the two levels of gender (Boy, Girl), and columns
the six levels of grades. Finally, with pij standing for the probability
that an individual, chosen at random from the target population, falls
into the (i, j)th cell, stipulate the hypothesis H0: pij = piq j , i = 1, 2
and j = 1, . . . , 6, and proceed to test it as suggested.

2.13 From each of four political wards of a city with approximately the same
number of voters, 100 voters were chosen at random and their opinions
were asked regarding a certain legislative proposal. On the basis of the
data given below, test whether the fractions of voters favoring the legisla-
tive proposal under consideration differ in the four wards. Take α = 0.05,
and use the appropriate χ2 goodness-of-fit test.

WARD

1 2 3 4 Totals

Favor proposal 37 29 32 21 119
Do not favor proposal 63 71 68 79 281
Totals 100 100 100 100 400

12.3 Decision-Theoretic Approach to Testing Hypotheses

There are chapters and books written on this subject. What we plan to do in
this section is to deal with the simplest possible case of a testing hypothesis
problem in order to illustrate the underlying concepts.

To this end, let X1, . . . , Xn be a random sample with an unknown p.d.f. f . We
adopt the (somewhat unrealistic) position that f can be one of two possible
specified p.d.f.’s, f0 or f1. On the basis of the observed values x1, . . . , xn of
X1, . . . , Xn, we are invited to decide which is the true p.d.f. This decision will
be made on the basis of a (nonrandomized) decision function δ = δ(x1, . . . , xn)
defined on �n into �. More specifically, let R be a subset of �n, and suppose
that if x = (x1, . . . , xn) lies in R, we decide that f1 is the true p.d.f., and if x
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lies in Rc (the complement of R with respect to �n), we decide in favor of
f0. In terms of a decision function, we reach the same conclusion by taking
δ(x) = IR(x) (the indicator function of R) and deciding in favor of f1 if δ(x) = 1
and in favor of f0 if δ(x) = 0. Or

δ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (which happens when x ∈ R) leads to selection

of f1, and hence rejection of f0,
0 (which happens when x ∈ Rc) leads to selection

of f0, and hence rejection of f1.

(19)

At this point, we introduce monetary penalties for making wrong decisions,
which are expressed in terms of a loss function. Specifically, let L( f ; δ) be a
function in two arguments, the p.d.f. f and the decision function δ = δ(x).
Then it makes sense to define L( f, δ) in the following way.

L( f ; δ) =

⎧⎪⎨⎪⎩
0 if f = f0 and δ(x) = 0 or f = f1 and δ(x) = 1,

L1 if f = f0 and δ(x) = 1,

L2 if f = f1 and δ(x) = 0,

(20)

where L1 and L2 are positive quantities.
Next, consider the average (expected) loss when the decision function

δ is used, which is denoted by R( f ; δ) and is called the risk function. In
order to find the expression of R( f ; δ), let us suppose that Pf0 (X ∈ R) =
Pf0 [δ(X) = 1] = α and Pf1 (X ∈ R) = Pf1 [δ(X) = 1] = π . Then α is the proba-
bility of deciding in favor of f1 if, actually, f0 is true, and π is the probability
of deciding in favor of f1 when f1 is, actually, true. Then:

R( f ; δ) =
{

L1 Pf0 (X ∈ R) = L1 Pf0 [δ(X ) = 1] = L1α, if f = f0

L2 Pf1 (X ∈ Rc) = L2 Pf1 [δ(X ) = 0] = L2(1 − π), if f = f1,

(21)

or,

R( f0; δ) = L1 Pf0 (X ∈ R) = L1α,
(22)

R( f1; δ) = L2 Pf1 (X ∈ Rc) = L2(1 − π).

Let us recall that our purpose is to construct an optimal decision func-
tion δ = δ(x), where optimality is defined below on the basis of two differ-
ent criteria. From relation (22), we know which is the bigger among the risk
values R( f0; δ) = L1α and R( f1; δ) = L2(1 − π). That is, we have the quantity
max{R( f0; δ), R( f1; δ)}. For any other (nonrandomized) decision function δ∗

the corresponding quantity is max{R( f0; δ∗), R( f1; δ∗)}. Then it makes sense
to choose δ so that

max{R( f0; δ), R( f1; δ)} ≤ max{R( f0; δ∗), R( f1; δ∗)} (23)

for any other decision function δ∗ as described above. A decision function δ, if it
exists, which satisfies inequality (23) is called minimax (since it minimizes the
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maximum risk). The result below, Theorem 2, provides conditions under which
the decision function δ defined by (19) is, actually, minimax. The problem is
stated as a testing problem of a simple hypothesis against a simple alternative.

THEOREM 2
Let X1, . . . , Xn be a random sample with p.d.f. f which is either f0 or f1,
both completely specified. For testing the hypothesis H0: f = f0 against
the alternative HA: f = f1 at level of significance α, define the rejection
region R by:

R = {(x1, . . . , xn) ∈ �n; f1(x1) · · · f1(xn) > C f0(x1) · · · f0(xn)},
and let the test function δ = δ(x) (x = (x1, . . . , xn)) be defined by (19);
i.e.,

δ(x) =
{

1 if x ∈ R,

0 if x ∈ Rc.

The constant C is defined by the requirement that E f0δ(X ) =
Pf0 (X ∈ R) = α (X = (X1, . . . , Xn)), and it is assumed that the level
of significance α, the power π of the test δ, and the quantities L1 and L2

satisfy the relationship

(R( f0; δ)=) L1α = L2(1 − π) (=R( f1; δ)). (24)

Then the decision function δ = δ(x) is minimax.

REMARK 1 In connection with relation (24), observe that, if we determine
the level of significance α, then the power π is also determined, and therefore
relation (24) simply specifies a relationship between the losses L1 and L2;
they cannot be determined independently but rather one will be a function
of the other. In the present context, however, we wish to have the option of
specifying the losses L1 and L2, and then see what is a possible determination
of the constant C , which will produce a test of level of significance α (and of
power π) satisfying relation (24).

PROOF OF THEOREM 2 For simplicity, let us write P0 and P1 instead of Pf0

and Pf1 , respectively, and likewise, R(0; δ) and R(1; δ) instead of R( f0; δ) and
R( f1; δ), respectively. Then assumption (24) is rewritten thus: R(0; δ) = L1α =
L2(1 − π) = R(1; δ). Recall that we are considering only nonrandomized de-
cision functions. With this in mind, let T be any (other than R) subset of �n,
and let δ∗ be its indicator function, δ∗(x) = IT (x), so that δ∗ is the decision
function associated with T . Then, in analogy with (22),

R(0; δ∗) = L1 P0(X ∈ T), R(1; δ∗) = L2 P1(X ∈ Tc). (25)

Look at R(0; δ) and R(0; δ∗) and suppose that R(0; δ∗) ≤ R(0; δ). This is
equivalent to L1 P0(X ∈ T) ≤ L1 P0(X ∈ R) = L1α, or P0(X ∈ T) ≤ α. So δ∗,
being looked upon as a test, is of level of significance ≤ α. Then by Theorem 1
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in Chapter 11, the power of the test δ∗, which is P1(X ∈ T), is less than or
equal to P1(X ∈ R), which is the power of the test δ. This is so because δ is of
level of significance α, MP among all tests of level of significance ≤ α. From
P1(X ∈ T) ≤ P1(X ∈ R) we have, equivalently, P1(X ∈ Tc) ≥ P1(X ∈ Rc) or
L2 P1(X ∈ Tc) ≥ L2 P1(X ∈ Rc) or R(1; δ∗) ≥ R(1; δ). To summarize, the
assumption R(0; δ∗) ≤ R(0; δ) leads to R(1; δ) ≤ R(1; δ∗). Hence

R(0; δ∗) ≤ R(0; δ) = R(1; δ) (by (24)) ≤ R(1; δ∗),

and therefore

max{R(0; δ∗), R(1; δ∗)} = R(1; δ∗) ≥ R(1; δ) = max{R(0; δ), R(1; δ)}, (26)

as desired. Next, the assumption,

R(0; δ) < R(0; δ∗) (27)

leads likewise to the inequalities

R(1; δ∗) ≤ R(1; δ) = R(0; δ) (by (24)) < R(0; δ∗), (28)

so that

max{R(0; δ∗), R(1; δ∗)} = R(0; δ∗) > R(0; δ) = max{R(0; δ), R(1; δ)}. (29)

Relations (26) and (29) yield

max{R(0; δ), R(1; δ)} ≤ max{R(0; δ∗), R(1; δ∗)},
so that δ is, indeed, minimax. ▲

REMARK 2 It is to be pointed out that the minimax decision function δ =
δ(x) above is the MP test of level of significance Pf0 (X ∈ R) for testing the
(simple) hypothesis H0: f = f0 against the (simple) alternative HA: f = f1.

REMARK 3 If the underlying p.d.f. f depends on a parameter θ ∈ �, then
the two possible options f0 and f1 for f will correspond to two values of the
parameter θ, θ0, and θ1, say.

The theorem of this section is illustrated now by two examples.

EXAMPLE 2 On the basis of the random sample X1, . . . , Xn from the N(θ , 1) distribution,
determine the minimax decision function δ = δ(x) for testing the hypothesis
H0: θ = θ0 against the alternative HA: θ = θ1.

DISCUSSION Here the joint p.d.f. of the Xi’s is

L(x; θ) = (2π)−n/2 exp
[
−1

2

n∑
i=1

(xi − θ)2
]

,

so that the rejection region R is defined by L(x; θ1) > C L(x; θ0) or, equivalently,
by

exp[n(θ1 − θ0)x̄] > C exp
[
n
(
θ2

1 − θ2
0

)]
,
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or

x̄> C0 for θ1 > θ0, and x̄< C0 for θ1 < θ0,
(30)

where C0 = 1
2

(θ1 + θ0) + log C

n(θ1 − θ0)
.

Then the requirement in (24) becomes, accordingly,

L1 Pθ0 (X̄ > C0) = L2 Pθ1 (X̄ ≤ C0) for θ1 > θ0,

and

L1 Pθ0 (X̄ < C0) = L2 Pθ1 (X̄ ≥ C0) for θ1 < θ0,

or

L1{1 − 
[
√

n(C0 − θ0)]} = L2
[
√

n(C0 − θ1)] for θ1 > θ0,

and (31)

L1
[
√

n(C0 − θ0)] = L2{1 − 
[
√

n(C0 − θ1)]} for θ1 < θ0.

Consider the following numerical application.
Numerical Example Suppose n= 25 and let θ0 = 0 and θ1 = 1. In the spirit

of Remark 1, take, e.g., L1 = 5 and L2 = 2.5.

DISCUSSION Then the first relation in (31), which is applicable here,
becomes


[5(C0 − 1)] = 2[1 − 
(5C0)] or 2
(5C0) − 
(5 − 5C0) = 1.

From the Normal tables, we find C0 = 0.53, so that the minimax decision
function is given by:

δ(x) = 1 if x̄ > 0.53, and δ(x) = 0 if x̄ ≤ 0.53.

Let us now calculate the level of significance and the power of this test. We
have

P0(X̄ > 0.53) = 1 − 
(5 × 0.53) = 1 − 
(2.65) = 1 − 0.995975 � 0.004,

and

π(1) = P1(X̄ > 0.53) = 1 − 
[5(0.53 − 1)] = 
(2.35) = 0.990613 � 0.991.

EXAMPLE 3 In terms of the random sample X1, . . . , Xn from the B(1, θ) distribution, de-
termine the minimax function δ = δ(x) for testing the hypothesis H0: θ = θ0

against the alternative HA: θ = θ1.

DISCUSSION The joint p.d.f. of the Xi’s is here

L(x; θ) = θ t(1 − θ)n−t, t = x1 + · · · + xn,
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so that the rejection region R is determined by

L(x; θ1) > C L(x; θ0) or [θ1(1 − θ0)/θ0(1 − θ1)]t > C[(1 − θ0)/(1 − θ1)]n,

or

t log
(1 − θ0)θ1

θ0(1 − θ1)
> C ′

0 = log C − n log
1 − θ1

1 − θ0
.

This is equivalent to

t > C0 for θ1 > θ0, and t < C0 for θ1 < θ0,

where C0 = C ′
0/ log (1 − θ0)θ1

θ0(1 − θ1) . The requirement in (24) becomes here, respec-
tively,

L1 Pθ0 (X > C0) = L2 Pθ1 (X ≤ C0) for θ1 > θ0,

and

L1 Pθ0 (X < C0) = L2 Pθ1 (X ≥ C0) for θ1 < θ0,

or

L1 Pθ0 (X ≤ C0) + L2 Pθ1 (X ≤ C0) = L1 for θ1 > θ0,

and (32)

L1 Pθ0 (X ≤ C0 − 1) + L2 Pθ1 (X ≤ C0 − 1) = L2 for θ1 < θ0,

where X ∼ B(n, θ).

Numerical Example Let n = 20, and suppose θ0 = 0.50 and θ1 = 0.75.

DISCUSSION Here, the first relation in (32) is applicable. Since

P0.75(X ≤ C0) = P0.25(X ≥ 20 − C0) = 1 − P0.25(X ≤ 19 − C0), (33)

the first relation in (32) becomes

L1 P0.50(X ≤ C0) − L2 P0.25(X ≤ 19 − C0) = L1 − L2,

or

L2 = [1 − P0.50(X ≤ C0)]L1/[1 − P0.25(X ≤ 19 − C0)]. (34)

At this point, let us take L1 = 1 and L2 = 0.269. Then the right-hand side of
(34) gives, for C0 = 13; 1−0.9423

1−0.7858 = 0.0577
0.2142 � 0.269 = L2; i.e., the first relation in

(32) obtains. The minimax decision function δ = δ(x) is then given by: δ(x) = 1
if x ≥ 14, and δ(x) = 0 for x ≤ 13. The level of significance and the power of
this test are:

P0.50(X ≥ 14) = 1 − P0.50(X ≤ 13) = 1 − 0.9423 = 0.0577,

and, on account of (33),

π(0.75) = P0.75(X ≥ 14) = P0.25(X ≤ 6) = 0.7858.
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Instead of attempting to select δ = δ(x) so as to minimize the maximum
risk, we may, instead, try to determine δ so that δ minimizes the average risk.
This approach calls for choosing the p.d.f.’s f0 and f1 according to a probability
distribution; choose f0 with probability p0 and choose f1 with probability p1

(p0 + p1 = 1), and set λ0 = {p0, p1}. If Rλ0 (δ) denotes the corresponding
average risk, then, on account of (22), this average is given by:

Rλ0 (δ) = L1 Pf0 (X ∈ R)p0 + L2 Pf1 (X ∈ Rc)p1

= p0L1 Pf0 (X ∈ R) + p1L2[1 − Pf1 (X ∈ R)]

= p1L2 + [p0L1 Pf0 (X ∈ R) − p1L2 Pf1 (X ∈ R)]

=
{

p1L2 + ∫
R

[p0L1 f0(x1) · · · f0(xn) − p1L2 f1(x1) · · · f1(xn)] dx1 · · · dxn

p1L2 +∑x∈R[p0L1 f0(x1) · · · f0(xn) − p1L2 f1(x1) · · · f1(xn)]

for the continuous and the discrete case, respectively. From this last expres-
sion, it follows that Rλ0 (δ) is minimized, if p0L1 f0(x1) · · · f0(xn)− p1L2 f1(x1) · · ·
f1(xn) is < 0 on R. But δ(x) = 1 on R and δ(x) = 0 on Rc. Thus, we may restate
these equations as follows:

δ(x) =
{

1 if f1(x1) · · · f1(xn) >
p0 L1
p1 L2

f0(x1) · · · f0(xn),

0 otherwise.
(35)

Thus, given a probability distribution λ0 = {p0, p1} on { f0, f1}, there is always a
(nonrandomized) decision function δ which minimizes the average risk Rλ0 (δ),
and this δ is given by (35) and is called a Bayes decision function.

THEOREM 3
The Bayes decision function δλ0 (x) corresponding to the probability dis-
tribution λ0 = {p0, p1} on { f0, f1} is given by (35). This decision function
is, actually, the MP test for testing the hypothesis H0: f = f0 against the
alternative HA: f = f1 with cutoff point C = p0L1/p1L2 and level of
significance α given by:

Pf0 [ f1(X1) · · · f1(Xn) > C f0(X1) · · · f0(Xn)] = α. (36)

REMARK 4 As mentioned earlier, if the underlying p.d.f. depends on a
parameter θ ∈ �, then the above problem becomes that of testing H0: θ = θ0

against HA: θ = θ1 for some specified θ0 and θ1 in �.

EXAMPLE 4 DISCUSSION In reference to Example 2 and for the case that θ1 > θ0,
δλ0(x) = 1 if x̄ > C0, C0 = 1

2 (θ1 + θ0) + log C

n(θ1 − θ0) , C = p0L1/p1L2, as follows
from relation (30). For the numerical data of the same example, we obtain
C0 = 0.50 + 0.04 log 2p0

1−p0
. For example, for p0 = 1

2 , C0 is � 0.50+0.04×0.693 =
0.52772 � 0.53, whereas for p0 = 1

4 , C0 is � 0.50 − 0.04 × 0.405 = 0.4838 �
0.48. For C0 = 0.53, the level of significance and the power have already



360 Chapter 12 More About Testing Hypotheses

been calculated. For C0 = 0.48, these quantities are, respectively:

P0(X̄ > 0.48) = 1 − 
(5 × 0.48) = 1 − 
(2.4) = 1 − 0.991802 = 0.008198,

π(1) = P1(X̄ > 0.48) = 1 − 
[5(0.48 − 1)] = 
(2.6) = 0.995339.

In reference to Example 3 and for the case that θ1 > θ0, δλ0 (x) = 1 if x > C0,
C0 = (log C −n log 1 − θ1

1 − θ0
)/ log (1 − θ0)θ1

θ0(1 − θ1) , C = p0L1/p1L2. For the numerical data
of the same example, we have C0 � (15.173 + log p0

1−p0
)/1.099. For p = 1

2 , C0 is
13.81, and for p0 = 1

4 , C0 is 12.81. In the former case, δλ0 (x) = 1 for x ≥ 14, and
in the latter case, δλ0 (x) = 0 for x ≤ 13. The level of significance and the power
have been calculated for the former case. As for the latter case, we have:

P0.50(X ≥ 13) = 1 − P0.50(X ≤ 12) = 1 − 0.8684 = 0.1316,

π(0.75) = P0.75(X ≥ 13) = P0.25(X ≤ 7) = 0.8982.

12.4 Relationship Between Testing Hypotheses and Confidence Regions

In this brief section, we discuss a relationship which connects a testing hy-
pothesis problem and the problem of constructing a confidence region for the
underlying parameter. To this effect, suppose X1, . . . , Xn is a random sample
from the p.d.f. f (·; θ), θ ∈ � ⊆ �r , r ≥ 1, and for each θ in �, consider
the problem of testing the hypothesis, to be denoted by H0(θ), that the pa-
rameter θ∗, say, in �, is actually, equal to the value of θ considered. That is,
H0(θ): θ∗ = θ at level of significance α. Denote by A(θ) the respective accep-
tance region in �n. As usually, X = (X1, . . . , Xn) and x = (x1, . . . , xn) is the
observed value of X. For each x ∈ �n, define in � the region T(x) as follows:

T(x) = {θ ∈ �; x ∈ A(θ)}. (37)

Thus, T(x) consists of all those θ ∈ � for which, on the basis of the out-
come x, the hypothesis H0(θ) is accepted. On the basis of the definition of T(x)
by (37), it is clear that

θ ∈ T(x) if and only if x ∈ A(θ).

Therefore

Pθ[θ ∈ T(X )] = Pθ[X ∈ A(θ)]. (38)

But the probability on the right-hand side of (38) is equal to 1 − α, since
the hypothesis H0(θ) being tested is of level of significance α. Thus,

Pθ [θ ∈ T(X )] = 1 − α,

and this means that the region T(X ) is a confidence region for θ with confi-
dence coefficient 1 − α.

Summarizing what has been discussed so far in the form of a theorem, we
have the following result.
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THEOREM 4
Let X1, . . . , Xn be a random sample from the p.d.f. f (·; θ), θ ∈ � ⊆ �r ,
r ≥ 1, and, for each θ ∈ �, consider the problem of testing the hypothesis
H0(θ): θ∗ = θ at level of significance α. Let A(θ) be the corresponding
acceptance region in �n, and for each x ∈ �n, define the region T(x)
in � as in (37). Then T(X) is a confidence region for θ with confidence
coefficient 1 − α, where X = (X1, . . . , Xn) and x = (x1, . . . , xn) is the
observed value of X.

This result will now be illustrated below by two examples.

EXAMPLE 5 On the basis of a random sample X1, . . . , Xn from the N(θ , σ 2) distribution with
σ known, construct a confidence interval for θ with confidence coefficient 1−α,
by utilizing Theorem 4.

DISCUSSION For each θ ∈ � = � and for testing the hypothesis H0(θ)
that the (unknown) parameter θ∗, say, is, actually, equal to θ , it makes sense
to reject H0(θ) when X̄ is either too far to the left or too far to the right of θ .
Equivalently, if X̄−θ is either <C1 or X̄−θ is >C2 for some constants C1, C2. If
H0(θ) is to be of level of significance α, we will have Pθ (X̄ − θ < C1 or X̄ − θ >

C2) = α. But under H0(θ), the distribution of X̄ is symmetric about θ , so that it
is reasonable to take C1 = −C2, and then C2 = zα/2, C1 = −zα/2. Thus, H0(θ) is
accepted whenever −zα/2 ≤ x̄ − θ ≤ zα/2 or −zα/2

√
n

σ
≤

√
n(X̄−θ)

σ
≤ zα/2

√
n

σ
, and,

of course,

Pθ

[
−zα/2

√
n

σ
≤

√
n(X̄ − θ)

σ
≤ zα/2

√
n

σ

]
= 1 − α.

Thus,

A(θ) =
{

x ∈ �n; −zα/2

√
n

σ
≤

√
n(x̄ − θ)

σ
≤ zα/2

√
n

σ

}
,

and therefore, by (37),

T(x) = {θ ∈ �; x ∈ A(θ)}

=
{
θ ∈ �; −zα/2

√
n

σ
≤

√
n(x̄ − θ)

σ
≤ zα/2

√
n

σ

}

=
{
θ ∈ �; x̄ − zα/2

σ√
n

≤ θ ≤ x̄ + zα/2
σ√
n

}
.

In other words, we ended up with the familiar confidence interval for θ , X̄ ±
zα/2

σ√
n

, we have already constructed in Chapter 10, Example 1(i).
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EXAMPLE 6 Let the random sample X1, . . . , Xn be from the N(μ, σ 2) distribution, where
both μ and σ 2 are unknown. Construct a confidence interval for σ 2 with con-
fidence coefficient 1 − α, again using Theorem 4.

DISCUSSION Here S2 = 1
n−1

∑n

i=1(Xi − X̄ )2 is an estimate of σ 2, and,
therefore, for testing the hypothesis H0(σ 2): variance = σ 2, it is reasonable to
reject H0(σ 2) whenever the ratio of S2 over the σ 2 specified by the hypothesis is
either too small or too large. That is, reject H0(σ 2) when S2

σ 2 < C1 or S2

σ 2 > C2 for
some (>0) constants C1, C2 to be specified by the requirement that Pσ 2 ( S2

σ 2 < C1

or S2

σ 2 > C2) = α, or

Pσ 2

[
(n − 1)S2

σ 2
< C ′

1 or
(n − 1)S2

σ 2
> C ′

2

]
= α,

C ′
1 = (n − 1)C1

σ 2
, C ′

2 = (n − 1)C2

σ 2
.

Since under H0(σ 2), (n−1)S2

σ 2 ∼ χ2
n−1, we may choose to split the probability α

equally between the two tails, in which case C ′
1 = χ2

n−1; 1−α/2 and C ′
2 = χ2

n−1; α/2,
and H(σ 2) is accepted whenever

χ2
n−1; 1−α/2 ≤ (n − 1)S2

σ 2
≤ χ2

n−1; α/2.

Of course,

Pσ 2

[
χ2

n−1;1−α/2 ≤ (n − 1)S2

σ 2
≤ χ2

n−1; α/2

]
= 1 − α.

Then, with s2 denoting the observed value of S2,

A(σ 2) =
{

x ∈ �n; χ2
n−1; 1−α/2 ≤ (n − 1)s2

σ 2
≤ χ2

n−1; α/2

}
,

and therefore (37) becomes here:

T(x) = {σ 2 ∈ (0, ∞); x ∈ A(σ 2)}

=
{
σ 2 ∈ (0, ∞); χ2

n−1; 1−α/2 ≤ (n − 1)s2

σ 2
≤ χ2

n−1; α/2

}

=
{
σ 2 ∈ (0, ∞);

(n − 1)s2

χ2
n−1; α/2

≤ σ 2 ≤ (n − 1)s2

χ2
n−1; 1−α/2

}
;

that is, we have arrived once again at the familiar confidence interval for
σ 2, [ (n−1)s2

χ2
n−1;α/2

, (n−1)s2

χ2
n−1;1−α/2

], (see Example 3 in Chapter 10).



Chapter 13

A Simple Linear
Regression Model

This is a rather extensive chapter on an important subject matter with an
abundance of diverse applications. The basic idea involved may be described
as follows. There is a stimulus, denoted by x, and a response to it, denoted
by y. At different levels of x, one observes the respective responses. How
are the resulting (x, y) pairs related, if they are related at all? There are all
kind of possibilities, and the one discussed in this chapter is the simplest such
possibility, namely, the pairs are linearly related.

In reality, what one, actually, observes at x, due to errors, is a value of a
r.v. Y, and then the question arises as to how we would draw a straight line,
which would lie “close” to most of the (x, y) pairs. This leads to the Principle
of Least Squares. On the basis of this principle, one is able to draw the so-
called fitted linear regression line by computing the Least Squares Estimates of
parameters involved. Also, some properties of these estimates are established.
These things are done in the first two sections of the chapter.

Up to this point, the errors are not required to have any specific distribution,
other than having zero mean and finite variance. However, in order to proceed
with statistical inference about the parameters involved, such as constructing
confidence intervals and testing hypotheses, one has to stipulate a distribution
for the errors; this distribution, reasonably enough, is assumed to be Normal.
As a consequence of it, one is in a position to specify the distribution of all
estimates involved and proceed with the inference problems referred to above.
These issues are discussed in Sections 13.3 and 13.4.

In the following section, Section 13.5, the problem of predicting the ex-
pected value of the observation Y0 at a given point x0 and the problem of
predicting a single value of Y0 are discussed. Suitable predictors are provided,
and also confidence intervals for them are constructed.

The chapter is concluded with Section 3.7 indicating extensions of the
model discussed in this chapter to more general situations covering a much
wider class of applications.

363
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13.1 Setting up the Model --- The Principle of Least Squares

As has already been mentioned, Examples 22 and 23 in Chapter 1 provide
motivation for the statistical model to be adopted and studied in this chapter.
Example 22, in particular, will serve throughout the chapter to illustrate the
underlying general results. For convenience, the data related to this example
are reproduced here in Table 13.1.

Table 13.1

The Data x =

Undergraduate GPA and
y = Score in the
Graduate Management
Aptitude Test (GMAT);
There Are 34 (x, y)

Pairs Altogether

DATA OF UNDERGRADUATE GPA (x) AND GMAT SCORE (y)

x y x y x y

3.63 447 2.36 399 2.80 444
3.59 588 2.36 482 3.13 416
3.30 563 2.66 420 3.01 471
3.40 553 2.68 414 2.79 490
3.50 572 2.48 533 2.89 431
3.78 591 2.46 509 2.91 446
3.44 692 2.63 504 2.75 546
3.48 528 2.44 336 2.73 467
3.47 552 2.13 408 3.12 463
3.35 520 2.41 469 3.08 440
3.39 543 2.55 538 3.03 419

3.00 509

The first question which arises is whether the pairs (x, y) are related at all
and, if they are, how. An indication that those pairs are, indeed, related is borne
out by the scatter plot depicted in Figure 13.1. Indeed, taking into consideration
that we are operating in a random environment, one sees a conspicuous, albeit
somewhat loose, linear relationship between the pairs (x, y).

yi − hi
yi
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y
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Figure 13.1

Scatter Diagram for
Table 13.1
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So, we are not too far off the target by assuming that there is a straight
line in the xy-plane which is “close” to most of the pairs (x, y). The question
now is how to quantify the term “close.” The first step toward this end is the
adoption of the model described in relation (11) of Chapter 8. Namely, we
assume that, for each i = 1, . . . , 34, the respective yi is the observed value of a
r.v. Yi associated with xi, and if it were not for the random errors involved, the
pairs (xi, yi), i = 1, . . . , 34 would lie on a straight line y = β1 + β2x ; i.e., we
would have yi = β1 +β2xi, i = 1, . . . , 34. Thus, the r.v. Yi itself, whose yi are
simply observed values, would be equal to β1 + β2xi except for fluctuations
due to a random error ei. In other words, Yi = β1 + β2xi + ei. Next, arguing as
in Section 8.4, it is reasonable to assume that the ei’s are independent r.v.’s with
Eei = 0 and Var(ei) = σ 2 for all i’s, so that one arrives at the model described
in relation (11) of Chapter 8; namely, Y1, . . . , Y34 are independent r.v.’s having
the structure:

Yi = β1 + β2xi + ei, with Eei = 0 and Var(ei) = σ 2, i = 1, . . . , 34.
(1)

Set EYi = ηi. Then, because of the errors involved, it is, actually, the pairs
(xi, ηi), i= 1, . . . , 34 which lie on a straight line y= β1+β2x; i.e., ηi = β1+β2xi,
i = 1, . . . , 34. It is in the determination of a particular straight line where the
Principle of Least Squares enters the picture. According to this principle, one
argues as follows: On the basis of the model described in (1), what we would
expect to have observed at xi would be ηi, whereas what is, actually, ob-
served is yi. Thus, there is a deviation measured by yi − ηi, i = 1, . . . , 34 (see
Figure 13.1). Some of these deviations are positive, some are negative, and,
perhaps, some are zero. In order to deal with nonnegative numbers, look at
|yi−ηi|, which is, actually, the distance between the points (xi, yi) and (xi, ηi).
Then, draw the line y = β1 + β2x, so that these distances are simultaneously
minimized. More formally, first look at the squares of these distances (yi−ηi)2,
as it is much easier to work with squares as opposed to absolute values, and
in order to account for the simultaneous minimization mentioned earlier, con-
sider the sum

∑34
i=1(yi − ηi)2 and seek its minimization. At this point, replace

the observed value yi by the r.v. Yi itself and set

S(Y, β) =
34∑

i=1

(Yi − ηi)2 =
34∑

i=1

[Yi − (β1 + β2xi)]2

(
=

34∑
i=1

e2
i

)
, (2)

where Y = (Y1, . . . , Y34) and β = (β1, β2).
Then the Principle of Least Squares calls for the determination of β1 and

β2 which minimize the sum of squares of errors; i.e., the quantity S(Y, β) in
(2). The actual minimization is a calculus problem. If there is a unique straight
line so determined, then, clearly, this would be the line which lies “close” to
most pairs (xi, Yi), i = 1, . . . , 34, in the Least Squares sense. It will be seen
below that this is, indeed, the case.

In a more general setting, consider the model below:

Yi = β1 + β2xi + ei, where the random errors
ei, i = 1, . . . , n are i.i.d. r.v.’s. with
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Eei = 0, and Var(ei) = σ 2, which imply that the r.v.’s
Yi, i = 1, . . . , n are independent, but not identically distributed, with
EYi = ηi = β1 + β2xi and Var(yi) = σ 2. (3)

Let β̂1 and β̂2 be the unique values of β1 and β2, respectively, which minimize
the sum of squares of errors S(Y, β) = ∑n

i=1[Yi − (β1 + β2xi)]2(=∑n

i=1 e2
i ).

These values, which are functions of the Yi’s as well as the xi’s, are the Least

Squares Estimates (LSE’s) of β1 and β2. Any line y = β1 + β2x is referred
to as a regression line and, in particular, the line ŷ = β̂1 + β̂2x is known as
the fitted regression line. For this line, the ŷi’s corresponding to the xi’s are
ŷi = β̂1 + β̂2xi, i = 1, . . . , n.

13.2 The Least Squares Estimates of β1 and β2 and Some of their Properties

In this section, the LSE’s of β1 and β2 are derived and some of their properties
are obtained. Also, the (unknown) variance σ 2 is estimated.

THEOREM 1
In reference to the model described in (3), the LSE’s β̂1 and β̂2 of β1 and
β2, respectively, are given by the following expressions (which are also
appropriate for computational purposes):

β̂1 =
(∑n

i=1 x 2
i

)(∑n

i=1 Yi

)− (∑n

i=1 xi

)(∑n

i=1 xiYi

)
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 , (4)

and

β̂2 = n
∑n

i=1 xiYi − (∑n

i=1 xi

)(∑n

i=1 Yi

)
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 . (5)

PROOF Consider the partial derivatives:

∂

∂β1
S(Y, β) = 2

n∑
i=1

(Yi − β1 − β2xi)(−1) = −2

(
n∑

i=1

Yi − nβ1 − β2

n∑
i=1

xi

)
,

(6)
∂

∂β2
S(Y, β) = 2

n∑
i=1

(Yi − β1 − β2xi)(−xi)

= −2

(
n∑

i=1

xiYi − β1

n∑
i=1

xi − β2

n∑
i=1

x 2
i

)
, (7)

and solve the so-called normal equations: ∂
∂β1

S(Y, β) = 0 and ∂
∂β2

S(Y, β) = 0,
or nβ1 + (

∑n

i=1 xi)β2 =∑n

i=1 Yi and (
∑n

i=1 xi)β1 + (
∑n

i=1 x2
i )β2 =∑n

i=1 xiYi to
find:

β̂1 =

∣∣∣ ∑n
i=1 Yi∑n

i=1 xiYi

∑n
i=1 xi∑n
i=1 x 2

i

∣∣∣∣∣∣ n∑n
i=1 xi

∑n
i=1 xi∑n
i=1 x 2

i

∣∣∣ =
(∑n

i=1 x 2
i

)(∑n

i=1 Yi

)− (∑n

i=1 xi

)(∑n

i=1 xiYi

)
n
∑n

i=1 x2
i − (∑n

i=1 xi

)2 ,
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and

β̂2 =

∣∣∣ n∑n
i=1 xi

∑n
i=1 Yi∑n

i=1 xiYi

∣∣∣
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 = n
∑n

i=1 xiYi − (∑n

i=1 xi

)(∑n

i=1 Yi

)
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 .

It remains to show that β̂1 and β̂2, actually, minimize S(Y, β). From (6) and
(7), we get:

∂2

∂β2
1

S(Y, β) = 2n,
∂2

∂β1 ∂β2
S(Y, β) = ∂2

∂β2 ∂β1
S(Y, β) = 2

n∑
i=1

xi,

∂2

∂β2
2

S(Y, β) = 2
n∑

i=1

x 2
i ,

and the 2 × 2 matrix below is positive semidefinite for all β1, β2, since, for all
λ1, λ2 reals not both 0,

(λ1, λ2)
(

n∑n

i=1 xi

∑n

i=1 xi∑n

i=1 x 2
i

)(
λ1

λ2

)

=
(

λ1n + λ2

n∑
i=1

xi λ1

n∑
i=1

xi + λ2

n∑
i=1

x 2
i

)(
λ1

λ2

)

= λ2
1n + 2λ1λ2

n∑
i=1

xi + λ2
2

n∑
i=1

x 2
i

= λ2
1n + 2nλ1λ2x̄ + λ2

2

n∑
i=1

x 2
i

(
where x̄ = 1

n

n∑
i=1

xi

)

= λ2
1n + 2nλ1λ2x̄ + λ2

2

(
n∑

i=1

x 2
i − nx̄2

)
+ λ2

2nx̄ 2

= n
(
λ2

1 + 2λ1λ2x̄ + λ2
2x̄ 2)+ λ2

2

n∑
i=1

(xi − x̄)2

= n(λ1 + λ2x̄)2 + λ2
2

n∑
i=1

(xi − x̄)2 ≥ 0.

This completes the proof of the theorem. ▲

COROLLARY With x̄ = (x1 + · · · + xn)/n and Ȳ = (Y1 + · · · + Yn)/n,
the LSE’s β̂1 and β̂2 may also be written as follows (useful expressions for
noncomputational purposes):

β̂1 = Ȳ − β̂2x̄, β̂2 =
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
= 1∑n

i=1(xi − x̄)2

n∑
i=1

(xi − x̄)Yi.

(8)
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PROOF First,
n∑

i=1

(xi − x̄)(Yi − Ȳ ) =
n∑

i=1

xiYi − Ȳ

n∑
i=1

xi − x̄

n∑
i=1

Yi + nx̄Ȳ

=
n∑

i=1

xiYi − 1
n

(
n∑

i=1

xi

)(
n∑

i=1

Yi

)
− nx̄Ȳ + nx̄Ȳ

= 1
n

[
n

n∑
i=1

xiYi −
(

n∑
i=1

xi

)(
n∑

i=1

Yi

)]
,

and

n

n∑
i=1

x 2
i −
(

n∑
i=1

xi

)2

= n

n∑
i=1

x 2
i − (nx̄)2 = n

(
n∑

i=1

x 2
i − nx̄2

)

= n

n∑
i=1

(xi − x̄)2.

Therefore∑n

i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
= n
∑n

i=1(xi − x̄)(Yi − Ȳ )
n
∑n

i=1(xi − x̄)2

= n
∑n

i=1 xiYi − (∑n

i=1 xi

) (∑n

i=1 Yi

)
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 = β̂2, on account of (5).

The second expression for β̂2 as a linear combination of the Yi’s follows,
because

n∑
i=1

(xi − x̄)(Yi − Ȳ) =
n∑

i=1

(xi − x̄)Yi − Ȳ

n∑
i=1

(xi − x̄) =
n∑

i=1

(xi − x̄)Yi,

since
n∑

i=1

(xi − x̄) =
n∑

i=1

xi − nx̄ =
n∑

i=1

xi −
n∑

i=1

xi = 0.

Also,

Ȳ − β̂2x̄ = Ȳ − n
∑n

i=1 xiYi − (∑n

i=1 xi

) (∑n

i=1 Yi

)
n
∑n

i=1 x 2
i − (∑n

i=1 xi

)2 x̄

= Ȳ − n
∑n

i=1 xiYi − n2x̄Ȳ

n
∑n

i=1 x 2
i − n2x̄2

x̄

= nȲ
∑n

i=1 x 2
i − n2x̄2Y − nx̄

∑n

i=1 xiYi + n2x̄2Y

n
∑n

i=1(xi − x̄)2

=
(∑n

i=1 x 2
i

)(∑n

i=1 Yi

) − (∑n

i=1 xi

) (∑n

i=1 xiYi

)
n
∑n

i=1(xi − x̄)2
= β̂1 by (4). ▲
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The following notation is suggested (at least in part) by the expressions in
the LSE’s β̂1 and β̂2, and it will be used extensively and conveniently throughout
the rest of this chapter.

Set

SSx =
n∑

i=1
(xi − x̄)2 =

n∑
i=1

x 2
i − nx̄2 =

n∑
i=1

x 2
i − 1

n

(
n∑

i=1

xi

)2

,

and likewise

SSy =
n∑

i=1
(Yi − Ȳ)2 =

n∑
i=1

Y 2
i − nȲ

2 =
n∑

i=1
Y 2

i − 1
n

(
n∑

i=1

Yi

)2

,

(9)
and

SSxy =
n∑

i=1
(xi − x̄)(Yi − Ȳ ) =

n∑
i=1

(xi − x̄)Yi

=
n∑

i=1
xiYi − 1

n

(
n∑

i=1

xi

)(
n∑

i=1

Yi

)
.

Then the LSE’s β̂1 and β̂2 may be rewritten as follows:

β̂1 = 1
n

n∑
i=1

Yi − β̂2

(
1
n

n∑
i=1

xi

)
, β̂2 = SSxy

SSx

. (10)

Also, recall that the fitted regression line is given by:

ŷ = β̂1 + β̂2x and that ŷi = β̂1 + β̂2xi, i = 1, . . . , n. (11)

Before we go any further, let us discuss the example below.

EXAMPLE 1 In reference to Table 13.1, compute the LSE’s β̂1 and β̂2 and draw the fitted
regression line ŷ = β̂1 + β̂2x.

DISCUSSION The application of formula (10) calls for the calculation of
SSx and SSxy given in (9). Table 13.2 facilitates the calculations.∑

i

xi = 100.73,
∑

i

yi = 16,703,
∑

i

x2
i = 304.7885,

∑
i

xiyi = 50,066.47,

and then

SSx = 304.7885 − (100.73)2

34
� 304.7885 − 298.4274 � 6.361,

SSxy = 50,066.47 − (100.73) × (16,703)
34

� 50,066.47 − 49,485.094

= 581.376.
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Table 13.2 x y x2 xy x y x2 xy

3.63 447 13.1769 1,622.61 3.48 528 12.1104 1,837.44
3.59 588 12.8881 2,110.92 3.47 552 12.0409 1,915.44
3.30 563 10.8900 1,857.90 3.35 520 11.2225 1,742.00
3.40 553 11.5600 1,880.20 3.39 543 11.4921 1,840.77
3.50 572 12.2500 2,002.00 2.36 399 5.5696 941.64
3.78 591 14.2884 2.233.98 2.36 482 5.5696 1,137.52
3.44 692 11.8336 2,380.48 2.66 420 7.0756 1,117.20
2.68 414 7.1824 1,109.52 3.01 471 9.0601 1,417.71
2.48 533 6.1504 1,321.84 2.79 490 7.7841 1,367.10
2.46 509 6.0516 1,252.14 2.89 431 8.3521 1,245.59
2.63 504 6.9169 1,325.52 2.91 446 8.4681 1,297.86
2.44 336 5.9536 819.84 2.75 546 7.5625 1,501.50
2.13 408 4.5369 869.04 2.73 467 7.4529 1,274.91
2.41 469 5.8081 1,130.29 3.12 463 9.7344 1,444.56
2.55 538 6.5025 1,371.90 3.08 440 9.4864 1,355.20
2.80 444 7.8400 1,243.20 3.03 419 9.1809 1,269.57
3.13 416 9.7969 1,302.08 3.00 509 9.0000 1,527.00

Totals 50.35 8,577 153.6263 25,833.46 50.38 8,126 151.1622 24,233.01

Then

β̂2 = 581.376
6.361

� 91.397 and β̂1 = 16,703
34

− (91.397) × 100.73
34

� 491.265 − 270.809 = 220.456,

and the fitted regression line ŷ = 220.456 + 91.397x is depicted in the
Figure 13.2.
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Figure 13.2

The Fitted
Regression Line ŷ =

220.456 + 91.397x
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The LSE’s β̂1 and β̂2 have the desirable property of being unbiased, as shown
in the following theorem.

THEOREM 2
The LSE’s β̂1 and β̂2 are unbiased; i.e., Eβ̂1 = β1 and Eβ̂2 = β2. Further-
more,

Var(β̂1) = σ 2
(

1
n

+ x̄2

SSx

)
and Var(β̂2) = σ 2

SSx

,

where SSx is given in (9).

PROOF In this proof and also elsewhere, the range of the summation is not
explicitly indicated, since it is always from 1 to n. Consider β̂2 as given in (8).
Then: SSxβ̂2 =∑i(xi − x̄)Yi, so that, by taking expectations:

SSxEβ̂2 =
∑

i

(xi − x̄)EYi =
∑

i

(xi − x̄)(β1 + β2xi)

= β1

∑
i

(xi − x̄) + β2

∑
i

xi(xi − x̄) = β2

∑
i

xi(xi − x̄)

= β2

(∑
i

x 2
i − nx̄2

)
= β2

∑
i

(xi − x̄)2 = SSxβ2.

Therefore, dividing through by SSx, we get Eβ̂2 = β2. Next, also from (8),

Eβ̂1 = E(Ȳ − β̂2x̄) = EȲ − x̄Eβ̂2 = 1
n

∑
i

(β1 + β2xi) − x̄β2

= β1 + β2x̄ − β2x̄ = β1.

Regarding the variances, we have from (8): SSxβ̂2 =∑i(xi − x̄)Yi, so that:

SS2
x Var(β̂2) = Var

(∑
i

(xi − x̄)Yi

)
=
∑

i

(xi − x̄)2Var(Yi)

= σ 2
∑

i

(xi − x̄)2 = σ 2SSx,

so that Var(β̂2) = σ 2/SSx. Finally, from (8),

β̂1 = Ȳ − x̄β̂2 = 1
n

∑
i

Yi − x̄

SSx

∑
i

(xi − x̄)Yi =
∑

i

[
1
n

− x̄(xi − x̄)
SSx

]
Yi,

(12)

so that

Var(β̂1) = σ 2
∑

i

[
1
n

− x̄(xi − x̄)
SSx

]2

= σ 2
(

1
n

+ x̄2

SS2
x

SSx

)
= σ 2
(

1
n

+ x̄2

SSx

)
. ▲
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EXAMPLE 2 DISCUSSION In reference to Example 1, the variances of the LSE’s β̂1 and
β̂2 are given by:

Var(β̂1) � σ 2
(

1
34

+ 8.777
6.361

)
� σ 2(0.029 + 1.380) = 1.409σ 2,

and

Var(β̂2) = σ 2

6.361
� 0.157σ 2.

In fitting a regression line, there are various deviations which occur. At this
point, these deviations will be suitably attributed to several sources, certain
pieces of terminology will be introduced, and also some formal relations will
be established. To this end, look at the observable Yi and split it as follows:
Yi = ŷi+(Yi− ŷi). The component ŷi represents the point (xi, ŷi) which lies on
the fitted regression line ŷ = β̂1+β̂2x, and the difference Yi− ŷi is the deviation
of Yi from ŷi. We may refer to the component ŷi as that part of Yi which is
due to the linear regression, or it is explained by the linear regression, and
the component Yi − ŷi of Yi as the residual, or the deviation from the linear

regression, or variability unexplained by the linear regression. We can go
through the same arguments with reference to the sample mean Ȳ of the Yi’s.
That is, we consider:

Yi − Ȳ = (ŷi − Ȳ ) + (Yi − ŷi).

The interpretation of this decomposition is the same as the one given above,
but with reference to Ȳ . Next, look at the squares of these quantities:

(Yi − Ȳ )2, (ŷi − Ȳ )2, (Yi − ŷi)2,

and, finally, at their sums:

n∑
i=1

(Yi − Ȳ )2,
n∑

i=1

(ŷi − Ȳ )2,
n∑

i=1

(Yi − ŷi)2.

At this point, assume for a moment that:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(ŷi − Ȳ )2 +
n∑

i=1

(Yi − ŷi)2. (13)

Then this relation would state that the total variability (of the Yi’s in reference
to their mean Ȳ ),

∑n

i=1(Yi − Ȳ )2), is the sum of the variability
∑n

i=1(ŷi − Ȳ )2

due to the linear regression, or explained by the linear regression, and the
residual variability,

∑n

i=1(Yi − ŷi)2, or variability unexplained by the linear

regression.

We proceed in proving relation (13).
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THEOREM 3
Let SST (=SSy, see (9)), SSR, and SSE, respectively, be the total variabil-
ity, the variability due to the linear regression (or explained by the linear
regression), and the residual variability (or variability not explained by
the linear regression); i.e.,

SST (=SSy) =
n∑

i=1

(Yi − Ȳ )2, SSR =
n∑

i=1

(ŷi − Ȳ )2, SSE =
n∑

i=1

(Yi − ŷi)2,

(14)

where ŷi = β̂1 + β̂2xi, i = 1, . . . , n, the LSE’s β̂1 and β̂2 are given by (10)
(or (8)), and Ȳ is the mean of the Yi’s. Then:

(i) SST = SSR + SSE. (15)

Furthermore,

(ii) SST = SSy, SSR = SS2
xy

SSx

, and hence SSE = SSy − SS2
xy

SSx

, (16)

where SSx, SSy, and SSxy are given in (9).

PROOF We have:

SST =
∑

i

(Yi − Ȳ )2 =
∑

i

[(ŷi − Ȳ ) + (Yi − ŷi)]2

=
∑

i

(ŷi − Ȳ )2 +
∑

i

(Yi − ŷi)2 + 2
∑

i

(ŷi − Ȳ )(Yi − ŷi)

= SSR + SSE + 2
∑

i

(ŷi − Ȳ )(Yi − ŷi).

So, we have to show that the last term on the right-hand side above is equal
to 0. To this end, observe that ŷi = β̂1 + β̂2xi and β̂1 = Ȳ − β̂2x̄ (by (8)), so that

ŷi − Ȳ = β̂1 + β̂2xi − Ȳ = Ȳ − β̂2x̄ + β̂2xi − Ȳ = β̂2(xi − x̄),

and

Yi − ŷi = Yi − β̂1 − β̂2xi = Yi − Ȳ + β̂2x̄ − β̂2xi = (Yi − Ȳ ) − β̂2(xi − x̄),

so that

(ŷi − Ȳ )(Yi − ŷi) = β̂2(xi − x̄)[(Yi − Ȳ ) − β̂2(xi − x̄)]

= β̂2(xi − x̄)(Yi − Ȳ ) − β̂
2
2(xi − x̄)2.

Therefore, by (9) and (10):∑
i

(ŷi − Ȳ )(Yi − ŷi) = SSxy

SSx

× SSxy − SS2
xy

SS2
x

× SSx = SS2
xy

SSx

− SS2
xy

SSx

= 0. (17)

Thus, SST = SSR + SSE.
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(ii) That SST = SSy is immediate from relations (9) and (14). Next,

ŷi − Ȳ = β̂1 + β̂2xi − Ȳ = Ȳ − β̂2x̄+ β̂2xi − Ȳ = β̂2(xi − x̄) (by (8) and (11)),

so that, by (10),

SSR =
∑

i

(ŷi − Ȳ)2 = β̂
2
2

∑
i

(xi − x̄)2 = SS2
xy

SS2
x

× SSx = SS2
xy

SSx

,

as was to be seen. Finally,

SSE =
∑

i

(Yi − ŷi)2 =
∑

i

[
(Yi − Ȳ ) − (ŷi − Ȳ )

]2
=
∑

i

(Yi − Ȳ )2 +
∑

i

(ŷi − Ȳ )2 − 2
∑

i

(ŷi − Ȳ)(Yi − Ȳ )

= SST + SSR − 2
∑

i

(ŷi − Ȳ )(Yi − Ȳ ),

and∑
i

(ŷi − Ȳ )(Yi − Ȳ ) =
∑

i

(ŷi − Ȳ )[(Yi − ŷi) + (ŷi − Ȳ )]

=
∑

i

(ŷi − Ȳ )(Yi − ŷi) +
∑

i

(ŷi − Ȳ )2 = SSR (by (17)).

It follows that SSE = SST − SSR = SSy − SS 2
xy

SSx
, as was to be seen. ▲

This section is closed with some remarks.

REMARK 1

(i) The quantities SST , SSR, and SSE, given in (14), are computed by way of
SSx, SSy, and SSxy given in (9). This is so because of (16).

(ii) In the next section, an estimate of the (unknown) variance σ 2 will also be
given, based on the residual variability SSE. That this should be the case
is intuitively clear by the nature of SSE, and it will be formally justified in
the following section.

(iii) From the relation SST = SSR + SSE given in (15) and the definition of the
variability due to regression, SSR, given in (14), it follows that the better
the regression fit is, the smaller the value of SSR is. Then, its ratio to the
total variability, SST , r = SSR/SST , can be used as an index of how good
the linear regression fit is.

13.3 Normally Distributed Errors: MLE’s of β1, β2, and σ2, Some Distributional Results

It is to be noticed that in the linear regression model as defined in relation (3),
no distribution assumption about the errors ei, and therefore the r.v.’s Yi, was
made. Such an assumption was not necessary, neither for the construction of
the LSE’s of β1, β2, nor in proving their unbiasedness and in calculating their
variances. However, in order to be able to construct confidence intervals for
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β1 and β2 and test hypotheses about them, among other things, we have to
assume a distribution for the ei’s. The ei’s being errors, it is not unreasonable
to assume that they are Normally distributed, and we shall do so. Then the
model (3) is supplemented as follows:

Yi = β1 + β2xi + ei, where ei, i = 1, . . . , n are independent r.v.’s

∼ N(0, σ 2), which implies that Yi, i = 1, . . . , n are (18)

independent r.v.’s and Yi ∼ N(β1 + β2xi, σ 2).

We now proceed with the following theorem.

THEOREM 4
Under model (18):

(i) The LSE’s β̂1 and β̂2 of β1 and β2, respectively, are also MLE’s.
(ii) The MLE σ̂ 2 of σ 2 is given by: σ̂ 2 = SSE/n.

(iii) The estimates β̂1 and β̂2 are Normally distributed as follows:

β̂1 ∼ N

(
β1, σ 2

(
1
n

+ x̄2

SSx

))
, β̂2 ∼ N

(
β2,

σ 2

SSx

)
,

where SSx is given in (9).

PROOF

(i) The likelihood function of the Yi’s is given by:

L(y1, . . . , yn; β1, β2, σ 2) =
(

1√
2πσ 2

)n

exp
[

− 1
2σ 2

∑
i

(yi −β1 −β2xi)2
]
.

For each fixed σ 2, maximization of the likelihood function with respect
to β1 and β2, is, clearly, equivalent to minimization of

∑
i(yi − β1 − β2xi)2

with respect to β1 and β2, which minimization has produced the LSE’s β̂1

and β̂2.

(ii) The MLE of σ 2 is to be found by minimizing, with respect to σ 2, the
expression:

log L(yi, . . . , yn; β̂1, β̂2, σ 2) = −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2
SSE,

since, by (14) and (11),
∑

i(yi − β̂1 − β̂2xi)2 =∑i(yi − ŷi)2 = SSE. From
this expression, we get:

d

dσ 2
log L(y1, . . . , yn; β̂1, β̂2, σ 2) = −n

2
× 1

σ 2
+ SSE

2(σ 2)2
= 0,

so that σ 2 = SSE/n. Since

d2

d(σ 2)2
log L
(
y1, . . . , yn; β̂1, β̂2, σ 2)∣∣

σ 2=SSE/n
= − n3

2SS2
E

< 0,

it follows that σ̂ 2 = SSE/n is, indeed, the MLE of σ 2.
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(iii) From (12), we have: β̂1 = ∑i[
1
n

− x̄(xi−x̄)
SSx

]Yi, and we have also seen in
Theorem 2 that:

Eβ̂1 = β1, Var(β̂1) = σ 2
(

1
n

+ x̄2

SSx

)
.

Thus, β̂1 is Normally distributed as a linear combination of independent
Normally distributed r.v.’s, and its mean and variance must be as stated
above. Next, from (8), we have that: β̂2 =∑i(

xi − x̄

SSx
)Yi, so that, as above,

β̂2 is Normally distributed. Its mean and variance have been computed in
Theorem 2 and they are β2 and σ 2/SSx, respectively. ▲

Before proceeding further, we return to Example 1 and compute an esti-
mate for σ 2. Also, discuss Example 23 in Chapter 1 and, perhaps, an additional
example to be introduced here.

EXAMPLE 3 In reference to Example 1, determine the MLE of σ 2.

DISCUSSION By Theorem 4(ii), this estimate is: σ̂ 2 = SSE

n
. For the com-

putation of SSE by (16), we have to have the quantity
∑

y2
i from Table 13.2,

which is calculated to be: ∑
i

y2
i = 8,373,295. (19)

Then, by (9),

SSy = 8,373,295 − (16,703)2

34
� 8,373,295 − 8,205,594.382 = 167,700.618,

and therefore

SSE = 167,700.618 − (581.376)2

6.361
� 167,700.618 − 53,135.993 = 114,564.625;

i.e.,

SSE = 114,564.625 and then σ̂ 2 = 114,564.625
34

� 3,369.548.

Since SST = SSy = 167,700.618 and SSR = 53,135.993, it follows that only
53,135.993

167,700.618 � 31.685% of the variability is explained by linear regression and
114,564.625
167,700.618 � 68.315% is not explained by linear regression. The obvious outlier
(3.44, 692) may be mainly responsible for it.

EXAMPLE 4 In reference to Example 23 in Chapter 1, assume a linear relationship between
the dose of a compost fertilizer x and the yield of a crop y. On the basis of the
following summary data recorded:

n = 15, x̄ = 10.8, ȳ = 122.7, SSx = 70.6, SSy = 98.5, SSxy = 68.3:
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(i) Determine the estimates β̂1 and β̂2, and draw the fitted regression line.
(ii) Give the MLE σ̂ 2 of σ 2.

(iii) Over the range of x values covered in the study, what would your con-
jecture be regarding the average increase in yield per unit increase in the
compost dose?

DISCUSSION

(i) By (10),

β̂2 = 68.3
70.6 � 0.967 and β̂1 = 122.7 − 0.967 × 10.8 � 112.256,

and ŷ = 112.256 + 0.967x.

(ii) We have: σ̂ 2 = SSE

15 , where SSE = 98.5 − (68.3)2

70.6 � 32.425, so that σ̂ 2 =
32.425

15 = 2.162.

(iii) The conjecture would be a number close to the slope of the fitted regres-
sion line, which is 0.967 (Figure 13.3).

140

120

100

5 10 15

y

x

Figure 13.3

The Fitted
Regression Line ŷ =

112.256 + 0.967x

EXAMPLE 5 In one stage of the development of a new medication for an allergy, an exper-
iment is conducted to study how different dosages of the medication affect
the duration of relief from the allergic symptoms. Ten patients are included in
the experiment. Each patient receives a specific dosage of the medication and
is asked to report back as soon as the protection of the medication seems to
wear off. The observations are recorded in Table 13.3, which shows the dosage
(x) and respective duration of relief (y) for the 10 patients.

(i) Draw the scatter diagram of the data in Table 13.3 (which indicate ten-
dency toward linear dependence).

(ii) Compute the estimates β̂1 and β̂2, and draw the fitted regression line.
(iii) What percentage of the total variability is explained by the linear regres-

sion and what percentage remains unexplained?
(iv) Compute the MLE σ̂ 2 of σ 2.
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Table 13.3

Dosage (x) (in
milligrams) and the
Number of Days of Relief
(y) from Allergy for 10
Patients

x y x2 y2 xy

3 9 9 81 27
3 5 9 25 15
4 12 16 144 48
5 9 25 81 45
6 14 36 196 84
6 16 36 256 96
7 22 49 484 154
8 18 64 324 144
8 24 64 576 192
9 22 81 484 198

Totals 59 151 389 2,651 1,003

DISCUSSION

(i),(ii) First, SSx = 389 − 592

10 = 40.9 and SSxy = 1,003 − 59×151
10 = 112.1, and

hence:

β̂2 = 112.1
40.9

� 2.741 and β̂1 = 151
10

− 2.741 × 59
10

� −1.072.

Then the fitted regression line is ŷ = −1.072 + 2.741x (Figure 13.4).

(iii) Since SST = SSy = 2,651 − 1512

10 = 370.9 and SSR = (112.1)2

40.9 � 307.247, it
follows that SSE = 370.9−307.247 = 63.653. Therefore 307.247

370.9 � 82.838% of the
variability is explained by the linear regression and 63.653

370.9 � 17.162% remains
unexplained.

(iv) We have: σ̂ 2 = 63.653
10 = 6.3653 � 6.365.

25
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5

0 2 4 6 8 10

y

x

ŷ = −1.072 + 2.741x

Figure 13.4

Scatter Diagram and
the Fitted
Regression Line ŷ =

--1.072 + 2.741x

For the purpose of constructing confidence intervals for the parameters
of the model, and also testing hypotheses about them, we have to know the
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distribution of SSE and also establish independence of the statistics β̂1 and
SSE, as well as independence of the statistics β̂2 and SSE. The relevant results
are stated in the following theorem, whose proof is deferred to Section 13.6.

THEOREM 5
Under model (18):

(i) The distribution of SSE/σ 2 is χ2
n−2.

(ii) The following statistics are independent:

(a) SSE and β̂2; (b) Ȳ and β̂2; (c) SSE, Ȳ and β̂2; (d) SSE and β̂1.

PROOF Deferred to Section 13.6.
To this theorem, in conjunction with Theorem 4, there is the following

corollary.

COROLLARY Under model (18):

(i) The MLE σ̂ 2 of σ 2 is a biased estimate of σ 2, but n

n− 2 σ̂ 2 = SSE

n− 2 , call it S2,
is an unbiased estimate of σ 2.

(ii)
β̂1 − β1

S

√
1
n

+ x̄2

SSx

∼ tn−2, (iii)
β̂2 − β2

S/
√

SSx

∼ tn−2, (20)

where

S2 = SSE/(n − 2). (21)

PROOF

(i) It has been seen in Theorem 4(ii) that σ̂ 2 = SSE

n
= n− 2

n
× SSE

n− 2 . Since
SSE

σ 2 ∼ χ2
n− 2, it follows that E( SSE

σ 2 ) = n− 2, or E( SSE

n− 2 ) = σ 2, so that SSE

n− 2
is an unbiased estimate of σ 2. Also, Eσ̂ 2 = n− 2

n
E( SSE

n− 2 ) = n− 2
n

σ 2, so that
σ̂ 2 is biased.

(ii) By Theorem 4(iii),

β̂1 − β1

s.d.(β̂1)
= β̂1 − β1

σ

√
1
n

+ x̄2

SSx

∼ N(0, 1),

and SSE

σ 2 = (n− 2)SSE

(n− 2)σ 2 = (n− 2)S 2

σ 2 ∼ χ2
n− 2. Furthermore, β̂1−β1

s.d.(β̂1)
and SSE

σ 2 are

independent, since β̂1 and SSE are so. It follows that:

(β̂1 − β1)/s.d.(β̂1)√
SSE

σ 2 /(n− 2)
∼ tn−2, or

(β̂1 − β1)/σ
√

1
n

+ x̄2

SSx√
S2/σ 2

∼ tn−2,

or, finally,

β̂1 − β1

S

√
1
n

+ x̄2∑n
i=1(xi−x̄)2

∼ tn−2.
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(iii) Again by Theorem 4(iii),

β̂2 − β2

s.d.(β̂2)
= β̂2 − β2

σ/
√

SSx

∼ N(0, 1),

and β̂2−β2

s.d.(β̂2)
and SSE

σ 2 are independent, since β̂2 and SSE are so. Then:

(β̂2 − β2)/s.d.(β̂2)√
SSE

σ 2 /(n − 2)
∼ tn−2, or

(β̂2 − β2)/ σ√
SSx√

S2/σ 2
∼ tn−2,

or, finally, β̂2−β2

S/
√

SSx
∼ tn−2. ▲

Exercises

3.1 Verify the result d

dt2 log(y1, . . . , yn; β̂1, β̂2, t)
∣∣
t=SSE/n

= − n

2SS2
E

as claimed in

the proof of Theorem 4(ii), where t = σ 2.

3.2 Consider Table 13.1 and leave out the “outlier” pairs (3.63, 447), (3.44,
692), and (2.44, 336). Then recalculate all quantities below:∑

i

xi,
∑

i

yi,
∑

i

x2
i ,
∑

i

xiyi,
∑

i

y2
i , SSx, SSy, SSxy.

3.3 Use the calculations in Exercise 3.2 to compute the estimates β̂1, β̂2 and
the fitted regression line.

3.4 Refer to Exercise 3.2, and compute the variances Var(β̂1), Var(β̂2), and
the MLE of σ 2.

3.5 By Theorem 5, the r.v. SSE/σ 2 is distributed as χ2
n−2. Therefore, in the

usual manner, [
SSE

χ2
n−2; α

2

,
SSE

χ2
n−2;1− α

2

]
is a confidence interval for σ 2 with confidence coefficient 1 − α, where
SSE is given in (16) and (9). That is, SSE = SSy − SS 2

xy

SSx
, where SSx, SSy,

and SSxy are given in (9).
(i) Refer to Example 1 (see also Example 3), and construct a 95% con-

fidence interval for σ 2.
(ii) Refer to Example 4 and do the same as in part (i).

(iii) Refer to Example 5 and do the same as in part (i).
(iv) Refer to Exercise 3.2 and do the same as in part (i).

3.6 Consider the linear regression model given in relation (18), and let x0

be an unknown point at which observations Y0i, i = 1, . . . , m are taken.
It is assumed that the Y0i’s and the Yj ’s are independent, and set Y0 =
1
m

∑m

i=1 Y0i. Set y = (y1, . . . , yn), y0 = (y01, . . . , y0m) for the observed
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values of the Yj ’s and Y0i’s, and form their joint log-likelihood function:

� = �(β1, β2, σ 2, x0) = log L(β1, β2, σ 2, x0|y, y0)

= −m+ n

2
log(2π) − m+ n

2
log σ 2

− 1
σ 2

[ n∑
j=1

(yj − β1 − β2xj)2 +
m∑

i=1

(y0i − β1 − β2x0)2
]
.

(i) Show that the log-likelihood equations ∂�
∂β1

= 0, ∂�
∂β2

= 0, and ∂�
∂x0

= 0
produce the equations:

(m+ n)β1 + (mx0 + nx̄)β2 = my0 + nȳ (a)

(mx0 + nx̄)β1 +
(

mx2
0 +
∑

j

x2
j

)
β2 = mx0 y0 +

∑
j

xj yj (b)

β1 + x0β2 = y0. (c)

(ii) In (c), solve for β1, β1 = y0 − x0β2, replace it in (a) and (b), and solve
for β2 to obtain, by assuming here and in the sequel that all divisions
and cancellations are legitimate,

β2 = ȳ − y0

x̄ − x0
, β2 =

∑
j xj yj − nx̄y0∑

j x2
j − nx0x̄

. (d)

(iii) Equate the β2’s in (ii), and solve for x0 to obtain:

x0 =
[

y0

∑
j

(xj − x̄)2 + x̄
∑

j

xj yj − ȳ
∑

j

x2
j

]
/(∑

j

xj yj − nx̄ȳ

)
=
[
ny0

∑
j

(xj − x̄)2 + nx̄
∑

j

xj yj − nȳ
∑

j

x2
j

]
/[

n
∑

j

xj yj −
(∑

j

xj

)(∑
j

yj

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (e)

(iv) Replace x0 in the first expression for β2 in (d) in order to get, after
some simplifications:

β2 = n
∑

j xj yj − (∑ j xj

)(∑
j yj

)
n
∑

j x2
j − (∑ j xj

)2 , (f)

and observe that this expression is the MLE (LSE) of β2 calculated
on the basis of yj and xj , j = 1, . . . , n only (see relation (5) and
Theorem 4(i)).
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(v) Replace x0 and β2 in the expression β1 = y0 − x0β2 in order to arrive
at the expression

β1 =
(∑

j x2
j

)(∑
j yj

)− (∑ j xj

)(∑
j xj yj

)
n
∑

j x2
j − (∑ j xj

)2 , (g)

after some calculations, and observe that this is the MLE (LSE) of β1

calculated on the basis of yj and xj , j = 1, . . . , n only (see relation
(4) and Theorem 4(i)).

(vi) It follows that the MLE’s of β1, β2, and x0, to be denoted by β̂1, β̂2, and
x̂0, are given by the expressions:

β̂1 =
(∑

j x2
j

)(∑
j yj

)− (∑ j xj

)(∑
j xj yj

)
n
∑

j x2
j − (∑ j xj

)2 ,

β̂2 = n
∑

j xj yj − (∑ j xj

)(∑
j yj

)
n
∑

j x2
j − (∑ j xj

)2 ,

and

x̂0 = y0 − β̂1

β̂2
.

(vii) Differentiate the log-likelihood function with respect to σ 2, equate
the derivative to zero, and replace β1, β2, and x0 by their MLE’s in
order to obtain the MLE σ̂ 2 of σ 2, which is given by the expression:

σ̂ 2 = 1
m+ n

(SSE + SS0E),

where

SSE =
n∑

j=1

(yj − ŷj)
2 =

n∑
j=1

(yj − β̂1 − β̂2xj)
2
,

and

SS0E =
m∑

i=1

(y0i − β̂1 − β̂2x̂0)
2 =

m∑
i=1

(y0i − y0)2.

Also, by means of (14) and (16),

SSE = SSy − SS2
xy

SSx

, where SSx =
n∑

j=1

x2
j − 1

n

(
n∑

j=1

xj

)2

,

SSy =
n∑

j=1

y2
j − 1

n

(
n∑

j=1

yj

)2

, SSxy =
n∑

j=1

xj yj − 1
n

(
n∑

j=1

xj

)(
n∑

j=1

yj

)
,



13.4 Confidence Intervals and Hypotheses Testing Problems 383

and

SS0E =
m∑

i=1

y2
0i − 1

m

(
m∑

i=1

y0i

)2

.

(viii) Observe that, by Theorem 5(i), SSE

σ 2 ∼ χ2
n−2, whereas SS0E

σ 2 ∼ χ2
m−1.

Then, by independence of the Yj ’s and the Y0i’s, it follows that
1
σ 2 (SSE + SS0E) ∼ χ2

m+n−3.
(ix) Observe that, by Theorem 8(i), ŷ0 = β̂1 + β̂2x0 ∼ N(β1 +β2x0, σ 2( 1

n
+

(x0−x̄)2

SSx
)), whereas Y0 ∼ N(β1 + β2x0, σ 2

m
), and ŷ0 and Y0 are indepen-

dent, so that the r.v. V = Y0 − ŷ0 ∼ N(0, σ 2
V ), where σ 2

V = σ 2( 1
m

+ 1
n
+

(x0−x̄)2

SSx
), and V

σV
∼ N(0, 1).

(x) Observe that, by Theorem 5, the r.v.’s V/σV and (SSE + SS0E)/σ 2 are
independent, so that

V/σV

1
σ

√
SSE + SS0E

m+ n− 3

=
V/σ

√
1
m

+ 1
n

+ (x0−x̄)2

SSx

1
σ

√
SSE + SS0E

m+ n− 3

=
√

m+ n− 3 V√[
1
m

+ 1
n

+ (x0−x̄)2

SSx

]
(SSE + SS0E)

∼ tm+ n − 3.

13.4 Confidence Intervals and Hypotheses Testing Problems

The results obtained in the corollary to Theorem 5 allow the construction
of confidence intervals for the parameters of the model, as well as testing
hypotheses about them.

THEOREM 6
Under model (18), 100(1 − α)% confidence intervals for β1 and β2 are
given, respectively, by:[

β̂1 − tn−2;α/2S

√
1
n

+ x̄2

SSx

, β̂1 + tn−2;α/2S

√
1
n

+ x̄2

SSx

]
, (22)

and [
β̂2 − tn−2;α/2

S√
SSx

, β̂2 + tn−2;α/2
S√
SSx

]
, (23)

where S = √
SSE/(n − 2), and SSE, SSx, and β̂1, β̂2 are given by (16), (9),

and (10).

PROOF The confidence intervals in (22) and (23) follow immediately from
results (ii) and (iii), respectively, in the corollary to Theorem 5, and the familiar
procedure of constructing confidence intervals. ▲
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REMARK 2 A confidence interval can also be constructed for σ 2 on the
basis of the statistic SSE and the fact that SSE/σ 2 is distributed as χ2

n−2.

Procedures for testing some hypotheses are summarized below in the form
of a theorem. The tests proposed here have an obvious intuitive interpretation.
However, their justification rests in that they are likelihood ratio tests. For the
case of simple hypotheses, this fact can be established directly. For composite
hypotheses, it follows as a special case of more general results of testing
hypotheses regarding the entire mean η = β1 + β2x. See, e.g., Chapter 16
and, in particular, Examples 2 and 3 in the book A Course in Mathematical

Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas.

THEOREM 7
Under model (18):

(i) For testing the hypothesis H0: β1 = β10 against the alternative HA:
β1 �= β10 at level of significance α, the null hypothesis H0 is rejected
whenever

|t| > tn−2;α/2, where t = (β̂1 − β10)/S

√
1
n

+ x̄2

SSx

. (24)

(ii) For testing the hypothesis H0: β2 = β20 against the alternative HA:
β2 �= β20 at level of significance α, the null hypothesis H0 is rejected
whenever

|t| > tn−2;α/2, where t = (β̂2 − β20)
/

S√
SSx

. (25)

When the alternative is of the form HA: β2 > β20, the null hy-
pothesis is rejected whenever t > tn−2;α , and it is rejected whenever
t < −tn−2;α if the alternative is of the form HA: β2 < β20.

REMARK 3

(i) In the reference cited above, the test statistic used, actually, has the F -
distribution under the null hypothesis. It should be recalled, however, that
if t has the t-distribution with r d.f., i.e., t = Z/

√
χ2

r /r, where χ2
r has the

χ2-distribution with r d.f. Z ∼ N(0, 1) and Z and χ2
r are independent then,

t2 = Z2

χ2
r /r

has the F-distribution with 1 and r d.f.

(ii) Hypotheses can also be tested about σ 2 on the basis of the fact that SSE

σ 2 ∼
χ2

n−2.

EXAMPLE 6 In reference to Example 1:

(i) Construct 95% confidence intervals for β1 and β2.

(ii) Test the hypothesis that the GMAT scores increase with increasing GPA
scores.

DISCUSSION (i) The required confidence intervals are given by (22) and
(23). In the discussion of Example 1, we have found that: x̄ � 2.963,
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SSx � 6.361, β̂1 � 220.456, and β̂2 � 91.397. Also, in the discussion of Example
3, we saw that SSE � 114,564.625, so that, by (21), S = (114,564.625

32 )1/2 � 59.834.

Finally, t32;0.025 = 2.0369. Then

β̂1 − tn−2;α/2S

√
1
n

+ x̄2

SSx

= 220.456 − 2.0369 × 59.834 ×
√

1
34

+ (2.963)2

6.361

� 220.456 − 121.876 × 1.187 � 220.456 − 144.667 = 75.789,

and

β̂1 + tn−2;α/2S

√
1
n

+ x̄2

SSx

� 220.456 + 144.667 = 365.123.

So the required interval is [75.789, 365.123].
Likewise, tn−2;α/2

S√
SSx

� 1.6939 × 59.834√
6.361

= 1.6939 × 23.725 � 40.188, and
therefore the required interval for β2 is: [51.209, 131.585].

(ii) Here we are to test H0: β2 = 0 against the alternative HA: β2 > 0. Let us
take α = 0.05, so that t32;0.05 = 1.6939. The observed value of the test statistics
is:

t = β̂2 − β20

S/
√

SSx

� 91.397
23.725

= 3.852,

and the null hypothesis is rejected; the GMAT scores increase along with in-
creasing GPA scores.

EXAMPLE 7 In reference to Example 4:

(i) Construct 95% confidence intervals for β1 and β2.

(ii) Test the hypothesis that crop yield increases with increasing compost
fertilizer amounts.

DISCUSSION (i) In the discussion of Example 4, we have seen that: n =
15, x̄ = 10.8, SSx = 70.6, SSy = 98.5, β̂1 � 112.256, and β̂2 � 0.967. It follows
that:

S =
(

98.5
13

)1/2

� 2.753 and S

√
1
n

+ x̄2

SSx

= 2.753 ×
√

1
15

+ (10.8)2

70.6

� 2.753 × 1.311 � 3.609.

Since t13;0.025 = 1.1604, it follows that the required observed confidence interval
for β1 is: [112.256 − 1.1604 × 3.609, 112.256 + 1.1604 × 3.609], or [108.068,
116.444].

Next, S√
SSx

� 2.753√
70.6

� 0.328, and t13;0.025
S√
SSx

= 1.1604 × 0.328 � 0.381,
so that the required observed confidence interval for β2 is: [0.586, 1.348].
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(ii) The hypothesis to be tested is H0: β2 = 0 against the alternative HA: β2 > 0.

Take α = 0.05, so that t13;0.05 = 1.7709. The observed value of the test statistic
is:

t = β̂2 − β20

S/
√

SSx

� 0.967
0.328

� 2.948,

and therefore the null hypothesis is rejected. Consequently, crop yield in-
creases with increasing amounts of compost fertilizer.

EXAMPLE 8 In reference to Example 5:
(i) Construct 95% confidence intervals for β1 and β2.

(ii) Test the hypothesis that the duration of relief increases with higher dosages
of the medication.

DISCUSSION (i) From the discussion of Example 5, we have: n= 10,
x̄= 5.9, SSx = 40.9, SSE = 63.653, β̂1 = −1.072, and β̂2 � 2.741. Then S =
(63.653

8 )1/2 � 2.821. Also, t8;0.025 = 3.3060. Therefore:

tn−2;α/2S

√
1
n

+ x̄2

SSx

= 3.306 × 2.821 ×
√

1
10

+ (5.9)2

40.9
� 9.326 × 0.975

� 9.093.

Hence the required observed confidence interval for β1 is: [−1.072−9.093,
−1.072 + 9.093], or [−10.165, 8.021]. Next,

tn−2;α/2
S√
SSx

= 3.306 × 2.821√
40.9

� 3.306 × 0.441 � 1.458,

and therefore the required observed confidence interval for β2 is: [2.741 −
1.458, 2.741 + 1.458], or [1.283, 4.199].

(ii) The hypothesis to be tested is H0: β2 = 0 against HA: β2 > 0, and let us
take α = 0.05, so that t8;0.05 = 1.8595. The observed value of the test statistic
is:

t = β̂2 − β20

S/
√

SSx

� 2.741
0.441

� 6.215,

and the null hypothesis is rejected. Thus, increased dosages of medication
provide longer duration of relief.

Exercises

4.1 Refer to Exercises 3.2 and 3.4, and compute 95% confidence intervals for
β1 and β2.

4.2 Refer to Exercises 3.3 and 4.1, and test the hypotheses H0: β1 = 300
against HA: β1 �= 300, and H0: β2 = 60 against HA: β2 �= 60, each at level
of significance α = 0.05.
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4.3 Refer to Example 5 and:
(i) Derive 95% confidence intervals for β1 and β2.

(ii) Test the hypothesis H0: β1 = −1 against the alternative HA: β1 �= −1
at level of significance α = 0.05.

(iii) Do the same for the hypothesis H0: β2 = 3 against the alternative HA:
β2 �= 3 at the same level α = 0.05.

4.4 Suppose the observations Y1, . . . , Yn are of the following structure: Yi =
β + γ (xi − x̄) + ei, where β and γ are parameters and the ei’s are inde-
pendent r.v.’s with mean 0 and unknown variance σ 2.

(i) Set ti = xi−x̄, i = 1, . . . , n, and observe that the model Yi = β+γ ti+ei

is of the standard form (1) with β1 = β, β2 = γ , and the additional
property that

∑n

i=1 ti = 0, or t̄ = 0.
(ii) Use expressions (5) and (8) to conclude that the LSE’s of β and γ are

given by:

β̂ = Ȳ , γ̂ =
n∑

i=1

tiYi

/
n∑

i=1

t2
i .

(iii) Employ Theorem 4 in order to conclude that:

β̂ ∼ N

(
β,

σ 2

n

)
and γ̂ ∼ N

(
γ ,

σ 2

SSt

)
,

where (by (9)) SSt =∑n

i=1 t2
i .

(iv) Determine the form of the confidence intervals for β and γ from
relations (22) and (23).

(v) Determine the expression of the test statistics by means of relations
(24) and (25).

(vi) What do the confidence intervals in relation (29) and in Theorem 9
(iii) become here?

4.5 Consider the linear regression models: Yi = β1 + β2xi + ei, i = 1, . . . , m

and Y∗
j = β∗

1 +β∗
2 x∗

j +e∗
j , j = 1, . . . , n, where the random errors e1, . . . , em

and e∗
1, . . . , e∗

n are i.i.d. r.v.’s distributed as N(0, σ 2).
(i) The independence of e1, . . . , em and e∗

1, . . . , e∗
n implies independence

of Y1, . . . , Ym and Y∗
1 , . . . , Y∗

n . Then write down, the joint likelihood of
the Yi’s and the Y∗

j ’s and observe that the MLE’s of β1, β2, β∗
1 , β∗

2 , and
σ 2, in obvious notation, are given by:

β̂1 = Ȳ − β̂2x̄, β̂2 = m
∑m

i=1 xiYi − (∑m

i=1 xi

)(∑m

i=1 Yi

)
m
∑m

i=1 x2
i − (∑m

i=1 xi

)2 ,

β̂∗
1 = Ȳ

∗ − β̂∗
2 x̄∗, β̂∗

2 = n
∑n

j=1 x∗
j Y∗

j − (∑n

j=1 x∗
j

)(∑n

j=1 Y∗
j

)
n
∑n

j=1 x
2∗
j − (∑n

j=1 xj

)2 ,

σ̂ 2 = (SSE + SS∗
E)/(m+ n),
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where

SSE =
m∑

i=1

(Yi − β̂1 − β̂2xi)2 = SSy − SS2
xy

SSx

,

SSx =
m∑

i=1

x2
i − 1

m

(
m∑

i=1

xi

)2

,

SSy =
m∑

i=1

Y 2
i − 1

m

(
m∑

i=1

Yi

)2

,

SSxy =
m∑

i=1

xiYi − 1
m

(
m∑

i=1

xi

)(
m∑

i=1

Yi

)
,

and

SS∗
E =

n∑
j=1

(Y∗
j − β̂∗

1 − β̂∗
2 x∗

j )
2 = SS∗

y − SS∗2
xy

SS∗
x

,

SS∗
x =

n∑
j=1

x
2∗
j − 1

n

(
n∑

j=1

x∗
j

)2

,

SS∗
y =

n∑
j=1

Y
2∗
j − 1

n

( n∑
j=1

Y∗
j

)2

,

SS∗
xy =

n∑
j=1

x∗
j Y∗

j − 1
n

( n∑
j=1

x∗
j

)( n∑
j=1

Y∗
j

)
.

(ii) In accordance with Theorem 4, observe that

β̂1 ∼ N

(
β1, σ 2

(
1
m

+ x̄2

SSx

))
, β̂2 ∼ N

(
β2,

σ 2

SSx

)
,

β̂∗
1 ∼ N

(
β∗

1 , σ 2
(

1
n

+ x̄∗2

SS∗
x

))
, β̂∗

2 ∼ N

(
β∗

2 ,
σ 2

SS∗
x

)
,

and
SSE + SS∗

E

σ 2
∼ χ2

m+n−4.

(iii) From part (ii) and Theorem 5, conclude that
√

m+ n − 4
[(

β̂1 − β̂∗
1

)− (β1 − β∗
1

)]√(
SSE + SS∗

E

) (
1
m

+ 1
n

+ x̄2

SS x
+ x̄ ∗2

SS ∗
x

) ∼ tm+n−4,

and √
m+ n − 4

[(
β̂2 − β̂∗

2

)− (β2 − β∗
2

)]√(
SSE + SS∗

E

) (
1

SSx
+ 1

SS ∗
x

) ∼ tm+ n−4.
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(iv) From part (iii), observe that the two regression lines can be compared
through the test of the hypotheses H0: β1 = β∗

1 against the alternative
HA: β1 �= β∗

1 , and H′
0: β2 = β∗

2 against the alternative H′
A: β2 �= β∗

2 by
using the respective test statistics:

t =
√

m+ n − 4 (β̂1 − β̂∗
1)√

(SSE + SS∗
E)
(

1
m

+ 1
n

+ x̄2

SSx
+ x̄∗2

SS∗
x

) ,

t′ =
√

m+ n − 4 (β̂2 − β̂∗
2)√

(SS E + SS∗
E)
(

1
SSx

+ 1
SS ∗

x

) .
At level of significance α, the hypothesis H0 is rejected when |t| >

tm+n−4; α
2
, and the hypothesis H′

0 is rejected when |t′| > tm+n−4; α
2
.

(v) Again from part (iii), observe that 95% confidence intervals for β1 −β∗
1

and β2 − β∗
2 are given by:

(β̂1 − β̂∗
1) ± tm+n−4; α

2

√
SSE + SS∗

E

m+ n − 4

(
1
m

+ 1
n

+ x̄2

SSx

+ x̄∗2

SS∗
x

)
,

and

(β̂2 − β̂∗
2) ± tm+n−4; α

2

√
SSE + SS∗

E

m+ n − 4

(
1

SSx

+ 1
SS∗

x

)
,

respectively.
(vi) Finally, from part (ii) conclude that a 95% confidence interval for σ 2

is given by: [
SSE + SS∗

E

χ2
m+n−4; α

2

,
SSE + SSE

χ2
m+n−4;1− α

2

]
.

13.5 Some Prediction Problems

According to model (18), the expectation of the observation Yi at xi is EYi =
β1 +β2xi. Now, suppose x0 is a point distinct from all xi’s, but lying in the range
that the xi’s span, and we wish to predict the expected value of the observation
Y0 at x0; i.e., EY0 = β1 + β2x0. An obvious predictor for EY0 is the statistic ŷ0

given by the expression below and modified as indicated:

ŷ0 = β̂1 + β̂2x0 = (Ȳ − β̂2x̄) + β̂2x0 = Ȳ + (x0 − x̄)β̂2. (26)

The result below gives the distribution of ŷ0, which also provides for the
construction of a confidence interval for β1 + β2x0.
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THEOREM 8
Under model (18) and with ŷ0 given by (26), we have:

(i) ŷ0 − (β1 + β2x0)

σ

√
1
n

+ (x0−x̄)2

SSx

∼ N(0, 1). (27)

(ii) ŷ0 − (β1 + β2x0)

S

√
1
n

+ (x0−x̄)2

SSx

∼ tn−2. (28)

(iii) A 100(1 − α)% confidence interval for β1 + β2x0 is given by:[
ŷ0 − tn−2;α/2S

√
1
n

+ (x0 − x̄)2

SSx

, ŷ0 + tn−2;α/2S

√
1
n

+ (x0 − x̄)2

SSx

]
. (29)

It is recalled that S = √
SSE/(n − 2), SSE = SSy, and SSy and SSx

are given in (9).

PROOF (i) The assumption that Yi ∼ N(β1 +β2xi, σ 2), i = 1, . . . , n indepen-
dent implies that

∑
i Yi ∼ N(nβ1 + β2

∑
i xi, nσ 2) and hence

Ȳ ∼ N(β1 + β2x̄, σ 2/n). (30)

By Theorem 4(iii), β̂2 ∼ N(β2, σ 2/SSx), so that

(x0 − x̄)β̂2 ∼ N

(
(x0 − x̄)β2,

σ 2(x0 − x̄)2

SSx

)
. (31)

Furthermore, by Theorem 5(ii)(b), Ȳ and β̂2 are independent. Then, rela-
tions (26), (30), and (31) yield:

ŷ0 = Ȳ + (x0 − x̄)β̂2 ∼ N

(
β1 + β2x0, σ 2

(
1
n

+ (x0 − x̄)2

SSx

))
, (32)

and then (27) follows by standardization.

(ii) By Theorem 5(ii)(c), SSE is independent of Ȳ and β̂2 and hence independent
of ŷ0 because of (26). Furthermore, by Theorem 5(i),

SSE

σ 2
= (n − 2)S2

σ 2
∼ χ2

n−2. (33)

Therefore

[ŷ0 − (β1 + β2x0)]/σ
√

1
n

+ (x0−x̄)2

SSx√
(n−2)S 2

σ 2 /(n− 2)
= ŷ0 − (β1 + β2x0)

S

√
1
n

+ (x0−x̄)2

SSx

∼ tn−2,

which is relation (28).

(iii) This part follows immediately from part (ii) and the standard procedure
of setting up confidence intervals. ▲
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Finally, we would like to consider the problem of predicting a single re-

sponse at a given point x0 rather than its expected value. Call Y0 the response
corresponding to x0 and, reasonably enough, assume that Y0 is independent of
the Yi’s. The predictor for Y0 is ŷ0, the same as the one given in (26). The ob-
jective here is to construct a prediction interval for Y0. This is done indirectly
in the following result.

THEOREM 9
Under model (18), let Y0 be the (unobserved) observation at x0, and
assume that Y0 is independent of the Yi’s. Predict Y0 by ŷ0 = β̂1 + β̂2x0.

Then:

(i) ŷ0 − Y0

σ

√
1 + 1

n
+ (x0−x̄)2

SSx

∼ N(0, 1). (34)

(ii) ŷ0 − Y0

S

√
1 + 1

n
+ (x0−x̄)2

SSx

∼ tn−2. (35)

(iii) A 100(1 − α)% prediction interval for Y0 is given by:[
ŷ0 − tn−2;α/2S

√
1+ 1

n
+ (x0 − x̄)2

SSx

, ŷ0 + tn−2;α/2S

√
1+ 1

n
+ (x0 − x̄)2

SSx

]
,

where S and SSx are as in Theorem 8(ii), (iii).

PROOF (i) We have: Y0 = β1 + β2x0 + e0, predicted by ŷ0 = β̂1 + β̂2x0. Then
EY0 = β1 + β2x0 and Eŷ0 = β1 + β2x0, so that E(ŷ0 − Y0) = 0. In deriving the
distribution of ŷ0 − Y0, we need its variance. By (26), we have:

Var(ŷ0 − Y0) = Var(Ȳ + (x0 − x̄)β̂2 − Y0) = Var(Ȳ) + (x0 − x̄)2Var(β̂2) + Var(Y0)

(since all three r.v.’s, Ȳ , β̂2, and Y0, are independent)

= σ 2

n
+ (x0 − x̄)2 × σ 2

SSx

+ σ 2 (by Theorem 2)

= σ 2
{

1 + 1
n

+ (x0 − x̄)2

SSx

}
; i.e.,

E(ŷ0 − Y0) = 0 and Var(ŷ0 − Y0) = σ 2
[

1 + 1
n

+ (x0 − x̄)2

SSx

]
.

Since ŷ0 and Y0 are independent and Y0 ∼ N(β1 + β2x0, σ 2), then these facts
along with (32) yield:

ŷ0 − Y0 ∼ N

(
0, σ 2

[
1 + 1

n
+ (x0 − x̄)2

SSx

])
.

Relation (34) follows by standardizing ŷ0 − Y0.
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(ii) It has been argued in the proof of Theorem 8(ii) that S and ŷ0 are inde-
pendent. It follows that S and ŷ0 − Y0 are also independent. Then, dividing the

expression on the left-hand side in (34) by
√

(n− 2)S 2

σ 2 /(n − 2) = S

σ
in (33), we

obtain the result in (35), after some simplifications.
(iii) This part follows from part (ii) through the usual procedure of setting up
confidence intervals. ▲

Exercises

5.1 Refer to Exercises 3.1, 3.3, 4.1, and:
(i) Predict EY0 at x0 = 3.25, and construct a 95% confidence interval of

EY0.
(ii) Predict the response Y0 at x0 = 3.25, and construct a 95% prediction

interval for Y0.

5.2 In reference to Example 22 in Chapter 1 (see also scatter diagram in
Figure 13.1 and Examples 1, 2, 3, and 6 here), do the following:

(i) Predict the EY0, where Y0 is the response at x0 = 3.25.
(ii) Construct a 95% confidence interval for EY0 = β1 + β2x0 = β1 +

3.25β2.
(iii) Predict the response Y0 at x0 = 2.5.
(iv) Construct a 90% prediction interval for Y0.

5.3 In reference to Example 23 in Chapter 1 (see also Examples 4 and 7 here),
do the following:

(i) Predict the EY0, where Y0 is the response at x0 = 12.

(ii) Construct a 95% confidence interval for EY0 = β1+β2x0 = β1+12β2.

(iii) Predict the response Y0 at x0 = 12.

(iv) Construct a 95% prediction interval for Y0.

5.4 Refer to Example 5 and:
(i) Predict the EY0 at x0 = 6.

(ii) Construct a 95% confidence interval for EY0 = β1 + 6β2.
(iii) Predict the response Y0 at x0 = 6.
(iv) Construct a 95% prediction interval for Y0.

5.5 Suppose that the data given in the table below follow model (18).

x 5 10 15 20 25 30
y 0.10 0.21 0.30 0.35 0.44 0.62

(i) Determine the MLE’s (LSE’s) of β1, β2, and σ 2.
(ii) Construct 95% confidence intervals for β1, β2, and σ 2.

(iii) At x0 = 17, predict both EY0 and Y0 (the respective observation at
x0), and construct a 95% confidence interval and prediction interval,
respectively, for them.

Hint: For a confidence interval for σ 2, see Exercise 3.5.
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5.6 The following table gives the reciprocal temperatures x and the corre-
sponding observed solubilities of a certain chemical substance, and as-
sume that they follow model (18).

x 3.80 3.72 3.67 3.60 3.54
1.27 1.20 1.10 0.82 0.65

y 1.32 1.26 1.07 0.84 0.57
1.50 0.80 0.62

(i) Determine the MLE’s (LSE’s) of β1, β2, and σ 2.
(ii) Construct 95% confidence intervals for β1, β2, and σ 2.

(iii) At x0 = 3.77, predict both EY0 and Y0 (the respective observation at
x0), and construct a 95% confidence interval and prediction interval,
respectively, for them.

Note: Here n = 13 and x1 = x2 = x3, x4 = x5, x6 = x7, x8 = x9 =
x10, and x11 = x12 = x13.

13.6 Proof of Theorem 5

This section is solely devoted to justifying Theorem 5. Its proof is presented
in considerable detail, and it makes use of some linear algebra results. The
sources of those results are cited.

PROOF OF THEOREM 5 For later use, let us set

Ui = Yi − β1 − β2xi, so that Ū = Ȳ − β1 − β2x̄, (36)

and

Ui − Ū = (Yi − Ȳ) − β2(xi − x̄) and Yi − Ȳ = (Ui − Ū) + β2(xi − x̄).

(37)

Then, by (10),

β̂2SSx = SSxy =
∑

i

(xi − x̄)(Yi − Ȳ), (38)

so, that

(β̂2 − β2)SSx =
∑

i

(xi − x̄)(Yi − Ȳ) − β2SSx

=
∑

i

(xi − x̄)[(Ui − Ū) + β2(xi − x̄)] − β2SSx

=
∑

i

(xi − x̄)(Ui − Ū) + β2SSx − β2SSx

=
∑

i

(xi − x̄)(Ui − Ū). (39)
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Next,

SSE =
∑

i

(Yi − Ŷi)2 =
∑

i

(Yi − β̂1 − β̂2xi)2

=
∑

i

(Yi − Ȳ + β̂2x̄ − β̂2xi)2 ( by (8))

=
∑

i

[(Yi − Ȳ) − β̂2(xi − x̄)]2

=
∑

i

[(Yi − Ȳ) − β̂2(xi − x̄) + β2(xi − x̄) − β2(xi − x̄)]2

=
∑

i

{[(Yi − Ȳ) − β2(xi − x̄)] − (β̂2 − β2)(xi − x̄)}2

=
∑

i

[(Ui − Ū) − (β̂2 − β2)(xi − x̄)]2 ( by (37))

=
∑

i

(Ui − Ū)2 + (β̂2 − β2)2SSx − 2(β̂2 − β2)
∑

i

(xi − x̄)(Ui − Ū)

=
∑

i

(Ui − Ū)2 + (β̂2 − β2)2SSx − 2(β̂2 − β2)2SSx (by (39))

=
∑

i

(Ui − Ū)2 − (β̂2 − β2)2SSx

=
∑

i

Ui
2 − nŪ 2 − (β̂2 − β2)2SSx; i.e.,

SSE =
∑

i

U 2
i − nŪ 2 − (β̂2 − β2)2SSx. (40)

From (18) and (36), we have that the r.v.’s U1, . . . , Un are independent and
distributed as N(0, σ 2). Transform them into the r.v.’s V1, . . . , Vn by means of
an orthogonal transformation C as described below (see also Remark 4):

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − x̄√
SSx

x2 − x̄√
SSx

· · · xn − x̄√
SSx

1√
n

1√
n

· · · 1√
n

(whatever, subject to the res-
triction that C is orthogonal)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
That is, with “′” standing for transpose, we have:

(V1, V2, . . . , Vn)′ = C(U1, U2, . . . , Un)′. (41)

Then, by Theorem 8 in Chapter 8, the r.v.’s V1, . . . , Vn are independent and
distributed as N(0, σ 2), whereas by relation (21) in the same chapter∑

i

V 2
i =
∑

i

U 2
i . (42)
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From (41),

V1 = 1√
SSx

∑
i

(xi − x̄)Ui, V2 = 1√
n

∑
i

Ui = √
n × 1

n

∑
i

Ui = √
nŪ . (43)

But ∑
i

(xi − x̄)Ui =
∑

i

(xi − x̄)(Ui − Ū) = (β̂2 − β2)SSx, (by (39)),

so that

V1 = (β̂2 − β2)
√

SSx, V 2
1 = (β̂2 − β2)2SSx, and V 2

2 = nŪ 2. (44)

Then, from relations (40), (42), and (44), it follows that

SSE =
n∑

i=1

V 2
i − V 2

1 − V 2
2 =

n∑
i=3

V 2
i . (45)

We now proceed with the justifications of parts (i) and (ii) of the theorem.

(i) From (45), SSE

σ 2 =
n∑

i=3

(
Vi

σ

)2 ∼ χ2
n−2, since Vi

σ
, i = 1, . . . , n are independent

and distributed as N(0, 1).
(ii) (a) From (44) and (45), β̂2 and SSE are functions of nonoverlapping Vi’s

(of V1 the former, and of V3, . . . , Vn the latter). Thus, SSE and β̂2 are
independent.

(b) By (36) and (43), Ȳ = Ū + (β1 + β2x̄) = V2√
n

+ β1 + β2x̄, so that Ȳ

is a function of V2 and recall that β̂2 is a function of V1. Then the
independence of Ȳ and β̂2 follows.

(c) As was seen in (a) and (b), SSE is a function of V3, . . . , Vn; Ȳ is a
function of V2; and β̂2 is a function of V1; i.e., they are functions of
nonoverlapping Vi’s, and therefore independent.

(d) By (8), β̂1 = Ȳ − β̂2x̄ and the right-hand side is a function of V1 and V2

alone, by (44) and part (b). Since SSE is a function of V3, . . . , Vn, by
(45), the independence of SSE and β̂1 follows. ▲

REMARK 4 There is always an orthogonal matrix C with the first two
rows as given above. Clearly, the vectors r1 = (x1 − x̄, . . . , xn − x̄)′ and
r2 = ( 1√

n
, . . . , 1√

n
)′ are linearly independent. Then supplement them with

n− 2 vectors r3, . . . , rn, so that the vectors r1, . . . , rn are linearly independent.
Finally, use the Gram-Schmidt orthogonalization process (which leaves r1 and
r2 intact) to arrive at an orthogonal matrix C. (See, e.g., Theorem 1.16 and
the discussion following it, in pages 33–34, of the book Linear Algebra for

Undergraduates (1957), John Wiley & Sons, by D. C. Murdoch.)

13.7 Concluding Remarks

In this chapter, we studied the simplest linear regression model, according to
which the response Y at a point x is given by Y = β1 + β2x + e. There are
extensions of this model to different directions. First, the model may not be
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linear in the parameters involved; i.e., the expectation η = EY is not linear.
Here are some such examples.

(i) η = aebx; (ii) η = axb; (iii) η = 1
a + bx

; (iv) η = a + b
√

x.

It happens that these particular nonlinear models can be reduced to linear
ones by suitable transformations. Thus, in (i), taking the logarithms (always
with base e), we have:

log η = log a + bx, or η′ = β1 + β2x ′,

where η′ = log η, β1 = log a, β2 = b, and x ′ = x, and the new model is linear.
Likewise, in (ii):

log η = log a + b log x, or η′ = β1 + β2x ′,

where η′ = log η, β1 = log a, β2 = b, and x ′ = log x, and the transformed
model is linear. In (iii), simply set η′ = 1

η
to get η′ = a + bx, or η′ = β1 + β2x ′,

where β1 = a, β2 = b and x ′ = x. Finally, in (iv), let x ′ = √
x in order to get

the linear model η′ = β1 + β2x ′, with η′ = η, β1 = a, and β2 = b.

Another direction of a generalization is the consideration of the so-called
multiple regression linear models. In such models, there is more than one
input variable x and more than two parameters β1 and β2. This simply reflects
the fact that the response is influenced by more than one factor each time. For
example, the observation may be the systolic blood pressure of the individual
in a certain group, and the influencing factors may be weight and age. The
general form of a multiple regression linear model is as follows:

Yi = x1iβ1 + x2iβ2 + · · · + xpiβp + ei, i = 1, . . . , n,

and the assumptions attached to it are similar to those used in model (18). The
analysis of such a model can be done, in principle, along the same lines as those
used in analyzing model (18). However, the analysis becomes unwieldy and
one has to employ, most efficiently, linear algebra methodology. Such models
are referred to as general linear models in the statistical literature, and they
have proved very useful in a host of applications. The theoretical study of such
models can be found, e.g., in Chapter 16 of the book A Course in Mathematical

Statistics, 2nd edition (1997), Academic Press, by G. G. Roussas.



Chapter 14

Two Models of Analysis
of Variance

This chapter is about statistical analysis of certain statistical modes referred
to as Analysis of Variance (ANOVA). There is a great variety of such models,
and their detailed study constitutes an interesting branch of statistics. What is
done presently is to introduce two of the simplest models of ANOVA, underline
the basic concepts involved, and proceed with the analysis of the proposed
models.

The first section is devoted to the study of the one-way layout ANOVA with
the same number of observations for each combination of the factors involved
(cells). The study consists in providing a motivation for the model, in deriving
the MLE’s of its parameters, and in testing an important hypothesis. In the
process of doing so, an explanation is provided for the term ANOVA. Also,
several technical results necessary for the analysis are established.

In the second section of the chapter, we construct confidence intervals
for all so-called contrasts among the (mean) parameters of the model in
Section 14.1.

Section 14.3 is a generalization of the model studied in the first section, in
that the outcome of an experiment is due to two factors. Again, a motivation
is provided for the model, finally, adopted, and then its statistical analysis is
discussed. This analysis consists in deriving the MLE’s of the parameters of
the model, and also in testing two hypotheses reflecting the actual influence,
or lack thereof, of the factors involved in the outcome of the underlying exper-
iment. Again, in the process of the analysis, an explanation is provided for the
term ANOVA. Also, a substantial number of technical results are stated that
are necessary for the analysis. Their proofs are deferred to a final subsection
of this section in order not to disrupt the continuity of arguments.

In all sections, relevant examples are discussed in detail in order to clarify
the underlying ideas and apply the results obtained.

397
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14.1 One-Way Layout with the Same Number of Observations per Cell

In this section, we derive the MLE’s of the parameters μi, i = 1, . . . , I and
σ 2 described in relation (13) of Chapter 8. Next, we consider the problem of
testing the null hypothesis H0: μ1 = · · · = μI = μ (unspecified) for which
the MLE’s of the parameters μ and σ 2 are to be derived under H0. Then we
set up the likelihood ratio test, which turns out to be an F-test. For the justi-
fication of this fact, we have to split sums of squares of variations in a certain
way. Actually, it is this splitting from which the name ANOVA derives. Further-
more, the splitting provides insight into what is happening behind the formal
analysis.

14.1.1 The MLE’s of the Parameters of the Model

First, Yij ∼ N(μi, σ 2), i = 1, . . . , I, j = 1, . . . , J, and all these r.v.’s are inde-
pendent. Then their likelihood function, to be denoted by L(y;μ, σ 2), is given
by the expression below, where y = (y1, . . . , yj) and μ = (μ1, . . . , μI):

L(y;μ, σ 2) =
∏
i, j

{
1√

2πσ 2
exp
[

− 1
2σ 2

(yij − μi)2
]}

=
∏

i

∏
j

{
1√

2πσ 2
exp
[

− 1
2σ 2

(yij − μi)2
]}

=
∏

i

{(
1√

2πσ 2

)J

exp

[
− 1

2σ 2

∑
j

(yij − μi)2

]}

=
(

1√
2πσ 2

) I J∏
i

{
exp

[
− 1

2σ 2

∑
j

(yij − μi)2

]}

=
(

1√
2πσ 2

) I J

exp

[
− 1

2σ 2

∑
i

∑
j

(yij − μi)2

]
;

following common practice, we do not explicitly indicate the range of i and j,
since no confusion is possible. Hence

log L(y;μ, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2

∑
i

∑
j

(yij − μi)2. (1)

From (1), we see that, for each fixed σ 2, the log-likelihood is maximized
with respect to μ1, . . . , μI , if the exponent

S(μ1, . . . , μI) =
∑

i

∑
j

(yij − μi)2

is minimized with respect to μ1, . . . , μI . By differentiation, we get

∂

∂μi

S(μ1, . . . , μI) = −2
∑

j

yij + 2Jμi = 0, so that μi = 1
J

∑
j

yij , (2)
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and ∂2

∂μ2
i

S(μ1, . . . , μI) = 2J. The resulting I × I diagonal matrix is positive

definite, since, for all λ1, . . . , λI with λ2
1 + · · · + λ2

I > 0,

(λ1, . . . , λI)
(

2J 0

0 2J

)⎛⎜⎝λ1
...

λI

⎞⎟⎠ = (2Jλ1, . . . , 2JλI)

⎛⎜⎝λI

...

λI

⎞⎟⎠
= 2J
(
λ2

1 + · · · + λ2
I

)
> 0.

It follows that the values of μi’s given in (2) are, indeed, the MLE’s of the
μi’s. That is,

μ̂i = yi., where yi. = 1
J

∑
j

yij , i = 1, . . . , I. (3)

Now, in (1), replace the exponent by Ŝ = ∑i

∑
j(yij − yi.)2 to obtain in

obvious notation

log L̂(y; μ̂, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2
Ŝ. (4)

Differentiating with respect to σ 2 and equating to 0, we get

d

dσ 2
log L̂(y; μ̂, σ 2) = − I J

2σ 2
+ Ŝ

2σ 4
= 0, or σ 2 = Ŝ

I J
. (5)

Since d2

d(σ 2)2 log L̂(y; μ̂, σ 2) = I J

2(σ 2)2 − 2Ŝ
2(σ 2)3 , which evaluated at σ 2 = Ŝ/I J

gives: − (I J)3

2Ŝ2 < 0. It follows that the value of σ 2 given in (5) is, indeed, its MLE.
That is,

σ̂ 2 = 1
I J

SSe, where SSe =
∑

i

∑
j

(yij − yi.)2. (6)

The results recorded in (3) and (6) provide the answer to the first objective.
That is, we have established the following result.

THEOREM 1
Consider the model described in relation (13) of Chapter 8; that is, Yij =
μi + e ij where the e ij ’s are independently ∼N(0, σ 2) r.v.’s, i = 1, . . . ,
I(≥ 2), j = 1, . . . , J(≥ 2). Then the MLE’s of the parameters μi, i =
1, . . . , I and σ 2 of the model are given by (3) and (6), respectively.

14.1.2 Testing the Hypothesis of Equality of Means

Next, consider the problem of testing the null hypothesis

H0: μ1 = · · · = μI = μ (unspecified). (7)

Under H0, the expression in (1) becomes:

log L(y; μ, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2

∑
i

∑
j

(yij − μ)2. (8)
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Repeating a procedure similar to the one we went through above, we derive
the MLE’s of μ and σ 2 under H0, to be denoted by μ̂ and σ̂ 2

H0
, respectively; i.e.,

μ̂ = y.., where y.. = 1
I J

∑
i

∑
j

yij , σ̂ 2
H0

= 1
I J

SST ,

where SST =
∑

i

∑
j

(yij − y..)2. (9)

We now proceed with the setting up of the likelihood ratio statistic λ = λ(y)
in order to test the hypothesis H0. To this end, first observe that, under H0:

exp

[
− 1

2σ̂ 2
H0

∑
i

∑
j

(yij − y..)2

]
= exp

(
− I J

2SST

× SST

)
= exp

(
− I J

2

)
,

whereas, under no restrictions imposed,

exp
[

− 1

2σ̂ 2

∑
i

(
yij − yi.

)]
= exp

(
− I J

2SSe

× SSe

)
= exp

(
− I J

2

)
.

Therefore, after cancellations, the likelihood ratio statistic λ is

λ = (σ̂ 2/σ̂ 2
H0

)I J/2
.

Hence λ < C, if and only if(
σ̂ 2

σ̂ 2
H0

)I J/2

< C , or
σ̂ 2

σ̂ 2
H0

< C2/I J , or
σ̂ 2

H0

σ̂ 2
> 1/C2/I J = C0. (10)

At this point, we need the following result.

LEMMA 1 SST = SSe + SSH , where SSe and SST are given by (6) and (9),
respectively, and

SSH =
∑

i

∑
j

(yi. − y..)2 = J
∑

i

(yi. − y..)2. (11)

PROOF Deferred to Subsection 14.1.3.
According to this lemma, the last expression in (10) becomes:

SST

SSe

> C0, or
SSe + SSH

SSe

> C0, or
SSH

SSe

> C1 = C0 − 1.

In other words, the likelihood ratio test rejects H0 whenever
SSH

SSe

> C1, where SSe and SSH are given by (6) and (11), respectively. (12)

In order to determine the cutoff point C1 in (12), we have to have the
distribution, under H0, of the statistic SSH/SSe, where it is tacitly assumed
that the observed values have been replaced by the respective r.v.’s. For this
purpose, we need the following result.

LEMMA 2 Consider the model described in Theorem 1, and in the expres-
sions SSe, SST , and SSH , defined by (6), (9), and (11), respectively, replace



14.1 One-Way Layout with the Same Number of Observations per Cell 401

the observed values yij , yi., and y.. by the r.v.’s Yij , Yi., and Y.., respectively,
but retain the same notation. Then:

(i) The r.v. SSe/σ
2 is distributed as χ2

I(J−1).
(ii) The statistics SSe and SSH are independent.

Furthermore, if the null hypothesis H0 defined in (7) is true, then:
(iii) The r.v. SSH/σ 2 is distributed as χ2

I−1.
(iv) The statistic SSH/(I−1)

SSe/I(J−1) ∼ FI−1, I(J−1).

(v) The r.v. SST/σ 2 is distributed as χ2
I J−1.

PROOF Deferred to Subsection 14.1.3.
To this lemma, there is the following corollary, which also encompasses the
μ̂i’s.

COROLLARY

(i) The MLE’s μ̂i = Yi. are unbiased estimates of μi, i = 1, . . . , I.

(ii) The MLE σ̂ 2 = SSe/I J is biased, but the estimate MSe = SSe/I(J − 1) is
unbiased.

PROOF (i) Immediate; (ii) Follow from Lemma 2(i). ▲

We may conclude that, on the basis of (12) and Lemma 2(iv), in order to
test the hypothesis stated in (7), at level of significance α, we reject the null
hypothesis H0 whenever

F = SSH/(I − 1)
SSe/I(J − 1)

= MSH

MSe

> FI−1, I(J−1); α. (13)

So, the following result has been established.

THEOREM 2
In reference to the model described in Theorem 1, the null hypothesis
H0 defined in (7) is rejected whenever the inequality in (13) holds; the
quantities SSe and SSH are given in relations (6) and (11), respectively,
and they can be computed by using the formulas in (14) below.

REMARK 1 At this point, it should be recalled that the point Fm,n; α is de-
termined, so that P(X > Fm,n; α) = α, where X is a r.v. distributed as Fm,n; see
Figure 14.1.

REMARK 2 By rewriting analytically the relation in Lemma 1, we have that:∑
i

∑
j

(yij − y..)2 =
∑

i

∑
j

(yij − yi.)2 +
∑

i

∑
j

(yi. − y..)2.

That is, the total variation of the yij ’s with respect to the grand mean y..

is split into two parts: the variation of the yij ’s in each ith group with respect
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a

f

Fm,n

0

F( f )

Figure 14.1

The Graph of the
p.d.f. of the Fm, n

Distribution Along
with the Rejection
Region of H0 and
the Level of
Significance

to their mean yi. in that group (variation within groups), and the variation
of the I means yi., i = 1, . . . , I from the grand mean y.. (variation between

groups). By changing the term “variation” to “variance,” we are led to the term
ANOVA. The expression SSe is also referred to as the error sum of squares for
obvious reasons, and the expression SSH is also referred to as the treatment

sum of squares, since it reflects variations due to treatment differences. The
subscript H accounts for the fact that this statistic is instrumental in testing
H0; see also Lemma 3 below. Finally, the expression SST is called the total sum

of squares, again for obvious reasons.
The various quantities employed in carrying out the test described in (13)

are usually gathered together in the form of a table, an ANOVA table, as is done
in Table 14.1.

REMARK 3 For computational purposes, we have:

SSH = J
∑

i

Y2
i. − I JY2

.. , SSe =
∑

i

∑
j

Y2
ij − J

∑
i

Y2
i.. (14)

Indeed,

SSH = J
∑

i

(Yi. − Y..)2 = J
∑

i

Y2
i. + I JY2

.. − 2JY..

∑
i

Yi.

= J
∑

i

Y2
i. + I JY2

.. − 2JY.. IY.. = J
∑

i

Y2
i. − I JY2

.. .

Table 14.1

Analysis of Variance for
One-Way Layout

Source of Degrees of

Variance Sums of Squares Freedom Mean Squares

Between groups SSH = J
I∑

i=1
(Yi. − Y..)2 I − 1 MSH = SSH

I−1

Within groups SSe =
I∑

i=1

J∑
j=1

(Yij − Yi.)2 I(J − 1) MSe = SSe

I(J−1)

Total SST =
I∑

i=1

J∑
j=1

(Yij − Y..)2 I J − 1 —
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Also,

SSe =
∑

i

∑
j

(Yij − Yi.)2 =
∑

i

∑
j

Y2
ij + J

∑
i

Y2
i. − 2
∑

i

∑
j

Yi.Yij ,

and ∑
i

∑
j

Yi.Yij =
∑

i

Yi.

∑
j

Yij =
(∑

i

Yi.

)
(JYi.) = J

∑
i

Y2
i.,

so that the result follows.

EXAMPLE 1 For a numerical example, take I = 3, J = 5, and let:

y11 = 82 y21 = 61 y31 = 78

y12 = 83 y22 = 62 y32 = 72

y13 = 75 y23 = 67 y33 = 74

y14 = 79 y24 = 65 y34 = 75

y15 = 78 y25 = 64 y35 = 72.

(i) Compute the MLE of μi, i = 1, 2, 3.

(ii) Compute the sum of squares SSH and SSe, and also the unbiased estimate
MSe of σ 2.

(iii) Test the hypothesis H0: μ1 = μ2 = μ3 = μ at level of significance α = 0.05.
(iv) Compute the MLE of μ.

DISCUSSION

(i) μ̂1 = 79.4, μ̂2 = 63.8, μ̂3 = 74.2.

(ii) Since yi. = μ̂i, i = 1, 2, 3 and y.. � 72.467, we get, by (14):

SSH � 79,402.2 − 78,771.991 = 630.209,

SSe = 79,491 − 79,402.2 = 88.8, and MSe = 88.8
12

= 7.4.

Since MSH � 315.105, the test statistic is: 315.105
7.4 � 42.582. On the other

hand, F2,12 ; 0.05 = 3.8853, the hypothesis H0 is rejected.
(iii) Finally, μ̂ = y.. = 72.467.

Here is another example with data from a real experiment.

EXAMPLE 2 In an effort to improve the quality of recording tapes, the effects of four kinds
of coatings A, B, C, D on the reproducing quality of sound are compared.
Suppose that the measurements of sound distortion given in Table 14.2 are
obtained from tapes treated with the four coatings. Look at this problem as a
one-way layout ANOVA and carry out the analysis; take as level of significance
α = 0.05.

DISCUSSION Here I = 4, J = 4. For the MLE’s of the means, we have:
μ̂1 = y1. = 11.25, μ̂2 = y2. = 17.00, μ̂3 = y3. = 15.50, μ̂4 = y4. = 14.75. Also,
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y.. = 14.625. Next, by (14): SSH = 4 × 873.375 − 16 × 213.890625 = 3,493.50 −
3,422.25 = 71.25, SSe = 3,568 − 4 × 873.375 = 3,568 − 3,493.5 = 74.50, so
that MSH = 23.75, MSe � 6.208. The observed value of the test statistics is:
23.75
6.208 � 3.826, whereas F3,12 ; 0.05 = 3.4903. Therefore the null hypothesis about
equality of the means is rejected. Finally, μ̂ = y.. = 14.625.

Table 14.2

Sound Distortion
Obtained with Four
Types of Coatings

Grand

Coating Observations Mean Mean

A 10, 15, 8, 12 y1. = 11.25 y.. = 14.625
B 14, 18, 21, 15 y2. = 17.00
C 17, 16, 14, 15 y3. = 15.50
D 12, 15, 17, 15 y4. = 14.75

The following observations are meant to shed more light on the F test
which is used for testing the null hypothesis H0. Recall that F = MSH

MSe
, where,

by (11) and (13),

MSH = J

I − 1

∑
i

(Yi. − Y..)2

and that SSH

σ 2 ∼ χ2
I−1, under H0, so that EMSH = σ 2. It will be shown below

that, regardless whether H0 is true or not,

EMSH = σ 2 + J

I − 1

∑
i

(μi − μ.)2, where μ. = 1
I

∑
i

μi. (15)

Therefore EMSH ≥ σ 2 = E(MSH | H0) and EMSH = σ 2 under H0; also,
EMSe = σ 2. Thus, on the basis of this average criterion, it makes sense to
reject H0 when MSH , measured against MSe, takes large values. For reference
purposes, relation (15) is stated below as a lemma.

LEMMA 3 It holds that:

EMSH = 1
I − 1

E
∑

i

∑
j

(Yi. − Y..)2 = J

I − 1
E
∑

i

(Yi. − Y..)2

= σ 2 + J

I − 1

∑
i

(μi − μ.)2.

PROOF Deferred to Subsection 14.1.3.

14.1.3 Proof of Lemmas in Section 14.1

We now proceed with the justification of Lemmas 1–3 in this section.

PROOF OF LEMMA 1 We have:

SST =
∑

i

∑
j

(yij − y..)2 =
∑

i

∑
j

[(yij − yi.) + (yi. − y..)]2

=
∑

i

∑
j

(yij − yi.)2 +
∑

i

∑
j

(yi. − y..)2 + 2
∑

i

∑
j

(yij − yi.)(yi. − y..)
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= SSe + SSH , since∑
i

∑
j

(yij − yi.)(yi. − y..) =
∑

i

(yi. − y..)
∑

j

(yij − yi.)

=
∑

i

(yi. − y..)(Jyi. − Jyi.) = 0. ▲

PROOF OF LEMMA 2 At this point, recall that, if X1, . . . , Xn are independent
r.v.’s distributed as N(μ, σ 2), then: (a)X̄ and

∑
i(Xi −X̄)2 are independent;

(b) 1
σ 2

∑
i(Xi − X̄ )2 ∼ χ2

n−1. Apply these results as follows:

(i) For each i = 1, . . . , I, 1
σ 2

∑
j(Yij − Yi.)2 ∼ χ2

J−1, by (b) above. Further-
more, for i′ �= i,

∑
j(Yi′ j −Yi′.)2 and

∑
j(Yij −Yi.)2 are independent, since

they are defined (separately) on sets of independent r.v.’s. It follows that:

SSe

σ 2
= 1

σ 2

∑
i

∑
j

(Yij − Yi.)2 =
∑

i

1
σ 2

∑
j

(Yij − Yi.)2 ∼ χ2
I(J−1).

(ii) For each i = 1, . . . , I, the independent r.v.’s Yi1, . . . , YiJ ∼ N(μi, σ 2).
Hence, by (a) above,

∑
j(Yij −Yi.)2 and Yi. are independent. Furthermore,∑

j(Yij − Yi.)2 and Yi′. are also independent for i′ �= i, because Yi′. is de-
fined on a set of r.v.’s which are independent of

∑
j(Yij −Yi.)2. Thus, each

of the statistics
∑

j(Yij −Yi.)2, i = 1, . . . , I is independent of the statistics
Y1., . . . , YI., and the statistics

∑
j(Yij −Yi.)2, i = 1, . . . , I are independent,

as was seen in part (i). It follows that the sets
∑

j(Yij − Yi.)2, i = 1, . . . , I

and Yi., i = 1, . . . , I are independent. Then so are functions defined
(separately) on them. In particular, the functions

∑
i

∑
j(Yij − Yi.)2 and∑

i

∑
j(Yi. − Y..)2 are independent, or SSe and SSH are independent.

(iii) Under H0, the r.v.’s Y1., . . . , YI. are independent and distributed as
N(μ, σ 2/ J). Therefore J

σ 2

∑
i(Yi. − Y..)2 ∼ χ2

I−1. Since J

σ 2

∑
i(Yi. − Y..)2 =

1
σ 2

∑
i

∑
j (Yi.− Y..)2 = 1

σ 2 SSH , the result follows.
(iv) It follows from parts (i)–(iii) and the definition of the F distribution.
(v) Under H0, the r.v.’s Yij , i = 1, . . . , I, j = 1, . . . , J are independent and

distributed as N(μ, σ 2). Then, by (b) above, 1
σ 2

∑
i

∑
j(Yij − Y..)2 is dis-

tributed as χ2
I J−1, or SST

σ 2 ∼ χ2
I J−1. ▲

PROOF OF LEMMA 3 Before taking expectations, work with
∑

i(Yi. − Y..)2

and rewrite it in a convenient form; namely,∑
i

(Yi. − Y..)2 =
∑

i

[(Yi. − μ.) − (Y.. − μ.)]2 =
∑

i

(Yi. − μ.)2 − I(Y.. − μ.)2,

because∑
i

(Yi. − μ.) =
∑

i

Yi. − Iμ. =
∑

i

1
J

∑
j

Yij − Iμ.

= 1
J

∑
i

∑
j

Yij − Iμ. = IY.. − Iμ. = I(Y.. − μ.),
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so that

−2
∑

i

(Yi. − μ.)(Y.. − μ.) = −2(Y.. − μ.) × I(Y.. − μ.) = −2I(Y.. − μ.)2.

So,

E
∑

i

(Yi. − Y..)2 =
∑

i

E(Yi. − μ.)2 − IE(Y.. − μ.)2 =
∑

i

E(Yi. − μ.)2 − I Var(Y..)

=
∑

i

E(Yi. − μ.)2 − I
σ 2

I J
=
∑

i

E(Yi. − μ.)2 − σ 2

J
,

and

E(Yi. − μ.)2 = E[(Yi. − μi) + (μi − μ.)]2 = E(Yi. − μi)2 + (μi − μ.)2

= Var(Yi.) + (μi − μ.)2 = σ 2

J
+ (μi − μ.)2.

Therefore

E
∑

i

(Yi. − Y..)2 = Iσ 2

J
+
∑

i

(μi − μ.)2 − σ 2

J
= I − 1

J
σ 2 +
∑

i

(μi − μ.)2,

and, by (11) and (13),

EMSH = σ 2 + J

I − 1

∑
i

(μi − μ.)2, which is (15). ▲

REMARK 4 In closing this section, it should be pointed out that an obvious
generalization of what was done here is to have different J’s for each i =
1, . . . , I; i.e., for each i, we have Ji observations. The analysis conceptually
remains the same, only one would have to carry along the Ji’s as oppose to
one J.

Exercises

1.1 Apply the one-way layout analysis of variance to the data given in the table
below. Take α = 0.05.

A B C
10.0 9.1 9.2
11.5 10.3 8.4
11.7 9.4 9.4

1.2 Consider the log-likelihood function (1) as it becomes under the null hy-
pothesis H0 stated in (7), and show that the MLE’s of μ and σ 2 are given
by the expression in relation (9).

1.3 In reference to the derivation of the likelihood ratio test λ for testing the
hypothesis H0 stated in relation (7), show that λ is, actually, given by any
one of the expressions in relation (10).
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1.4 In reference to the proof of Lemma 3, show that:
(i) E(Y.. − μ.)2 = σ 2

I J
.

(ii) E(Yi. − μi)2 = σ 2

J
.

(iii) E(Yi. − μ.)2 = E(Yi. − μi)2 + (μi − μ.)2.

14.2 A Multicomparison Method

Refer to the one-way layout model discussed in the previous section, namely,
to the model described in Theorem 1. One of the problems we have studied
was that of testing the null hypothesis about equality of the I means; i.e.,

H0: μ1 = · · · = μI = μ unspecified. (16)

Suppose now that the hypothesis H0 is rejected, as, indeed, was the case
in Examples 1 and 2. Rejection of H0 simply means that not all of the μi’s are
equal. Clearly, it would be desirable to know which of the μi’s are responsible
for the rejection of H0. It is true that we do gain some information about it
by looking at the estimates μ̂i. However, we would like to obtain additional
information analogous to that provided by a confidence interval for a real-
valued parameter. This is the problem to examine in this section.

In relation (16), the hypothesis H0 compares the parameters involved and,
actually, stipulates that they are all equal. This suggests that any attempt to
construct a confidence interval should not focus on a single parameter, but
rather on two or more parameters simultaneously. For example, we would like
to compare all possible pairs (μi, μ j) through the differences μi −μ j . Or, more
generally, to compare one subset of these parameters against the complement
of this subset. Thus, in Example 1, where we have three parameters μ1, μ2, and
μ3, we may wish, e.g., to compare μ1 against (μ2, μ3), or μ2 against (μ1, μ3), or
μ3 against (μ1, μ2). One way of doing it is to look at the respective differences:
μ1 − 1

2 (μ1 + μ2), μ2 − 1
2 (μ1 + μ3), μ3 − 1

2 (μ1 + μ2).
At this point, it is to be observed that all expressions we looked at above

are of the form c1μ1 + · · · + cIμI with c1 + · · · + cI = 0. This observation leads
to the following definition.

DEFINITION 1
In reference to the model described in Theorem 1, any relation among
the parameters μ1, . . . , μI of the form � =∑I

i=1 ciμi with
∑I

i=1 ci = 0 is
called a contrast among the μi’s.

It follows from the above discussion that what would be really meaningful
here would be the construction of confidence intervals for contrasts among
the μi’s. In particular, it would be clearly, highly desirable to construct confi-
dence intervals for all possible contrast among the μi’s, which would all have
the same confidence coefficient. This is exactly the content of the theorem
stated below.
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First, let us introduce some pieces of notation needed. To this end, consider
the contrast

� =
∑

i

ciμi

(∑
i

ci = 0
)

, (17)

and let us estimate � by �̂, where

�̂ =
∑

i

ciμ̂i =
∑

i

ciYi. (18)

Clearly,

E�̂ = � and Var(�̂) =
(

1
J

∑
i

c2
i

)
σ 2, (19)

and the variance is estimated, in an obvious manner, by

V̂ar(�̂) =
(

1
J

∑
i

c2
i

)
MSe, MSe = SSe/I(J − 1), (20)

and SSe is given in (6) (see also (14)). Finally, define S 2 by:

S2 = (I − 1)FI−1, I(J−1);α. (21)

Then we have the following important result.

THEOREM 3
With the notation introduced in (17), (18), (20), and (21), the interval(

�̂ − S

√
V̂ar(�̂), �̂ + S

√
V̂ar(�̂)

)
(22)

is a confidence interval with confidence coefficient 1−α simultaneously

for all contrasts �.

At this point, it should not come as a surprise that there is an intimate
relationship between the null hypothesis H0 and confidence intervals for con-
trast. The result stated below as a lemma (but not proved!) articulates this
relationship. In its statement, we need a concept defined now.

DEFINITION 2
Let � and �̂ be as in (17) and (18), respectively. Then we say that �̂ is
significantly different from zero, if the interval defined in (22) does not
contain zero; equivalently, |�̂| > S

√
V̂ar(�̂).

Then the lemma mentioned above is as follows.

LEMMA 4 The null hypothesis H0 stated in (16) is rejected, if and only if
there is at least one contrast � for which �̂ is significantly different from zero.

We do not intend to pursue the proof of Theorem 3 here, which can be
found in great detail in Section 17.4 of the book A Course in Mathematical
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Statistics, 2nd edition, Academic Press (1997), by G. G. Roussas. Suffice it to
say that it follows from the maximization, with respect to c1, . . . , cI , subject
to the contrast constraint

∑
i ci = 0, of the function

f (c1, . . . , cI) = 1√
1
J

∑
i c2

i

∑
i

ci(Yi. − μi),

and that this maximization is obtained by means of the so-called Lagrange
multipliers. In the process of doing so, we also need the following two facts.

LEMMA 5

(i) With μ. = 1
I

∑
i μi, the r.v.’s

∑
j[(Yij − μi) − (Yi. − μi)]2, i = 1, . . . , I are

independent.
(ii) The r.v.’s

∑
i[(Yi. − Y..) − (μi − μ.)]2 and SSe are independent.

(iii) Under the null hypothesis H0, J

σ 2

∑
i[(Yi. − Y..) − (μi − μ.)]2 ∼ χ2

I−1.

PROOF Deferred to the end of the section.

We now consider some examples.

EXAMPLE 3 In reference to Example 1, construct a 95% confidence interval for each of the
following contrasts:

μ1 − μ2, μ1 − μ3, μ2 − μ3, μ1 − 1
2

(μ2 + μ3),

μ2 − 1
2 (μ3 + μ1), μ3 − 1

2
(μ1 + μ2).

DISCUSSION Here I = 3, J = 5, and hence FI−1, I(J−1) ; α = F2,12 ; 0.05 =
3.8853, S2 = (I − 1)FI−1, I(J−1) ; α = 2 × 3.8853 = 7.7706 and S � 2.788. Also,
MSe = 7.4 from Example 1. From the same example, for � = μ1 −μ2, we have
�̂ = Y1. − Y2. = 79.4 − 63.8 = 15.6, V̂ar(�̂) = 2

5 × 7.4 = 2.96,
√

V̂ar(�̂) � 1.72
and S

√
V̂ar(�̂) = 2.788 × 1.72 � 4.795. Therefore the required (observed)

confidence interval for μ1 − μ2 is:

[15.6 − 4.795, 15.6 + 4.795] = [10.805, 20.395].

Likewise, for � = μ1−μ3, we have �̂ = Y1.−Y3. = 79.4−74.2 = 5.2, V̂ar(�̂) =
2.96 the same as before, and hence S

√
V̂ar(�̂) � 4.795. Then the required

(observed) confidence interval for μ1 − μ3 is:

[5.2 − 4.795, 5.2 + 4.795] = [0.405, 9.995].

Also, for � = μ2 − μ3, we have �̂ = Y2. − Y3. = 63.8 − 74.2 = −10.4. Since the
V̂ar(�̂) is still 2.96, the required (observed) confidence interval for μ2 − μ3 is:

[−10.4 − 4.795, −10.4 + 4.795] = [−15.195, −5.605].

Next, let � = μ1 − 1
2 (μ2 +μ3), so that �̂ = 79.4− 1

2 (63.8+74.2) = 79.4−69 =
10.4, V̂ar(�̂) = 3

10 × 7.4 = 2.22,
√

V̂ar(�̂) � 1.49 and S
√

V̂ar(�̂) � 4.154.
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Therefore the required (observed) confidence interval is:

[10.4 − 4.154, 10.4 + 4.154] = [6.246, 14.554].

For � = μ2 − 1
2 (μ3 + μ1), we have �̂ = 63.8 − 1

2 (74.2 + 79.4) = −13, and
therefore the required (observed) confidence interval is:

[−13 − 4.154, −13 + 4.154] = [−17.154, −8.846].

Finally, for � = μ3 − 1
2 (μ1 + μ2), we have �̂ = 74.2 − 1

2 (79.4 + 63.8) = 2.6,
and the required (observed) confidence interval is:

[2.6 − 4.154, 2.6 + 4.154] = [−1.554, 6.754].

It is noteworthy that of the six contrasts we have entertained in this example,
for only one contrast � = μ3 − 1

2 (μ1 + μ2) the respective quantity �̂ = 2.6,
is not significantly different from zero. This is consonant with Lemma 4, since
we already know (from Example 1) that H0 is rejected. For example, for the
contrast � = μ1−μ2, we found the confidence interval (10.805, 20.395), which
does not contain 0. This simply says that, at the confidence level considered,
μ1 and μ2 cannot be equal; thus, H0 would have to be rejected. Likewise for
the contrasts μ1 − μ3 and μ2 − μ3.

EXAMPLE 4 In reference to Example 2, construct a 95% confidence interval for each of the
following contrasts:

μ1 − μ2, μ1 − μ3, μ1 − μ4, μ2 − μ3, μ2 − μ4, μ3 − μ4.

DISCUSSION Here I = J = 4, FI−1, I(J−1) ; α = F3,12 ; 0.05 = 3.4903, S 2 =
(I − 1)FI−1, I(J−1) ; α = 3 × 3.4903 = 10.4709, and S � 3.236. For � = μ1 − μ2,
we have �̂ = Y1. − Y2. = 11.25 − 17 = −5.75, and V̂ar(�̂) = 0.5 × 6.208 =
3.104,

√
V̂ar(�̂) � 1.762. Thus, S

√
V̂ar(�̂) = 3.236 × 1.762 � 5.702. Then the

required (observed) confidence interval for μ1 − μ2 is:

[−5.75 − 5.702, −5.75 + 5.702] = [−11.452, − 0.048].

For � = μ1 − μ3, we have �̂ = 11.25 − 15.50 = −4.25, and the required
(observed) confidence interval for μ1 − μ3 is:

[−4.25 − 5.702, −4.25 + 5.702] = [−9.952, 1.452].

For � = μ1 − μ4, we have �̂ = 11.25 − 14.75 = −3.5, and the required
(observed) confidence interval is:

[−3.5 − 5.702, −3.5 + 5.702] = [−9.202, 2.202].

For � = μ2 − μ3, we have �̂ = 17 − 15.5 = 1.5, and the required (observed)
confidence interval is:

[1.5 − 5.702, 1.5 + 5.702] = [−4.202, 7.202].

For � = μ2 −μ4, we have �̂ = 17−14.75 = 2.25, and the required (observed)
confidence interval is:

[2.25 − 5.702, 2.25 + 5.702] = [−3.452, 7.952].
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Finally, for � = μ3 − μ4, we have �̂ = 15.50 − 14.75 = 0.75, and the required
(observed) confidence interval is:

[0.75 − 5.702, 0.75 + 5.702] = [−4.952, 6.452].

In this example, we have that for only one of the six contrasts considered,
� = μ1 − μ2, the respective �̂ = −5.75, is significantly different from zero.
This, of course, suffices for the rejection of the hypothesis H0 (according to
Lemma 4), as it actually happened in Lemma 2. So, it appears that the means
μ1 and μ2 are the culprit here. This fact is also reflected by the estimates of
the μi’s found in Example 2; namely,

μ̂1 = 11.25, μ̂2 = 17.00, μ̂3 = 15.50, μ̂4 = 14.75;

μ̂1 and μ̂2 are the furthest apart.
This section is concluded with the presentation of a justification of

Lemma 5.

PROOF OF LEMMA 5

(i) Here ∑
j

[(Yij − μi) − (Yi. − μi)]2 =
∑

j

(Yij − Yi.)2,

and the statistics
∑

j(Yij − Yi.)2, i = 1, . . . , I are independent, since they
are defined (separately) on independent sets (rows) of r.v.’s.

(ii) The proof of this part is reminiscent of that of Lemma 2(ii). The inde-
pendent r.v.’s Yi1 − μi, . . . , YiJ − μi are distributed as N(0, σ 2). Since
1
J

∑
j(Yij − μi) = Yi. − μi, it follows, by an application of (a) in the proof

of Lemma 2, that, for each i = 1, . . . , I,
∑

j[(Yij − μi) − (Yi. − μi)]2 =∑
j(Yij − Yi.)2 is independent of Yi. −μi. For i′ �= i, each of

∑
j(Yij − Yi.)2

is also independent of Yi′.−μi′ . Also, by part (i),
∑

j(Yij−Yi.)2, i = 1, . . . , I

are independent. It follows that the sets of statistics∑
j

(Yij − Yi.)2, i = 1, . . . , I and Yi. − μi, i = 1, . . . , I

are independent. Then so are functions defined (separately) on them. In
particular, this is true for the functions∑

i

∑
j(Yij − Yi.)2 = SSe and∑

i[(Yi. − μi) − (Y.. − μ.)]2 =∑i[(Yi. − Y..) − (μi − μ.)]2.

(iii) For i = 1, . . . , I, the r.v.’s Yi. − μi are independent and distributed as
N(0, σ 2/J ), so that the independent r.v.’s

√
J

σ
(Yi. − μi), i = 1, . . . , I are

distributed as N(0, 1).
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Since 1
I

∑
i

√
J

σ
(Yi. − μi) =

√
J

σ
(Y.. − μ.), it follows (by (a) in the proof of

Lemma 2) that ∑
i

[√
J

σ
(Yi. − μi) −

√
J

σ
(Y.. − μ.)

]2

∼ χ2
I−1,

or
J

σ 2

∑
i

[(Yi. − Y..) − (μi − μ.)]2 ∼ χ2
I−1. ▲

Exercises

2.1 Refer to Exercise 1.1, and construct 95% confidence intervals for all con-
trasts of the μ’s.

2.2 Refer to Exercise 1.2, and construct 95% confidence intervals for all con-
trasts of the μ’s.

14.3 Two-Way Layout with One Observation per Cell

In this section, we pursue the study of the kind of problems considered in
Section 14.1, but in a more general framework. Specifically, we consider ex-
periments whose outcomes are influenced by more than one factor. In the
model to be analyzed here there will be two such factors, one factor occurring
at I levels and the other factor occurring at J levels. The following example
will help clarify the underlying ideas and the issues to be resolved.

EXAMPLE 5 Suppose we are interested in acquiring a fairly large number of equipments
from among I brands entertained. The available workforce to use the equip-
ments bought consists of J workers. Before a purchase decision is made, an
experiment is carried out whereby each one of the J workers uses each one
of the I equipments for one day. It is assumed that the one day’s production
would be a quantity, denoted by μ ij , depending on the ith brand of equipment
and the jth worker, except for an error e ij associated with the ith equipment
and the jth worker. Thus, the one day’s outcome is, actually, an observed value
of a r.v. Yij , which has the following structure: Yij = μ ij + e ij , i = 1, . . . , I,
j = 1, . . . , J. For the errors e ij the familiar assumptions are made; namely, the
r.v.’s e ij , i = 1, . . . , I, j = 1, . . . , J are independent and distributed as N(0, σ 2).
It follows that the r.v.’s Yij , i = 1, . . . , I, j = 1, . . . , J are independent with
Yij ∼ N(μ ij , σ 2). At this point, the further reasonable assumption is made that
each mean μ ij consists of three additive parts: a quantity μ, the grand mean,
the same for all i and j; an effect due the ith equipment, denoted by αi and
usually referred to as the row effect; and an effect due to the jth worker, de-
noted by β j and usually referred to as the column effect. So, μ ij = μ+αi +β j.

Now, it is not unreasonable to assume that some of the αi effects are positive,
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some are negative, and on the whole their sum is zero. Likewise for the β j

effects.
Gathering together the assumptions made so far, we have the following

model.

Yij = μ + αi + β j + e ij ,
∑I

i=1 αi = 0 and
∑J

j=1 β j = 0, the r.v.’s

e ij , i = 1, . . . , I(≥ 2), j = 1, . . . , J(≥ 2) are independent and distributed

as N(0, σ 2).

It follows that the r.v.’s Yij , i = 1, . . . , I, j = 1, . . . , J

are independent with Yij ∼ N(μ + αi + β j , σ 2).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(23)

Of course, once model (23) is arrived at, it can be detached from the specific
example which helped motivate the model.

In reference to model (23), the questions which arise naturally are the
following: What are the magnitudes of the grand mean μ, of the row effects αi,
of the column effects β j , and of the error variance σ 2? Also, are there, really, any
row effects present (does it make a difference, for the output, which equipment
is purchased)? Likewise for the column effects. In statistical terminology, the
questions posed above translate as follows: Estimate the parameters of the
model μ, αi, i = 1, . . . , I, β j , j = 1, . . . , J, and σ 2. The estimates sought will be
the MLE’s, which for the parameters μ, αi, and β j are also LSE’s. Test the null
hypothesis of no row effects H0, A: α1 = · · · = αI (and therefore = 0). Test the
null hypothesis of no column effects H0, B: β1 = · · · = βJ (and therefore = 0).

14.3.1 The MLE’s of the Parameters of the Model

The likelihood function of the Yij ’s, to be denoted by L(y; μ, α, β, σ 2) in obvi-
ous notation, is given by the formula below. In this formula and in the sequel,
the precise range of i and j will not be indicated explicitly for notational
convenience.

L(y; μ, α, β, σ 2) =
(

1√
2πσ 2

)I J

exp

[
− 1

2σ 2

∑
i

∑
j(yij − μ − αi − β j)2

]
.

(24)

For each fixed σ 2, maximization of the likelihood function with respect to
μ, αi, and β j is equivalent to minimization, with respect to these parameters,
of the expression:

S(μ, α1, . . . , αI , β1, . . . , βJ) = S(μ, α, β) =
∑

i

∑
j

(yij − μ − αi − β j)2. (25)

Minimization of S(μ, α, β) with respect to μ, α, and β yields the values given
in the following result.

LEMMA 6 The unique minimizing values of μ, αi, and β j for expression (25)
(i.e., the LSE’s of μ, αi, and β j) are given by:

μ̂ = y.., α̂i = yi. − y.., i = 1, . . . , I, β̂ j = y. j − y.., j = 1, . . . , J, (26)
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where

yi. = 1
J

∑
j

yij , y. j = 1
I

∑
i

yij , y.. = 1
I J

∑
i

∑
j

yij. (27)

PROOF Deferred to Subsection 14.3.3.
For the values in (26), the log-likelihood function becomes, with obvious no-
tation:

log L(y; μ̂, α̂, β̂, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2
Ŝ, (28)

where Ŝ = ∑i

∑
j(yij − yi. − y. j + y..)2. Relation (28) is of exactly the same

type as relation (5), maximization of which produced the value

σ̂ 2 = 1
I J

Ŝ = 1
I J

∑
i

∑
j

(yij − yi. − y. j + y..)2. (29)

Combining then the results in (26) and (29), we have the following result. ▲

THEOREM 4
Under model (23), the MLE’s of the parameters of the model are given by
relations (26) and (29). Furthermore, the MLE’s of μ, αi, and β j are also
their LSE’s.

14.3.2 Testing the Hypothesis of No Row or No Column Effects

First, consider the null hypothesis of no row effects; namely,

H0, A: α1 = · · · = αI = 0. (30)

Under H0, A, the likelihood function in (24), to be denoted for convenience by
LA(y; μ, β, σ 2), becomes:

LA(y; μ, β, σ 2) =
(

1√
2πσ 2

)I J

exp

[
− 1

2σ 2

∑
i

∑
j

(yij − μ − β j)2

]
. (31)

Maximization of this likelihood with respect to β j ’s and μ, for each fixed σ 2,
is equivalent to minimization, with respect to β j ’s and μ of the expression:

S(μ, β1, . . . , βJ) = S(μ, β) =
∑

i

∑
j

(yij − μ − β j)2. (32)

Working exactly as in (25), we obtain the following MLE’s, under H0, A, to be
denoted by μ̂A and β̂ j, A:

μ̂A = y.. = μ̂, β̂ j, A = y. j − y.. = β̂ j , j = 1, . . . , J. (33)

Then, repeating the steps in relation (28), we obtain the MLE of σ 2, under H0, A:

σ̂ 2
A = 1

I J

∑
i

∑
j

(yij − y. j)2. (34)
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The hypothesis H0, A will be tested by means of the likelihood ratio test. First,
observe that:

exp

[
− 1

2σ̂ 2
A

∑
i

∑
j

(yij − y. j)2

]
= exp

(
− I J

2σ̂ 2
A

× σ̂ 2
A

)
= exp

(
− I J

2

)
,

and

exp

[
− 1

2σ̂ 2

∑
i

∑
j

(yij − yi. − y. j + y..)2

]
= exp

(
− I J

2σ̂ 2
× σ̂ 2

)
= exp

(
− I J

2

)
.

Then the likelihood ratio statistic λ is given by:

λ = (σ̂ 2/σ̂ 2
A

)I J/2
.

Hence

(
σ̂ 2

σ̂ 2
A

)I J/2

< C , if and only if
σ̂ 2

A

σ̂ 2
> C0 = 1/C2/I J . (35)

At this point, use the following notation:

SSe = IJσ̂ 2 =
∑

i

∑
j

(yij − yi. − y. j + y..)2, SSA = J
∑

i

α̂2
i = J

∑
i

(yi. − y..)2,

(36)
by means of which it is shown that:

LEMMA 7 With σ̂ 2
A, SSe and SSA defined by (34) and (36), it holds: I Jσ̂ 2

A =
I Jσ̂ 2 + SSA = SSe + SSA.

PROOF Deferred to Subsection 14.3.3.
By means of this lemma, relation (35) becomes:

σ̂ 2
A

σ̂ 2
= IJσ̂ 2

A

IJσ̂ 2
= SSe + SSA

SSe

= 1 + SSA

SSe

> C0, or
SSA

SSe

> C1 = C0 − 1.

So, the likelihood ratio test rejects H0, A whenever

SSA

SSe

> C1, where SSA and SSe are given in (36). (37)

For the determination of the cutoff point C1 in (37), we need the distribu-
tion of the statistic SSA/SSe under H0, A, where it is tacitly assumed that the
observed values have been replaced by the respective r.v.’s. For this purpose,
we establish the following result.

LEMMA 8 Consider the expressions SSe and SSA defined in (36), and replace
the observed values yij , yi., y. j , and y.. by the respective r.v.’s Yij , Yi., Y. j , and
Y.., but retain the same notation. Then, under model (23):

(i) The r.v. SSe/σ
2 is distributed as χ2

(I−1)(J−1).

(ii) The statistics SSe and SSA are independent.



416 Chapter 14 Two Models of Analysis of Variance

Furthermore, if the null hypothesis H0, A defined in (30) is true, then:

(iii) The r.v. SSA/σ 2 is distributed as χ2
I−1.

(iv) The statistic SSA/(I−1)
SSe/(I−1)(J−1) ∼ FI−1,(I−1)(J−1).

PROOF Deferred to Subsection 14.3.3.
To this lemma, there is the following corollary, which also encompasses the
estimates μ̂, α̂i, and β̂ j.

COROLLARY

(i) The MLE’s μ̂ = Y.., α̂i = Yi. − Y.., i = 1, . . . , I, and β̂ j = Y. j − Y.., j =
1, . . . , J are unbiased estimates of the respective parameters μ, αi,
and β j .

(ii) The MLE σ̂ 2 = SSe/I J of σ 2 given by (29) and (36) is biased, but the
estimate MSe = SSe/(I − 1)(J − 1) is unbiased.

PROOF

(i) It is immediate from the definition of Yi., Y. j , and Y.. as (sample) means.
(ii) From the lemma, SSe

σ 2 ∼ χ2
(I−1)(J−1), so that

E

(
SSe

σ 2

)
= (I − 1)(J − 1), or E

[
SSe

(I − 1)(J − 1)

]
= σ 2,

which proves the unbiasedness asserted. Also,

Eσ̂ 2 = E

(
SSe

I J

)
= (I − 1)(J − 1)

I J
E

[
SSE

(I − 1)(J − 1)

]
= (I − 1)(J − 1)

I J
σ 2,

which shows that σ̂ 2 is biased. ▲

By means then of this lemma and relation (37), we reach the following
conclusion: The hypothesis H0, A is rejected at level α whenever

FA = SSA/(I − 1)
SSe/(I − 1)(J − 1)

= MSA

MSe

> FI−1,(I−1)(J−1); α. (38)

Next, consider the hypothesis of no column effects; i.e.,

H0, B : β1 = · · · = βJ = 0. (39)

Then, working exactly as in (31) and (32), we obtain:

μ̂B = y.. = μ̂, α̂i, B = yi. − y.. = α̂i, i = 1, . . . , I, (40)

and

σ̂ 2
B = 1

I J

∑
i

∑
j

(yij − yi.)2. (41)
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Thus, as in (35), the hypothesis H0, B is rejected whenever

σ̂ 2
B

σ̂ 2
> C ′

0. (42)

Set

SSB = I
∑

j

β̂2
j = I
∑

j

(y. j − y..)2, (43)

and consider the following result.

LEMMA 9 With SSe, σ̂ 2
B, and SSB defined by (36), (41), and (43), it holds:

I Jσ̂ 2
B = I Jσ̂ 2 + SSB = SSe + SSB.

PROOF Deferred to Subsection 14.3.3.
By means of this lemma, relation (42) becomes, as in (37): Reject H0, B whenever

SSB

SSe

> C ′
1, where SSe and SSB are given in (36) and (43). (44)

Finally, for the determination of the cutoff point C ′
1 in (44), a certain dis-

tribution is needed. In other words, a lemma analogous to Lemma 7 is needed
here.

LEMMA 10 Consider the expressions SSe and SSB defined in (36) and (43),
and replace the observed values yij , yi., y. j , and y.. by the respective r.v.’s
Yij , Yi., Y. j , and Y.., but retain the same notation. Then, under model (23):

(i) The r.v. SSe/σ
2 is distributed as χ2

(I−1)(J−1).
(ii) The statistics SSe and SSB are independent.

Furthermore, if the null hypothesis H0, B defined in (39) is true, then:
(iii) The r.v. SSB/σ 2 is distributed as χ2

J−1.

(iv) The statistic SSB/(J−1)
SSe/(I−1)(J−1) ∼ FJ−1,(I−1)(J−1).

PROOF Deferred to Subsection 14.3.3.
By means of this lemma and relation (44), we conclude that: The hypothesis
H0, B is rejected at level α whenever

FB = SSB/(J − 1)
SSe/(I − 1)(J − 1)

= MSB

MSe

> FJ−1,(I−1)(J−1) ; α. (45)

For computational purposes, we need the following result.

LEMMA 11 Let SSe, SSA, and SSB be given by (36) and (43), and let SST be
defined by:

SST =
∑

i

∑
j

(yij − y..)2. (46)
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Then:

(i) SSA = J
∑

i

y2
i.−I Jy2

.. , SSB = I
∑
. j

y2
. j−I Jy2

.. , SST =
∑

i

∑
j

y2
ij−I Jy2

.. .

(47)

(ii) SST = SSe + SSA + SSB. (48)

PROOF Deferred to Subsection 14.3.3.
Gathering together the hypotheses testing results obtained, we have the fol-
lowing theorem.

THEOREM 5
Under model (23), the hypotheses H0, A and H0, B are rejected at level
of significance α whenever inequalities (38) and (45), respectively, hold
true. The statistics SSA, SSB are computed by means of (47), and the
statistic SSe is computed by means of (47) and (48).

As in Section 14.1, the various quantities employed in testing the hypotheses
H0, A and H0, B, and also for estimating the error variance σ 2, are gathered
together in a table, an ANOVA table, as in Table 14.3.

Table 14.3 Analysis of Variance for Two-Way Layout with One Observation per Cell

Source of Degrees of

Variance Sums of Squares Freedom Mean Squares

Rows SSA = J
I∑

i=1
α̂2

i = J
I∑

i=1
(Yi. − Y..)2 I − 1 MSA = SSA

I−1

Columns SSB = I
J∑

j=1
β̂2

j = I
J∑

j=1
(Y. j − Y..)2 J − 1 MSB = SSB

J−1

Residual SSe =
I∑

i=1

J∑
j=1

(Yij − Yi. − Y. j + Y..)2 (I − 1) × (J − 1) MSe = SSe

(I−1)(J−1)

Total SST =
I∑

i=1

J∑
j=1

(Yij − Y..)2 I J − 1 —

REMARK 5 In the present context, relation (48) is responsible for the term
ANOVA. It states that the total variation (variance)

∑
i

∑
j(Yij − Y..)2 (with

reference to the grand sample mean Y..) is split in three ways: one component∑
i

∑
j(Yi. − Y..)2 associated with the row effects (due to the row effects, or

explained by the row effects); one component
∑

i

∑
j(Y. j − Y..)2 associated

with the column effects (due to the column effects, or explained by the col-

umn effects); and the residual component
∑

i

∑
j(Yij − Yi. − Y. j + Y..)2 =∑

i

∑
j[(Yij − Y..) − (Yi. − Y..) − (Y. j − Y..)]2 (unexplained by the row and

column effects, the sum of squares of errors).
Before embarking on the proof of the lemmas stated earlier in this section,

let us illustrate the theory developed by a couple of examples. In the first exam-
ple, we are presented with a set of numbers, not associated with any specific
experiment; in the second example, a real-life experiment is considered.
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EXAMPLE 6 Apply the two-way layout ANOVA with one observation per cell for the data
given in Table 14.4; take α = 0.05.

Table 14.4

Data for a Two-Way
Layout ANOVA

1 2 3 4 yi.

1 3 7 5 4 19/4
2 −1 2 0 2 3/4
3 1 2 4 0 7/4

y. j 1 11/3 3 2 y.. = 29
12

Here: μ̂ = y.. = 29
12 � 2.417, and:

α̂1 = y1. − y.. = 19
4

−29
12

= 7
3

� 2.333 β̂1 = y.1 − y.. = 1 − 29
12

= −17
12

� −1.417

α̂2 = y2. − y.. = 3
4

− 29
12

= − 5
3

� −1.667; β̂2 = y.2 − y.. = 11
3

− 29
12

= 5
4

= 1.25

α̂3 = y3. − y.. = 7
4

− 29
12

= − 2
3

� −0.667 β̂3 = y.3 − y.. = 3 − 29
12

= 7
12

� 0.583

β̂4 = y.4 − y.. = 2 − 29
12

= − 5
12

� −0.417.

SSA = 4 ×
[(

19
4

)2

+
(

3
4

)2

+
(

7
4

)2
]

− 12 ×
(

29
12

)2

= 104
3

� 34.667,

SSB = 3 ×
[

12 +
(

11
3

)2

+ 32 + 22

]
− 12 ×

(
29
12

)2

= 147
12

= 12.25,

SST = [32 + 72 + 52 + 42 + (−1)2 + 22 + 02 + 22 + 12 + 22 + 42 + 02]−12 ×
(

29
12

)2
= 707

12
� 58.917,

so that

SSe = SST − SSA − SSB = 707
12

− 104
3

− 147
12

= 12.

Hence, the unbiased estimate of σ 2 is: SSe

(I−1)(J−1) = 12
6 = 2. Furthermore,

FA = MSA

MSe

= 104/3 × 2
12/6

= 26
3

� 8.667,

FB = MSB

MSe

= 147/12 × 3
12/6

= 147
72

� 2.042.

Since FI−1,(I−1),(J−1) ; α = F2,6 ; 0.05 = 5.1433, we see that the hypothesis H0, A is
rejected, whereas the hypothesis H0, B is not rejected.
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EXAMPLE 7 The cutting speeds of four types of tools are being compared by using five
materials of varying degress of hardness. The data pertaining to measurements
of cutting time in seconds are given in Table 14.5. Carry out the ANOVA for
these data; take α = 0.05.

Table 14.5

Data for a Two-Way
Layout ANOVA

1 2 3 4 5 yi.

1 12 2 8 1 7 6
2 20 14 17 12 17 16
3 13 7 13 8 14 11
4 11 5 10 3 6 7

y. j 14 7 12 6 11 y.. = 10

Here I = 4, J = 5. From the table: μ̂ = 10, and:

α̂1 = y1. − y.. = 6 − 10 = −4

α̂2 = y2. − y.. = 16 − 10 = 6

α̂3 = y3. − y.. = 11 − 10 = 1

α̂4 = y4. − y.. = 7 − 10 = −3

;

β̂1 = y.1 − y.. = 14 − 10 = 4

β̂2 = y.2 − y.. = 7 − 10 = −3

β̂3 = y.3 − y.. = 12 − 10 = 2

β̂4 = y.4 − y.. = 6 − 10 = −4

β̂5 = y.5 − y.. = 11 − 10 = 1.

SSA = 5 × (62 + 162 + 112 + 72) − 20 × 102 = 310,

SSB = 4 × (142 + 72 + 122 + 62 + 112) − 20 × 102 = 184,

SST = 2,158 − 2,000 = 518,

SSE = 518 − 310 − 184 = 24.

Hence, the unbiased estimate for σ 2 is: SSe

(I−1)(J−1) = 24
3×4 = 2. Furthermore,

FA = MSA

MSe

= 310/3
24/12

= 155
3

� 51.667,

FB = MSB

MSe

= 184/4
24/12

= 23.

Since FI−1,(I−1)(J−1) ; α = F3,12 ; 05 = 3.4903, it follows that both hypotheses
H0, A and H0, B are to be rejected. So, the mean cutting times, either for the
tools across the material cut, or for the material cut across the tools used,
cannot be assumed to be equal (at the α = 0.05 level). Actually, this should
not come as a surprise when looking at the margin of the table, which provide
estimates of these times.

14.3.3 Proof of Lemmas in Section 14.3

In this subsection, a justification (or an outline thereof) is provided for the
lemmas used in this section.
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PROOF OF LEMMA 6 Consider the expression S(μ, α, β) = ∑i

∑
j(yij −

μ − αi − β j)2 and recall that
∑

i αi = 0,
∑

j β j = 0. Following the method of
Lagrange multipliers, consider the linear combination

S∗(μ, α, β) =
∑

i

∑
j

(yij − μ − αi − β j)2 + λ1

∑
i

αi + λ2

∑
j

β j ,

where λ1, λ2 are constants, determine the partial derivatives of S∗(μ, α, β)
with respect to μ, αi, and β j , equate them to 0, append to them the side con-
straints

∑
i αi = 0,

∑
j β j = 0, and solve the resulting system with respect to μ,

the αi’s, and the β j ’s (and also λ1, λ2). By implementing these steps, we get:

∂

∂μ
S∗(μ, α, β) = −2

∑
i

∑
j

yij + 2I Jμ + J
∑

i

αi + 2I
∑

j

β j = 0

∂

∂αi

S∗(μ, α, β) = −2
∑

j

yij + 2Jμ + 2Jαi + 2
∑

j

β j + λ1 = 0

∂

∂β j

S∗(μ, α, β) = −2
∑

j

yij + 2Iμ + 2
∑

i

αi + 2Iβ j + λ2 = 0∑
i

αi = 0∑
j

β j = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

from which we obtain:

μ = 1
I J

∑
i

∑
j

yij = y.., αi = yi. − y.. − λ1

2J
, β j = y. j − y.. − λ2

2I
.

But

0 =
∑

i

αi =
∑

i

yi. − Iy.. − Iλ1

2J
= Iy.. − Iy.. − Iλ1

2J
= − Iλ1

2J
, so that λ1 = 0,

and likewise for λ2 by summing up the β j ’s. Thus,

μ = y.., αi = yi. − y.., i = 1, . . . , I, β j = y. j − y.., j = 1, . . . , J. (49)

Now the parameter μ is any real number, the αi’s span an (I − 1)-dimensional
hyperplane, and the β j ’s span a (J −1)-dimensional hyperplace. It is then clear
that the expression S(μ, α, β) (as a function of μ, the αi’s, and the β j ’s) does
not have a maximum. Then the values in (49) are candidates to produce a
minimum of S(μ, α, β), in which case (26) follows. Again, geometrical con-
siderations suggest that they do produce a minimum, and we will leave it at
that presently. ▲

REMARK 6 It should be mentioned at this point that ANOVA models are
special cases of the so-called General Linear Models, and then the above mini-
mization problem is resolved in a general setting by means of linear algebra
methodology. For a glimpse at it, one may consult Chapter 17 in the book
A Course in Mathematical Statistics, 2nd edition, Academic Press (1997),
by G. G. Roussas.
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PROOF OF LEMMA 7 Here, we have to establish the relation:∑
i

∑
j

(yij − y. j)2 = J
∑

i

(yi. − y..)2 +
∑

i

∑
j

(yij − yi. − y. j + y..)2.

Indeed,

SSe =
∑

i

∑
j

(yij − yi. − y. j + y..)2 =
∑

i

∑
j

[(yij − y. j) − (yi. − y..)]2

=
∑

i

∑
j

(yij − y. j)2 + J
∑

i

(yi. − y..)2 − 2
∑

i

∑
j

(yi. − y..)(yij − y. j)

= I Jσ̂ 2
A + SSA − 2SSA = I Jσ̂ 2

A − SSA, because∑
i

∑
j

(yi. − y..)(yij − y. j) =
∑

i

(yi. − y..)
∑

j

(yij − y. j)

=
∑

i

(yi. − y..)(Jyi. − Jy..) = J
∑

i

(yi. − y..)2 = SSA. ▲

PROOF OF LEMMA 8 There are several ways one may attempt to justify
the results in this lemma. One would be to refer to Lemma 2 and suggest
that a similar approach be used, but that would do no justice. Another ap-
proach would be to utilize the theory of quadratic forms, but that would
require an extensive introduction to the subject and the statement and/or
proof of a substantial number of related results. Finally, the last approach
would be to use a geometric descriptive approach based on fundamental con-
cepts of (finite dimensional) vector spaces. We have chosen to follow this last
approach.

All vectors to be used here are column vectors, and the prime notation, “′”,
indicates transpose of a vector. Set Y = (Y11, . . . , Y1J ; Y21, . . . , Y2J ; . . . ; YI1, . . . ,
YI J)′, so that Y belongs in an I × J-dimensional vector space to be denoted by
VI×J . Also, set

η = EY = (EY11, . . . , EY1J ; EY21, . . . , EY2J ; . . . ; EYI1, . . . , EYI J)′

= (μ + α1 + β1, . . . , μ + α1 + βJ ; μ + α2 + β1, . . . , μ + α2 + βJ ; . . . ;

μ + αI + β1, . . . , μ + αI + βJ)′.

Although the vector η has I × J coordinates, due to its form and the fact
that
∑

i αi = ∑ j β j = 0, it follows that it lies in an (I + J − 1)-dimensional
space, VI+J−1. Finally, if H0, A: α1 = · · · = αI = 0 holds, then the respective
mean vector, to be denoted by ηA, is

ηA = (μ + β1, . . . , μ + βJ ; μ + β1, . . . , μ + βJ ; . . . ; μ + β1, . . . , μ + βJ)′,

and reasoning as above, we conclude that ηA ∈ VJ . Thus, we have three vector
spaces related as follows: VJ ⊂ VI+J−1 ⊂ VI×J .

It is clear that, if μ, αi’s, and β j ’s are replaced by their (least squares) esti-
mates μ̂, α̂i’s, and β̂ j ’s, the resulting random vector η̂ still lies in VI+J−1, and like-
wise for the random vector η̂A, which we get, if μ and β j ’s are replaced by μ̂A =
μ̂ and β̂ j, A = β̂ j ; i.e., η̂A ∈ VJ . We now proceed as follows: Let αI , . . . , αI+J−1



14.3 Two-Way Layout with One Observation per Cell 423

be an orthonormal basis in VJ (i.e., α′
iα j = 0 for i �= j and ‖αi‖ = 1), which

we extend to an orthonormal basis α1, . . . , αI−1, αI , . . . , αI+J−1 in VI+J+1,
and then to an orthonormal basis

α1, . . . , αI−1, αI , . . . , αI+J−1, αI+J , . . . , αI×J

in VI×J . This can be done, as has already been mentioned in a similar context
in the proof of Lemma 5 in Chapter 13. Also, see Remark 4 in the same chapter.
Since Y ∈ VI×J , it follows that Y is a linear combination of the αi’s with
coefficient some r.v.’s Zi’s. That is, Y = ∑I×J

i=1 Ziαi. Since η̂ minimizes the
quantity ‖Y − η‖2 = ∑i

∑
j(Yij − μ − αi − β j)2, it follows that η̂ is, actually,

the projection of Y into the space VI+J−1. It follows then that η̂ =∑I+J−1
i=1 Ziαi.

Under H0, A, the vector η̂A minimizes ‖Y − ηA‖2 =∑i

∑
j(Yij − μ − β j)2, and

therefore is the projection of Y into the space VJ . Thus, η̂A = ∑I+J−1
i=I Ziαi.

Then Y− η̂ =∑I×J

i=I+J Ziαi, Y− η̂A =∑I−1
i=1 Ziαi +

∑I×J

i=I+J Ziαi, and η̂− η̂A =∑I−1
i=1 Ziαi. Because of the orthonormality of the αi’s, it follows that:

‖Y − η̂‖2 =
∥∥∥∥∥ I×J∑

i=I+J

Ziαi

∥∥∥∥∥ =
I×J∑

i=I+J

Z2
i ,

‖Y − η̂A‖2 =
∥∥∥∥∥ I−1∑

i=1

Ziαi +
I×J∑

i=I+J

Ziαi

∥∥∥∥∥ =
I−1∑
i=1

Z2
i +

I×J∑
i=I+J

Z2
i ,

and

‖η̂ − η̂A‖2 =
∥∥∥∥∥ I−1∑

i=1

Ziαi

∥∥∥∥∥ =
I−1∑
i=1

Z2
i .

However,

‖Y − η̂‖2 =
∑

i

∑
j

(Yij − μ̂ − α̂i − β̂ j)2 =
∑

i

∑
j

(Yij − Yi. − Y. j + Y..)2 = SSe,

and

‖η̂ − η̂A‖2 =
∑

i

∑
j

α̂2
i =
∑

i

∑
j

(Yi. − Y..)2 = J
∑

i

(Yi. − Y..)2 = SSA.

Therefore

SSA =
I−1∑
i=1

Z2
i , SSe =

I×J∑
i=I+J

Z2
i. (50)

Now, observe that the r.v.’s Z1, . . . , ZI×J are the transformation of the r.v.’s
Y1, . . . , YI×J under the orthogonal matrix P whose rows are the vectors α′

i’s.
This follows immediately from the relation Y =∑I×J

i=1 Ziαi, if we multiply (in
the inner product sense) by α′

j . We then get α′
jY =∑I×J

i=1 Zi(α′
jαi), and this is

Zi, if j = i, and 0 otherwise. So, Zi = α′
iY, i = 1, . . . , I × J. Since the Yi’s are

independent and Normally distributed with (common) variance σ 2, it follows
that the Zi’s are also independently Normally distributed with specified means
and the same variance σ 2. (See Theorem 8 in Chapter 6.) From the fact that
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η̂ ∈ VI+J−1, it follows that its last I× J−(I+ I−1) = (I−1)(J−1) coordinates
are zero. Then so are the respective EZi. That is, Zi, i = 1, . . . , I × I are
independent Normal, EZi = 0 for the last (I − 1)(J − 1) coordinates, and they
all have variance σ 2. It follows that:

(i) SSe

σ 2 = 1
σ 2

∑I×I

i=I+J Z2
i ∼ χ2

(I−1)(J−1).

(ii) The statistics SSe and SSA are independent, because they are defined in
terms of nonoverlapping sets of the independent r.v.’s Zi’s (see relation
(50)).

(iii) The expectations of the coordinates of η̂ are μ+αi +β j , and the expecta-
tions of the coordinates of η̂A are μ + β j. It follows that the expectations
of the coordinates of η̂ − η̂A are (μ + αi + β j) − (μ + β j) = αi. Therefore,
if H0, A is true, these expectations are 0, and then so are the expectations
of Zi, i = 1, . . . , I − 1, since η̂ − η̂A =∑I−1

i=1 Ziαi. It follows that

SSA

σ 2
= 1

σ 2

I−1∑
i=1

Z2
i ∼ χ2

I−1.

(iv) Immediate from parts (i)–(iii) and the definition of the F distribution. ▲

PROOF OF LEMMA 9 We have to show that∑
i

∑
j

(yij − yi.)2 = I
∑

j

(y. j − y..)2 +
∑

i

∑
j

(yij − yi. − y. j + y..)2.

As in the proof of Lemma 7,

SSe =
∑

i

∑
j

(yij − yi. − y. j + y..)2 =
∑

i

∑
j

[(yij − yi.) − (y. j − y..)]2

=
∑

i

∑
j

(yij − yi.)2 +
∑

i

∑
j

(y. j − y..)2 − 2
∑

i

∑
j

(y. j − y..)(yij − yi.)

= I Jσ̂ 2
B + SSB − 2SSB = I Jσ̂ 2

B − SSB, because∑
i

∑
j

(y. j − y..)(yij − y..) =
∑

j

(y. j − y..)
∑

i

(yij − y..)

=
∑

j

(y. j − y..)(Iy. j − Iy..) = I
∑

j

(y. j − y..)2 = SSB. ▲

PROOF OF LEMMA 10

(i) It is the same as (i) in Lemma 8.
(ii) It is done as in Lemma 8(ii), where H0, A is replaced by H0, B.

(iii) Again, it is a repetition of the arguments in Lemma 8(iii).
(iv) Immediate from parts (i)–(iii). ▲

PROOF OF LEMMA 11

(i) They are all a direct application of the identity:
∑n

k=1(Xk − X̄)2 =∑
k X2

k − nX̄2.
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(ii) Clearly,
SSe =

∑
i

∑
j

(yij − yi. − y. j + y..)2

=
∑

i

∑
j

[(yij − y..) − (yi. − y..) − (y. j − y..)]2

=
∑

i

∑
j

(yij − y..)2 + J
∑

i

(yi. − y..)2 + I
∑

j

(y. j − y..)2

− 2
∑

i

∑
j

(yi. − y..)(yij − y..) − 2
∑

i

∑
j

(y. j − y..)(yij − y..)

+ 2
∑

i

∑
j

(yi. − y..)(y. j − y..) = SST − SSA − SSB,

because ∑
i

∑
j

(yi. − y..)(yij − y..) =
∑

i

(yi. − y..)(Jyi. − Jy..)

= J
∑

i

(yi. − y..)2 = SSA,∑
i

∑
j

(y. j − y..)(yij − y..) =
∑

j

(y. j − y..)(Iy. j − Iy..)

= I
∑

j

(y. j − y..)2 = SSB,

and ∑
i

∑
j

(yi. − y..)(y. j − y..) =
∑

i

(yi. − y..)(Jy.. − Jy..) = 0. ▲

REMARK 7 In a two-way layout of ANOVA, we may have K(≥2) observa-
tions per cell rather than one. The concepts remain the same, but the analysis
is somewhat more complicated. The reader may wish to refer to Section 17.3
in Chapter 17 of the book A Course in Mathematical Statistics, 2nd edition,
Academic Press (1997), by G. G. Roussas. The more general cases, where there
is an unequal number of observations per cell or there are more than two fac-
tors influencing the outcome, are the subject matter of the ANOVA branch of
statistics and are, usually, not discussed in an introductory course.

Exercises

3.1 Apply the two-way layout (with one observation per cell) analysis of vari-
ance to the data given in the table below. Take α = 0.05.

Levels of
Factor A

Levels of
Factor B 1 2 3 4 5

1 110 128 48 123 19
2 214 183 115 114 129
3 208 183 130 225 114
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3.2 Under the null hypothesis H0, A stated in relation (30), show that the MLE’s
of μ and β j , j = 1, . . . , J are, indeed, given by the expressions in relation
(33).

3.3 Under the null hypothesis H0, A stated in relation (30), show that the MLE
of σ 2 is, indeed, given by the expression in relation (34).

3.4 In reference to the proof of Lemma 8, show that η is an (I + J − 1)-
dimensional vector.

Hint: This problem may be approached as follows.

X ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I J︷ ︸︸ ︷ ︷ ︸︸ ︷
1 1 0 0 · · · 0 1 0 0 · · · 0
1 1 0 0 · · · 0 0 1 0 · · · 0
· · · · · · · · · · · · · · ·
1 1 0 0 · · · 0 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

1 0 1 0 · · · 0 1 0 0 · · · 0
1 0 1 0 · · · 0 0 1 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 1 0 · · · 0 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
1 0 0 0 · · 0 1 1 0 0 · · · 0
1 0 0 0 · · 0 1 0 1 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 0 0 · · 0 1 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

Consider the I J × (I + J + 1) matrix X ′ given above and let the 1 × (I +
J + 1) vector β′ be defined by: β′ = (μ, α1, . . . , αI , β1, . . . , βJ). Then do
the following:

(i) Observe that η = X ′β, so that η lies in the vector space generated by
the columns (rows) of X ′.

(ii) For I ≥ 2 and J ≥ I+1
I−1 , observe that rank X ′ ≤ I + J + 1 = min

{I + J + 1, I J}.
(iii) Show that rank X ′ = I+J−1 by showing that: (a) The 1st column of X ′

is the sum of the subsequent I columns of X ′. (b) The 2nd column is the
(sum of the last J columns) − (sum of the 3rd, 4th, . . . , Ith columns).
(c) The I + J − 1 columns, except for the first two, are linearly inde-
pendent (by showing that any linear combination of them by scalars
is the zero vector if and only if all scalars are zero). It will then follow
that the dimension of η is I + J − 1.

3.5 In reference to the proof of Lemma 8, and under the hypothesis H0, A, show
that the dimension of the vector ηA is J.
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Hint: As in Exercise 3.4, one may use similar steps in showing that
ηA belongs in a J-dimensional vector space and thus is of dimension J.
To this end, consider the I J × (J + 1) matrix X ′

A given below, and let
β ′

A = (μ, β1, . . . , βJ). Then do the following:

X ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J︷ ︸︸ ︷
1 1 0 0 · · · 0
1 0 1 0 · · · 0
· · · · · · · ·
1 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

1 1 0 0 · · · 0
1 0 1 0 · · · 0
· · · · · · · ·
1 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1 1 0 0 · · · 0
1 0 1 0 · · · 0
· · · · · · · ·
1 0 0 0 · · 0 1

⎫⎪⎪⎬⎪⎪⎭ J

(i) Observe that ηA = X ′
AβA, so that ηA lies in the vector space generated

by the columns (rows) of X ′
A.

(ii) For I ≥ 2, it is always true that J + 1 ≤ I J, and therefore rank X ′
A ≤

J + 1 = min{J + 1, I J}.
(iii) Show that rank X ′

A = J by showing that: (a) The 1st column of X ′
A

is the sum of the subsequent J columns. (b) The J columns, except
for the 1st one, are linearly independent. It will then follow that the
dimension of ηA is J.



Chapter 15

Some Topics
in Nonparametric

Inference

In Chapters 9, 10, 11, and 12, we concerned ourselves with the question of
point estimation, interval estimation, and testing hypotheses about (most of
the time) a real-valued parameter θ . This inference was hedged on the basic
premise that we were able to stipulate each time a probability model, which
was completely known except for a parameter θ (real-valued or of higher
dimension).

The natural question which arises is this: What do we do, if there is no sound
basis for the stipulation of a probability model from which the observations
are drawn? In such a situation, we don’t have parametric inference problems
to worry about, because, simply, we don’t have a parametric model. In certain
situations things may not be as bad as this, but they are nearly so. Namely, we
are in a position to assume the existence of a parametric model which governs
the observations. However, the number of parameters required to render the
model meaningful is exceedingly large, and therefore inference about them is
practically precluded.

It is in situations like this, where the so-called nonparametric models and
nonparametric inference enter the picture. Accordingly, a nonparametric ap-
proach starts out with a bare minimum of assumptions, which certainly do not
include the existence of a parametric model, and proceeds to derive inference
for a multitude of important quantities. This chapter is devoted to discussing
a handful of problems of this variety.

Specifically, in the first section confidence intervals are constructed for the
mean μ of a distribution, and also the value at x of the d.f. F , F(x). The confi-
dence coefficients are approximately 1−α for large n. Illustrative examples are
also provided. In the following section confidence intervals are constructed
for the quantiles of a d.f. F . Here the concept of a confidence coefficient is

428
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replaced by that of the coverage probability. In the subsequent two sections,
two populations are compared by means of the sign test, when the sample
sizes are equal, and the rank sum test and the Wilcoxon–Mann–Whitney test
in the general case. Some examples are also discussed. The last section con-
sists of two subsections. One is devoted to estimating (nonparametrically) a
p.d.f. and the formulation of a number of desirable properties of the proposed
estimate. The other subsection addresses very briefly two very important prob-
lems; namely, the problem of regression estimation under a fixed design, and
the problem of prediction when the design is stochastic.

15.1 Some Confidence Intervals with Given Approximate Confidence Coefficient

We are in a position to construct a confidence interval for the (unknown) mean
μ of n i.i.d. observations X1, . . . , Xn with very little information as to where
these observations are coming from. Specifically, all we have to know is that
these r.v.’s have finite mean μ and variance σ 2 ∈ (0, ∞), and nothing else. Then,
by the CLT,

√
n(X̄n − μ)

σ

d−→
n→∞ Z ∼ N(0, 1), X̄n = 1

n

n∑
i=1

Xi. (1)

Suppose first that σ is known. Then, for all sufficiently large n, the normal
approximation in (1) yields:

P

[
−zα

2
≤

√
n(X̄n − μ)

σ
≤ zα

2

]
� 1 − α,

or

P

(
X̄n − zα

2

σ√
n

≤ μ ≤ X̄n + zα
2

σ√
n

)
� 1 − α.

In other words, [
X̄n − zα

2

σ√
n

, X̄n + zα
2

σ√
n

]
(2)

is a confidence interval for μ with confidence coefficient approximately 1 − α

(0 < α < 1).
Now, if μ is unknown, it is quite likely that σ is also unknown. What we do

then is to estimate σ 2 by

S2
n = 1

n

n∑
i=1

(Xi − X̄n)2 = 1
n

n∑
i=1

X2
i − X̄

2
n = 1

n

∑
i

X2
i −
(∑

i Xi

)2
n2

, (3)

and recall that (by Theorem 7(i) in Chapter 7):

S2
n

P−→
n→∞ σ 2, or

S2
n

σ 2

P−→
n→∞ 1. (4)
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Then convergences (1) and (4), along with Theorem 6(iii) in Chapter 7,
yield:

√
n(X̄n − μ)/σ

Sn/σ
=

√
n(X̄n − μ)

Sn

d−→
n→∞ Z ∼ N(0, 1).

Then, proceeding as before, we obtain that[
X̄n − zα

2

Sn√
n

, X̄n + zα
2

Sn√
n

]
(5)

is a confidence interval for μ with confidence coefficient approximately 1 −α.
Here is an application of formula (5).

EXAMPLE 1 Refer to the GPA’s in Example 22 of Chapter 1, where we assume that the given
GPA scores are observed values of r.v.’s Xi, i = 1, . . . , 34 with (unknown) mean
μ and (unknown) variance σ 2, both finite. Construct a confidence interval for
μ with confidence coefficient approximately 95%.

DISCUSSION In the discussion of Example 1 in Chapter 13, we saw that:∑
i xi = 100.73 and

∑
i x2

i = 304.7885, so that:

x̄ = 100.73
34

� 2.963, s2
n = 304.7885

34
− (100.73)2

342
� 0.187, and sn � 0.432.

Since z0.025 = 1.96, formula (5) gives:[
2.9626 − 1.96 × 0.432

5.831
, 2.9626 + 1.96 × 0.432

5.831

]
� [2.818, 3.108].

Another instance where a nonparametric approach provides a confidence
interval is the following. The i.i.d. r.v.’s X1, . . . , Xn have (unknown) d.f. F , and
let Fn(x) be the empirical d.f. based on the Xi’s, as defined in Application 5 to
the WLLN in Chapter 7. We saw there that

Fn(x) =
n∑

i=1

Yi(x), Y1(x), . . . , Yn(x) independent r.v.’s ∼ B(1, F(x)).

Then, by the CLT,
√

n[Fn(x) − F(x)]√
F(x)[1 − F(x)]

d−→
n→∞ Z ∼ N(0, 1). (6)

Also,

Fn(x)
P−→

n→∞ F(x), or
Fn(x)[1 − Fn(x)]
F(x)[1 − F(x)]

P−→
n→∞ 1. (7)

From (6) and (7) and Theorem 6(iii) in Chapter 7, it follows that:
√

n[Fn(x) − F(x)]/
√

F(x)[1 − F(x)]√
Fn(x)[1 − Fn(x)]/

√
F(x)[1 − F(x)]

=
√

n[Fn(x) − F(x)]√
Fn(x)[1 − Fn(x)]

d−→
n→∞ Z ∼ N(0, 1).
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It follows that, for all sufficiently large n (depending on x), the following
interval is a confidence interval for F(x) with confidence coefficient approxi-
mately 1 − α; namely,[

Fn(x) − zα
2

√
Fn(x)[1 − Fn(x)]

n
, Fn(x) + zα

2

√
Fn(x)[1 − Fn(x)]

n

]
. (8)

As an application of formula (8), consider the following example.

EXAMPLE 2 Refer again to Example 22 in Chapter 1 (see also Example 1 in this chapter), and
construct a confidence interval for F(3) with approximately 95% confidence
coefficient, where F is the d.f. of the r.v.’s describing the GPA scores.

DISCUSSION In this example, n = 34 and the number of the observations
which are ≤ 3 are 18 (the following; 2.36, 2.36, 2.66, 2.68, 2.48, 2.46, 2.63, 2.44,
2.13, 2.41, 2.55, 2.80, 2.79, 2.89, 2.91, 2.75, 2.73, and 3.00). Then

F34(3) = 18
34

= 9
17

� 0.529,

√
F34(3)[1 − F34(3)]

34
� 0.086,

and therefore the required (observed) confidence interval is:

[0.529 − 1.96 × 0.086, 0.529 + 1.96 × 0.086] � [0.360, 0.698].

REMARK 1 It should be pointed out that the confidence interval given by
(8) is of limited usefulness, because the value of (the large enough) n for which
(8) holds depends on x.

15.2 Confidence Intervals for Quantiles of a Distribution Function

In the previous section, we constructed a confidence interval for the mean
μ of a distribution, whether its variance is known or not, with confidence
coefficient approximately a prescribed number 1 − α (0 < α < 1). Also, such
an interval was constructed for each value F(x) of a d.f. F . Now, we have seen
(in Section 3.4 of Chapter 3) that the median, and, more generally, the quantiles
of a d.f. F are important quantities through which we gain information about F .
It would then be worth investigating the possibility of constructing confidence
intervals for quantiles of F . To simplify matters, it will be assumed that F is
continuous, and that for each p ∈ (0, 1), there is a unique pth quantile xp; i.e.,
F(xp) = P(X ≤ xp) = p. The objective is to construct a confidence interval for
xp, and, in particular, for the median x0.50. This is done below in a rather neat
manner, except that we don’t have much control on the confidence coefficient
involved. Specifically, the following result is established.
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THEOREM 1
Let X1, . . . , Xn be i.i.d. r.v.’s with d.f. F , and let Y1, . . . , Yn be the order
statistics of the Xi’s. For p ∈ (0, 1), let xp be the unique (by assump-
tion) pth quantile of F . Then, for any 1 ≤ i < j ≤ n, the random interval
[Yi, Yj] is a confidence interval for xp with confidence coefficient∑ j−1

k=i

(
n

k

)
pk(1 − p)n−k.

PROOF Define the r.v.’s Wj , j = 1, . . . , n as follows:

Wj =
{

1 if X j ≤ xp

0 if X j > xp, j = 1, . . . , n.

Then the r.v.’s W1, . . . , Wn are independent and distributed as B(n, p), since
P(Wj = 1) = P(X j ≤ xp) = F(xp) = p. Therefore

P(at least i of X1, . . . , Xn are ≤ xp) =
n∑

k=i

(
n

k

)
pk(1 − p)n−k.

However, P(at least i of X1, . . . , Xn are ≤ xp) = P(Yi ≤ xp). Thus,

P(Yi ≤ xp) =
n∑

k=i

(
n

k

)
pk(1 − p)n−k. (9)

Next, for 1 ≤ i < j ≤ n, we, clearly, have;

P(Yi ≤ xp) = P(Yi ≤ xp, Yj ≥ xp) + P(Yi ≤ xp, Yj < xp)

= P(Yi ≤ xp ≤ Yj) + P(Yj < xp)

= P(Yi ≤ xp ≤ Yj) + P(Yj ≤ xp), (10)

since P(Yi ≤ xp, Yj < xp) = P(Yi ≤ xp, Yj ≤ xp) = P(Yj ≤ xp) by the fact
that (Yj ≤ xp) ⊆ (Yi ≤ xp). Then, relations (9) and (10) yield:

P(Yi ≤ xp ≤ Yj) =
n∑

k=i

(
n

k

)
pk(1 − p)n−k − P(Yj ≤ xp)

=
n∑

k=i

(
n

k

)
pk(1 − p)n−k −

n∑
k= j

(
n

k

)
pk(1 − p)n−k

=
j−1∑
k=i

(
n

k

)
pk(1 − p)n−k. (11)

So, the random interval [Yi, Yj] contains the point xp with probability
∑ j−1

k=i

(
n

k

)×
pk(1 − p)n−k, as was to be seen. ▲

REMARK 2

(i) From relation (11), it is clear that, although p is fixed, we can enlarge the
confidence coefficient

∑ j−1
k=i

(
n

k

)
pk(1− p)n−k by taking a smaller i and/or a larger

j. The price we pay, however, is that of having a larger confidence interval.
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(ii) By the fact that the confidence interval [Yi, Yj] does not have a prescribed
confidence coefficient 1 − α, as is the case in the usual construction of confi-
dence intervals, we often refer to the probability

∑ j−1
k=i

(
n

k

)
pk(1 − p)n−k as the

probability of coverage of xp by [Yi, Yj].

EXAMPLE 3 Consider the i.i.d. r.v.’s X1, . . . , X20 with continuous d.f. F , which has unique
x0.50, x0.25, and x0.75, and let Y1, . . . , Y20 be the corresponding order statistics.
Then consider several confidence intervals for x0.50, x0.25, and x0.75, and calcu-
late the respective coverage probabilities.

DISCUSSION Using formula (11), we obtain the coverage probabilities
listed in Table 15.1 for several confidence intervals for the median x0.50 and the
first quartile x0.25. For the calculation of coverage probabilities for confidence
intervals for the third quartile x0.75, we employ the following formula, which
allows us to use the Binomial tables; namely,

j−1∑
k=i

(
20
k

)
(0.75)k(0.25)20−k =

20−i∑
r=20− j+1

(
20
r

)
(0.25)r(0.75)20−r.

Table 15.1 Quantile Confidence Interval Coverage Probability

x0.50 (Y9, Y12) 0.3364
(Y8, Y13) 0.6167
(Y7, Y14) 0.8107
(Y6, Y15) 0.9216

x0.25 (Y6, Y6) 0.2024
(Y3, Y7) 0.5606
(Y2, Y8) 0.8069
(Y1, Y9) 0.9348

x0.75 (Y15, Y17) 0.2024
(Y14, Y18) 0.5606
(Y13, Y19) 0.8069
(Y12, Y20) 0.9348

15.3 The Two-Sample Sign Test

In this brief section, we discuss a technique of comparing two populations
by means of the so-called sign test. The test requires that the two samples
available are of the same size, and makes no direct use of the values observed;
instead, what is really used is the relative size of the components in the pairs
of r.v.’s. Some cases where such a test would be appropriate include those in
which one is interested in comparing the effectiveness of two different drugs
used for the treatment of the same disease, the efficiency of two manufacturing
processes producing the same item, the response of n customers regarding
their preferences toward a certain consumer item, etc.
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In more precise terms, let X1, . . . , Xn be i.i.d. r.v.’s with continuous d.f. F ,
and let Y1, . . . , Yn be i.i.d. r.v.’s with continuous d.f. G; the two samples are
assumed to be independent. On the basis of the Xi’s and Yj ’s, we wish to test
the null hypothesis H0: F = G against any one of the alternatives HA: F > G,
H′

A: F < G, H′′
A: F �= G. The inequality F > G means that F(z) ≥ G(z) for all

z, and F(z) > G(z) for at least one z; likewise for F < G. To this end, set

Zi =
{

1 if Xi < Yi

0 if Xi > Yi
, p = P(Xi < Yi), i = 1, . . . , n, Z =

n∑
i=1

Zi. (12)

It is clear that the r.v.’s Z1, . . . , Zn are independent and distributed as B(1, p),
so that the r.v. Z is distributed as B(n, p). Under the hypothesis H0, p = 1

2 ,
whereas under HA, H′

A, and H′′
A, we have, respectively, p > 1

2 , p < 1
2 , p �= 1

2 .
Thus, the problem of testing H0 becomes, equivalently, that of testing H̄0: p = 1

2
in the B(n, p) distribution. Formulating the relevant results, and drawing upon
Application 1 in Section 11.3 of Chapter 11, we have the following theorem.

THEOREM 2
Consider the independent samples of the i.i.d. r.v.’s X1, . . . , Xn and
Y1, . . . , Yn with respective continuous d.f.’s F and G. Then, for testing
the null hypothesis H0: F = G against any one of the alternatives HA:
F > G, or H′

A: F < G, or H′′
A: F �= G, at level of significance α, the

hypothesis H0 is rejected, respectively, whenever

Z ≥ C , or Z ≤ C ′, or Z ≤ C1 or Z ≥ C2. (13)

The cutoff points C, C ′, and C1, C2 are determined by the relations:

P(Z > C) + γ P(Z = C) = α, or P(Z ≤ C) − γ P(Z = C) = 1 − α,
P(Z < C ′) + γ ′ P(Z = C ′) = α,
P(Z < C1) + γ0 P(Z = C1) = α

2 and P(Z > C2) + γ0 P(Z = C2) = α
2 ,

or
P(Z < C1) + γ0 P(Z = C1) = α

2 and P(Z ≤ C2) − γ0 P(Z = C2) = 1 − α
2 ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(14)

and Z ∼ B(n, 1/2) under H0.
For large values of n, the CLT applies and the cutoff points are given

by the relations:

C � n

2 + zα

√
n

2
, C ′ � n

2 − zα

√
n

2

C1 � n

2 − zα
2

√
n

2
, C2 � n

2 + zα
2

√
n

2
.

⎫⎪⎪⎬⎪⎪⎭ (15)

EXAMPLE 4 Refer to Example 25 in Chapter 1 regarding the plant height (in 1/8 inches) of
cross-fertilized and self-fertilized plants. Denote by Xi’s and Yi’s, respectively,
the heights of cross-fertilized and self-fertilized plants. Then the observed val-
ues for the 15 pairs are given in Example 25 of Chapter 1, which are reproduced
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in the Table 15.2 for convenience. At the level of significance α = 0.05, test the
null hypothesis H0: F = G, where F and G are the d.f.’s of the Xi’s and Yi’s,
respectively.

Table 15.2 Pair Cross- Self- Pair Cross- Self-

1 188 139 9 146 132
2 96 163 10 173 144
3 168 160 11 186 130
4 176 160 12 168 144
5 153 147 13 177 102
6 172 149 14 184 124
7 177 149 15 96 144
8 163 122

DISCUSSION From Table 15.2, we have:

Z1 = 0, Z2 = 1, Z3 = 0, Z4 = 0, Z5 = 0, Z6 = 0, Z7 = 0, Z8 = 0,

Z9 = 0, Z10 = 0, Z11 = 0, Z12 = 0, Z13 = 0, Z14 = 0, Z15 = 1,

so that Z = 2. Suppose first that the alternative is H′′
A: F �= G. Then H0 is

rejected in favor of H′′
A whenever Z ≤ C1 or Z ≥ C2, where:

P(Z < C1) + γ0 P(Z = C1) = 0.025 and P(Z ≤ C2) − γ0 P(Z = C2) = 0.975,
and Z ∼ B(15, 1/2).

From the Binomial tables, we find C1 = 4, C2 = 11, and γ0 = 37
208 � 0.178.

Since Z = 2 < C1(= 4), the null hypothesis is rejected. Next, test H0 against
the alternative H′

A: p < 1
2 again at level α = 0.05. Then H0 is rejected in favor

of H′
A whenever Z ≤ C ′, where C ′ is determined by:

P(Z < C ′) + γ ′ P(Z = C ′) = 0.05, Z ∼ B(15, 1/2).

From the Binomial tables, we find C ′ = 4 and γ ′ = 81
104 � 0.779. Since

Z = 2 < C ′(= 4), H0 is rejected in favor of H′
A, which is consistent with what

the data say.
For the Normal approximation, we get from (15): z0.025 = 1.96, so that

C1 = 3.703, C2 � 11.297, and H0 is rejected again, since Z = 2 < C1(� 3.703).
Also, z0.05 = 1.645, and hence C ′ � 4.314. Again, H0 is rejected in favor of H′

A,
since Z = 2 < C ′(� 4.314).

15.4 The Rank Sum and the Wilcoxon--Mann--Whitney Two-Sample Tests

The purpose of this section is the same as that of the previous section; namely,
the comparison of the d.f.’s of two independent samples of i.i.d. r.v.’s. However,
the technique used in the last section may not apply here, as the two samples
may be of different size, and therefore no pairwise comparison is possible
(without discarding observations!)
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So, what we have here is two independent samples consisting of the i.i.d.
r.v.’s X1, . . . , Xm with continuous d.f. F , and the i.i.d. r.v.’s Y1, . . . , Yn with
continuous d.f. G. The problem is that of testing the null hypothesis H0: F = G

against any one of the alternatives HA: F > G, or H′
A: F < G, or H′′

A: F �= G.
The test statistic to be used makes no use of the actual values of the Xi’s and
the Yi’s, but rather of their ranks in the combined sample, which are defined
as follows. Consider the combined sample of X1, . . . , Xm and Y1, . . . , Yn, and
order them in ascending order. Because of the assumption of continuity of
F and G, we are going to have strict inequalities with probability one. Then
the rank of Xi, to be denoted by R(Xi), is that integer among the integers
1, 2, . . . , m+ n, which corresponds to the position of Xi. The rank R(Yj) of Yj

is defined similarly. Next, consider the rank sums RX and RY defined by:

RX =
m∑

i=1

R(Xi), RY =
n∑

j=1

R(Yj). (16)

Then

RX + RY = (m+ n)(m+ n + 1)
2

, (17)

because RX + RY = ∑m

i=1 R(Xi) + ∑n

j=1 R(Yj) = 1 + 2 + · · · + m + n =
(m+ n)(m+ n+ 1)

2 . Before we go further, let us illustrate the concepts introduced
so far by a numerical example.

EXAMPLE 5 Let m = 5, n = 4, and suppose that:

X1 = 78, X2 = 65, X3 = 74, X4 = 45, X5 = 82,

Y1 = 110, Y2 = 71, Y3 = 53, Y4 = 50.

Combining the Xi’s and the Yj ’s and arranging them in ascending order, we get:

45 50 53 65 71 74 78 82 110
(X ) (Y ) (Y ) (X ) (Y ) (X ) (X ) (X ) (Y ).

Then: R(X1) = 7, R(X2) = 4, R(X3) = 6, R(X4) = 1, R(X5) = 8,

R(Y1) = 9, R(Y2) = 5, R(Y3) = 3, R(Y4) = 2.

It follows that: RX = 26, RY = 19, and, of course, RX + RY = 45 = 9×10
2 .

The m ranks (R(X1), . . . , R(Xm)) can be placed in m positions out of m + n

possible in
(

m+ n

m

)
different ways (the remaining n positions will be taken up

by the n ranks (R(Y1), . . . , R(Yn)), and under the null hypothesis H0, each
one of them is equally likely to occur. So, each one of the

(
m+ n

m

)
positions of

(R(X1), . . . , R(Xm)) has probability 1/
(

m+ n

m

)
. The alternative HA stipulates that

F > G; i.e., F(z) ≥ G(z) for all z, or P(X ≤ z) ≥ P(Y ≤ z) for all z, with the
inequalities strict for at least one z, where the r.v.’s X and Y are distributed
as the Xi’s and the Yj ’s, respectively. That is, under HA, the Xi’s tend to be
smaller than any z with higher probability than the Yj ’s are smaller than any
z. Consequently, since RX + RY is fixed = (m+ n)(m+ n+ 1)/2, this suggests
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that the rank sum RX would tend to take small values. Therefore, H0 should be
rejected in favor of HA whenever RX < C . The rejection region is determined
as follows: Consider the

(
m+ n

m

)
positions of the ranks (R(X1), . . . , R(Xm)), and

for each one of them, form the respective sum RX . We start with the smallest
value of RX and proceed with the next smallest, etc, until we get to the kth
smallest, where k is determined by: k/

(
m+ n

m

) = α. (In the present setting, the
level of significance α is taken to be an integer multiple of 1/

(
m+ n

m

)
, if we wish

to have an exact level.) So, the rejection region consists of the k smallest values
of RX , where k/

(
m+ n

m

)
equals α.

Likewise, the hypothesis H0 is rejected in favor of the alternative H′
A: F < G

whenever RX > C ′, and the rejection region consists of the k largest values
of RX , where k/

(
m+ n

m

)
equals α. Also, H0 is rejected in favor of H′′

A: F �= G

whenever RX < C1 or RX > C2, and the rejection region consists of the smallest
r values of RX and the largest r values of RX , where r satisfies the requirement
r/
(

m+ n

m

)
equals α/2.

Summarize these results in the following theorem.

THEOREM 3
Consider the independent samples of the i.i.d. r.v.’s X1, . . . , Xm and
Y1, . . . , Yn with respective continuous d.f.’s F and G. Then, for testing
the null hypothesis H0: F = G against any one of the alternatives HA:
F > G, or H′

A: F < G, or H′′
A: F �= G, at level of significance α (so that α

or α
2 are integer multiples of 1/

(
m+ n

m

)
), the respective rejection regions

of the rank sum tests consist of: The k smallest values of the rank sum
RX , where k/

(
m+ n

m

) = α; the k largest values of the rank sum RX , where
k is as above; the r smallest and the r largest values of the rank sum RX ,
where r/

(
m+ n

m

) = α
2 .

REMARK 3 In theory, carrying out the test procedures described in Theorem
3 is straightforward and neat. Their practical implementation, however, is an-
other matter. To illustrate the difficulties involved, consider Example 5, where
m = 5 and n = 4, so that

(
m+ n

m

) = (95) = 126. Thus, one would have to consider
the 126 possible arrangements of the ranks (R(X1), . . . , R(X5)), form the re-
spective rank sums, and see which ones of its values are to be included in the re-
jection regions. Clearly, this is not an easy task even for such small sample sizes.

A special interesting case where the rank sum test is appropriate is that
where the d.f. G of the Yi’s is assumed to be of the form:

G(x) = F(x − �), x ∈ �, for some unknown � ∈ �.

In such a case, we say that G is a shift of F (to the right, if � > 0, and to
the left, if � < 0). Then the hypothesis H0: F = G is equivalent to testing
� = 0, and the alternatives HA: F > G, H′

A: F < G, H′′
A: F �= G are equivalent

to: � > 0, � < 0, � �= 0.
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Because of the difficulties associated with the implementation of the rank
sum tests, there is an alternative closely related to it, for which a Normal
approximation may be used. This is the Wilcoxon–Mann–Whitney two-sample

test. For the construction of the relevant test statistic, consider all mn pairs
(Xi, Yj), and among them, count those for which Xi > Yj . The resulting r.v.
is denoted by U and is the statistic to be employed. More formally, let the
function u be defined by:

u(z) =
{

1 if z > 0
0 if z < 0.

(18)

Then, clearly, the statistic U may be written thus:

U =
m∑

i=1

n∑
j=1

u(Xi − Yj). (19)

The statistics U, RX , and RY are related as follows.

LEMMA 1 Let RX , RY , and U be defined, respectively, by (16) and (19).
Then:

U = RX − m(m+ 1)
2

= mn + n(n + 1)
2

− RY . (20)

PROOF Deferred to Subsection 15.4.1.
On the basis of (20), Theorem 3 may be rephrased as follows in terms of

the U statistics. ▲

THEOREM 4
In the notation of Theorem 3 and for testing the null hypothesis H0 against
any one of the alternatives HA, or H′

A, or H′′
A as described there, at level of

significance α, the Wilcoxon–Mann–Whitney test rejects H0, respectively:

For U < C , where C is determined by P(U < C | H0) = α;
or U > C ′, where C ′ is determined by P(U > C ′ | H0) = α;
or U < C1 or U > C2, where C1 and C2 are determined

by P(U < C1 | H0) = P(U > C2 | H0) = α
2 .

⎫⎪⎪⎬⎪⎪⎭ (21)

In determining the cutoff points C, C ′, C1, and C2 above, we are faced
with the same difficulty as that in the implementation of the rank sum tests.
However, presently, there are two ways out of it. First, tables are available for
small values of m and n (n ≤ m ≤ 10) (see page 341 in the book Handbook

of Statistical Tables, Addison-Wesley (1962), by D. B. Owen), and second, for
large values of m and n, and under H0,

U − EU

s.d.(U)
� Z ∼ N(0, 1), (22)

where, under H0,

EU = mn

2
, Var(U) = mn(m+ n + 1)

12
. (23)
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EXAMPLE 6 Refer to Example 5 and test the hypothesis H0: F = G against the alternatives
H′′

A: F �= G and HA: F > G.

DISCUSSION In Example 5 we saw that RX = 26 (and RY = 19). Since
m = 5 and n = 4, relation (20) gives: U = 11. From the tables cited above,
we have: P(U ≤ 2) = P(U ≥ 17) = 0.032. So, C1 = 2, C2 = 17, and H0 is
rejected in favor of H′′

A at the level of significance 0.064. From the same tables,
we have that P(U ≤ 3) = 0.056, so that C = 3, and H0 is rejected in favor of
HA at level of significance 0.056. The results stated in (23) are formulated as a
lemma below.

LEMMA 2 With U defined by (19), the relations in (23) hold true under H0.

PROOF Deferred to Subsection 15.4.1.
For the statistic U , the CLT holds. Namely,

LEMMA 3 With U , EU , and Var(U) defined, respectively, by (19) and (23),

U − EU

s.d.(U)
d−→

m,n→∞ Z ∼ N(0, 1). (24)

PROOF It is omitted. By means of the result in (24), the cutoff points in (21)
may be determined approximately, by means of the Normal tables. That is, we
have the following corollary.

COROLLARY (to Theorem 4 and Lemma 3) For large mand n, the cutoff
points in (21) are given by the following approximate quantities:

C � mn

2 − zα

√
mn(m+ n+ 1)

12 , C ′ � mn

2 + zα

√
mn(m+ n+ 1)

12 ,

C1 � mn

2 − zα
2

√
mn(m+ n+ 1)

12 , C2 � mn

2 + zα
2

√
mn(m+ n+ 1)

12 .

⎫⎪⎬⎪⎭ (25)

PROOF Follows immediately, from (21) and (24). ▲

EXAMPLE 7 Refer to Example 25 in Chapter 1 (see also Example 4 here), and test the null
hypothesis H0: F = G at level of significance α = 0.05 by using Theorem 4 and
the above corollary.

DISCUSSION Here m = n = 15, z0.05 = 1.645, and z0.025 = 1.96. Then:

C1 � 112.50 − 1.96 × 24.105 = 112.50 − 47.2458 � 65.254,

C2 � 112.50 + 47.2458 � 159.746,

C � 112.50 − 1.645 × 24.105 � 112.50 − 39.653 = 72.847,

C ′ � 112.50 + 39.653 = 152.153.

Next, comparing all 15 × 15 pairs in Table 15.3, we get the observed value of
U = 185.
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Table 15.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X 188 96 168 176 153 172 177 163 146 173 186 168 177 184 96
Y 139 163 160 160 147 149 149 122 132 144 130 144 102 124 144

Therefore the hypothesis H0 is rejected in favor of H′′
A, since U = 185 >

159.746 = C2; the null hypothesis is also rejected in favor of H′
A, since U =

185 > 152.153 = C ′; but the null hypothesis is not rejected when the alternative
is HA, because U = 185 </ 72.847 = C .

15.4.1 Proofs of Lemmas 1 and 2

PROOF OF LEMMA 1 Let X(1), . . . , X(m) be the order statistics of the r.v.’s
X1, . . . , Xm, and look at the rank R(X(i)) in the combined sample of the Xi’s
and the Yi’s. For each R(X(i)), there are R(X(i))−1 Xi’s and Yj ’s preceding X(i).
Of these, i − 1 are Xi’s and hence R(X(i)) − 1 − (i − 1) = R(X(i)) − i are Yj ’s.
Therefore

U = [R(X(1)
)− 1
]+ · · · + [R(X(m)

)− m
]

= [R(X(1)
)+ · · · + R

(
X(m)
)]− (1 + · · · + m)

= [R(X1) + · · · + R(Xm)] − m(m+ 1)
2

= RX − m(m+ 1)
2

,

since R(X(1)) + · · · + R(X(m)) is simply a rearrangement of the terms in the
rank sum R(X1) + · · · + R(Xm) = RX . Next, from the result just obtained and
(17), we have:

U = (m+ n)(m+ n + 1)
2

− RY − m(m+ 1)
2

= (m+ n)(m+ n + 1) − m(m+ 1)
2

− RY = mn + n(n + 1)
2

− RY . ▲

PROOF OF LEMMA 2 Recall that all derivations below are carried out under
the assumption that H0(F = G) holds. Next, for any i and j:

Eu(Xi − Yj) = 1 × P(Xi > Yj) = 1
2

, Eu2(Xi − Yj) = 12 × P(Xi > Yj) = 1
2

,

so that

Var(u(Xi − Yj)) = 1
2

− 1
4

= 1
4

Therefore EU =∑m

i=1

∑n

j=1
1
2 = mn

2 , and

Var(U) =
m∑

i=1

n∑
j=1

Var(u(Xi − Yj)) +
m∑

i=1

n∑
j=1

m∑
k=1

n∑
l=1

Cov(u(Xi − Yj), u(Xk − Yl))

= mn

4
+ sum of the covariances on the right-hand side above. (26)
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Regarding the covariances, we consider the following cases. First, let i �= k

and j �= l. Then Cov(u(Xi − Yj), u(Xk − Yl)) = 0 by independence. Thus, it
suffices to restrict ourselves to pairs (Xi, Yj) and (Xk, Yl) for which i = k and
j �= l, and i �= k and j = l. In order to see how many such pairs there are,
consider the following array:

(X1, Y1,), (X1, Y2), . . . , (X1, Yn)

(X2, Y1), (X2, Y2), . . . , (X2, Yn)

...
...

...

(Xm, Y1), (Xm, Y2), . . . , (Xm, Yn).

From each one of the m rows, we obtain
(

n

2

)× 2 = n(n− 1) terms of the form:
Cov(u(X −Y ), u(X − Z)), where X, Y, Z are independent r.v.’s with d.f. F = G.
Since Cov(u(X − Y), u(X − Z)) = P(X > Y and X > Z) − 1

4 , we have then
n(n − 1)P(X > Y and X > Z) − n(n−1)

4 as a contribution to the sum of the
covariances from each row, and therefore from the m rows, the contribution
to the sum of the covariances is:

mn(n − 1)P(X > Y and X > Z) − mn(n − 1)
4

. (27)

Next, from each one of the n columns, we obtain
(

m

2

)× 2 = m(m− 1) terms of
the form: Cov(u(X − Z), u(Y − Z)) = P(X > Z and Y > Z) − 1

4 . Therefore the
contribution from the n columns to the sum of the covariances is:

mn(m− 1)P(X > Z and Y > Z) − mn(m− 1)
4

. (28)

Now,

(X > Y and X > Z) = (X > Y, Y > Z, X > Z) ∪ (X > Y, Y ≤ Z, X > Z )

= (X > Y, Y > Z) ∪ (X > Z, Z ≥ Y ) = (X > Y > Z) ∪ (X > Z ≥ Y ),

since

(X > Y, Y > Z) ⊆ (X > Z), and (X > Z, Z ≥ Y ) ⊆ (X > Y).

Thus,

P(X > Y and X > Z) = P(X > Y > Z) + P(X > Z > Y ). (29)

Likewise,

(X > Z and Y > Z) = (X > Y, Y > Z, X > Z) ∪ (X ≤ Y, Y > Z, X > Z)

= (X > Y, Y > Z) ∪ (Y ≥ X, X > Z) = (X > Y > Z) ∪ (Y ≥ X > Z),

since

(X > Y, Y > Z) ⊆ (X > Z), and (Y ≥ X, X > Z) ⊆ (Y > Z).

Thus,

P(X > Z and Y > Z) = P(X > Y > Z) + P(Y > X > Z). (30)
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The r.v.’s X, Y , and Z satisfy, with probability one, exactly one of the inequali-
ties:

X > Y > Z, X > Z > Y , Y > X > Z,

Y > Z > X, Z > X > Y , Z > Y > X,

and each one of these inequalities has probability 1/6. Then, the expressions
in (27) and (28) become, by means of (29) and (30), respectively:

mn(n − 1)
3

− mn(n − 1)
4

= mn(n − 1)
12

,
mn(m− 1)

3
− mn(m− 1)

4
= mn(m− 1)

12

Then, formula (26) yields:

Var(U) = mn

4
+ mn(n − 1)

12
+ mn(m− 1)

12
= mn(m+ n + 1)

12
. ▲

15.5 Nonparametric Curve Estimation

For quite a few years now, work on nonparametric methodology has switched
decisively in what is referred to as nonparametric curve estimation. Such esti-
mation includes estimation of d.f.’s, of p.d.f.’s or functions thereof, regression
functions, etc. The empirical d.f. is a case of nonparametric estimation of a
d.f., although there are others as well. In this section, we are going to de-
scribe briefly a way of estimating nonparametrically a p.d.f., and record some
of the (asymptotic) desirable properties of the proposed estimate. Also, the
problem of estimating, again nonparametrically, a regression function will be
discussed very briefly. There is already a huge statistical literature in this area,
and research is currently very active.

15.5.1 Nonparametric Estimation of a Probability Density Function

The problem we are faced with here is the following: We are given n i.i.d. r.v.’s
X1, . . . , Xn with p.d.f. f of the continuous type, for which very little is known,
and we are asked to construct a nonparametric estimate f̂n(x) of f (x), for each
x ∈ �, based on the random sample X1, . . . , Xn. The approach to be used here
is the so-called kernel-estimation approach. According to this method, we
select a (known) p.d.f. to be denoted by K and to be termed a kernel, subject
to some rather minor requirements. Also, we choose a sequence of positive
numbers, denoted by {hn}, which has the property that hn → 0 as n → ∞
and also satisfies some additional requirements. The numbers hn, n ≥ 1, are
referred to as bandwidth for a reason to be seen below. Then, on the basis of
the random sample X1, . . . , Xn, the kernel K , and the bandwidths hn, n ≥ 1,
the proposed estimate of f (x) is f̂n(x) given by:

f̂n(x) = 1
nhn

n∑
i=1

K

(
x − Xi

hn

)
. (31)
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EXAMPLE 8 Construct the kernel estimate of f (x), for each x ∈ �, by using the U(−1, 1)
kernel; i.e., by taking

K(x) = 1
2

, for −1 ≤ x ≤ 1, and 0, otherwise.

DISCUSSION Here, it is convenient to use the indicator notation, namely,
K(x) = I[−1,1](x) (where, it is recalled, IA(x) = 1 if x ∈ A, and 0 if x ∈ Ac).
Then the estimate (31) becomes as follows:

f̂n(x) = 1
nhn

n∑
i=1

I[−1,1]

(
x − Xi

hn

)
, x ∈ R. (32)

So, I[−1,1](
x− Xi

hn
) = 1, if and only if x − hn ≤ Xi ≤ x + hn; in other words,

in forming f̂n(x), we use only those observations Xi which lie in the window
[x − hn, x + hn]. The breadth of this window is, clearly, determined by hn, and
this is the reason that hn is referred to as the bandwidth.

Usually, the minimum of assumptions required of the kernel K and the
bandwidth hn, in order for us to be able to establish some desirable properties
of the estimate f̂n(x) given in (31), are the following:

K is bounded; i.e., sup {K(x); x ∈ �} < ∞.

xK(x) tends to 0 as x → ±∞; i.e., |xK(x)| −→0.|x|→∞
K is symmetric about 0; i.e., K(−x) = K(x), x ∈ R.

⎫⎪⎬⎪⎭ (33)

As n → ∞ : (i) (0 <)hn → 0
(ii) nhn → ∞
(iii) nh2

n →∞.

⎫⎬⎭ (34)

REMARK 4 Observe that requirements (33) are met for the kernel used
in (32). Furthermore, the convergences in (34) are satisfied if one takes, e.g.,
hn = n−α with 0 < α < 1/2. Below, we record three (asymptotic) results
regarding the estimate f̂n(x) given in (31).

THEOREM 5
Under assumptions (33) and (34)(i), the estimate f̂n(x) given in (31) is an
asymptotically unbiased estimate of f (x) for every x ∈ � at which f is
continuous; i.e.,

Ef̂n(x) → f (x) as n → ∞.

THEOREM 6
Under assumptions (33) and (34)(i), (ii), the estimate f̂n(x) given in (31)
is a consistent in quadratic mean estimate of f (x) for every x ∈ � at
which f is continuous; i.e.,

E[ f̂n(x) − f (x)]2 → 0 as n → ∞.



444 Chapter 15 Some Topics in Nonparametric Inference

THEOREM 7
Under assumptions (33) and (34)(i)–(iii), the estimate f̂n(x) given in (31)
is asymptotically normal, when properly normalized, for every x ∈ � at
which f is continuous; i.e.,

f̂n(x) − Ef̂n(x)

s.d.( f̂n(x))

d−→
n→∞ Z ∼ N(0, 1).

We have no intention of even attempting to prove any of the theorems just
stated. Their proofs can be found in the second reference given below. In
closing this section, it is only fitting to mention that the concept of kernel
estimation of a p.d.f. was introduced by Murray Rosenblatt in 1956, and it
was popularized by a fundamental paper by E. Parzen in 1962. The relevant
references are as follows:

“Remarks on some nonparametric estimates of a density function” by
M. Rosenblatt in the Annals of Mathematical Statistics, Vol. 27 (1956), pages
823–835. “On estimation of a probability density function and mode” by
E. Parzen in the Annals of Mathematical Statistics, Vol. 33 (1962), pages 1065–
1076.

15.5.2 Nonparametric Regression Estimation

In Chapter 13, a simple linear regression model was studied and its usefulness
was demonstrated by means of specific examples. It was also stated that there
is a definite need for more general regression models, where the linearity is
retained, or it is discarded altogether. This issue is addressed, to a considerable
extent, in this section.

Specifically, the model considered here is the following: For each n =
1, 2, . . . , consider points xn1, . . . , xnn in �, and at each one of them, an obser-
vation is taken, to be denoted by Yni, i = 1, . . . , n. It is assumed that Yni is
equal to some unknown function g evaluated at xni except for an error eni; i.e.,

Yni = g(xni) + eni, i = 1, . . . , n. (35)

On the errors eni, i = 1, . . . , n, we make the usual assumptions that they are
i.i.d. r.v.’s with Eeni = 0 and Var(eni) = σ 2 < ∞.

The model in (1) of Chapter 13 is a very special case of the model just de-
scribed. In the first place, the points where observations are taken are allowed
here to depend on n, and second, the regression function in (1) of Chapter
13 is taken from here by setting g(x) = β1 + β2x, so that β1 + β2xi = g(xi),
i = 1, . . . , n. The function g in (35) is subject only to the requirement that it is
defined on a bounded subset S of � and that it is continuous.

The objective here is to (nonparametrically) estimate the function g(x), for
each x ∈ S, by means of the observations Yn1, . . . , Ynn. The proposed estimate
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is the statistic gn(x; xn) defined as follows:

gn(x; xn) =
n∑

i=1

wni(x; xn)Yni, (36)

where xn = (xn1, . . . , xnn) and wni are weights, properly chosen, which depend
on the particular point x in S and also the points xn1, . . . , xnn, where obser-
vations are taken. The weights are required to satisfy certain conditions, and
there is considerable flexibility in choosing them. We do not intend to enter
here into this kind of detail. Instead, we restrict ourselves to stating three basic
properties that the estimate defined in (36) satisfies.

THEOREM 8
Under suitable regularity conditions, the estimate gn(x; xn) defined in
(36) is an asymptotically unbiased estimate of g(x); i.e.,

Egn(x; xn) −→
n→∞ g(x), for every x ∈ S. (37)

THEOREM 9
Under suitable regularity conditions, the estimate gn(x; xn) is a consistent

in quadratic mean estimate of g(x); i.e.,

E[gn(x; xn) − g(x)]2 −→
n→∞ 0, for every x ∈ S. (38)

THEOREM 10
Under suitable regularity conditions, the estimate gn(x; xn), properly
normalized, is asymptotically Normal; i.e.,

gn(x; xn) − Egn(x; xn)
s.d.(gn(x; xn))

d−→
n→∞ Z ∼ N(0, 1), for every x ∈ S.

Also,

gn(x; xn) − g(x)
s.d.(gn(x; xn))

d−→
n→∞ Z ∼ N(0, 1), for every x ∈ S. (39)

Convergences (37) and (38) provide asymptotic optimal properties for the
estimate proposed in (36). If it happens that the error variance σ 2 is known,
or an estimate of it is available, then convergence (39) provides a way of
constructing confidence interval for g(x) with confidence coefficient approx-
imately equal to 1 − α for large n. (See also Exercise 5.2.)

In the regression model considered in Chapter 13, one of the basic tenets
was that the point x at which an observation Y is to be made can be chosen,
more or less, at will. This, however, need not always be the case. Instead, it
may happen that the point x itself is the observed value of a r.v. X. Thus, the
setup here is as follows: A r.v. X is observed, and if X = x, then an observation
is taken at the point x.
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In this framework, several questions may be posed. One of the most impor-
tant is this: Given that X = x, construct a predictor of Y corresponding to x.
The proposed predictor is the conditional expectation of Y , given X = x, call
it m(x); i.e.,

m(x) = E(Y | X = x). (40)

The quantity defined in (40) is an unknown function of x, since the conditional
p.d.f. Y , given X = x, is unknown. The problem which then arises is that
of estimating m(x). The discussion in the remainder of this section revolves
around this question.

Clearly, the estimation of m(x) must be made on the basis of available data.
To this effect, we assume that we have at our disposal n pairs of r.v.’s (Xi, Yi),
i = 1, . . . , n which are independent and distributed as the pair (X, Y). Then
the proposed estimate of m(x), call it m̂n(x), is the following:

m̂n(x) = ŵn(x)

f̂n(x)
, where ŵn(x) = 1

nhn

n∑
i=1

YiK

(
x − Xi

hn

)
, (41)

and

f̂n(x) is given in (31); i.e., f̂n(x) = 1
nhn

n∑
i=1

K

(
x − Xi

hn

)
.

The estimated predictor m̂n(x) has several asymptotic optimal properties of
which we single out only one here; namely, asymptotic normality.

THEOREM 11
Let m̂n(x) be the estimate of the predictor m(x) given by (41) and (40),
respectively, and let σ 2(x) be defined by:

σ 2(x) = σ 2
0 (x)
f (x)

∫ ∞

−∞
K2(t) dt (for f (x) > 0), (42)

where σ 2
0 (x) is the conditional variance of Y , given X = x. Then the esti-

mated predictor m̂n(x), properly normalized, is asymptotically Normal;
i.e., √

nhn[m̂n(x) − m(x)]
d−→

n→∞ N(0, σ 2(x)). (43)

The variance σ 2(x) of the limiting normal distribution is unknown, but an
estimate of it may be constructed. Then the convergence (43) may be used to
set up a confidence interval for m(x) with confidence coefficient approximately
equal to 1 − α for large n. (See also Exercise 5.3.)

In closing this section, it should be mentioned that its purpose has been
not to list detailed assumptions and present proofs (many of which are beyond
the assumed level of this book anyway), but rather to point out that there are
regression results available in the literature, way beyond the simple linear
model studied in Chapter 13. Finally, let us mention a piece a terminology
used in the literature, namely, the regression model defined by (35) is referred
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to as a fixed design regression model, whereas the one defined by (40) is called
a stochastic design regression model. The reasons for this are obvious. In the
former case, the points where observations are taken are fixed, whereas in the
latter case they are values of a r.v. X.

Exercises

5.1 Note: All convergences in this exercise hold for continuity points x of
f (x). In Theorem 7.1, it is stated that

f̂n(x) − Ef̂n(x)

s.d.( f̂n(x))

d−→
n→∞ N(0, 1).

By this fact, Theorem 5, and some additional assumptions, it is also shown
that

f̂n(x) − f (x)

s.d.( f̂n(x))

d−→
n→∞ N(0, 1). (44)

(i) Use expression (31) in order to show that

Var( f̂n(x)) = 1
nh2

n

Var

(
K

(
x − X1

hn

))
, so that

(nhn)Var( f̂n(x)) = 1
hn

Var

(
K

(
x − X1

hn

))
.

(ii) Use the formula Var(X ) = EX 2 − (EX )2, and the transformation
x−y

hn
= u with −∞ < u < ∞, in order to show that

(nhn)Var( f̂n(x)) =
∫ ∞

−∞
K2(u) f (x − hnu) du

− hn

[ ∫ ∞

−∞
K(u) f (x − hnu) du

]2

.

Now, it can be shown that∫ ∞

−∞
K(u) f (x − hnu) du −→

n→∞ f (x)
∫ ∞

−∞
K(u)du = f (x),

and ∫ ∞

−∞
K2(u) f (x − hnu)du −→

n→∞ f (x)
∫ ∞

−∞
K2(u) du.

From these results, assumption (34)(i), and part (ii), it follows then
that

σ 2
n(x)

def= (nhn)Var( f̂n(x)) −→
n→∞ f (x)

∫ ∞

−∞
K2(u) du

def= σ 2(x).

(45)
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(iii) From convergence (45) and Theorem 7, conclude (by means of the
Corollary to Theorem 5 in Chapter 7) that

f̂n(x) − Ef̂n(x)
d−→

n→∞ 0, and hence f̂n(x) − Ef̂n(x)
p−→

n→∞ 0. (46)

(iv) Use convergence (46) and Theorem 5 in order to conclude that f̂n(x) is
a consistent estimate of f (x) (in the probability sense); i.e., f̂n(x)

p−→
n→∞

f (x).
Set

σ̂ 2
n(x) = f̂n(x)

∫ ∞

−∞
K2(u) du. (47)

(v) Use relations (45) and (47) to conclude that

σ̂ 2
n(x)

σ 2
n(x)

p−→
n→∞ 1, or

σ̂n(x)
σn(x)

p−→
n→∞ 1. (48)

Since, by (44) and (45),

f̂n(x) − f (x)

s.d.( f̂n(x))
=

√
nhn[ f̂n(x) − f (x)]√

nhnVar( f̂n(x))

=
√

nhn[ f̂n(x) − f (x)]
σn(x)

d−→
n→∞ N(0, 1),

it follows from this and (48) (by means of Theorem 6 in Chapter 7) that
√

nhn[ f̂n(x) − f (x)]/σn(x)
σ̂n(x)/σn(x)

=
√

nhn[ f̂n(x) − f (x)]
σ̂n(x)

d−→
n→∞ N(0, 1).

(49)
(vi) Use convergence (49) in order to conclude that, for all sufficiently

large n,

P

[
f̂n(x) − σ̂n(x)√

nhn

zα/2 ≤ f (x) ≤ f̂n(x) + σ̂n(x)√
nhn

zα/2

]
� 1 − α;

i.e., the interval [ f̂n(x) − σ̂n(x)√
nhn

zα/2, f̂n(x) + σ̂n(x)√
nhn

zα/2] is a confidence
interval for f (x) with confidence coefficient approximately 1 − α, for
all sufficiently large n.

5.2 Refer to convergence (39), and set σn(x) = s.d.(gn(x; xn)). Use relation (39)
in order to conclude that, for all sufficiently, large n,

P[gn(x; xn) − zα/2σn(x) ≤ g(x) ≤ gn(x; xn) + zα/2σn(x)] � 1 − α. (50)

Thus, if σn(x) is known, then expression (50) states that the interval
[gn(x; xn)−zα/2σn(x), gn(x; xn)+zα/2σn(x)] is a confidence interval for g(x)
with confidence coefficient approximately 1 − α, for all sufficiently large
n. If σn(x) is not known, but a suitable estimate of it, σ̂n(x), can be con-
structed, then the interval [gn(x; xn) − zα/2σ̂n(x), gn(x; xn) + zα/2σ̂n(x)] is
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a confidence interval for g(x) with confidence coefficient approximately
1 −α, for all sufficiently large n. One arrives at this conclusion working as
in Exercise 5.1.

5.3 Refer to convergence (43), and go through the usual manipulations to
conclude that, for all sufficiently large n,

P

[
m̂n(x) − σ (x)√

nhn

≤ m(x) ≤ m̂n(x) + σ (x)√
nhn

]
� 1 − α. (51)

Thus, ifσ (x) is known, then expression (51) states that the interval [m̂n(x)−
σ (x)√
nhn

zα/2, m̂n(x) + σ (x)√
nhn

zα/2] is a confidence interval for m(x) with confi-
dence coefficient approximately 1−α, for all sufficiently large n. If σ (x) is
not known, but a suitable estimate of it, σ̂n(x), can be constructed, then the
interval [m̂n(x) − σ̂n(x)√

nhn
zα/2, m̂n(x) + σ̂n(x)√

nhn
zα/2] is a confidence interval for

m(x) with confidence coefficient approximately 1 − α, for all sufficiently
large n.



Appendix

Tables

Table 1

The Cumulative Binomial
Distribution

The tabulated quantity is
k∑

j=0

(
n

j

)
pj(1 − p)n− j .

p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

2 0 0.8789 0.7656 0.6602 0.5625 0.4727 0.3906 0.3164 0.2500
1 0.9961 0.9844 0.9648 0.9375 0.9023 0.8594 0.8086 0.7500
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8240 0.6699 0.5364 0.4219 0.3250 0.2441 0.1780 0.1250
1 0.9888 0.9570 0.9077 0.8437 0.7681 0.6836 0.5933 0.5000
2 0.9998 0.9980 0.9934 0.9844 0.9695 0.9473 0.9163 0.8750
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.7725 0.5862 0.4358 0.3164 0.2234 0.1526 0.1001 0.0625
1 0.9785 0.9211 0.8381 0.7383 0.6296 0.5188 0.4116 0.3125
2 0.9991 0.9929 0.9773 0.9492 0.9065 0.8484 0.7749 0.6875
3 1.0000 0.9998 0.9988 0.9961 0.9905 0.9802 0.9634 0.9375
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7242 0.5129 0.3541 0.2373 0.1536 0.0954 0.0563 0.0312
1 0.9656 0.8793 0.7627 0.6328 0.5027 0.3815 0.2753 0.1875
2 0.9978 0.9839 0.9512 0.8965 0.8200 0.7248 0.6160 0.5000
3 0.9999 0.9989 0.9947 0.9844 0.9642 0.9308 0.8809 0.8125
4 1.0000 1.0000 0.9998 0.9990 0.9970 0.9926 0.9840 0.9687
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.6789 0.4488 0.2877 0.1780 0.1056 0.0596 0.0317 0.0156
1 0.9505 0.8335 0.6861 0.5339 0.3936 0.2742 0.1795 0.1094
2 0.9958 0.9709 0.9159 0.8306 0.7208 0.5960 0.4669 0.3437
3 0.9998 0.9970 0.9866 0.9624 0.9192 0.8535 0.7650 0.6562
4 1.0000 0.9998 0.9988 0.9954 0.9868 0.9694 0.9389 0.8906
5 1.0000 1.0000 1.0000 0.9998 0.9991 0.9972 0.9930 0.9844
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.6365 0.3927 0.2338 0.1335 0.0726 0.0373 0.0178 0.0078
1 0.9335 0.7854 0.6114 0.4449 0.3036 0.1937 0.1148 0.0625
2 0.9929 0.9537 0.8728 0.7564 0.6186 0.4753 0.3412 0.2266
3 0.9995 0.9938 0.9733 0.9294 0.8572 0.7570 0.6346 0.5000
4 1.0000 0.9995 0.9965 0.9871 0.9656 0.9260 0.8628 0.7734
5 1.0000 1.0000 0.9997 0.9987 0.9952 0.9868 0.9693 0.9375

450
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

7 6 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9969 0.9922
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.5967 0.3436 0.1899 0.1001 0.0499 0.0233 0.0100 0.0039
1 0.9150 0.7363 0.5406 0.3671 0.2314 0.1350 0.0724 0.0352
2 0.9892 0.9327 0.8238 0.6785 0.5201 0.3697 0.2422 0.1445
3 0.9991 0.9888 0.9545 0.8862 0.7826 0.6514 0.5062 0.3633
4 1.0000 0.9988 0.9922 0.9727 0.9318 0.8626 0.7630 0.6367
5 1.0000 0.9999 0.9991 0.9958 0.9860 0.9640 0.9227 0.8555
6 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9849 0.9648
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9961
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.5594 0.3007 0.1543 0.0751 0.0343 0.0146 0.0056 0.0020
1 0.8951 0.6872 0.4748 0.3003 0.1747 0.0931 0.0451 0.0195
2 0.9846 0.9081 0.7707 0.6007 0.4299 0.2817 0.1679 0.0898
3 0.9985 0.9817 0.9300 0.8343 0.7006 0.5458 0.3907 0.2539
4 0.9999 0.9975 0.9851 0.9511 0.8851 0.7834 0.6506 0.5000
5 1.0000 0.9998 0.9978 0.9900 0.9690 0.9260 0.8528 0.7461
6 1.0000 1.0000 0.9998 0.9987 0.9945 0.9830 0.9577 0.9102
7 1.0000 1.0000 1.0000 0.9999 0.9994 0.9977 0.9926 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5245 0.2631 0.1254 0.0563 0.0236 0.0091 0.0032 0.0010
1 0.8741 0.6389 0.4147 0.2440 0.1308 0.0637 0.0278 0.0107
2 0.9790 0.8805 0.7152 0.5256 0.3501 0.2110 0.1142 0.0547
3 0.9976 0.9725 0.9001 0.7759 0.6160 0.4467 0.2932 0.1719
4 0.9998 0.9955 0.9748 0.9219 0.8275 0.6943 0.5369 0.3770
5 1.0000 0.9995 0.9955 0.9803 0.9428 0.8725 0.7644 0.6230
6 1.0000 1.0000 0.9994 0.9965 0.9865 0.9616 0.9118 0.8281
7 1.0000 1.0000 1.0000 0.9996 0.9979 0.9922 0.9773 0.9453
8 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9964 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.4917 0.2302 0.1019 0.0422 0.0162 0.0057 0.0018 0.0005
1 0.8522 0.5919 0.3605 0.1971 0.0973 0.0432 0.0170 0.0059
2 0.9724 0.8503 0.6589 0.4552 0.2816 0.1558 0.0764 0.0327
3 0.9965 0.9610 0.8654 0.7133 0.5329 0.3583 0.2149 0.1133
4 0.9997 0.9927 0.9608 0.8854 0.7614 0.6014 0.4303 0.2744
5 1.0000 0.9990 0.9916 0.9657 0.9068 0.8057 0.6649 0.5000
6 1.0000 0.9999 0.9987 0.9924 0.9729 0.9282 0.8473 0.7256
7 1.0000 1.0000 0.9999 0.9988 0.9943 0.9807 0.9487 0.8867
8 1.0000 1.0000 1.0000 0.9999 0.9992 0.9965 0.9881 0.9673
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.4610 0.2014 0.0828 0.0317 0.0111 0.0036 0.0010 0.0002
1 0.8297 0.5467 0.3120 0.1584 0.0720 0.0291 0.0104 0.0032
2 0.9649 0.8180 0.6029 0.3907 0.2240 0.1135 0.0504 0.0193
3 0.9950 0.9472 0.8267 0.6488 0.4544 0.2824 0.1543 0.0730

(Continued)
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

12 4 0.9995 0.9887 0.9429 0.8424 0.6900 0.5103 0.3361 0.1938
5 1.0000 0.9982 0.9858 0.9456 0.8613 0.7291 0.5622 0.3872
6 1.0000 0.9998 0.9973 0.9857 0.9522 0.8822 0.7675 0.6128
7 1.0000 1.0000 0.9996 0.9972 0.9876 0.9610 0.9043 0.8062
8 1.0000 1.0000 1.0000 0.9996 0.9977 0.9905 0.9708 0.9270
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.4321 0.1762 0.0673 0.0238 0.0077 0.0022 0.0006 0.0001
1 0.8067 0.5035 0.2690 0.1267 0.0530 0.0195 0.0063 0.0017
2 0.9565 0.7841 0.5484 0.3326 0.1765 0.0819 0.0329 0.0112
3 0.9931 0.9310 0.7847 0.5843 0.3824 0.2191 0.1089 0.0461
4 0.9992 0.9835 0.9211 0.7940 0.6164 0.4248 0.2565 0.1334
5 0.9999 0.9970 0.9778 0.9198 0.8078 0.6470 0.4633 0.2905
6 1.0000 0.9996 0.9952 0.9757 0.9238 0.8248 0.6777 0.5000
7 1.0000 1.0000 0.9992 0.9944 0.9765 0.9315 0.8445 0.7095
8 1.0000 1.0000 0.9999 0.9990 0.9945 0.9795 0.9417 0.8666
9 1.0000 1.0000 1.0000 0.9999 0.9991 0.9955 0.9838 0.9539

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9968 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.4051 0.1542 0.0546 0.0178 0.0053 0.0014 0.0003 0.0001
1 0.7833 0.4626 0.2312 0.1010 0.0388 0.0130 0.0038 0.0009
2 0.9471 0.7490 0.4960 0.2811 0.1379 0.0585 0.0213 0.0065
3 0.9908 0.9127 0.7404 0.5213 0.3181 0.1676 0.0756 0.0287
4 0.9988 0.9970 0.8955 0.7415 0.5432 0.3477 0.1919 0.0898
5 0.9999 0.9953 0.9671 0.8883 0.7480 0.5637 0.3728 0.2120
6 1.0000 0.9993 0.9919 0.9167 0.8876 0.7581 0.5839 0.3953
7 1.0000 0.9999 0.9985 0.9897 0.9601 0.8915 0.7715 0.6047
8 1.0000 1.0000 0.9998 0.9978 0.9889 0.9615 0.8992 0.7880
9 1.0000 1.0000 1.0000 0.9997 0.9976 0.9895 0.9654 0.9102

10 1.0000 1.0000 1.0000 1.0000 0.9996 0.9979 0.9911 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 0 0.3798 0.1349 0.0444 0.0134 0.0036 0.0009 0.0002 0.0000
1 0.7596 0.4241 0.1981 0.0802 0.0283 0.0087 0.0023 0.0005
2 0.9369 0.7132 0.4463 0.2361 0.1069 0.0415 0.0136 0.0037
3 0.9881 0.8922 0.6946 0.4613 0.2618 0.1267 0.0518 0.0176
4 0.9983 0.9689 0.8665 0.6865 0.4729 0.2801 0.1410 0.0592
5 0.9998 0.9930 0.9537 0.8516 0.6840 0.4827 0.2937 0.1509
6 1.0000 0.9988 0.9873 0.9434 0.8435 0.6852 0.4916 0.3036
7 1.0000 0.9998 0.9972 0.9827 0.9374 0.8415 0.6894 0.5000
8 1.0000 1.0000 0.9995 0.9958 0.9799 0.9352 0.8433 0.6964
9 1.0000 1.0000 0.9999 0.9992 0.9949 0.9790 0.9364 0.8491

10 1.0000 1.0000 1.0000 0.9999 0.9990 0.9947 0.9799 0.9408
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9952 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

15 13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.3561 0.1181 0.0361 0.0100 0.0025 0.0005 0.0001 0.0000
1 0.7359 0.3879 0.1693 0.0635 0.0206 0.0057 0.0014 0.0003
2 0.9258 0.6771 0.3998 0.1971 0.0824 0.0292 0.0086 0.0021
3 0.9849 0.8698 0.6480 0.4050 0.2134 0.0947 0.0351 0.0106
4 0.9977 0.9593 0.8342 0.6302 0.4069 0.2226 0.1020 0.0384
5 0.9997 0.9900 0.9373 0.8103 0.6180 0.4067 0.2269 0.1051
6 1.0000 0.9981 0.9810 0.9204 0.7940 0.6093 0.4050 0.2272
7 1.0000 0.9997 0.9954 0.9729 0.9082 0.7829 0.6029 0.4018
8 1.0000 1.0000 0.9991 0.9925 0.9666 0.9001 0.7760 0.5982
9 1.0000 1.0000 0.9999 0.9984 0.9902 0.9626 0.8957 0.7728

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9888 0.9609 0.8949
11 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9885 0.9616
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9975 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.3338 0.1033 0.0293 0.0075 0.0017 0.0003 0.0001 0.0000
1 0.7121 0.3542 0.1443 0.0501 0.0149 0.0038 0.0008 0.0001
2 0.9139 0.6409 0.3566 0.1637 0.0631 0.0204 0.0055 0.0012
3 0.9812 0.8457 0.6015 0.3530 0.1724 0.0701 0.0235 0.0064
4 0.9969 0.9482 0.7993 0.5739 0.3464 0.1747 0.0727 0.0245
5 0.9996 0.9862 0.9180 0.7653 0.5520 0.3377 0.1723 0.0717
6 1.0000 0.9971 0.9728 0.8929 0.7390 0.5333 0.3271 0.1662
7 1.0000 0.9995 0.9927 0.9598 0.8725 0.7178 0.5163 0.3145
8 1.0000 0.9999 0.9984 0.9876 0.9484 0.8561 0.7002 0.5000
9 1.0000 1.0000 0.9997 0.9969 0.9828 0.9391 0.8433 0.6855

10 1.0000 1.0000 1.0000 0.9994 0.9954 0.9790 0.9323 0.8338
11 1.0000 1.0000 1.0000 0.9999 0.9990 0.9942 0.9764 0.9283
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9935 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.3130 0.0904 0.0238 0.0056 0.0012 0.0002 0.0000 0.0000
1 0.6885 0.3228 0.1227 0.0395 0.0108 0.0025 0.0005 0.0001
2 0.9013 0.6051 0.3168 0.1353 0.0480 0.0142 0.0034 0.0007
3 0.9770 0.8201 0.5556 0.3057 0.1383 0.0515 0.0156 0.0038
4 0.9959 0.9354 0.7622 0.5187 0.2920 0.1355 0.0512 0.0154
5 0.9994 0.9814 0.8958 0.7175 0.4878 0.2765 0.1287 0.0481
6 0.9999 0.9957 0.9625 0.8610 0.6806 0.4600 0.2593 0.1189
7 1.0000 0.9992 0.9889 0.9431 0.8308 0.6486 0.4335 0.2403
8 1.0000 0.9999 0.9973 0.9807 0.9247 0.8042 0.6198 0.4073
9 1.0000 1.0000 0.9995 0.9946 0.9721 0.9080 0.7807 0.5927

10 1.0000 1.0000 0.9999 0.9988 0.9915 0.9640 0.8934 0.7597
11 1.0000 1.0000 1.0000 0.9998 0.9979 0.9885 0.9571 0.8811

(Continued)
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

18 12 1.0000 1.0000 1.0000 1.0000 0.9996 0.9970 0.9860 0.9519
13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.2934 0.0791 0.0193 0.0042 0.0008 0.0001 0.0000 0.0000
1 0.6650 0.2938 0.1042 0.0310 0.0078 0.0016 0.0003 0.0000
2 0.8880 0.5698 0.2804 0.1113 0.0364 0.0098 0.0021 0.0004
3 0.9722 0.7933 0.5108 0.2631 0.1101 0.0375 0.0103 0.0022
4 0.9947 0.9209 0.7235 0.4654 0.2440 0.1040 0.0356 0.0096
5 0.9992 0.9757 0.8707 0.6678 0.4266 0.2236 0.0948 0.0318
6 0.9999 0.9939 0.9500 0.8251 0.6203 0.3912 0.2022 0.0835
7 1.0000 0.9988 0.9840 0.9225 0.7838 0.5779 0.3573 0.1796
8 1.0000 0.9998 0.9957 0.9713 0.8953 0.7459 0.5383 0.3238
9 1.0000 1.0000 0.9991 0.9911 0.9573 0.8691 0.7103 0.5000

10 1.0000 1.0000 0.9998 0.9977 0.9854 0.9430 0.8441 0.0672
11 1.0000 1.0000 1.0000 0.9995 0.9959 0.9793 0.9292 0.8204
12 1.0000 1.0000 1.0000 0.9999 0.9990 0.9938 0.9734 0.9165
13 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9919 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9980 0.9904
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.2751 0.0692 0.0157 0.0032 0.0006 0.0001 0.0000 0.0000
1 0.6148 0.2669 0.0883 0.0243 0.0056 0.0011 0.0002 0.0000
2 0.8741 0.5353 0.2473 0.0913 0.0275 0.0067 0.0013 0.0002
3 0.9670 0.7653 0.4676 0.2252 0.0870 0.0271 0.0067 0.0013
4 0.9933 0.9050 0.6836 0.4148 0.2021 0.0790 0.0245 0.0059
5 0.9989 0.9688 0.8431 0.6172 0.3695 0.1788 0.0689 0.0207
6 0.9999 0.9916 0.9351 0.7858 0.5598 0.3284 0.1552 0.0577
7 1.0000 0.9981 0.9776 0.8982 0.7327 0.5079 0.2894 0.1316
8 1.0000 0.9997 0.9935 0.9591 0.8605 0.6829 0.4591 0.2517
9 1.0000 0.9999 0.9984 0.9861 0.9379 0.8229 0.6350 0.4119

10 1.0000 1.0000 0.9997 0.9961 0.9766 0.9153 0.7856 0.5881
11 1.0000 1.0000 0.9999 0.9991 0.9926 0.9657 0.8920 0.7483
12 1.0000 1.0000 1.0000 0.9998 0.9981 0.9884 0.9541 0.8684
13 1.0000 1.0000 1.0000 1.0000 0.9996 0.9968 0.9838 0.9423
14 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9953 0.9793
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

21 0 0.2579 0.0606 0.0128 0.0024 0.0004 0.0001 0.0000 0.0000
1 0.6189 0.2422 0.0747 0.0190 0.0040 0.0007 0.0001 0.0000
2 0.8596 0.5018 0.2175 0.0745 0.0206 0.0046 0.0008 0.0001
3 0.9612 0.7366 0.4263 0.1917 0.0684 0.0195 0.0044 0.0007
4 0.9917 0.8875 0.6431 0.3674 0.1662 0.0596 0.0167 0.0036
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

21 5 0.9986 0.9609 0.8132 0.5666 0.3172 0.1414 0.0495 0.0133
6 0.9998 0.9888 0.9179 0.7436 0.5003 0.2723 0.1175 0.0392
7 1.0000 0.9973 0.9696 0.8701 0.6787 0.4405 0.2307 0.0946
8 1.0000 0.9995 0.9906 0.9439 0.8206 0.6172 0.3849 0.1917
9 1.0000 0.9999 0.9975 0.9794 0.9137 0.7704 0.5581 0.3318

10 1.0000 1.0000 0.9995 0.9936 0.9645 0.8806 0.7197 0.5000
11 1.0000 1.0000 0.9999 0.9983 0.9876 0.9468 0.8454 0.6682
12 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9269 0.8083
13 1.0000 1.0000 1.0000 0.9999 0.9991 0.9936 0.9708 0.9054
14 1.0000 1.0000 1.0000 1.0000 0.9998 0.9983 0.9903 0.9605
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9974 0.9867
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9964
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

22 0 0.2418 0.0530 0.0104 0.0018 0.0003 0.0000 0.0000 0.0000
1 0.5963 0.2195 0.0631 0.0149 0.0029 0.0005 0.0001 0.0000
2 0.8445 0.4693 0.1907 0.0606 0.0154 0.0031 0.0005 0.0001
3 0.9548 0.7072 0.3871 0.1624 0.0535 0.0139 0.0028 0.0004
4 0.9898 0.8687 0.6024 0.3235 0.1356 0.0445 0.0133 0.0022
5 0.9981 0.9517 0.7813 0.5168 0.2700 0.1107 0.0352 0.0085
6 0.9997 0.9853 0.8983 0.6994 0.4431 0.2232 0.0877 0.0267
7 1.0000 0.9963 0.9599 0.8385 0.6230 0.3774 0.1812 0.0669
8 1.0000 0.9992 0.9866 0.9254 0.7762 0.5510 0.3174 0.1431
9 1.0000 0.9999 0.9962 0.9705 0.8846 0.7130 0.4823 0.2617

10 1.0000 1.0000 0.9991 0.9900 0.9486 0.8393 0.6490 0.4159
11 1.0000 1.0000 0.9998 0.9971 0.9804 0.9220 0.7904 0.5841
12 1.0000 1.0000 1.0000 0.9993 0.9936 0.9675 0.8913 0.7383
13 1.0000 1.0000 1.0000 0.9999 0.9982 0.9885 0.9516 0.8569
14 1.0000 1.0000 1.0000 1.0000 0.9996 0.9966 0.9818 0.9331
15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9991 0.9943 0.9739
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9915
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9978
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

23 0 0.2266 0.0464 0.0084 0.0013 0.0002 0.0000 0.0000 0.0000
1 0.5742 0.1987 0.0532 0.0116 0.0021 0.0003 0.0000 0.0000
2 0.8290 0.4381 0.1668 0.0492 0.0115 0.0021 0.0003 0.0000
3 0.9479 0.6775 0.3503 0.1370 0.0416 0.0099 0.0018 0.0002
4 0.9876 0.8485 0.5621 0.2832 0.1100 0.0330 0.0076 0.0013
5 0.9976 0.9413 0.7478 0.4685 0.2280 0.0859 0.0247 0.0053
6 0.9996 0.9811 0.8763 0.6537 0.3890 0.1810 0.0647 0.0173
7 1.0000 0.9949 0.9484 0.8037 0.5668 0.3196 0.1403 0.0466
8 1.0000 0.9988 0.9816 0.9037 0.7283 0.4859 0.2578 0.1050
9 1.0000 0.9998 0.9944 0.9592 0.8507 0.6522 0.4102 0.2024

10 1.0000 1.0000 0.9986 0.9851 0.9286 0.7919 0.5761 0.3388
11 1.0000 1.0000 0.9997 0.9954 0.9705 0.8910 0.7285 0.5000

(Continued)
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

23 12 1.0000 1.0000 0.9999 0.9988 0.9895 0.9504 0.8471 0.6612
13 1.0000 1.0000 1.0000 0.9997 0.9968 0.9806 0.9252 0.7976
14 1.0000 1.0000 1.0000 0.9999 0.9992 0.9935 0.9686 0.8950
15 1.0000 1.0000 1.0000 1.0000 0.9998 0.9982 0.9888 0.9534
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967 0.9827
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9947
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

24 0 0.2125 0.0406 0.0069 0.0010 0.0001 0.0000 0.0000 0.0000
1 0.5524 0.1797 0.0448 0.0090 0.0015 0.0002 0.0000 0.0000
2 0.8131 0.4082 0.1455 0.0398 0.0086 0.0014 0.0002 0.0000
3 0.9405 0.6476 0.3159 0.1150 0.0322 0.0070 0.0011 0.0001
4 0.9851 0.8271 0.5224 0.2466 0.0886 0.0243 0.0051 0.0008
5 0.9970 0.9297 0.7130 0.4222 0.1911 0.0661 0.0172 0.0033
6 0.9995 0.9761 0.8522 0.6074 0.3387 0.1453 0.0472 0.0113
7 0.9999 0.9932 0.9349 0.7662 0.5112 0.2676 0.1072 0.0320
8 1.0000 0.9983 0.9754 0.8787 0.6778 0.4235 0.2064 0.0758
9 1.0000 0.9997 0.9920 0.9453 0.8125 0.5898 0.3435 0.1537

10 1.0000 0.9999 0.9978 0.9787 0.9043 0.7395 0.5035 0.2706
11 1.0000 1.0000 0.9995 0.9928 0.9574 0.8538 0.6618 0.4194
12 1.0000 1.0000 0.9999 0.9979 0.9835 0.9281 0.7953 0.5806
13 1.0000 1.0000 1.0000 0.9995 0.9945 0.9693 0.8911 0.7294
14 1.0000 1.0000 1.0000 0.9999 0.9984 0.9887 0.9496 0.8463
15 1.0000 1.0000 1.0000 1.0000 0.9996 0.9964 0.9799 0.9242
16 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990 0.9932 0.9680
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9887
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9967
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 0 0.1992 0.0355 0.0056 0.0008 0.0001 0.0000 0.0000 0.0000
1 0.5132 0.1623 0.0377 0.0070 0.0011 0.0001 0.0000 0.0000
2 0.7968 0.3796 0.1266 0.0321 0.0064 0.0010 0.0001 0.0000
3 0.9325 0.6176 0.2840 0.0962 0.0248 0.0049 0.0007 0.0001
4 0.9823 0.8047 0.4837 0.2137 0.0710 0.0178 0.0033 0.0005
5 0.9962 0.9169 0.6772 0.3783 0.1591 0.0504 0.0119 0.0028
6 0.9993 0.9703 0.8261 0.5611 0.2926 0.1156 0.0341 0.0073
7 0.9999 0.9910 0.9194 0.7265 0.4573 0.2218 0.0810 0.0216
8 1.0000 0.9977 0.9678 0.8506 0.6258 0.3651 0.1630 0.0539
9 1.0000 0.9995 0.9889 0.9287 0.7704 0.5275 0.2835 0.1148

10 1.0000 0.9999 0.9967 0.9703 0.8756 0.6834 0.4335 0.2122
11 1.0000 1.0000 0.9992 0.9893 0.9408 0.8110 0.5926 0.3450
12 1.0000 1.0000 0.9998 0.9966 0.9754 0.9003 0.7369 0.5000
13 1.0000 1.0000 1.0000 0.9991 0.9911 0.9538 0.8491 0.6550
14 1.0000 1.0000 1.0000 0.9998 0.9972 0.9814 0.9240 0.7878
15 1.0000 1.0000 1.0000 1.0000 0.9992 0.9935 0.9667 0.8852
16 1.0000 1.0000 1.0000 1.0000 0.9998 0.9981 0.9874 0.9462
17 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9960 0.9784
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Table 1 (continued)
p

n k 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16

25 18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9989 0.9927
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9980
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2

The Cumulative Poisson
Distribution

The tabulated quantity is
k∑

j=0

e−λ λ j

j!
.

λ

k 0.001 0.005 0.010 0.015 0.020 0.025

0 0.9990 0050 0.9950 1248 0.9900 4983 0.9851 1194 0.9801 9867 0.9753 099
1 0.9999 9950 0.9999 8754 0.9999 5033 0.9998 8862 0.9998 0264 0.9996 927
2 1.0000 0000 0.9999 9998 0.9999 9983 0.9999 9945 0.9999 9868 0.9999 974
3 1.0000 0000 1.0000 0000 1.0000 0000 0.9999 9999 1.0000 000
4 1.0000 0000 1.0000 000

λ
k 0.030 0.035 0.040 0.045 0.050 0.055

0 0.970 446 0.965 605 0.960 789 0.955 997 0.951 229 0.946 485
1 0.999 559 0.999 402 0.999 221 0.999 017 0.998 791 0.998 542
2 0.999 996 0.999 993 0.999 990 0.999 985 0.999 980 0.999 973
3 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λ
k 0.060 0.065 0.070 0.075 0.080 0.085

0 0.941 765 0.937 067 0.932 394 0.927 743 0.923 116 0.918 512
1 0.998 270 0.997 977 0.997 661 0.997 324 0.996 966 0.996 586
2 0.999 966 0.999 956 0.999 946 0.999 934 0.999 920 0.999 904
3 0.999 999 0.999 999 0.999 999 0.999 999 0.999 998 0.999 998
4 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000

λ
k 0.090 0.095 0.100 0.200 0.300 0.400

0 0.913 931 0.909 373 0.904 837 0.818 731 0.740 818 0.670 320
1 0.996 185 0.995 763 0.995 321 0.982 477 0.963 064 0.938 448
2 0.999 886 0.999 867 0.999 845 0.998 852 0.996 401 0.992 074
3 0.999 997 0.999 997 0.999 996 0.999 943 0.999 734 0.999 224
4 1.000 000 1.000 000 1.000 000 0.999 998 0.999 984 0.999 939
5 1.000 000 0.999 999 0.999 996
6 1.000 000 1.000 000

λ
k 0.500 0.600 0.700 0.800 0.900 1.000

0 0.606 531 0.548 812 0.496 585 0.449 329 0.406 329 0.367 879
1 0.909 796 0.878 099 0.844 195 0.808 792 0.772 482 0.735 759
2 0.985 612 0.976 885 0.965 858 0.952 577 0.937 143 0.919 699
3 0.998 248 0.996 642 0.994 247 0.990 920 0.986 541 0.981 012
4 0.999 828 0.999 606 0.999 214 0.998 589 0.997 656 0.996 340
5 0.999 986 0.999 961 0.999 910 0.999 816 0.999 657 0.999 406
6 0.999 999 0.999 997 0.999 991 0.999 979 0.999 957 0.999 917
7 1.000 000 1.000 000 0.999 999 0.999 998 0.999 995 0.999 990
8 1.000 000 1.000 000 1.000 000 0.999 999
9 1.000 000
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Table 2 (continued)
λ

k 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50

0 0.3012 0.2466 0.2019 0.1653 0.1353 0.0821 0.0498 0.0302
1 0.6626 0.5918 0.5249 0.4628 0.4060 0.2873 0.1991 0.1359
2 0.8795 0.8335 0.7834 0.7306 0.6767 0.5438 0.4232 0.3208
3 0.9662 0.9463 0.9212 0.8913 0.8571 0.7576 0.6472 0.5366
4 0.9923 0.9857 0.9763 0.9636 0.9473 0.8912 0.8153 0.7254
5 0.9985 0.9968 0.9940 0.9896 0.9834 0.9580 0.9161 0.8576
6 0.9997 0.9994 0.9987 0.9974 0.9955 0.9858 0.9665 0.9347
7 1.0000 0.9999 0.9997 0.9994 0.9989 0.9958 0.9881 0.9733
8 1.0000 1.0000 0.9999 0.9998 0.9989 0.9962 0.9901
9 1.0000 1.0000 0.9997 0.9989 0.9967

10 0.9999 0.9997 0.9990
11 1.0000 0.9999 0.9997
12 1.0000 0.9999
13 1.0000

λ
k 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

0 0.0183 0.0111 0.0067 0.0025 0.0009 0.0003 0.0001 0.0000
1 0.0916 0.0611 0.0404 0.0174 0.0073 0.0030 0.0012 0.0005
2 0.2381 0.1736 0.1247 0.0620 0.0296 0.0138 0.0062 0.0028
3 0.4335 0.3423 0.2650 0.1512 0.0818 0.0424 0.0212 0.0103
4 0.6288 0.5321 0.4405 0.2851 0.1730 0.0996 0.0550 0.0293
5 0.7851 0.7029 0.6160 0.4457 0.3007 0.1912 0.1157 0.0671
6 0.8893 0.8311 0.7622 0.6063 0.4497 0.3134 0.2068 0.1301
7 0.9489 0.9134 0.8666 0.7440 0.5987 0.4530 0.3239 0.2202
8 0.9786 0.9597 0.9319 0.8472 0.7291 0.5925 0.4577 0.3328
9 0.9919 0.9829 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579

10 0.9972 0.9933 0.9863 0.9574 0.9015 0.8159 0.7060 0.5830
11 0.9991 0.9976 0.9945 0.9799 0.9467 0.8881 0.8030 0.6968
12 0.9997 0.9992 0.9980 0.9912 0.9730 0.9362 0.8758 0.7916
13 0.9999 0.9997 0.9993 0.9964 0.9872 0.9658 0.9261 0.8645
14 1.0000 0.9999 0.9998 0.9986 0.9943 0.9827 0.9585 0.9165
15 1.0000 0.9999 0.9995 0.9976 0.9918 0.9780 0.9513
16 1.0000 0.9998 0.9990 0.9963 0.9889 0.9730
17 0.9999 0.9996 0.9984 0.9947 0.9857
18 1.0000 0.9999 0.9993 0.9976 0.9928
19 0.9997 0.9989 0.9965
20 1.0000 0.9999 0.9996 0.9984
21 1.0000 0.9998 0.9993
22 0.9999 0.9997
23 1.0000 0.9999
24 1.0000
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Table 3

The Normal Distribution

The tabulated quantity is


(x) = 1√
2π

∫ x

−∞
e−t2/2dt.

[
(−x) = 1 − 
(x)].

x Φ(x) x Φ(x) x Φ(x) x Φ(x)

0.00 0.500000 0.45 0.673645 0.90 0.815940 1.35 0.911492
0.01 0.503989 0.46 0.677242 0.91 0.818589 1.36 0.913085
0.02 0.507978 0.47 0.680822 0.92 0.821214 1.37 0.914657
0.03 0.511966 0.48 0.684386 0.93 0.823814 1.38 0.916207
0.04 0.515953 0.49 0.687933 0.94 0.826391 1.39 0.917736
0.05 0.519939 0.50 0.691462 0.95 0.828944 1.40 0.919243
0.06 0.523922 0.51 0.694974 0.96 0.831472 1.41 0.920730
0.07 0.527903 0.52 0.698468 0.97 0.833977 1.42 0.922196
0.08 0.531881 0.53 0.701944 0.98 0.836457 1.43 0.923641
0.09 0.535856 0.54 0.705401 0.99 0.838913 1.44 0.925066
0.10 0.539828 0.55 0.708840 1.00 0.841345 1.45 0.926471
0.11 0.543795 0.56 0.712260 1.01 0.843752 1.46 0.927855
0.12 0.547758 0.57 0.715661 1.02 0.846136 1.47 0.929219
0.13 0.551717 0.58 0.719043 1.03 0.848495 1.48 0.930563
0.14 0.555670 0.59 0.722405 1.04 0.850830 1.49 0.931888
0.15 0.559618 0.60 0.725747 1.05 0.853141 1.50 0.933193
0.16 0.563559 0.61 0.279069 1.06 0.855428 1.51 0.934478
0.17 0.567495 0.62 0.732371 1.07 0.857690 1.52 0.935745
0.18 0.571424 0.63 0.735653 1.08 0.859929 1.53 0.936992
0.19 0.575345 0.64 0.738914 1.09 0.862143 1.54 0.938220
0.20 0.579260 0.65 0.742154 1.10 0.864334 1.55 0.939429
0.21 0.583166 0.66 0.745373 1.11 0.866500 1.56 0.940620
0.22 0.587064 0.67 0.748571 1.12 0.868643 1.57 0.941792
0.23 0.590954 0.68 0.751748 1.13 0.870762 1.58 0.942947
0.24 0.594835 0.69 0.754903 1.14 0.872857 1.59 0.944083
0.25 0.598706 0.70 0.758036 1.15 0.874928 1.60 0.945201
0.26 0.602568 0.71 0.761148 1.16 0.876976 1.61 0.946301
0.27 0.606420 0.72 0.764238 1.17 0.879000 1.62 0.947384
0.28 0.610261 0.73 0.767305 1.18 0.881000 1.63 0.948449
0.29 0.614092 0.74 0.770350 1.19 0.882977 1.64 0.949497
0.30 0.617911 0.75 0.773373 1.20 0.884930 1.65 0.950529
0.31 0.621720 0.76 0.776373 1.21 0.886861 1.66 0.951543
0.32 0.625516 0.77 0.779350 1.22 0.888768 1.67 0.952540
0.33 0.629300 0.78 0.782305 1.23 0.890651 1.68 0.953521
0.34 0.633072 0.79 0.785236 1.24 0.892512 1.69 0.954486
0.35 0.636831 0.80 0.788145 1.25 0.894350 1.70 0.955435
0.36 0.640576 0.81 0.791030 1.26 0.896165 1.71 0.956367
0.37 0.644309 0.82 0.793892 1.27 0.897958 1.72 0.957284
0.38 0.648027 0.83 0.796731 1.28 0.899727 1.73 0.958185
0.39 0.651732 0.84 0.799546 1.29 0.901475 1.74 0.959070
0.40 0.655422 0.85 0.802337 1.30 0.903200 1.75 0.959941
0.41 0.659097 0.86 0.805105 1.31 0.904902 1.76 0.960796
0.42 0.662757 0.87 0.807850 1.32 0.906582 1.77 0.961636
0.43 0.666402 0.88 0.810570 1.33 0.908241 1.78 0.962462
0.44 0.670031 0.89 0.813267 1.34 0.909877 1.79 0.963273
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Table 3 (continued)
x Φ(x) x Φ(x) x Φ(x) x Φ(x)

1.80 0.964070 2.30 0.989276 2.80 0.997445 3.30 0.999517
1.81 0.964852 2.31 0.989556 2.81 0.997523 3.31 0.999534
1.82 0.965620 2.32 0.989830 2.82 0.997599 3.32 0.999550
1.83 0.966375 2.33 0.990097 2.83 0.997673 3.33 0.999566
1.84 0.967116 2.34 0.990358 2.84 0.997744 3.34 0.999581
1.85 0.967843 2.35 0.990613 2.85 0.997814 3.35 0.999596
1.86 0.968557 2.36 0.990863 2.86 0.997882 3.36 0.999610
1.87 0.969258 2.37 0.991106 2.87 0.997948 3.37 0.999624
1.88 0.969946 2.38 0.991344 2.88 0.998012 3.38 0.999638
1.89 0.970621 2.39 0.991576 2.89 0.998074 3.39 0.999651
1.90 0.971283 2.40 0.991802 2.90 0.998134 3.40 0.999663
1.91 0.971933 2.41 0.992024 2.91 0.998193 3.41 0.999675
1.92 0.972571 2.42 0.992240 2.92 0.998250 3.42 0.999687
1.93 0.973197 2.43 0.992451 2.93 0.998305 3.43 0.999698
1.94 0.973810 2.44 0.992656 2.94 0.998359 3.44 0.999709
1.95 0.974412 2.45 0.992857 2.95 0.998411 3.45 0.999720
1.96 0.975002 2.46 0.993053 2.96 0.998462 3.46 0.999730
1.97 0.975581 2.47 0.993244 2.97 0.998511 3.47 0.999740
1.98 0.976148 2.48 0.993431 2.98 0.998559 3.48 0.999749
1.99 0.976705 2.49 0.993613 2.99 0.998605 3.49 0.999758
2.00 0.977250 2.50 0.993790 3.00 0.998650 3.50 0.999767
2.01 0.977784 2.51 0.993963 3.01 0.998694 3.51 0.999776
2.02 0.978308 2.52 0.994132 3.02 0.998736 3.52 0.999784
2.03 0.978822 2.53 0.994297 3.03 0.998777 3.53 0.999792
2.04 0.979325 2.54 0.994457 3.04 0.998817 3.54 0.999800
2.05 0.979818 2.55 0.994614 3.05 0.998856 3.55 0.999807
2.06 0.980301 2.56 0.994766 3.06 0.998893 3.56 0.999815
2.07 0.980774 2.57 0.994915 3.07 0.998930 3.57 0.999822
2.08 0.981237 2.58 0.995060 3.08 0.998965 3.58 0.999828
2.09 0.981691 2.59 0.995201 3.09 0.998999 3.59 0.999835
2.10 0.982136 2.60 0.995339 3.10 0.999032 3.60 0.999841
2.11 0.982571 2.61 0.995473 3.11 0.999065 3.61 0.999847
2.12 0.982997 2.62 0.995604 3.12 0.999096 3.62 0.999853
2.13 0.983414 2.63 0.995731 3.13 0.999126 3.63 0.999858
2.14 0.983823 2.64 0.995855 3.14 0.999155 3.64 0.999864
2.15 0.984222 2.65 0.995975 3.15 0.999184 3.65 0.999869
2.16 0.984614 2.66 0.996093 3.16 0.999211 3.66 0.999874
2.17 0.984997 2.67 0.996207 3.17 0.999238 3.67 0.999879
2.18 0.985371 2.68 0.996319 3.18 0.999264 3.68 0.999883
2.19 0.985738 2.69 0.996427 3.19 0.999289 3.69 0.999888
2.20 0.986097 2.70 0.996533 3.20 0.999313 3.70 0.999892
2.21 0.986447 2.71 0.996636 3.21 0.999336 3.71 0.999896
2.22 0.986791 2.72 0.996736 3.22 0.999359 3.72 0.999900
2.23 0.987126 2.73 0.996833 3.23 0.999381 3.73 0.999904
2.24 0.987455 2.74 0.996928 3.24 0.999402 3.74 0.999908
2.25 0.987776 2.75 0.997020 3.25 0.999423 3.75 0.999912
2.26 0.988089 2.76 0.997110 3.26 0.999443 3.76 0.999915
2.27 0.988396 2.77 0.997197 3.27 0.999462 3.77 0.999918
2.28 0.988696 2.78 0.997282 3.28 0.999481 3.78 0.999922
2.29 0.988989 2.79 0.997365 3.29 0.999499 3.79 0.999925

(Continued)
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Table 3 (continued)
x Φ(x) x Φ(x) x Φ(x) x Φ(x)

3.80 0.999928 3.85 0.999941 3.90 0.999952 3.95 0.999961
3.81 0.999931 3.86 0.999943 3.91 0.999954 3.96 0.999963
3.82 0.999933 3.87 0.999946 3.92 0.999956 3.97 0.999964
3.83 0.999936 3.88 0.999948 3.93 0.999958 3.98 0.999966
3.84 0.999938 3.89 0.999950 3.94 0.999959 3.99 0.999967
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Table 4

Critical Values for
Student’s t-Distribution

Let tr be a random variable having the Student’s t-distribution with r degrees of freedom. Then
the tabulated quantities are the numbers x for which

P(tr ≤ x) = γ .

γ

r 0.75 0.90 0.95 0.975 0.99 0.995

1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248
3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409
4 0.7407 1.5332 2.1318 2.7764 3.7649 4.6041
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995
8 0.7064 1.3968 1.8595 3.3060 2.8965 3.3554
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.6938 1.3502 1.7709 1.1604 2.6503 3.0123
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768
15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453
21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874
26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633
29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500
31 0.6825 1.3095 1.6955 2.0395 2.4528 2.7440
32 0.6822 1.3086 1.6939 2.0369 2.4487 2.7385
33 0.6820 1.3077 1.6924 2.0345 2.4448 2.7333
34 0.6818 1.3070 1.6909 2.0322 2.4411 2.7284
35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238
36 0.6814 1.3055 1.6883 2.0281 2.4345 2.7195
37 0.6812 1.3049 1.6871 2.0262 2.4314 1.7154
38 0.6810 1.3042 1.6860 2.0244 2.4286 2.7116
39 0.6808 1.3036 1.6849 2.0227 2.4258 2.7079
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045
41 0.6805 1.3025 1.6829 2.0195 2.4208 2.7012
42 0.6804 1.3020 1.6820 2.0181 2.4185 2.6981
43 0.6802 1.3016 1.6811 2.0167 2.4163 2.6951
44 0.6801 1.3011 1.6802 2.0154 2.4141 2.6923
45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896

(Continued)
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Table 4 (continued)
γ

r 0.75 0.90 0.95 0.975 0.99 0.995

46 0.6799 1.3002 1.6787 2.0129 2.4102 2.6870
47 0.6797 1.2998 1.6779 2.0117 2.4083 2.6846
48 0.6796 1.2994 1.6772 2.0106 2.4066 2.6822
49 0.6795 1.2991 1.6766 2.0096 2.4069 2.6800
50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778
51 0.6793 1.2984 1.6753 2.0076 2.4017 2.6757
52 0.6792 1.2980 1.6747 2.0066 2.4002 2.6737
53 0.6791 1.2977 1.6741 2.0057 2.3988 2.6718
54 0.6791 1.2974 1.6736 2.0049 2.3974 2.6700
55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682
56 0.6789 1.2969 1.6725 2.0032 2.3948 2.6665
57 0.6788 1.2966 1.6720 2.0025 2.3936 2.6649
58 0.6787 1.2963 1.6716 2.0017 2.3924 2.6633
59 0.6787 1.2961 1.6711 2.0010 2.3912 2.6618
60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603
61 0.6785 1.2956 1.6702 1.9996 2.3890 2.6589
62 0.6785 1.2954 1.6698 1.9990 2.3880 2.6575
63 0.6784 1.2951 1.6694 1.9983 2.3870 2.6561
64 0.6783 1.2949 1.6690 1.9977 2.3860 2.6549
65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536
66 0.6782 1.2945 1.6683 1.9966 2.3842 2.6524
67 0.6782 1.2943 1.6679 1.9960 2.3833 2.6512
68 0.6781 1.2941 1.6676 1.9955 2.3824 2.6501
69 0.6781 1.2939 1.6672 1.9949 2.3816 2.6490
70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479
71 0.6780 1.2936 1.6666 1.9939 2.3800 2.6469
72 0.6779 1.2934 1.6663 1.9935 2.3793 2.6459
73 0.6779 1.2933 1.6660 1.9930 2.3785 2.6449
74 0.6778 1.2931 1.6657 1.9925 2.3778 2.6439
75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430
76 0.6777 1.2928 1.6652 1.9917 2.3764 2.6421
77 0.6777 1.2926 1.6649 1.9913 2.3758 2.6412
78 0.6776 1.2925 1.6646 1.9908 2.3751 2.6403
79 0.6776 1.2924 1.6644 1.9905 2.3745 2.6395
80 0.6776 1.2922 1.6641 1.9901 2.3739 2.6387
81 0.6775 1.2921 1.6639 1.9897 2.3733 2.6379
82 0.6775 1.2920 1.6636 1.9893 2.3727 2.6371
83 0.6775 1.2918 1.6634 1.9890 2.3721 2.6364
84 0.6774 1.2917 1.6632 1.9886 2.3716 2.6356
85 0.6774 1.2916 1.6630 1.9883 2.3710 2.6349
86 0.6774 1.2915 1.6628 1.9879 2.3705 2.6342
87 0.6773 1.2914 1.6626 1.9876 2.3700 2.6335
88 0.6773 1.2912 1.6624 1.9873 2.3695 2.6329
89 0.6773 1.2911 1.6622 1.9870 2.3690 2.6322
90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316
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Table 5

Critical Values for the
Chi-Square Distribution

Let χ2
r be a random variable having the chi-square distribution with r degrees of freedom. Then

the tabulated quantities are the numbers x for which

P(χ2
r ≤ x) = γ .

γ

r 0.005 0.01 0.025 0.05 0.10 0.25

1 — — 0.001 0.004 0.016 0.102
2 0.010 0.020 0.051 0.103 0.211 0.575
3 0.072 0.115 0.216 0.352 0.584 1.213
4 0.207 0.297 0.484 0.711 1.064 1.923
5 0.412 0.554 0.831 1.145 1.610 2.675
6 0.676 0.872 1.237 1.635 2.204 3.455
7 0.989 1.239 1.690 2.167 2.833 4.255
8 1.344 1.646 2.180 2.733 3.490 5.071
9 1.735 2.088 2.700 2.325 4.168 5.899

10 2.156 2.558 3.247 3.940 4.865 6.737
11 2.603 3.053 3.816 4.575 5.578 7.584
12 3.074 3.571 4.404 5.226 6.304 9.438
13 3.565 4.107 5.009 5.892 7.042 9.299
14 4.075 4.660 5.629 6.571 7.790 10.165
15 4.601 5.229 6.262 7.261 8.547 11.037
16 5.142 5.812 6.908 7.962 9.312 11.912
17 5.697 6.408 7.564 8.672 10.085 12.792
18 6.265 7.015 8.231 8.390 10.865 13.675
19 6.844 7.633 8.907 10.117 11.651 14.562
20 7.434 8.260 9.591 10.851 12.443 15.452
21 8.034 8.897 10.283 11.591 13.240 16.344
22 8.643 9.542 10.982 12.338 14.042 17.240
23 9.260 10.196 11.689 13.091 14.848 18.137
24 9.886 10.856 12.401 13.848 15.659 19.037
25 10.520 11.524 13.120 14.611 16.473 19.939
26 11.160 12.198 13.844 13.379 17.292 20.843
27 11.808 12.879 14.573 16.151 18.114 21.749
28 12.461 13.565 15.308 16.928 18.939 22.657
29 13.121 14.257 16.047 17.708 19.768 23.567
30 13.787 14.954 16.791 18.493 20.599 24.478
31 14.458 15.655 17.539 19.281 21.434 25.390
32 15.134 16.362 18.291 20.072 22.271 26.304
33 15.815 17.074 19.047 20.867 23.110 27.219
34 16.501 17.789 19.806 21.664 23.952 28.136
35 17.192 18.509 20.569 22.465 24.797 29.054
36 17.887 19.233 21.336 23.269 25.643 29.973
37 18.586 19.960 22.106 24.075 26.492 30.893
38 19.289 20.691 22.878 24.884 27.343 31.815
39 19.996 21.426 23.654 25.695 28.196 32.737
40 20.707 22.164 24.433 26.509 29.051 33.660
41 21.421 22.906 25.215 27.326 29.907 34.585
42 22.138 23.650 25.999 28.144 30.765 35.510
43 22.859 24.398 26.785 28.965 31.625 36.436
44 23.584 25.148 27.575 29.787 32.487 37.363
45 24.311 25.901 28.366 30.612 33.350 38.291

(Continued)
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Table 5 (continued)
γ

r 0.75 0.90 0.95 0.975 0.99 0.995

1 1.323 2.706 3.841 5.024 6.635 7.879
2 2.773 4.605 5.991 7.378 9.210 10.597
3 4.108 6.251 7.815 9.348 11.345 12.838
4 5.385 7.779 9.488 11.143 13.277 14.860
5 6.626 9.236 11.071 12.833 15.086 16.750
6 7.841 10.645 12.592 14.449 16.812 18.548
7 9.037 12.017 14.067 16.013 18.475 20.278
8 10.219 13.362 15.507 17.535 20.090 21.955
9 11.389 14.684 16.919 19.023 21.666 23.589

10 12.549 15.987 18.307 20.483 23.209 25.188
11 13.701 17.275 19.675 21.920 24.725 26.757
12 14.845 18.549 21.026 23.337 26.217 28.299
13 15.984 19.812 23.362 24.736 27.688 29.819
14 17.117 21.064 23.685 26.119 29.141 31.319
15 18.245 22.307 24.996 27.488 30.578 32.801
16 19.369 23.542 26.296 28.845 32.000 34.267
17 20.489 24.769 27.587 30.191 33.409 35.718
18 21.605 25.989 28.869 31.526 34.805 37.156
19 22.718 27.204 30.144 32.852 36.191 38.582
20 23.828 28.412 31.410 34.170 37.566 39.997
21 24.935 29.615 32.671 35.479 38.932 41.401
22 26.039 30.813 33.924 36.781 40.289 42.796
23 27.141 32.007 35.172 38.076 41.638 44.181
24 28.241 33.196 36.415 39.364 42.980 45.559
25 29.339 34.382 37.652 40.646 44.314 46.928
26 30.435 35.563 38.885 41.923 45.642 48.290
27 31.528 36.741 40.113 43.194 46.963 49.645
28 32.620 37.916 41.337 44.641 48.278 50.993
29 33.711 39.087 42.557 45.722 49.588 52.336
30 34.800 40.256 43.773 46.979 50.892 53.672
31 35.887 41.422 44.985 48.232 51.191 55.003
32 36.973 42.585 46.194 49.480 53.486 56.328
33 38.058 43.745 47.400 50.725 54.776 57.648
34 39.141 44.903 48.602 51.966 56.061 58.964
35 40.223 46.059 49.802 53.203 57.342 60.275
36 41.304 47.212 50.998 54.437 58.619 61.581
37 42.383 48.363 52.192 55.668 59.892 62.883
38 43.462 49.513 53.384 56.896 61.162 64.181
39 44.539 50.660 54.572 58.120 62.428 65.476
40 45.616 51.805 55.758 59.342 63.691 66.766
41 46.692 52.949 56.942 60.561 64.950 68.053
42 47.766 54.090 58.124 61.777 66.206 69.336
43 48.840 55.230 59.304 62.990 67.459 70.616
44 49.913 56.369 60.481 64.201 68.710 71.893
45 50.985 57.505 61.656 65.410 69.957 73.166



Appendix 467

Table 6

Critical Values for the
F-Distribution

Let Fr1,r2 be a random variable having the F -distribution with r1, r2 degrees of freedom. Then
the tabulated quantities are the numbers x for which

P(Fr1,r2 ≤ x) = γ .

r1

γ 1 2 3 4 5 6 γ

0.500 1.0000 1.5000 1.7092 1.8227 1.8937 1.9422 0.500
0.750 5.8285 7.5000 8.1999 8.5810 8.8198 8.9833 0.750
0.900 39.864 49.500 53.593 55.833 57.241 58.204 0.900

1 0.950 161.45 199.50 215.71 224.58 230.16 233.99 0.950 1
0.975 647.79 799.50 864.16 899.58 921.85 937.11 0.975
0.990 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 0.990
0.995 16211 20000 21615 22500 23056 23437 0.995

0.500 0.66667 1.0000 1.1349 1.2071 1.2519 1.2824 0.500
0.750 2.5714 3.0000 3.1534 3.2320 3.2799 3.3121 0.750
0.900 8.5623 9.0000 9.1618 9.2434 9.2926 9.3255 0.900

2 0.950 18.513 19.000 19.164 19.247 19.296 19.330 0.950 2
0.975 38.506 39.000 39.165 39.248 39.298 39.331 0.975
0.990 98.503 99.000 99.166 99.249 99.299 99.332 0.990
0.995 198.50 199.00 199.17 199.25 199.30 199.33 0.995

0.500 0.58506 0.88110 1.0000 1.0632 1.1024 1.1289 0.500
0.750 2.0239 2.2798 2.3555 2.3901 2.4095 2.4218 0.750
0.900 5.5383 5.4624 5.3908 5.3427 5.3092 5.2847 0.900

3 0.950 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 0.950 3
0.975 17.443 16.044 15.439 15.101 14.885 14.735 0.975
0.990 34.116 30.817 29.457 28.710 28.237 27.911 0.990

r2 0.995 55.552 49.799 47.467 46.195 45.392 44.838 0.995 r2

0.500 0.54863 0.82843 0.94054 1.0000 1.0367 1.0617 0.500
0.750 1.8074 2.0000 2.0467 2.0642 2.0723 2.0766 0.750
0.900 4.5448 4.3246 4.1908 4.1073 4.0506 4.0098 0.900

4 0.950 7.7086 6.9443 6.5914 6.3883 6.2560 6.1631 0.950 4
0.975 12.218 10.649 9.9792 9.6045 9.3645 9.1973 0.975
0.990 21.198 18.000 16.694 15.977 15.522 15.207 0.990
0.995 31.333 26.284 24.259 23.155 22.456 21.975 0.995

0.500 0.52807 0.79877 0.90715 0.96456 1.0000 1.0240 0.500
0.750 1.6925 1.8528 1.8843 1.8927 1.8947 1.8945 0.750
0.900 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 0.900

5 0.950 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 0.950 5
0.975 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 0.975
0.990 16.258 13.274 12.060 11.392 10.967 10.672 0.990
0.995 22.785 18.314 16.530 15.556 14.940 14.513 0.995

0.500 0.51489 0.77976 0.88578 0.94191 0.97654 1.0000 0.500
0.750 1.6214 1.7622 1.7844 1.7872 1.7852 1.7821 0.750
0.900 3.7760 3.4633 3.2888 3.1808 3.1075 3.0546 0.900

6 0.950 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 0.950 6
0.975 8.8131 7.2598 6.5988 6.2272 5.9876 5.8197 0.975
0.990 13.745 10.925 9.7795 9.1483 8.7459 8.4661 0.990
0.995 18.635 14.544 12.917 12.028 11.464 11.073 0.995

(Continued)
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Table 6 (continued)
r1

γ 7 8 9 10 11 12 γ

0.500 1.9774 2.0041 2.0250 2.0419 2.0558 2.0674 0.500
0.750 9.1021 9.1922 9.2631 9.3202 9.3672 9.4064 0.750
0.900 58.906 59.439 59.858 60.195 60.473 60.705 0.900

1 0.950 236.77 238.88 240.54 241.88 242.99 243.91 0.950 1
0.975 948.22 956.66 963.28 968.63 973.04 976.71 0.975
0.990 5928.3 5981.1 6022.5 6055.8 6083.3 6106.3 0.990
0.995 23715 23925 24091 24224 24334 24426 0.995

0.500 1.3045 1.3213 1.3344 1.3450 1.3537 1.3610 0.500
0.750 3.3352 3.3526 3.3661 3.3770 3.3859 3.3934 0.750
0.900 9.3491 9.3668 9.3805 9.3916 9.4006 9.4081 0.900

2 0.950 19.353 19.371 19.385 19.396 19.405 19.413 0.950 2
0.975 39.355 39.373 39.387 39.398 39.407 39.415 0.975
0.990 99.356 99.374 99.388 99.399 99.408 99.416 0.990
0.995 199.36 199.37 199.39 199.40 199.41 199.42 0.995

0.500 1.1482 1.1627 1.1741 1.1833 1.1909 1.1972 0.500
0.750 2.4302 2.4364 2.4410 2.4447 2.4476 2.4500 0.750
0.900 5.2662 5.2517 5.2400 5.2304 5.2223 5.2156 0.900

3 0.950 8.8868 8.8452 8.8123 8.7855 8.7632 8.7446 0.950 3
0.975 14.624 14.540 14.473 14.419 14.374 14.337 0.975
0.990 27.672 27.489 27.345 27.229 27.132 27.052 0.990

r2 0.995 44.434 44.126 43.882 43.686 43.523 43.387 0.995 r2

0.500 1.0797 1.0933 1.1040 1.1126 1.1196 1.1255 0.500
0.750 2.0790 2.0805 2.0814 2.0820 2.0823 2.0826 0.750
0.900 3.9790 3.9549 3.9357 3.9199 3.9066 3.8955 0.900

4 0.950 6.0942 6.0410 5.9988 5.9644 5.9357 5.9117 0.950 4
0.975 9.0741 8.9796 8.9047 8.8439 8.7933 8.7512 0.975
0.990 14.976 14.799 14.659 14.546 14.452 14.374 0.990
0.995 21.622 21.352 21.139 20.967 20.824 20.705 0.995

0.500 1.0414 1.0545 1.0648 1.0730 1.0798 1.0855 0.500
0.750 1.8935 1.8923 1.8911 1.8899 1.8887 1.8877 0.750
0.900 3.3679 3.3393 3.3163 3.2974 3.2815 3.2682 0.900

5 0.950 4.8759 4.8183 4.7725 4.7351 4.7038 4.6777 0.950 5
0.975 6.8531 6.7572 6.6810 6.6192 6.5676 6.5246 0.975
0.990 10.456 10.289 10.158 10.051 9.9623 9.8883 0.990
0.995 14.200 13.961 13.772 13.618 13.490 13.384 0.995

0.500 1.0169 1.0298 1.0398 1.0478 1.0545 1.0600 0.500
0.750 1.7789 1.7760 1.7733 1.7708 1.7686 1.7668 0.750
0.900 3.0145 2.9830 2.9577 2.9369 2.9193 2.9047 0.900

6 0.950 4.2066 4.1468 4.0990 4.0600 4.0272 3.9999 0.950 6
0.975 5.6955 5.5996 5.5234 5.4613 5.4094 5.3662 0.975
0.990 8.2600 8.1016 7.9761 7.8741 7.7891 7.7183 0.990
0.995 10.786 10.566 10.391 10.250 10.132 10.034 0.995



Appendix 469

Table 6 (continued)
r1

γ 13 14 15 18 20 24 γ

0.500 2.0773 2.0858 2.0931 2.1104 2.1190 2.1321 0.500
0.750 9.4399 9.4685 9.4934 9.5520 9.5813 9.6255 0.750
0.900 60.903 61.073 61.220 61.567 61.740 62.002 0.900

1 0.950 244.69 245.37 245.95 247.32 248.01 249.05 0.950 1
0.975 979.85 982.54 984.87 990.36 993.10 997.25 0.975
0.990 6125.9 6142.7 6157.3 6191.6 6208.7 6234.6 0.990
0.995 24504 24572 24630 24767 24836 24940 0.995

0.500 1.3672 1.3725 1.3771 1.3879 1.3933 1.4014 0.500
0.750 3.3997 3.4051 3.4098 3.4208 3.4263 3.4345 0.750
0.900 9.4145 9.4200 9.4247 9.4358 9.4413 9.4496 0.900

2 0.950 19.419 19.424 19.429 19.440 19.446 19.454 0.950 2
0.975 39.421 39.426 39.431 39.442 39.448 39.456 0.975
0.990 99.422 99.427 99.432 99.443 99.449 99.458 0.990
0.995 199.42 199.43 199.43 199.44 199.45 199.46 0.995

0.500 1.2025 1.2071 1.2111 1.2205 1.2252 1.2322 0.500
0.750 2.4520 2.4537 2.4552 2.4585 2.4602 2.4626 0.750
0.900 5.2097 5.2047 5.2003 5.1898 5.1845 5.1764 0.900

3 0.950 8.7286 8.7148 8.7029 8.6744 8.6602 8.6385 0.950 3
0.975 14.305 14.277 14.253 14.196 14.167 14.124 0.975
0.990 26.983 26.923 26.872 26.751 26.690 26.598 0.990

r2 0.995 43.271 43.171 43.085 42.880 42.778 42.622 0.955 r2

0.500 1.1305 1.1349 1.1386 1.1473 1.1517 1.1583 0.500
0.750 2.0827 2.0828 2.0829 2.0828 2.0828 2.0827 0.750
0.900 3.8853 3.8765 3.8689 3.8525 3.8443 3.8310 0.900

4 0.950 5.8910 5.8732 5.8578 5.8209 5.8025 5.7744 0.950 4
0.975 8.7148 8.6836 8.6565 8.5921 8.5599 8.5109 0.975
0.990 14.306 14.248 14.198 14.079 14.020 13.929 0.990
0.995 20.602 20.514 20.438 20.257 20.167 20.030 0.995

0.500 1.0903 1.0944 1.0980 1.1064 1.1106 1.1170 0.500
0.750 1.8867 1.8858 1.8851 1.8830 1.8820 1.8802 0.750
0.900 3.2566 3.2466 3.2380 3.2171 3.2067 3.1905 0.900

5 0.950 4.6550 4.6356 4.6188 4.5783 4.5581 4.5272 0.950 5
0.975 6.4873 6.4554 6.4277 6.3616 6.3285 6.2780 0.975
0.990 9.8244 9.7697 9.7222 9.6092 9.5527 9.4665 0.990
0.995 13.292 13.214 13.146 12.984 12.903 12.780 0.995

0.500 1.0647 1.0687 1.0722 1.0804 1.0845 1.0907 0.500
0.750 1.7650 1.7634 1.7621 1.7586 1.7569 1.7540 0.750
0.900 2.8918 2.8808 2.8712 2.8479 2.8363 2.8183 0.900

6 0.950 3.9761 3.9558 3.9381 3.8955 3.8742 3.8415 0.950 6
0.975 5.3287 5.2966 5.2687 5.2018 5.1684 5.1172 0.975
0.990 7.6570 7.6045 7.5590 7.4502 7.3958 7.3127 0.990
0.995 9.9494 9.8769 9.8140 9.6639 9.5888 9.4741 0.995

(Continued)
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Table 6 (continued)
r1

γ 30 40 48 60 120 ∞ γ

0.500 2.1452 2.1584 2.1650 2.1716 2.1848 2.1981 0.500
0.750 9.6698 9.7144 9.7368 9.7591 9.8041 9.8492 0.750
0.900 62.265 62.529 62.662 62.794 63.061 63.328 0.990

1 0.950 250.09 251.14 251.67 252.20 253.25 254.32 0.950 1
0.975 1001.4 1005.6 1007.7 1009.8 1014.0 1018.3 0.975
0.990 6260.7 6286.8 6299.9 6313.0 6339.4 6366.0 0.990
0.995 25044 25148 25201 25253 25359 25465 0.995

0.500 1.4096 1.4178 1.4220 1.4261 1.4344 1.4427 0.500
0.750 3.4428 3.4511 3.4553 3.4594 3.4677 3.4761 0.750
0.900 9.4579 9.4663 9.4705 9.4746 9.4829 9.4913 0.900

2 0.950 19.462 19.471 19.475 19.479 19.487 19.496 0.950 2
0.975 39.465 39.473 39.477 39.481 39.490 39.498 0.975
0.990 99.466 99.474 99.478 99.483 99.491 99.499 0.990
0.995 199.47 199.47 199.47 199.48 199.49 199.51 0.995

0.500 1.2393 1.2464 1.2500 1.2536 1.2608 1.2680 0.500
0.750 2.4650 2.4674 2.4686 2.4697 2.4720 2.4742 0.750
0.900 5.1681 5.1597 5.1555 5.1512 5.1425 5.1337 0.900

3 0.950 8.6166 8.5944 8.5832 8.5720 8.5494 8.5265 0.950 3
0.975 14.081 14.037 14.015 13.992 13.947 13.902 0.975
0.990 26.505 26.411 26.364 26.316 26.221 26.125 0.990

r2 0.995 42.466 42.308 42.229 42.149 41.989 41.829 0.995 r2

0.500 1.1649 1.1716 1.1749 1.1782 1.1849 1.1916 0.500
0.750 2.0825 2.0821 2.0819 2.0817 2.0812 2.0806 0.750
0.900 3.8174 3.8036 3.7966 3.7896 3.7753 3.7607 0.900

4 0.950 5.7459 5.7170 5.7024 5.6878 5.6581 5.6281 0.950 4
0.975 8.4613 8.4111 8.3858 8.3604 8.3092 8.2573 0.975
0.990 13.838 13.745 13.699 13.652 13.558 13.463 0.990
0.995 19.892 19.752 19.682 19.611 19.468 19.325 0.995

0.500 1.1234 1.1297 1.1329 1.1361 1.1426 1.1490 0.500
0.750 1.8784 1.8763 1.8753 1.8742 1.8719 1.8694 0.750
0.900 3.1741 3.1573 3.1488 1.1402 3.1228 3.1050 0.900

5 0.950 4.4957 4.4638 4.4476 4.4314 4.3984 4.3650 0.950 5
0.975 6.2269 6.1751 6.1488 6.1225 6.0693 6.0153 0.975
0.990 9.3793 9.2912 9.2466 9.2020 9.1118 0.0204 0.990
0.995 12.656 12.530 12.466 12.402 12.274 12.144 0.995

0.500 1.0969 1.1031 1.1062 1.1093 1.1156 1.1219 0.500
0.750 1.7510 1.7477 1.7460 1.7443 1.7407 1.7368 0.750
0.900 2.8000 2.7812 2.7716 2.7620 2.7423 2.7222 0.900

6 0.950 3.8082 3.7743 3.7571 3.7398 3.7047 3.6688 0.950 6
0.975 5.0652 5.0125 4.9857 4.9589 4.9045 4.9491 0.975
0.990 7.2285 7.1432 7.1000 7.0568 6.9690 6.8801 0.990
0.995 9.3583 9.2408 9.1814 9.1219 9.0015 8.8793 0.995



Appendix 471

Table 6 (continued)
r1

γ 1 2 3 4 5 6 γ

0.500 0.50572 0.76655 0.87095 0.92619 0.96026 0.98334 0.500
0.750 1.5732 1.7010 1.7169 1.7157 1.7111 1.7059 0.750
0.900 3.5894 3.2574 3.0741 2.9605 2.8833 2.8274 0.900

7 0.950 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 0.950 7
0.975 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 0.975
0.990 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 0.990
0.995 16.236 12.404 10.882 10.050 9.5221 9.1554 0.995

0.500 0.49898 0.75683 0.86004 0.91464 0.94831 0.97111 0.500
0.750 1.5384 1.6569 1.6683 1.6642 1.6575 1.6508 0.750
0.900 3.4579 3.1131 2.9238 2.8064 2.7265 2.6683 0.900

8 0.950 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 0.950 8
0.975 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 0.975
0.990 11.259 8.6491 7.5910 7.0060 6.6318 6.3707 0.990
0.995 14.688 11.042 9.5965 8.8051 8.3018 7.9520 0.995

0.500 0.49382 0.74938 0.85168 0.90580 0.93916 0.96175 0.500
0.750 1.5121 1.6236 1.6315 1.6253 1.6170 1.6091 0.750
0.900 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 0.900

9 0.950 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 0.950 9
0.975 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 0.975
0.990 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 0.990

r2 0.995 13.614 10.107 8.7171 7.9559 7.4711 7.1338 0.995 r2

0.500 0.48973 0.74349 0.84508 0.89882 0.93193 0.95436 0.500
0.750 1.4915 1.5975 1.6028 1.5949 1.5853 1.5765 0.750
0.900 3.2850 2.9245 2.7277 2.6053 2.5216 2.4606 0.900

10 0.950 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 0.950 10
0.975 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 0.975
0.990 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 0.990
0.995 12.826 9.4270 8.0807 7.3428 6.8723 6.5446 0.995

0.500 0.48644 0.73872 0.83973 0.89316 0.92608 0.94837 0.500
0.750 1.4749 1.5767 1.5798 1.5704 1.5598 1.5502 0.750
0.900 3.2252 2.8595 2.6602 2.5362 2.4512 2.3891 0.900

11 0.950 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 0.950 11
0.975 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 0.975
0.990 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 0.990
0.995 12.226 8.9122 7.6004 6.8809 6.4217 6.1015 0.995

0.500 0.48369 0.73477 0.83530 0.88848 0.92124 0.94342 0.500
0.750 1.4613 1.5595 1.5609 1.5503 1.5389 1.5286 0.750
0.900 3.1765 2.8068 2.6055 2.4801 2.3940 2.3310 0.900

12 0.950 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 0.950 12
0.975 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 0.975
0.990 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 0.990
0.995 11.754 8.5096 7.2258 6.5211 6.0711 5.7570 0.995

(Continued)
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Table 6 (continued)
r1

γ 7 8 9 10 11 12 γ

0.500 1.0000 1.0216 1.0224 1.0304 1.0369 1.0423 0.500
0.750 1.7011 1.6969 1.6931 1.6898 1.6868 1.6843 0.750
0.900 2.7849 2.7516 2.7247 2.7025 2.6837 2.6681 0.900

7 0.950 3.7870 3.7257 3.6767 3.6365 3.6028 3.5747 0.950 7
0.975 4.9949 4.8994 4.8232 4.7611 4.7091 4.6658 0.975
0.990 6.9928 6.8401 6.7188 6.6201 6.5377 6.4691 0.990
0.995 8.8854 8.6781 8.5138 8.3803 8.2691 8.1764 0.995

0.500 0.98757 1.0000 1.0097 1.0175 1.0239 1.0293 0.500
0.750 1.6448 1.6396 1.6350 1.6310 1.6274 1.6244 0.750
0.900 2.6241 2.5893 2.5612 2.5380 2.5184 2.5020 0.900

8 0.950 3.5005 3.4381 3.3881 3.3472 3.3127 3.2840 0.950 8
0.975 4.5286 4.4332 4.3572 4.2951 4.2431 4.1997 0.975
0.990 6.1776 6.0289 5.9106 5.8143 5.7338 5.6668 0.990
0.995 7.6942 7.4960 7.3386 7.2107 7.1039 7.0149 0.995

0.500 0.97805 0.99037 1.0000 1.0077 1.0141 1.0194 0.500
0.750 1.6022 1.5961 1.5909 1.5863 1.5822 1.5788 0.750
0.900 2.5053 2.4694 2.4403 2.4163 2.3959 2.3789 0.900

9 0.950 3.2927 3.2296 3.1789 3.1373 3.1022 3.0729 0.950 9
0.975 4.1971 4.1020 4.0260 3.9639 3.9117 3.8682 0.975
0.990 5.6129 5.4671 5.3511 5.2565 5.1774 5.1114 0.990

r2 0.995 6.8849 6.6933 6.5411 6.4171 6.3136 6.2274 0.995 r2

0.500 0.97054 0.98276 0.99232 1.0000 1.0063 1.0166 0.500
0.750 1.5688 1.5621 1.5563 1.5513 1.5468 1.5430 0.750
0.900 2.4140 2.3772 2.3473 2.3226 2.3016 2.2841 0.900

10 0.950 3.1355 3.0717 3.0204 2.9782 2.9426 2.9130 0.950 10
0.975 3.9498 3.8549 3.7790 3.7168 3.6645 3.6209 0.975
0.990 5.2001 5.0567 4.9424 4.8492 4.7710 4.7059 0.990
0.995 6.3025 6.1159 5.9676 5.8467 5.7456 5.6613 0.995

0.500 0.96445 0.97661 0.98610 0.99373 0.99999 1.0052 0.500
0.750 1.5418 1.5346 1.5284 1.5230 1.5181 1.5140 0.750
0.900 2.3416 2.3040 2.2735 2.2482 2.2267 2.2087 0.900

11 0.950 3.0123 2.9480 2.8962 2.8536 2.8176 2.7876 0.950 11
0.975 3.7586 3.6638 3.5879 3.5257 3.4733 3.4296 0.975
0.990 4.8861 4.7445 4.6315 4.5393 4.4619 4.3974 0.990
0.995 5.8648 5.6821 5.5368 5.4182 5.3190 5.2363 0.995

0.500 0.95943 0.97152 0.98097 0.98856 0.99480 1.0000 0.500
0.750 1.5197 1.5120 1.5054 1.4996 1.4945 1.4902 0.750
0.900 2.2828 2.2446 2.2135 2.1878 1.1658 1.1474 0.900

12 0.950 2.9134 2.8486 2.7964 2.7534 2.7170 2.6866 0.950 12
0.975 3.6065 3.5118 3.4358 3.3736 3.3211 3.2773 0.975
0.990 4.6395 4.4994 4.3875 4.2961 4.2193 4.1553 0.990
0.995 5.5245 5.3451 5.2021 5.0855 4.9878 4.9063 0.995
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Table 6 (continued)
r1

γ 13 14 15 18 20 24 γ

0.500 1.0469 1.0509 1.0543 1.0624 1.0664 1.0724 0.500
0.750 1.6819 1.6799 1.6781 1.6735 1.6712 1.6675 0.750
0.900 2.6543 2.6425 2.6322 2.6072 2.5947 2.5753 0.900

7 0.950 3.5501 3.5291 3.5108 3.4666 3.4445 3.4105 0.950 7
0.975 4.6281 4.5958 4.5678 4.5004 4.4667 4.4150 0.975
0.990 6.4096 6.3585 6.3143 6.2084 6.1554 6.0743 0.990
0.995 8.0962 8.0274 7.9678 7.8253 7.7540 7.6450 0.995

0.500 1.0339 1.0378 1.0412 1.0491 1.0531 1.0591 0.500
0.750 1.6216 1.6191 1.6170 1.6115 1.6088 1.6043 0.750
0.900 2.4875 2.4750 2.4642 2.4378 2.4246 2.4041 0.900

8 0.950 3.2588 3.2371 3.2184 3.1730 3.1503 3.1152 0.950 8
0.975 4.1618 4.1293 4.1012 4.0334 3.9995 3.9472 0.975
0.990 5.6085 5.5584 5.5151 5.4111 5.3591 5.2793 0.990
0.995 6.9377 6.8716 6.8143 6.6769 6.6082 6.5029 0.995

0.500 1.0239 1.0278 1.0311 1.0390 1.0429 1.0489 0.500
0.750 1.5756 1.5729 1.5705 1.5642 1.5611 1.5560 0.750
0.900 2.3638 2.3508 2.3396 2.3121 2.9893 2.2768 0.900

9 0.950 3.0472 3.0252 3.0061 2.9597 2.9365 2.9005 0.950 9
0.975 3.8302 3.7976 3.7694 3.7011 3.6669 3.6142 0.975
0.990 5.0540 5.0048 4.9621 4.8594 4.8080 4.7290 0.990

r2 0.995 6.1524 6.0882 6.0325 5.8987 5.8318 5.7292 0.995 r2

0.500 1.0161 1.0199 1.0232 1.0310 1.0349 1.0408 0.500
0.750 1.5395 1.5364 1.5338 1.5269 1.5235 1.5179 0.750
0.900 2.2685 2.2551 2.2435 2.2150 2.2007 2.1784 0.900

10 0.950 2.8868 2.8644 2.8450 2.7977 2.7740 2.7372 0.950 10
0.975 3.5827 3.5500 3.5217 3.4530 3.4186 3.3654 0.975
0.990 4.6491 4.6004 4.5582 4.4563 3.4054 3.3269 0.990
0.995 5.5880 5.5252 5.4707 5.3396 5.2740 5.1732 0.995

0.500 1.0097 1.0135 1.0168 1.0245 1.0284 1.0343 0.500
0.750 1.5102 1.5069 1.5041 1.4967 1.4930 1.4869 0.750
0.900 2.1927 2.1790 2.1671 2.1377 2.1230 2.1000 0.900

11 0.950 2.7611 2.7383 2.7186 2.6705 2.6464 2.6090 0.950 11
0.975 3.3913 3.3584 3.3299 3.2607 3.2261 3.1725 0.975
0.990 4.3411 4.2928 4.2509 4.1496 4.0990 4.0209 0.990
0.995 5.1642 5.1024 5.0489 4.9198 4.8552 4.7557 0.995

0.500 1.0044 1.0082 1.0115 1.0192 1.0231 1.0289 0.500
0.750 1.4861 1.4826 1.4796 1.4717 1.4678 1.4613 0.750
0.900 2.1311 2.1170 1.1049 2.0748 2.0597 2.0360 0.900

12 0.950 2.6598 2.6368 2.6169 2.5680 2.5436 2.5055 0.950 12
0.975 3.2388 3.2058 3.1772 3.1076 3.0728 3.0187 0.975
0.990 4.0993 4.0512 4.0096 3.9088 3.8584 3.7805 0.990
0.995 4.8352 4.7742 4.7214 4.5937 4.5299 4.4315 0.995

(Continued)
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Table 6 (continued)
r1

γ 30 40 48 60 120 ∞ γ

0.500 1.0785 1.0846 1.0877 1.0908 1.0969 1.1031 0.500
0.750 1.6635 1.6593 1.6571 1.6548 1.6502 1.6452 0.750
0.900 2.5555 2.5351 2.5427 2.5142 2.4928 2.4708 0.900

7 0.950 3.3758 3.3404 3.3224 3.3043 3.2674 3.2298 0.950 7
0.975 4.3624 4.3089 4.2817 4.2544 4.1989 4.1423 0.975
0.990 5.9921 5.9084 5.8660 5.8236 5.7372 5.6495 0.990
0.995 7.5345 7.4225 7.3657 7.3088 7.1933 7.0760 0.995

0.500 1.0651 1.0711 1.0741 1.0771 1.0832 1.0893 0.500
0.750 1.5996 1.5945 1.5919 1.5892 1.5836 1.5777 0.750
0.900 2.3830 2.3614 2.3503 2.3391 2.3162 2.2926 0.900

8 0.950 3.0794 3.0428 3.0241 3.0053 2.9669 2.9276 0.950 8
0.975 3.8940 3.8398 3.8121 3.7844 3.7279 3.6702 0.975
0.990 5.1981 5.1156 5.0736 5.0316 4.9460 4.8588 0.990
0.995 6.3961 6.2875 6.2324 6.1772 6.0649 5.9505 0.995

0.500 1.0548 1.0608 1.0638 1.0667 1.0727 1.0788 0.500
0.750 1.5506 1.5450 1.5420 1.5389 1.5325 1.5257 0.750
0.900 2.2547 2.2320 2.2203 2.2085 2.1843 2.1592 0.900

9 0.950 2.8637 2.8259 2.8066 2.7872 2.7475 2.7067 0.950 9
0.975 3.5604 3.5055 3.4774 3.4493 3.3918 3.3329 0.975
0.990 4.6486 4.5667 4.5249 4.4831 4.3978 4.3105 0.990

r2 0.995 5.6248 5.5186 5.4645 5.4104 5.3001 5.1875 0.995 r2

0.500 1.0467 1.0526 1.0556 1.0585 1.0645 1.0705 0.500
0.750 1.5119 1.5056 1.5023 1.4990 1.4919 1.4843 0.750
0.900 2.1554 1.1317 2.1195 2.1072 2.0818 2.0554 0.900

10 0.950 2.6996 2.6609 2.6410 2.6211 2.5801 2.5379 0.950 10
0.975 3.3110 3.2554 3.2269 3.1984 3.1399 3.0798 0.975
0.990 4.2469 4.1653 4.1236 4.0819 3.9965 3.9090 0.990
0.995 5.0705 4.9659 4.9126 4.8592 4.7501 4.6385 0.995

0.500 1.0401 1.0460 1.0490 1.0519 1.0578 1.0637 0.500
0.750 1.4805 1.4737 1.4701 1.4664 1.4587 1.4504 0.750
0.900 2.0762 2.0516 2.0389 2.0261 1.9997 1.9721 0.900

11 0.950 2.5705 2.5309 2.5105 2.4901 2.4480 2.4045 0.950 11
0.975 3.1176 3.0613 3.0324 3.0035 2.9441 2.8828 0.975
0.990 3.9411 3.8596 3.8179 3.7761 3.6904 3.6025 0.990
0.995 4.6543 4.5508 4.4979 4.4450 4.3367 4.2256 0.995

0.500 1.0347 1.0405 1.0435 1.0464 1.0523 1.0582 0.500
0.750 1.4544 1.4471 1.4432 1.4393 1.4310 1.4221 0.750
0.900 2.0115 1.9861 1.9729 1.9597 1.9323 1.9036 0.900

12 0.950 2.4663 2.4259 2.4051 2.3842 2.3410 2.2962 0.950 12
0.975 2.9633 2.9063 2.8771 2.8478 2.7874 2.7249 0.975
0.990 3.7008 3.6192 3.5774 3.5355 3.4494 3.3608 0.990
0.995 4.3309 4.2282 4.1756 4.1229 4.0149 3.9039 0.995
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Table 6 (continued)
r1

γ 1 2 3 4 5 6 γ

0.500 0.48141 0.73145 0.83159 0.88454 0.91718 0.93926 0.500
0.750 1.4500 1.5452 1.5451 1.5336 1.5214 1.5105 0.750
0.900 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 0.900

13 0.950 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 0.950 13
0.975 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 0.975
0.990 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 0.990
0.995 11.374 8.1865 6.9257 6.2335 5.7910 5.4819 0.995

0.500 0.47944 0.72862 0.82842 0.88119 0.91371 0.93573 0.500
0.750 1.4403 1.5331 1.5317 1.5194 1.5066 1.4952 0.750
0.900 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 0.900

14 0.950 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 0.950 14
0.975 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 0.975
0.990 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 0.990
0.995 11.060 7.9216 6.6803 5.9984 5.5623 5.2574 0.995

0.500 0.47775 0.72619 0.82569 0.87830 0.91073 0.93267 0.500
0.750 1.4321 1.5227 1.5202 1.5071 1.4938 1.4820 0.750
0.900 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 0.900

15 0.950 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 0.950 15
0.975 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 0.975
0.990 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 0.990

r2 0.995 10.798 7.7008 6.4760 5.8029 5.3721 5.0708 0.995 r2

0.500 0.47628 0.72406 0.82330 0.87578 0.90812 0.93001 0.500
0.750 1.4249 1.5137 1.5103 1.4965 1.4827 1.4705 0.750
0.900 3.0481 2.6682 2.4618 2.3327 2.2438 2.1783 0.900

16 0.950 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 0.950 16
0.975 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 0.975
0.990 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 0.990
0.995 10.575 7.5138 6.3034 5.6378 5.2117 4.9134 0.995

0.500 0.47499 0.72219 0.82121 0.87357 0.90584 0.92767 0.500
0.750 1.4186 1.5057 1.5015 1.4873 1.4730 1.4605 0.750
0.900 3.0262 2.6446 2.4374 2.3077 2.2183 2.1524 0.900

17 0.950 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 0.950 17
0.975 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 0.975
0.990 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 0.990
0.995 10.384 7.3536 6.1556 5.4967 5.0746 5.7789 0.995

0.500 0.47385 0.72053 0.81936 0.87161 0.90381 0.92560 0.500
0.750 1.4130 1.4988 1.4938 1.4790 1.4644 1.4516 0.750
0.900 3.0070 2.6239 2.4160 2.2858 2.1958 1.1296 0.900

18 0.950 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 0.950 18
0.975 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 0.975
0.990 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 0.990
0.995 10.218 7.2148 6.0277 5.3746 4.9560 4.6627 0.995

(Continued)
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Table 6 (continued)
r1

γ 7 8 9 10 11 12 γ

0.500 0.95520 0.96724 0.97665 0.98421 0.99042 0.99560 0.500
0.750 1.5011 1.4931 1.4861 1.4801 1.4746 1.4701 0.750
0.900 2.2341 2.1953 2.1638 1.1376 1.1152 2.0966 0.900

13 0.950 2.8321 2.7669 2.7144 2.6710 2.6343 2.6037 0.950 13
0.975 3.4827 3.3880 3.3120 3.2497 3.1971 3.1532 0.975
0.990 4.4410 4.3021 4.1911 4.1003 4.0239 3.9603 0.990
0.995 5.2529 5.0761 4.9351 4.8199 4.7234 4.6429 0.995

0.500 0.95161 0.96360 0.97298 0.98051 0.98670 0.99186 0.500
0.750 1.4854 1.4770 1.4697 1.4634 1.4577 1.4530 0.750
0.900 2.1931 2.1539 2.1220 2.0954 2.0727 2.0537 0.900

14 0.950 2.7642 2.6987 2.6548 2.6021 2.5651 2.5342 0.950 14
0.975 3.3799 2.2853 3.2093 3.1469 3.0941 3.0501 0.975
0.990 4.2779 4.1399 4.0297 3.9394 3.8634 3.8001 0.990
0.995 5.0313 4.8566 4.7173 4.6034 4.5078 4.4281 0.995

0.500 0.94850 0.96046 0.96981 0.97732 0.98349 0.98863 0.500
0.750 1.4718 1.4631 1.4556 1.4491 1.4432 1.4383 0.750
0.900 2.1582 2.1185 2.0862 2.0593 2.0363 2.0171 0.900

15 0.950 2.7066 2.6408 2.5876 2.5437 2.5064 2.4753 0.950 15
0.975 3.2934 3.1987 3.1227 3.0602 3.0073 2.9633 0.975
0.990 4.1415 4.0045 3.8948 3.8049 3.7292 3.6662 0.990

r2 0.995 4.8473 4.6743 4.5364 4.4236 4.3288 4.2498 0.995 r2

0.500 0.94580 0.95773 0.96705 0.97454 0.98069 0.98582 0.500
0.750 1.4601 1.4511 1.4433 1.4366 1.4305 1.4255 0.750
0.900 2.1280 2.0880 2.0553 2.0281 2.0048 1.9854 0.900

16 0.950 2.6572 2.5911 2.5377 2.4935 2.4560 2.4247 0.950 16
0.975 3.2194 3.1248 3.0488 2.9862 2.9332 2.8890 0.975
0.990 4.0259 3.8896 3.7804 3.6909 3.6155 3.5527 0.990
0.995 4.6920 4.5207 4.3838 4.2719 4.1778 4.0994 0.995

0.500 0.94342 0.95532 0.96462 0.97209 0.97823 0.98334 0.500
0.750 1.4497 1.4405 1.4325 1.4256 1.4194 1.4142 0.750
0.900 2.1017 2.0613 2.0284 2.0009 1.9773 1.9577 0.900

17 0.950 2.6143 2.5480 2.4943 2.4499 2.4122 2.3807 0.950 17
0.975 3.1556 3.0610 2.9849 2.9222 2.8691 2.8249 0.975
0.990 3.9267 3.7910 3.6822 3.5931 3.5179 3.4552 0.990
0.995 4.5594 4.3893 4.2535 4.1423 4.0488 3.9709 0.995

0.500 0.94132 0.95319 0.96247 0.96993 0.97606 0.98116 0.500
0.750 1.4406 1.4312 1.4320 1.4159 1.4095 1.4042 0.750
0.900 2.0785 2.0379 2.0047 1.9770 1.9532 1.9333 0.900

18 0.950 2.5767 2.5102 2.4563 2.4117 2.3737 2.3421 0.950 18
0.975 3.0999 3.0053 2.9291 2.8664 2.8132 2.7689 0.975
0.990 3.8406 3.7054 3.5971 3.5082 3.4331 3.3706 0.990
0.995 4.4448 4.2759 4.1410 4.0305 3.9374 3.8599 0.995

These tables have been adapted from Donald B. Owen’s Handbook of Statistical Tables, published
by Addison-Wesley, by permission of the publishers.
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Table 7 Table of Selected Discrete and Continuous Distributions and Some of Their Characteristics

PROBABILITY DENSITY FUNCTIONS IN ONE VARIABLE

Distribution Probability Density Function Mean Variance

Binomial, B(n, p) f (x) =
(

n

x

)
pxqn−x, x = 0, 1, . . . , n; np npq

0 < p < 1, q = 1 − p

(Bernoulli, B(1, p) f (x) = pxq1−x, x = 0, 1 p pq)

Geometric f (x) = pqx−1, x = 1, 2, . . . ;
1
p

q

p2

0 < p < 1, q = 1 − p

Poisson, P(λ) f (x) = e−λ
λx

x!
, x = 0, 1, . . . ; λ > 0 λ λ

Hypergeometric f (x) =

(
m

x

)(
n

r − x

)
(
m+ n

r

) , where
mr

m+ n

mnr(m+ n − r)
(m+ n)2(m+ n − 1)

x = 0, 1, . . . , r

((
m

r

)
= 0, r > m

)
Gamma f (x) = 1

�(α)βα
xα−1 exp

(
− x

β

)
, x > 0; αβ αβ2

α, β > 0

Negative Exponential f (x) = λ exp(−λx), x > 0; λ > 0; or
1
λ

1
λ2

f (x) = 1
μ

e−x/μ, x > 0; μ > 0 μ μ2

Chi-Square f (x) = 1

�
( r

2

)
2r/2

x
r
2 −1 exp

(
− x

2

)
, x > 0; r 2r

r > 0 integer

Normal, N(μ, σ2) f (x) = 1√
2πσ

exp

[
− (x − μ)2

2σ 2

]
, μ σ 2

x ∈ �; μ ∈ �, σ > 0

(Standard Normal, N(0, 1) f (x) = 1√
2π

exp

(
− x2

2

)
, x ∈ � 0 1)

Uniform, U(α, β) f (x) = 1
β − α

, α ≤ x ≤ β;
α + β

2
(α − β)2

12

−∞ < α < β < ∞

(Continued)
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Table 7 (continued)

PROBABILITY DENSITY FUNCTIONS IN MANY VARIABLES

Distribution Probability Density Function Means Variances

Multinomial f (x1, . . . , xk) = n!
x1!x2! · · · xk!

× np1, . . . , npk np1q1, . . . , npkqk.

p
x1
1 p

x2
2 · · · p

xk

k , xi ≥ 0 integers, qi = 1 − pi, j = 1, . . . , k

x1 + x2 + · · · + xk = n; pj > 0, j = 1,

2, . . . , k, p1 + p2 + · · · + pk = 1

Bivariate Normal f (x1, x2) = 1

2πσ1σ2
√

1 − ρ2
exp

(
− q

2

)
, μ1, μ2 σ 2

1 , σ 2
2

q = 1
1 − ρ2

[(
x1 − μ1

σ1

)2

− 2ρ

(
x1 − μ1

σ1

)

×
(

x2 − μ2

σ2

)
+
(

x2 − μ2

σ2

)2]
,

x1, x2, ∈ �; μ1, μ2 ∈ �, σ1, σ2 > 0, −1 ≤ ρ ≤ 1, ρ = correlation coefficient

k-Variate Normal, N(μ, Σ) f (x) = (2π)−k/2|�|−1/2× μ1, . . . , μk Covariance matrix: Σ

exp

[
− 1

2
(x − μ)′Σ−1(x − μ),

x ∈ �k; μ ∈ �k,Σ : k × k

nonsingular symmetric matrix
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Table 7 (continued)

Distribution Moment Generating Function

Binomial, B(n, p) M(t) = (pet + q)n, t ∈ �
(Bernoulli, B(1, p) M(t) = pet + q, t ∈ �)

Geometric M(t) = pet

1 − qet
, t < − log q

Poisson, P(λ) M(t) = exp(λet − λ), t ∈ �
Hypergeometric —

Gamma M(t) = 1
(1 − βt)α

, t <
1
β

Negative Exponential M(t) = λ

λ − t
, t < λ; or M(t) = 1

1 − μt
, t <

1
μ

Chi-Square M(t) = 1
(1 − 2t)r/2 , t <

1
2

Normal, N(μ, σ2) M(t) = exp

(
μt + σ 2t2

2

)
, t ∈ �

(Standard Normal, N(0, 1) M(t) = exp

(
t2

2

)
, t ∈ �)

Uniform, U(α, β) M(t) = etβ − etα

t(β − α)
, t ∈ �

Multinomial M(t1, . . . , tk) = (p1et1 + · · · + pketk )n,
t1, . . . , tk ∈ �

Bivariate Normal M(t1, t2) = exp

[
μ1t1 + μ2t2

+ 1
2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2

)]
,

t1, t2 ∈ �

k-Variate Normal, N(μ, Σ) M(t) = exp

(
t′μ + 1

2
t′Σt

)
,

t ∈ �k



Some Notation
and Abbreviations

� real line
�k, k ≥ 1 k-dimensional Euclidean space
↑, ↓ increasing (nondecreasing) and decreasing (nonincreasing),

respectively
S sample space; also, sure (or certain) event
Ø empty set; also, impossible event
A ⊆ B event A is contained in event B (event A implies event B)
Ac complement of event A

A ∪ B union of events A and B

A ∩ B intersection of events A and B

A − B difference of events A and B (in this order)
r.v. random variable
IA indicator of the set A: IA(x) = 1 if x ∈ A, IA(x) = 0 if x /∈ A

(X ∈ B) = X−1(B) inverse image of the set B under X: X−1(B) = {s ∈ S; X(s) ∈ B}
X(S) range of X

P probability function (measure)
P(A) probability of the event A

PX probability distribution of X (or just distribution of X )
FX distribution function (d.f.) of X

fX probability density function ( p.d.f.) of X

P(A|B) conditional probability of A, given B(
n

k

)
combinations of n objects taken k at a time

Pn,k permutations of n objects taken k at a time
n! n factorial
EX or μ(X ) or μX or just μ expectation (mean value, mean) of X

Var(X) or σ 2(X) or σ 2
X or just σ 2 variance of X

480
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√
Var(X) or σ (X) or σX or just σ standard deviation (s.d.) of X

MX or just M moment generating function (m.g.f.) of X

B(n, p) Binomial distribution with parameters n and p

P(λ) Poisson distribution with parameter λ

χ2
r Chi-Square distribution with r degrees of freedom (d.f.)

N(μ, σ 2) Normal distribution with parameters μ and σ 2


 distribution function (d.f.) of the standard N(0, 1) distribution
U(α, β) or R(α, β) Uniform (or Rectangular) distribution with parameters α and β

X ∼ B(n, p) etc. the r.v. X has the distribution indicated
χ2

r;α the point for which P(X > χ2
r;α) = α, X ∼ χ2

r

zα the point for which P(Z > zα) = α, where Z ∼ N(0, 1)
PX1,..., Xn

or PX joint probability distribution of the r.v.’s X1, . . . , Xn or probability
distribution of the random vector X

FX1,..., Xn
or FX joint d.f. of the r.v.’s X1, . . . , Xn or d.f. of the random vector X

fX1,..., Xn
or fX joint p.d.f. of the r.v.’s X1, . . . , Xn or p.d.f. of the random vector X

MX1,..., Xn
or MX joint m.g.f. of the r.v.’s X1, . . . , Xn or m.g.f. of the random vector X

i.i.d. (r.v.’s) independent identically distributed (r.v.’s)
fX|Y(·|Y = y) or fX|Y(·|y) conditional p.d.f. of X, given Y = y

E(X|Y = y) conditional expectation of X, given Y = y

Var(X|Y = y) or σ 2(X|Y = y) conditional variance of X, given Y = y

Cov(X, Y ) covariance of X and Y

ρ(X, Y) or ρX,Y correlation coefficient of X and Y

tr (Student’s) t distribution with r degrees of freedom (d.f.)
tr;α the point for which P(X > tr;α) = α, X ∼ tr

Fr1,r2 F distribution with r1 and r2 degrees of freedom (d.f.)
Fr1,r2;α the point for which P(X > Fr1,r2;α) = α, X ∼ Fr1,r2

X( j) or Yj jth order statistic of X1, . . . , Xn

P−→,
d−→,

q.m.−→ convergence in probability, distribution, quadratic mean,
respectively

WLLN Weak Law of Large Numbers
CLT Central Limit Theorem
θ letter used for a one-dimensional parameter
θ symbol used for a multidimensional parameter
� letter used for a parameter space
ML maximum likelihood
MLE maximum likelihood estimate
UMV uniformly minimum variance
UMVU uniformly minimum variance unbiased
LS least squares
LSE least squares estimate
H0 null hypothesis
HA alternative hypothesis
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ϕ letter used for a test function
α letter used for level of significance
β(θ) or β(θ) probability of type II error at θ(θ)
π(θ) or π(θ) power of a test at θ(θ)
MP most powerful (test)
UMP uniformly most powerful (test)
LR likelihood ratio
λ = λ(x1, . . . , xn) likelihood ratio test function
log x the logarithm of x(>0) with base always e whether it is so explicitly

stated or not



Answers to
Even-Numbered

Exercises

Chapter 1

Section 1.2

2.2 (i) S = {(r, r, r), (r, r, b), (r, r, g), (r, b, r), (r, b, b), (r, b, g), (r, g, r),
(r, g, b), (r, g, g), (b, r, r), (b, r, b), (b, r, g), (b, b, r), (b, b, b),
(b, b, g), (b, g, r), (b, g, b), (b, g, g), (g, r, r), (g, r, b), (g, r, g),
(g, b, r), (g, b, b), (g, b, g), (g, g, r), (g, g, b), (g, g, g)}.

(ii) A= {(r, b, g), (r, g, b), (b, r, g), (b, g, r), (g, r, b), (g, b, r)},
B = {(r, r, b), (r, r, g), (r, b, r), (r, b, b), (r, g, r), (r, g, g), (b, r, r),

(b, r, b), (b, b, r), (b, b, g), (b, g, b), (b, g, g), (g, r, r),
(g, r, g), (g, b, b), (g, b, g), (g, g, r), (g, g, b)},

C = A ∪ B = S − {(r, r, r), (b, b, b), (g, g, g)}.
2.4 (i) Denoting by (x1, x2) the cars sold in the first and the second sale, we

have:

S = {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1),
(a3, a2), (a3, a3), (a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1),
(a3, b2), (a1, c), (a2, c), (a3, c), (b1, a1), (b1, a2), (b1, a3), (b2, a1),
(b2, a2), (b2, a3), (b1, b1), (b1, b2), (b2, b1), (b2, b2), (b1, c), (b2, c),
(c, a1), (c, a2), (c, a3), (c, b1), (c, b2), (c, c)}.

(ii) A= {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1),
(a3, a2), (a3, a3)},

B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2)},

483
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C = B ∪ {(b1, a1), (b1, a2), (b1, a3), (b2, a1), (b2, a2), (b2, a3)},
D = {(c, b1), (c, b2), (b1, c), (b2, c)}.

2.6 E = Ac, F = C − D = C ∩ Dc, G = B − C = B ∩ Cc,
H = Ac − B = Ac ∩ Bc = (A ∪ B)c, I = Bc.

2.8 (i) B0 = Ac
1 ∩ Ac

2 ∩ Ac
3.

(ii) B1 = (A1 ∩ Ac
2 ∩ Ac

3) ∪ (Ac
1 ∩ A2 ∩ Ac

3) ∪ (Ac
1 ∩ Ac

2 ∩ A3).
(iii) B2 = (A1 ∩ A2 ∩ Ac

3) ∪ (A1 ∩ Ac
2 ∩ A3) ∪ (Ac

1 ∩ A2 ∩ A3).
(iv) B3 = A1 ∩ A2 ∩ A3.

(v) C = B0 ∪ B1 ∪ B2.

(vi) D = B1 ∪ B2 ∪ B3 = A1 ∪ A2 ∪ A3.

2.10 If A= Ø, then A∩ Bc = Ø, Ac∩B =S ∩ B = B, so that (A∩ Bc) ∪
(Ac ∩ B) = B for every B. Next, let (A∩ Bc) ∪ (Ac ∩ B) = B and take
B = Ø to obtain A∩ Bc = A, Ac ∩ B = Ø, so that A = Ø.

2.12 A ⊆ B implies that, for every s ∈ A, we have s ∈ B, whereas B ⊆ C implies
that, for every s ∈ B, we have s ∈ C. Thus, for every s ∈ A, we have
s ∈ C , so that A ⊆ C.

2.14 For s ∈ ∪ j Aj , let j0 ≥ 1 be the first j for which s ∈ Aj0 . Then, if j0 = 1,
it follows that s ∈ A1 and therefore s belongs in the right-hand side of
the relation. If j0 > 1, then s /∈ Aj , j = 1, . . . , j0 − 1, but s ∈ Aj0 , so that
s ∈ Ac

1 ∩· · ·∩ Ac
j0−1 ∩ Aj0 and hence s belongs to the right-hand side of the

relation. Next, let s belong to the right-hand side event. Then, if s ∈ A1,
it follows that s ∈ ∪ j Aj. If s /∈ Aj for j = 1, . . . , j0 − 1 but s ∈ Aj0 , it
follows that s ∈ ∪ j Aj. The identity is established.

2.16 (i) Since −5 + 1
n+ 1 < −5 + 1

n
and 20 − 1

n
< 20 − 1

n+ 1 , it follows that

(−5+ 1
n

, 20− 1
n

) ⊂ (−5+ 1
n+ 1 , 20− 1

n+ 1 ), or An ⊂ An+ 1, so that {An} is

increasing. Likewise, 7+ 3
n+ 1 < 7+ 3

n
, so that (0, 7+ 3

n+ 1 ) ⊂ (0, 7+ 3
n

),
or Bn+1 ⊂ Bn; thus, {Bn} is decreasing.

(ii) ∪∞
n=1 An = ∪∞

n=1(−5 + 1
n

, 20 − 1
n

) = (−5, 20), and ∩∞
n=1 Bn =

∩∞
n=1(0, 7 + 3

n
) = (0, 7].

Section 1.3

3.2 Each one of the r.v.’s Xi, i = 1, 2, 3 takes on the values: 0, 1, 2, 3 and
X1 + X2 + X3 = 3.

3.4 X takes on the values: −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7,

(X ≤ 2) = {(−3, 0), (−3, 1), (−3, 2), (−3, 3), (−3, 4), (−2, 0), (−2, 1),
(−2, 2), (−2, 3), (−2, 4), (−1, 0), (−1, 1), (−1, 2), (−1, 3),
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)},

(3 < X ≤ 5) = (4 ≤ X ≤ 5) = (X = 4 or X = 5)
= {(0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2)},

(X > 6) = (X ≥ 7) = {(3, 4)}.
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3.6 (i) S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2),
(3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}.

(ii) The values of X are: 2, 3, 4, 5, 6, 7, 8.

(iii) (X ≤ 3) = (X = 2 or X = 3) = {(1, 1), (1, 2), (2, 1)},
(2 ≤ X < 5) = (2 ≤ X ≤ 4) = (X = 2 or X = 3 or X = 4) =
{(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1)}, (X > 8) = Ø.

3.8 (i) S = [8:00, 8:15].
(ii) The values of X consist of the interval [8:00, 8:15].

(iii) The event described is the interval [8:10, 8:15].

Chapter 2

Section 2.1

1.2 Since A∪ B ⊇ A, we have P(A∪ B) ≥ P(A) = 3
4 . Also, A∩ B ⊆ B implies

P(A ∩ B) ≤ P(B) = 3
8 . Finally, P(A ∩ B) = P(A) + P(B) − P(A ∪ B) =

3
4 + 3

8 − P(A ∪ B) = 9
8 − P(A ∪ B) ≥ 9

8 − 1 = 1
8 .

1.4 We have: Ac ∩ B = B ∩ Ac = B − A and A ⊂ B. Therefore P(Ac ∩ B) =
P(B − A) = P(B) − P(A) = 5

12 − 1
4 = 1

6 � 0.167. Likewise,
Ac ∩ C = C − A with A ⊂ C , so that P(Ac ∩ C) = P(C − A) =
P(C) − P(A) = 7

12 − 1
4 = 1

3 � 0.333, Bc ∩ C = C − B with B ⊂ C ,
so that P(Bc ∩ C) = P(C − B) = P(C) − P(B) = 7

12 − 5
12 = 1

6 � 0.167.

Next, A∩ Bc ∩Cc = A∩ (Bc ∩Cc) = A∩ (B∪C)c = A∩Cc = A−C = Ø,
so that P(A ∩ Bc ∩ Cc) = 0, and Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c = Cc, so
that P(Ac ∩ Bc ∩ Cc) = P(Cc) = 1 − P(C) = 1 − 7

12 = 5
12 � 0.417.

1.6 The event A is defined as follows: A = “x = 7n, n = 1, . . . , 28,” so that
P(A) = 28

200 = 7
50 = 0.14. Likewise, B = “x = 3n + 10, n = 1, . . . , 63,”

so that P(B) = 63
200 = 0.315, and C = “x2 + 1 ≤ 375” = “x2 ≤ 374” =

“x ≤ √
374” = “x ≤ 19,” and then P(C) = 19

200 = 0.095.

1.8 Denote by A, B, and C the events that a student reads news magazines
A, B, and C , respectively. Then the required probability is P(Ac∩Bc∩Cc).
However,

P(Ac ∩ Bc ∩ Cc) = P((A ∪ B ∪ C)c) = 1 − P(A ∪ B ∪ C)

= 1 − [P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

− P(B ∩ C) + P(A ∩ B ∩ C)]

= 1 − (0.20 + 0.15 + 0.10 − 0.05 − 0.04 − 0.03 + 0.02)

= 1 − 0.35 = 0.65.

1.10 From the definition of A, B, and C , we have:
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A = {(0, 4), (0, 6), (1, 3), (1, 5), (1, 9), (2, 2), (2, 4), (2, 8), (3, 1), (3, 3),
(3, 7), (4, 0), (4, 2), (4, 6), (5, 1), (5, 5), (6, 0), (6, 4)},

B = {(0, 0), (1, 2), (2, 4), (3, 6), (4, 8)},
C = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 0),

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 0), (2, 1),
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 0), (3, 1), (3, 2),
(3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4),
(5, 6), (5, 7), (5, 8), (5, 9), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5),
(6, 7), (6, 8), (6, 9)}

or

Cc = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
Therefore, since the number of points in S is 7 × 10 = 70, we have:

P(A) = 18
70

= 9
35

� 0.257, P(B) = 5
70

= 1
14

� 0.071,

P(C) = 63
70

= 9
10

= 0.9, or P(C) = 1 − P(Cc) = 1 − 7
70

= 63
70

= 0.9.

Section 2.2

2.2 (i) For 0 < x ≤ 2, f (x) = d

dx
(2c(x2 − 1

3 x3)) = 2c(2x − x2). Thus,
f (x) = 2c(2x − x2), 0 < x ≤ 2 (and 0 elsewhere).

(ii) From
∫ 2

0 2c(2x − x2) dx = 1, we get 8c

3 = 1, so that c = 3/8.

2.4 (i)

F(x)

1

0.8

0.6

0.4

0.2

0
4 5 6 7 8 9

x

(ii) P(X ≤ 6.5) = 0.7, P(X > 8.1) = 1 − P(X ≤ 8.1) = 1 − 0.9 = 0.1,
P(5 < X < 8) = P(X < 8) − P(X ≤ 5) = 0.7 − 0.4 = 0.3.

2.6 (i) We need two relations which are provided by:
∫ 1

0 (cx + d) dx = 1 and∫ 1
1/2(cx + d) dx = 1/3, or: c + 2d = 2 and 9c + 12d = 8, and hence

c = − 4
3 , d = 5

3 .
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(ii) For 0 ≤ x ≤ 1, F(x) = ∫ x

0 (− 4
3 t + 5

3 ) dt = − 2 x2

3 + 5x

3 . Thus,

F(x) =

⎧⎪⎨⎪⎩
0, x < 0

− 2 x 2

3 + 5x

3 , 0 ≤ x ≤ 1

1, x > 1.

2.8 From
∑∞

x=0 cαx = c
∑∞

x=0 αx = c × 1
1−α

= 1, we get c = 1 − α.

2.10 (i)
∑∞

x=0 c(1
3 )x = c[1 + 1

3 + (1
3 )2 + · · ·] = c

1− 1
3

= 3c

2 = 1 and c = 2
3 .

(ii) P(X ≥ 3) = 2
3

∑∞
x=3(1

3 )x = 2
3 × 1/33

2/3 = 1
27 � 0.037.

2.12 (i)
∫∞

0 ce−cxdx= −∫∞
0 de−cx = −e−cx|∞0 = − (0−1) = 1 for every c > 0.

(ii) P(X ≥ 10) =∫∞
10 ce−cxdx = −e−cx|∞10 = −(0 − e−10c) = e−10c.

(iii) P(X ≥ 10) = 0.5 implies e−10c = 1
2 , so that −10c = −log 2 and

c = 1
10 log 2 � 0.693

10 � 0.069.

2.14 (i) From
∑∞

j=0
c

3 j = c
∑∞

j=0
1
3 j = c × 1

1− 1
3

= 3c

2 = 1, we get c = 2
3 .

(ii) P(X ≥ 3) = c
∑∞

j≥3
1
3 j = c× 1/33

1− 1
3
= c× 1

2×32 = 2
3 × 1

2×32 = 1
33 = 1

27 � 0.037.

(iii) P(X = 2k + 1, k = 0, 1, . . .) = c
∑∞

k=0
1

32k+1 = c(1
3 + 1

33 + 1
35 + · · ·) =

c × 1/3
1− 1

9
= c × 3

8 = 2
3 × 3

8 = 0.25.

(iv) P(X = 3k + 1, k = 0, 1, . . .) = c
∑∞

k=0
1

33k+1 = c(1
3 + 1

34 + 1
37 + · · ·) =

c × 1/3
1− 1

27
= c × 9

26 = 2
3 × 9

26 = 3
13 � 0.231.

2.16 (i) P(no items are sold) = f (0) = 1
2 = 0.5.

(ii) P(more than 3 items are sold) = ∑∞
x=4(1

2 )x+1 = (1
2 )5 × 1

1− 1
2

= 1
16 =

0.0625.

(iii) P(an odd number of items are sold) = (1
2 )2 + (1

2 )4 + (1
2 )6 + · · · =

(1
2 )2 × 1

1− 1
4

= 1
3 � 0.333.

2.18 (i) Since
∫∞

0 c2 xe−cxdx = −cxe−cx|∞0 − e−cx|∞0 = 1 for all c > 0, the
given function is a p.d.f. for all c > 0.

(ii) From part (i),

P(X ≥ t) = −c x e−cx|∞t −e−cx|∞t = c(te−ct + e−ct) = c(t + 1)
ect

.

(iii) Here c(t + 1) = 0.2 × 11 = 2.2, ct = 0.2 × 10 = 2, so that c(t+1)
ect =

2.2
e2 � 0.297.

2.20 We have:
P(X > x0) = ∫ 1

x0
n(1 − x)n−1dx = − ∫ 1

x0
d(1 − x)n

= −(1−x)n|1x0
= (1−x0)n, and it is given that this probability

is 1/102n. Thus,
(1 − x0)n = 1

102n , or 1 − x0 = 1
100 and x0 = 0.99.
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Section 2.3

3.2 We have: P(A|A∪ B) = P(A∩ (A∪ B))
P(A∪ B) = P(A)

P(A∪ B) = P(A)
P(A) + P(B) (since A∩ B =

Ø), and likewise, P(B|A ∪ B) = P(B ∩ (A∪ B))
P(A∪ B) = P(B)

P(A) + P(B) .

3.4 (i) P(b2|b1) = 15/26 � 0.577; (ii) P(g2|g1) = 13/24 � 0.542;
(iii) P(b2) = 0.52; (iv) P(b1 ∩ g2) = 0.22.

3.6 Parts (i) and (ii) follow without any calculations by using the fact that
P(·|B) and P(·|C) are probability functions, or directly as follows:
(i) P(Ac|B) = P(Ac ∩ B)

P(B) = P(B − A∩ B)
P(B) = P(B) − P(A∩ B)

P(B) = 1 − P(A∩ B)
P(B)

= 1 − P(A|B).
(ii) P(A∪ B|C) = P((A∪ B) ∩ C)

P(C) = P((A∩ C) ∪ (B ∩ C))
P(C)

= P(A∩ C) + P(B ∩ C) − P(A∩ B ∩ C)
P(C) = P(A∩ C)

P(C) + P(B ∩ C)
P(C) − P((A∩ B) ∩ C)

P(C)

= P(A|C) + P(B|C) − P(A∩ B|C).
(iii) In the sample space S = {HHH, HHT, HTH, THH, HTT, THT,TTH,

TTT } with all outcomes being equally likely, define the events:

A = “the # of H’s is ≤2” = {TTT, TTH, THT, HTT, THH,

HTH, HHT},
B = “the # of H’s is >1” = {HHT, HTH, THH, HHH}.

Then Bc = {HTT,THT,TTH,TTT }, A ∩ Bc = Bc, A ∩ B = {HHT,
HTH,THH }, so that:

P(A|Bc) = P(A∩ Bc)
P(Bc) = P(Bc)

P(Bc) = 1 and 1 − P(A|B) = 1 − P(A∩ B)
P(B) =

1 − 3/8
4/8 = 1 − 3

4 = 1
4 . Thus, P(A|Bc) �= 1 − P(A|B).

(iv) In the sample spaceS = {1, 2, 3, 4, 5} with all outcomes being equally
likely, consider the events A = {1, 2}, B = {3, 4}, and C = {2, 3}, so
that A ∩ B = Ø and A∪ B = {1, 2, 3, 4}, Then:

P(C |A ∪ B) = P(C ∩ (A∪ B))
P(A∪ B) = 2/5

4/5 = 2
4 = 1

2 , whereas

P(C |A) = P(A∩ C)
P(A) = 1/5

2/5 = 1
2 , P(C |B) = P(B ∩ C)

P(B) = 1/5
2/5 = 1

2 , so that
P(C |A ∪ B) �= P(C |A) + P(C |B).

3.8 For n= 2, the theorem is true since P(A2|A1) = P(A1 ∩ A2)
P(A1) yields P(A1 ∩ A2)

= P(A2|A1)P(A1).Next, assume P(A1∩· · ·∩Ak) = P(Ak|A1∩· · ·∩Ak−1) · · ·
P(A2|A1)P(A1) and show that P(A1∩ · · · ∩Ak+1) = P(Ak+1|A1

∩ · · · ∩ Ak)P(Ak|A1 ∩ · · · ∩ Ak−1) · · · P(A2|A1)P(A1). Indeed, P(A1 ∩ · · · ∩
Ak+1) = P((A1∩ · · · ∩Ak)∩Ak+1) = P(Ak+1|A1∩· · ·∩Ak)P(A1∩· · ·∩Ak) (by
applying the theorem for two events A1 ∩ · · · ∩ Ak and Ak+1) = P(Ak+1|A1

∩ · · · ∩ Ak)P(Ak|A1 ∩ · · · ∩ Ak−1) · · · P(A2|A1)P(A1) (by the induction hy-
pothesis).

3.10 With obvious notation, we have: P(1st white and 4th white) = P(W1 ∩
W2∩W3∩W4)+ P(W1∩W2∩B3∩W4)+ P(W1∩B2∩W3∩W4)+ P(W1∩B1∩
B2 ∩ W4) = P(W4|W1 ∩ W2 ∩ W3)P(W3|W1 ∩ W2)P(W2|W1)P(W1) + P(W4|
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W1 ∩ W2 ∩ B3)P(B3|W1 ∩ W2)P(W2|W1)P(W1)+P(W4|W1∩B2∩W3)P(W3|
W1 ∩ B2)P(B2|W1)P(W1)+ P(W4|W1 ∩ B1 ∩ B2)P(B2|W1 ∩ B1)P(B1|W1)×
P(W1) = 7

12 × 8
13 × 9

14 × 10
15 + 8

12 × 5
13 × 9

14 × 10
15 + 8

12 × 9
13 × 5

14 × 10
15 + 9

12 × 4
13 ×

5
14 × 10

15 = 1
12×13×14×15 (7 × 8 × 9 × 10 + 5 × 8 × 9 × 10 × 2 + 4 × 5 × 9 × 10)

= 9×10×156
12×13×14×15 = 3

7 � 0.429.

3.12 (i) P(+) = 0.01188; (ii) P(D|+) = 190
1188 � 0.16.

3.14 Let I = “switch I is open,” II = “switch II is open,” S = “signal goes
through.” Then: (i) P(S ) = 0.48; (ii) P( I|Sc) = 5

13 � 0.385; (iii) P( II|Sc) =
10
13 � 0.769.

3.16 With F = “an individual is female,” M = “an individual is male,” C = “an
individual is color-blind,” we have:
P(F) = 0.52, P(M) = 0.48, P(C|F) = 0.25, P(C|M) = 0.05, and therefore
P(C) = 0.154, P(M|C) = 12

77 � 0.156.

3.18 With obvious notation, we have:
(i) P(D) = 0.029; (ii) P( I|D) = 12

29 � 0.414; (iii) P( II|D) = 9
29 � 0.310,

and P( III|D) = 8
29 � 0.276.

3.20 (i) P(X > t) = ∫∞
t

λe−λxdx = − ∫∞
t

de−λx = −e−λx|∞t = e−λt.

(ii) P(X > s + t|X > s) = P(X > s + t, X > s)
P(X > s) = P(X > s + t)

P(X > s)

= e−λ(s + t)

e−st (by part (i))

= e−λt.

(iii) The conditional probability that X is greater than t units beyond s,
given that it has been greater than s, does not depend on s and is the
same as the (unconditional) probability that X is greater than t. That
is, this distribution has some sort of “memoryless” property.

Section 2.4

4.2 Here P(A) = P(A ∩ A) = P(A)P(A) = [P(A)]2, and this happens if
P(A) = 0, whereas, if P(A) �= 0, it happens only if P(A) = 1.

4.4 Since P(A1 ∩ A2) = P(A1)P(A2), we have to show that:

P(A1 ∩ (B1 ∪ B2)) = P(A1)P(B1 ∪ B2), P(A2 ∩ (B1 ∪ B2))

= P(A2)P(B1 ∪ B2), P(A1 ∩ A2 ∩ (B1 ∪ B2))

= P(A1)P(A2)P(B1 ∪ B2).

Indeed, P(A1 ∩ (B1 ∪ B2)) = P((A1 ∩ B1) ∪ (A1 ∩ B2))

= P(A1 ∩ B1) + P(A1 ∩ B2) = P(A1)P(B1) + P(A1)P(B2)

= P(A1)P(B1 ∪ B2), and similarly for P(A2 ∩ (B1 ∪ B2)).
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Finally,

P(A1 ∩ A2 ∩ (B1 ∪ B2)) = P((A1 ∩ A2 ∩ B1) ∪ (A1 ∩ A2 ∩ B2))

= P(A1 ∩ A2 ∩ B1) + P(A1 ∩ A2 ∩ B2)

= P(A1)P(A2)P(B1) + P(A1)P(A2)P(B2)

= P(A1)P(A2)P(B1 ∪ B2).

4.6 (i) Clearly, A = (A∩ B∩C)∪ (A∩ Bc ∩C)∪ (A∩ B∩Cc)∪ (A∩ Bc ∩Cc)
and hence P(A) = 0.6875. Likewise, P(B) = 0.4375, P(C) = 0.5625.

(ii) A, B, and C are not independent.
(iii) P(A ∩ B) = 4

16 , and then P(A|B) = 4
7 � 0.571.

(iv) A and B are not independent.

4.8 (i) S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}, A = {HHH,
TTT} with P(A) = p3 + q3 (q = 1 − p).

(ii) P(A) = 0.28.

4.10 (i) c = 1/25.

(ii) See figure.

0 5 10

0.2

x

f(x)

(iii) P(A) = P(X > 5) = 0.50, P(B) = P(52 × 27.5) = 0.375.

(iv) P(B|A) = 0.75; (v) A and B are not independent.

4.12 (i) P((W1 ∩ Rc
1 ∩· · ·∩ Rc

n− 2 ∩ Rn−1)∪(W c
1 ∩W2 ∩ Rc

1 ∩· · ·∩ Rc
n−3 ∩ Rn− 2)

∪· · ·∪ (W c
1 ∩· · ·∩W c

n−2 ∩Wn− 1 ∩ Rn)) = 0.54
∑n−1

i=1 (0.1)i−1(0.4)n−i−1.

(ii) For n = 5, the probability in part (i) is 0.0459.

4.14 (i) P(no circuit is closed) = (1 − p1) · · · (1 − pn).
(ii) P(at least 1 circuit is closed) = 1 − (1 − p1) · · · (1 − pn).

(iii) P(exactly 1 circuit is closed) = p1(1− p2) · · · (1− pn)+ (1− p1)p2 ×
(1 − p3) · · · (1 − pn) + · · · + (1 − p1) · · · (1 − pn−1)pn.

(iv) The answers above are: (1 − p)n, 1 − (1 − p)n, np(1 − p)n−1.

(v) The numerical values are: 0.01024, 0.98976, 0.0768.
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Section 2.5

5.2 (i) 3 × 4 × 5 = 60; (ii) 1 × 2 × 5 = 10; (iii) 3 × 4 × 1 = 12.

5.4 (i) 3 × 2 × 3 × 2 × 3 = 108; (ii) 3 × 2 × 2 × 1 × 1 = 12.

5.6 2n; 25 = 32, 210 = 1,024, 215 = 32,768, 220 = 1,048,576,
225 = 33,554,432.

5.8 The required probability is: 1
360 � 0.003.

5.10 Start with
(

n+ 1
m+ 1

)
/
(

n

m

)
, expand in terms of factorial, do the cancellations,

and you end up with (n + 1)/(m+ 1).

5.12 Selecting r out of m + n in
(

m+ n

r

)
ways is equivalent to selecting x out

of m in
(

m

x

)
ways and r − x out of n in

(
n

r−x

)
ways where x = 0, 1, . . . , r.

Then
(

m+ n

r

) =∑r

x=0

(
m

x

)(
n

r−x

)
.

5.14 The required number is
(

n

3

)
, which for n = 10 becomes

(10
3

) = 120.

5.16 The required probability is:(10
2

)× (15
3

)× (30
4

)× (51)(60
10

) = 2,480,625
66,661,386

� 0.037.

5.18 The required probability is:
(n−1

m )
(n

m) = 1 − m

n
.

5.20 The required probability is: (0.5)2n
∑n

m=0

(
n

m

)2
, which for n = 5, becomes:

252 × (0.5)10 � 0.246.

5.22 The required probability is:
∑10

x=5

(10
x

)
(0.2)x(0.8)10−x = 0.03279.

5.24 (a) (i) (nR
n

)3; (ii) 1 − (nB+nW
n

)3; (iii) 6nRnBnW
n3 .

(b) (i) (nR
3 )

(n

3)
; (ii) 1 − (nB+nW

3 )
(n

3)
; (iii)

(nR
1 )(nB

1 )(nW
1 )

(n

3)
.

Chapter 3

Section 3.1

1.2 (i) EX = 0, EX 2 = c2, and Var(X ) = c2.
(ii) P(|X − EX| ≤ c) = P(−c ≤ X ≤ c) = P(X = −c, X = c) = 1 =

c2

c2 = Var(X )
c2 .

1.4 If Y is the net loss to the company, then EY = $600, and if P is the
premium to be charged, then P = $700.
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1.6 Var(X ) = EX 2 − (EX )2. by expanding and taking expectations. Also,
E[X(X −1)] = Var(X )+(EX )2 − EX by expanding, taking expectations,
and using the first result. That Var(X ) = E[X(X − 1)] + EX − (EX )2

follows from the first two results.

1.8 (i) EX = 2, E[X(X − 1)] = 4; (ii) Var(X ) = 2.

1.10 EX = 4
3 , EX 2 = 2, so that Var(X ) = 2

9 and s.d. of X =
√

2
3 � 0.471.

1.12 c1 = −1/12, c2 = 5/3.

1.14 (i) by adding and subtracting μ, we get: E(X − c)2 = Var(X ) + (μ − c)2;
(ii) Immediate from part (i).

1.16 (i)
∫∞
−∞

dx

1 + x2 = arctan x|∞−∞ = arctan(∞) − arctan(−∞) = π , so that∫∞
−∞

1
π

× dx

1 + x2 = 1.

(ii) 1
π

∫∞
−∞ x× dx

1 + x2 = 1
2π

∫∞
−∞

d(1 + x2)
1 + x2 = 1

2π
log(1+ x2)

∣∣∞
−∞ = 1

2π
(∞−∞).

1.18 For the discrete case, X ≥ c means xi ≥ c for all values xi of X.
Then xi fX(xi) ≥ c fX(xi) and hence

∑
xi

xi fX(xi) ≥ ∑xi
c fX(xi). But∑

xi
xi fX(xi) = EX and

∑
xi

c fX(xi) = c
∑

xi
fX(xi) = c. Thus, EX ≥ c.

The particular case follows, of course, by taking c = 0. In the continuous
case, summation signs are replaced by integrals.

Section 3.2

2.2 (i) c = σ/
√

1 − α; (ii) c = 1√
0.05

� 4.464.

2.4 (i) By the Tchebichev inequality, P(|X − μ| ≥ c) = 0 for all c > 0.
(ii) Consider a sequence 0 < cn ↓ 0 as n → ∞. Then P(|X − μ| ≥ cn) = 0

for all n, or equivalently, P(|X − μ| < cn) = 1 for all n, whereas,
clearly, {(|X − μ| < cn)} is a nonincreasing sequence of events and
its limits is ∩∞

n=1(|X − μ| < cn). Then, by Theorem 2 in Chapter 2,
1 = limn→∞ P(|X − μ| < cn) = P(∩∞

n=1(|X − μ| < cn)). However, it
is clear that ∩∞

n=1(|X − μ| < cn) = (|X − μ| ≤ 0) = (X = μ). Thus,
P(X = μ) = 1, as was to be seen.

Section 3.3

3.2 (i) It follows by using the identity
(

n+ 1
x

) = (n
x

)+ ( n

x− 1

)
.

(ii) B(26, 0.25; 10) = 0.050725.

3.4 If X is the number of those favoring the proposal, then X ∼ B(15, 0.4375).
Therefore: (i) P(X ≥ 5) = 0.859; (ii) P(X ≥ 8) = 0.3106.

3.6 If X is the number of times the bull’s eye is hit, then X ∼ B(100, p).
Therefore:

(i) P(X ≥ 40) =∑100
x=40

(100
x

)
pxq100−x (q = 1 − p).

(ii) P(X ≥ 40) =∑100
x=40

(100
x

)
(0.25)x(0.75)100−x.
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(iii) EX = np = 100p, Var(X ) = npq = 100pq, and for p = 0.25,
EX = 25, Var(X ) = 18.75, s.d. of X = √

18.75 � 4.33.

3.8 From the Tchebichev inequality n = 8,000.

3.10 (i) Writing
(

n

x

)
in terms of factorials, and after cancellations, we get:

EX = np
∑n−1

y=0

(
n− 1

y

)
pyq(n−1)−y = np × 1 = np. Likewise,

E[X(X − 1)] = n(n − 1)p2∑n−2
y=0

(
n−2

y

)
pyq(n−2)−y = n(n − 1)p2 × 1

= n(n − 1)p2.

(ii) From Exercise 1.6, Var(X ) = n(n − 1)p2 + np − (np)2 = npq.

3.12 (i) P(X ≤ 10) = 1 − q10; (ii) 1 − (0.8)10 � 0.893.

3.14 If X is the number of tosses to the first success, then X has the Geometric
distribution with p= 1/6. Then:
(i) P(X = 3) = 25

216 � 0.116;

(ii) P(X ≥ 5) = ( 56)4 � 0.482.

3.16 (i) EX = 1
p
, E[X(X − 1)] = 2q

p2 ; (ii) Var(X ) = q

p2 .

3.18 λ = 2.

3.20 f (x + 1) = e−λ λx+1

(x+1)! = λ
x+1 × e−λ λx

x! = λ
x+1 f (x).

3.22 (i) MX(t) = eλ(et−1), t ∈ �, by applying the definition of MX.

(ii) EX = d

dt
MX(t)|t=0 = λ, EX 2 = d2

dt2 MX(t)|t=0 = λ(λ + 1), so that
Var(X ) = λ.

3.24 (i)

(
70
5

)(
10
0

)(
80
5

) � 0.503; (ii) 1(
80
5

) [(70
3

)(10
2

)+ (70
4

)(10
1

)+ (70
5

)(10
0

)] � 0.987.

3.26 Writing the combinations in terms of factorials, and recombining the
terms, we get the result.

3.28 (i) By integration, using the definition of �(α) and the recursive relation
for �(α + 1), we get EX = β

�(α)�(α + 1) = αβ. Likewise, EX 2 =
β2

�(α)�(α + 2) = α(α + 1)β2, so that Var(X ) = αβ2.

(ii) EX = 1/λ, Var(X ) = 1/λ2 from part (i).
(iii) EX = r, Var(X ) = 2r from part (i).

3.30 (i) (a) With g(X ) = cX, we have Eg(X ) = c/λ.
(b) With g(X ) = c(1 − 0.5e−αX ), we have Eg(X ) = (α + 0.5λ)c

α + λ
.

(ii) (a) 10; (b) 1.5.

3.32 Indeed, P(T > t) = P (0 events occurred in the time interval (0, t)) =
e−λt(λt)0

0! = e−λt. So, 1−FT (t) = e−λt, t > 0, and hence fT (t) = λe−λt, t > 0,
and T is as described.

3.34 (i)
∫∞

0 αβxβ−1e−αxβ

dx = − ∫∞
0 de−αxβ = −e−αxβ |∞0 = 1.

(ii) β = 1 and any α > 0.
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(iii) For n = 1, 2, . . . , EX n = �( n

β
+ 1)/αn/β . Then EX = �( 1

β
+ 1)/α1/β ,

EX 2 = �( 2
β
+1)/α2/β , and hence Var(X ) = {�( 2

β
+ 1) − [�( 1

β
+ 1)]2}/

α2/β .

3.36 All parts (i)–(iv) are immediate.

3.38 (i) P(X ≤ c) = 0.875, and c = μ + 1.15σ ; (ii) c = 7.30.

3.40 (i) 0.997020; (ii) 0.10565; (iii) 0.532807.

3.42 Let X be the diameter of a ball bearing, and let p be the probability
that a ball bearing is defective. Then p = P(X > 0.5 + 0.0006 or X <

0.5 − 0.0006), and by splitting the probabilities and normalizing, we have
that it is 0.583921.

3.44 (i) By the hint,

I2 = 1
2π

∫ ∞

−∞

∫ ∞

−∞
e− x 2+y2

2 dx dy = 1
2π

(∫ 2π

0
dθ

)(∫ ∞

0
re−r2/2 dr

)
= 1

2π
× 2π
(−e−r2/2

∣∣∞
0

) = 1.

(ii) 1√
2πσ

∫∞
−∞ e

− (x−μ)2

2σ2 dx = 1√
2πσ

∫∞
−∞ e−y2/2σdy = I = 1.

3.46 (i) MX(t) = et2/2 × 1√
2π

∫∞
−∞ e− (x−t)2

2 dt = et2/2 × 1 = et2/2, t ∈ �.

(ii) With Z = X−μ

σ
, et2/2 = MZ(t) = M 1

σ
X+ −μ

σ
(t) = e− μt

σ MX

(
t

σ

)
,

so that MX

(
t

σ

) = e
μt

σ
+ t2

2 , and MX(t) = eμt+ σ2t2

2 by replacing t

σ
by

t ∈ �.

(iii) By differentiation of MX(t) and evaluating at 0, we get: EX = μ, EX 2

= μ2 + σ 2, so that Var(X ) = σ 2.

3.48 (i) EX 2n+1 = 0, and by the hint EX 2n = (2n − 1)(2n − 3) · · · 1 =
1 × 2 ×···×(2n−1)×(2n)

(2 × 1) ×···× [2×(n−1)]×(2 × n) = (2n)!
2n[1 ··· (n−1)n] = (2n)!

2n(n!) .

(ii) EX = 0, EX 2 = 1, so that Var(X ) = 1.
(iii) With Z = X−μ

σ
, 0 = EZ = 1

σ
(EX − μ), so that EX = μ, and 1 =

Var(Z) = 1
σ 2 Var(X ), so that Var(X ) = σ 2.

3.50 (i) P(−1 < X < 2) = 3
2α

= 0.75 and α = 2.

(ii) P(|X| < 1) = P(|X| > 2) is equivalent to 1
α

= 1 − 2
α

from which
α = 3.

3.52 EX = 1
3 , so that: (i) −0.5 and (ii) 2(e − 1) � 3.44.

Section 3.4

4.2 (i) xp = [(n + 1)p]1/(n+1); (ii) For p = 0.5 and n = 3: x0.5 = 21/4 � 1.189.

4.4 (i) c1 = c2 = 1; (ii) x1/3 = 0.
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4.6 (i)

x 2 3 4 5 6 7 8 9 10 11 12
f (x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

(ii) EX = 7; (iii) median = mode = mean = 7.

4.8 Mode = 25 and f (25) = (100
25

)
(1

4 )25(3
4 )75; one would bet on X = 25.

4.10 By the hint, P(X ≤ c) = ∫ c

−∞ f (x) dx = ∫∞
0 f (c − y) dy, and P(X ≥ c) =∫∞

c
f (x) dx = ∫∞

0 f (c + y) dy. Since f (c − y) = f (c + y), it follows that
P(X ≤ c) = P(X ≥ c), and hence c is the median.

4.12 (i) p = P(Y ≤ yp) = P[g(X ) ≤ yp] = P[X ≤ g−1(yp)], so that
g−1(yp) = xp and yp = g(xp).

(ii) xp = − log(1 − p).
(iii) yp = 1/(1 − p).
(iv) x0.5 = − log(0.5) � 0.693, and y0.5 = 2.

Chapter 4

Section 4.1

1.2 P(X = 0, Y = 1) = P(X = 0, Y = 2) = P(X = 1, Y = 2) = 0,
P(X = 0, Y = 0) = 0.3, P(X = 1, Y = 0) = 0.2, P(X = 1, Y = 1) = 0.2,
P(X = 2, Y = 0) = 0.075, P(X = 2, Y = 1) = 0.15, P(X = 2, Y = 2) =
0.075.

1.4 (i)
∫ 2

0

∫ 1
0 (x2 + xy

2 ) dx dy = 6
7 × 7

6 = 1; P(X > Y ) = 15
56 � 0.268.

1.6 (i) P(X ≤ x) = 1 − e−x, x > 0; (ii) P(Y ≤ y) = 1 − e−y, y > 0;
(iii) P(X < Y ) = 0.5; (iv) P(X + Y < 3) = 1 − 4e−3 � 0.801.

1.8 c = 1/
√

2π.

1.10 c = 6/7.

Section 4.2

2.2 fX(0) = 0.3, fX(1) = 0.4, fX(2) = 0.3;

fY(0) = 0.575, fY(1) = 0.35, fY(2) = 0.075.

2.4 (i) fX(1) = 7/36, fX(2) = 17/36, fX(3) = 12/36;

fY(1) = 7/36, fY(2) = 14/36, fY(3) = 15/36.

(ii) fX|Y(1|1) = 2/7, fX|Y(2|1) = 2/7, fX|Y(3|1) = 3/7;
fX|Y(1|2) = 1/14, fX|Y(2|2) = 10/14, fX|Y(3|2) = 3/14;
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fX|Y(1|3) = 4/15, fX|Y(2|3) = 5/15, fX|Y(3|3) = 6/15;
fY|X(1|1) = 2/7, fY|X(2|1) = 2/7, fY|X(3|1) = 3/7;
fY|X(1|2) = 2/17, fY|X(2|2) = 10/17, fY|X(3|2) = 5/17;
fY|X(1|3) = 3/12, fY|X(2|3) = 3/12, fY|X(3|3) = 6/12.

2.6 (i) fX(x) = 2 x

n(n+ 1) , x = 1, . . . , n; fY(y) = 2(n− y+ 1)
n(n+ 1) , y = 1, . . . , n;

(ii) fX|Y(x|y) = 1
n− y+ 1 , x = 1, . . . , n; fY|X(y|x) = 1

x
, y = 1, . . . , x;

y = 1, . . . , x x = 1, . . . , n.

(iii) E(X|Y = y) = n(n+ 1) − (y− 1)y

2(n− y+ 1) , y = 1, . . . , n;

E(Y|X = x) = x+ 1
2 , x = 1, . . . , n.

2.8 fX(x) = 6
5 x + 2

5 , 0 ≤ x ≤ 1; fY(y) = 6
5 y2 + 3

5 , 0 ≤ y ≤ 1.

2.10 (i) fX(x) = xe−x, x > 0; fY(y) = e−y, y > 0.
(ii) fY|X(y|x) = e−y, x > 0, y > 0;

(iii) P(X > log 4) = 1 + log 4
4 � 0.597.

2.12 (i) fX(x) = 6x

7 (2x + 1), 0 < x ≤ 1; fY(y) = 3y

14 + 2
7 , 0 ≤ y ≤ 2;

fY|X(y|x) = 2 x+ y

4x+ 2 , 0 < x ≤ 1, 0 ≤ y ≤ 2.

(ii) EY = 8
7 ; E(Y|X = x) = 2

3 × 3x+ 2
2 x+ 1 , 0 < x ≤ 1.

(iii) It follows by a direct integration.

(iv) P(Y > 1
2 |X < 1

2 ) = 207
280 � 0.739.

2.14 fX|Y(x|y) = 1
2 ye

y2

2 e− y

2 x, 0 < y < x.

2.16 (i)

fX(x) =

⎧⎪⎨⎪⎩
6x/7, 0 < x ≤ 1

6x(2 − x)/7, 1 < x < 2

0, elsewhere.

(ii) fY(y|x) is 1 for 0 < x < 1, and is 1/(2 − x) for 1 < x < 2 (and 0
otherwise), whereas 1 ≤ x + y < 2.

2.18 (i) fX|Y(·|y) is the Poisson p.d.f. with parameter y.

(ii) fX,Y(x, y) = e−2y yx

x! , x = 0, 1, . . . ;

(iii) fX(x) = 1
2x+ 1 , x = 0, 1, . . . .

2.20 (i), (ii) follow by applying the definitions.

Section 4.3

3.2 It follows by an application of the definition and properties of a m.g.f.

3.4 Apply the exercise cited in the hint with Z = X − Y and Z = X + Y.
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3.6 (i) EX = 1, EY = 0.5, EX 2 = 1.6, EY 2 = 0.65, so that Var(X ) = 0.6
and Var(Y ) = 0.4.

(ii) E(XY ) = 0.8, so that Cov(X, Y ) = 0.3 and ρ(X, Y ) = 1.25
√

0.24 �
0.613.

(iii) The r.v.’s X and Y are positively correlated.

3.8 (i) EX = 77
36 , EY = 20

9 , EX 2 = 183
36 , EY 2 = 99

18 , so that Var(X ) = 659/362

and Var(Y ) = 728/362.

(ii) E(XY ) = 171
36 , so that Cov(X, Y ) = − 4

362 , and ρ(X, Y ) = − 2√
182×659� −0.006.

3.10 EX = 0, Var (X ) = 10/4, EY = 5/2, EY 2 = 34/4, Var(Y ) = 9/4, E(XY ) = 0,
so that Cov(X, Y ) = 0 and ρ(X, Y ) = 0.

3.12 (i) EX = EY = 7/12;
(ii) EX 2 = EY 2 = 5/12, so that Var(X ) = Var(Y ) = 11/144.

(iii) E(XY ) = 1
3 , so that Cov(X, Y ) = − 1

144 and ρ(X, Y ) = − 1
11 .

(iv) X and Y are negatively correlated.

3.14 With Var(X ) = σ 2, we get Cov(X, Y ) = aσ 2 and ρ(X, Y ) = a

|a| .
Thus, |ρ(X, Y )| = 1, and ρ(X, Y ) = 1 if and only if a > 0, and ρ(X, Y ) = −1
if and only if a < 0.

3.16 By differentiation, with respect to α and β, of the function g(α, β) =
E[Y − (αX + β)]2, and by equating the derivatives to 0, we find: α̂ =
σY

σX
ρ(X, Y), β̂ = EY − α̂EX. The 2 × 2 matrix M of the second-order

derivatives is given by: M = 4
(

EX 2 EX

EX 1

)
, which is positive definite. Then

α̂ and β̂ are minimizing values.

Section 4.4

4.2 MX1, X2, X3 (t1, t2, t3) = c3/(c − t1)(c − t2)(c − t2), provided t1, t2, t3 are <c.

4.4 Follows by applying properties of expectations.

Section 4.5

5.2 If X1, X2, and X3 are the numbers of customers buying brand A, brand B,
or just browsing, then X1, X2, X3 have the Multinomial distribution with
parameters n = 10, p1 = 0.25, p2 = 0.40, and p3 = 0.35. Therefore:
(i) P(X1 = 2, X2 = 3, X3 = 5) = 10!

2!3!5! (0.25)2 × (0.40)3 × (0.35)5 � 0.053.

(ii) P(X1 = 1, X2 = 3|X3 = 6) = 4!
1!3! (

5
13 )1( 8

13 )3 � 0.358.

5.4 They follow by taking the appropriate derivatives and evaluating them
at 0.

5.6 The second line in (51) follows from the first line by adding and subtract-
ing the quantity ρ2( x1−μ1

σ1
)2. The expression in the following line follows

by the fact that the first three terms on the previous line form a perfect
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square. What follows is obvious and results from a suitable regrouping of
the entities involved.

5.8 In Exercise 5.7, it was found that E(XY ) = μ1μ2+ρσ1σ2, where μ1 = EX,
μ2 = EY, σ1 = s.d. of X and σ2 = s.d. of Y . Then

ρ(X, Y ) = Cov(X, Y )
σ1σ2

= (μ1μ2 + ρσ1σ2) − μ1μ2

σ1σ2
= ρ.

5.10 They follow by differentiating the m.g.f. and evaluating the derivatives
at 0.

5.12 (i) It is not a Bivariate Normal p.d.f., because, for x and y outside the
interval [−1, 1], the given p.d.f. becomes f (x, y) = 1

2π
exp[−(x2 +

y2)/2], which is the Bivariate Normal with μ1 = μ2 = 0, σ1 = σ2 = 1,
and ρ = 0, whereas f (−1, −1) = 1

πe
�= 1

2πe
, the value of the Bivariate

Normal just mentioned evaluated at x = y = −1.
(ii) f2(y) = 1√

2π
e−y2/2, which is the p.d.f. of the N(0, 1) distribution. Sim-

ilarly, f1(x) = 1√
2π

e−x 2/2.

Chapter 5

Section 5.1

1.2 The relation fX,Y(x, y) = fX(x) fY(y) holds true for all values of x and y,
and therefore X and Y are independent.

1.4 The r.v.’s X and Y are not independent, since, e.g., fX,Y(0.1, 0.1) = 0.132 �=
0.31824 = 0.52 × 0.612 = fX(0.1) fY(0.1).

1.6 (i) fX(x) = 6
5 (x2 + 1

2 ), 0 ≤ x ≤ 1; fY(y) = 6
5 (y + 1

3 ), 0 ≤ y ≤ 1.

(ii) The r.v.’s are not independent, since, e.g., fX,Y(1
2 , 1

4 ) = 3
5 �= 9

10 × 7
10 =

fX(1
2 ) fY(1

4 ).

1.8 (i) fX(x) = 2x, 0 < x < 1; fY(y) = 2y, 0 < y < 1; fZ(z) = 2z, 0 < z < 1.

(ii) The r.v.’s are independent because, clearly,

fX,Y, Z(x, y, z) = fX(x) fY(y) fZ(z),

(iii) P(X < Y < Z) = 1/6.

1.10 (i) c can be any positive constant.
(ii) fX,Y(x, y) = c2e−cx−cy, x > 0, y > 0, and likewise for fX, Z and fY, Z .

(iii) fX(x) = ce−cx, x > 0, and likewise for fY and fZ .

(iv) The r.v.’s X and Y are independent, and likewise for the r.v.’s X, Z

and Y, Z. Finally, from part (iii), it follows that the r.v.’s X, Y , and Z

are also independent.



Chapter 5 499

1.12 (i) EX = 200 days; (ii) MX+Y(t) = 1/(1 − 200t)2, t < 0.005, and
fX+Y(t) = (0.005)2te−0.005t, t > 0.

(iii) P(X + Y > 500) = 2.5e−2.5 + e−2.5 � 0.287.

1.14 (i) MU (t) = exp[(aμ1 + b)t + (aσ1)2t2

2 ] which is the m.g.f. of the N(aμ1 +
b, (aσ1)2) distribution. Likewise for V .

(ii) MU,V (t1, t2) = exp[(aμ1 + b)t1 + (aσ1)2t2
1

2 + (cμ2 + d)t2 + (cσ2)2t2
2 ].

(iii) Follows from parts (i) and (ii), since MU (t1)MV (t2) = MU,V (t1, t2)
for all t1, t2.

1.16 MX̄(t) = [M( t

n
)]n,

1.18 (i) EX̄ = p and Var(X̄) = pq/n; (ii) n = 10,000.

1.20 (i) fX(−1) = 2α + β, fX(0) = 2β, fX(1) = 2α + β;
fY(−1) = 2α + β, fY(0) = 2β, fY(1) = 2α + β.

(ii) EX = EY = 0, and E(XY ) = 0; (iii) Cov(X, Y ) = 0.

(iv) The r.v.’s are not independent, since, e.g., f (0, 0) = 0 �= (2β)×(2β) =
fX(0) fY(0).

1.22 (i) EX̄ = μ and Var(X̄ ) = σ 2/n.
(ii) For k = 1, n = 100; for k = 2, n = 25; and for k = 3, n = 12.

1.24 (i) EX̄ = μ and Var(X̄ ) = σ 2/n.
(ii) The smallest n which is ≥ 1/(1 − α)c2.

(iii) For c = 0.1, the required n is its smallest value ≥ 100/(1−α). For α =
0.90, n = 1,000; for α = 0.95, n = 2,000; for α = 0.99, n = 10,000.

Section 5.2

2.2 X + Y ∼ B(30, 1/6) and P(X + Y ≤ 10) =∑10
t=0

( 30
t

)(
1
6

)t( 5
6

)30−t
.

2.4 (i) Sn ∼ B(n, p);
(ii) EXi = p, Var(Xi) = pq (q = 1 − p).

(iii) ESn = np, Var(Sn) = npq.

2.6 If X be the r.v. denoting the breakdown voltage, then X ∼ N(40, 1.52),
and therefore:
(i) P(39 < X < 42) = 0.656812; (ii) = 0.382.

2.8 (i) X1 + · · · + Xn ∼ P(λ1 + · · · + λn).
(ii) EX̄ = (λ1 + · · · + λn)/n, Var(X̄ ) = (λ1 + · · · + λn)/n2.

(iii) EX̄ = λ, Var(X̄ ) = λ/n.

2.10 (i) P(X1 = x1|T = t) = ( t

x1
)(λ1

λ
)x1 (1 − λ1

λ
)t−x1 , so the X1|T = t ∼ B(t, λ1

λ
),

and likewise for the other r.v.’s.
(ii) Here λ = nc, and therefore X1|T = t ∼ B(t, 1

n
).
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2.12 (i) P(X̄ > Ȳ ) = 1 − 


(
− μ1−μ2√

σ2
1

m
+ σ2

2
n

)
; (ii) P(X̄ > Ȳ) = 0.5.

2.14 (i) For r > 0, P(R ≤ r) = P(U ≤ r2/σ 2), U ∼ χ2
2 .

(ii) For σ = 1 and the given values of r, the respective probabilities are:
0.75, 0.90, 0.95, 0.975, 0.99, and 0.995.

Chapter 6

Section 6.1

1.2 (i) X ∼ N(μ−160
9 , 25σ 2

81 ); (ii) a � 32.222, b = 35.

(iii) ak = 5μ−160
9 − k 5σ

9 , bk = 5μ−160
9 + k 5σ

9 .

1.4 fY(y) = λy−(λ+1), y > 1; fZ(z) = λez−λez

, z ∈ �.

1.6 (i) fY(y) = 1
2 e−y/2, y > 0, which is the p.d.f. of a χ2

2 .
(ii)
∑n

i=1 Yi ∼ χ2
2n, since Yi ∼ χ2

2 , i = 1, . . . , n independent.

1.8 fY(y) = 1
�( 3

2 )m3/2 y
3
2 −1e−y/m, y > 0.

1.10 The results follow by implementing the suggestions in the hint.

1.12 The results follow by implementing the suggestions in the hint.

Section 6.2

2.2 (i) fU,V (u, v) = u

(1+v)2 e−u, u > 0, v > 0.

(ii) fU (u) = ue−u, u > 0; fV (v) = 1/(1 + v)2, v > 0.

(iii) U and V are independent.

2.4 (i) fU,V (u, v) = 1
|ac| fX(u− b

a
) fY( v − d

c
), (u, v) ∈ T.

(ii) fU,V (u, v) = 1√
2π |a|σ1

exp{− [u− (aμ1 + b)]2

2(aσ1)2 } × 1√
2π |c|σ2

exp{− [v − (cμ2 + d)]2

2(cσ2)2 },
and therefore U and V are independently distributed as N(aμ1 + b,
(aσ1)2) and N(cμ2 + d, (cσ2)2), respectively.

2.6 (i) fU,V (u, v) = 1√
2π

e−u2/2 × 1√
2π

e−v2/2, u, v ∈ �.

(ii) U ∼ N(0, 1), V ∼ N(0, 1).
(iii) U and V are independent.
(iv) By parts (ii) and (iii), X + Y ∼ N(0, 2) and X − Y ∼ N(0, 2).

2.8 fU (u) = 1, 0 ≤ u ≤ 1.
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Section 6.3

3.2 It follows by forming the inner products of the row vectors.

3.4 It follows from the joint p.d.f. fX,Y , the transformation u = x−μ1
σ1

, v = y−μ2
σ2

,
and the fact that the Jacobian J = σ1σ2.

3.6 (i) It follows from the joint p.d.f. fX,Y , the transformation u = x+ y, v =
x − y, and the fact that the Jacobian J = −1/2.

(ii) U and V are independent by the fact that they have the Bivariate
Normal distribution and their correlation coefficient is 0.

(iii) It follows from part (i) as marginals of the Bivariate Normal.

3.8 (i) P(aμ < X̄ < bμ, 0 < S2 < cσ 2) = [
(k(b−1)
√

n)−
(k(a−1)
√

n)]×
P(χ2

n−1 < c(n − 1)); (ii) The probability is 0.89757.

Section 6.5

5.2 EY1 = 1
n+ 1 , EYn = n

n+ 1 , and EYn → 1 as n → ∞.

5.4 E(Y1Yn) = 1
n+ 2 . Therefore, by Exercise 5.2, Cov(Y1, Yn) = 1

(n+ 1)2(n+ 2) .

5.6 fZ(z) = λe−λz, z > 0.

5.8 (i) gn(yn) = nλe−λyn (1 − e−λyn)n−1, yn > 0.
(ii) For n = 2, EY2 = 3/2λ, and for n = 3, EY3 = 11/6λ.

5.10 g1n(y1, yn) = n(n − 1)[F(yn) − F(y1)]n−2 f (y1) f (yn), a < y1 < yn < b.

Chapter 7

Section 7.1

1.2 For every ε > 0, P(|Xn| > ε) = P(Xn = 1) = pn, and therefore Xn

P→0 if
and only if pn → 0 as n → ∞.

1.4 (i) P(|Y1,n| > ε) = (1 − ε)n → 0, as n → ∞.
(ii) P(|Yn,n − 1| > ε) = 1 − P(|Yn,n − 1| ≤ ε) and P(|Yn,n − 1| ≤ ε) =

1 − (1 − ε)n → 1, so that P(|Yn,n − 1| > ε) → 0, as n → ∞.

1.6 EX̄n = μ and E(X̄n − μ)2 = Var(X̄n) = σ 2

n
→ 0, as n → ∞.

1.8 E(Yn − X )2 = E(Yn − Xn)2 + E(Xn − X )2 + 2E[(Yn − Xn)(Xn − X )] → 0, as
n → ∞, by the assumptions made and the fact that |E[(Yn−Xn)(Xn−X )]| ≤
E1/2|Xn − Yn|2 × E1/2|Xn − X|2.



502 Answers to Even-Numbered Exercises

Section 7.2

2.2 (i) MX(t) = (1 − α)/(1 − αet), t < −logα;
(ii) EX = α/(1 − α).

(iii) MX̄n
(t) = ( 1−α

1−αet/n

)n = {1 − αt/(1−α) + [α/(1−α)]nR( t
n

)
n

}−n −→
n→∞ eαt/(1−α),

since n

t
R( t

n
) −→

n→∞ 0 for fixed t, and eαt/(1−α) is the m.g.f. of α
1−α

.

2.4 Since X ∼ B(1,000, p), we have;
(i) P(1,000p − 50 ≤ X ≤ 1,000p+ 50) = ∑1,000p+ 50

x= 1,000p− 50

(1,000
x

)
pxq1,000−x,

q = 1 − p. For p = 1
2 and p = 1

4 :

P(450 ≤ X ≤ 550) =
550∑

x=450

(
1,000

x

)
(0.5)1,000,

P (200 ≤ X ≤ 300) =
300∑

x=200

(
1,000

x

)
(0.25)x × (0.75)1,000−x.

(ii) For p = 1
2 and p = 1

4 , the approximate probabilities are 2
(3.16) −
1 = 0.998422 and 2
(3.65) − 1 = 0.999738.

2.6 EXi = 7
2 , EX 2

i = 91
6 , so that Var(Xi) = 35

12 . Therefore P(150 ≤ X ≤
200) � 2
(2.07) − 1 = 0.961548.

2.8 Since X ∼ B(1,000, 0.03), the required approximate probability is:
P(X ≤ 50) � 
(3.71) = 0.999896.

2.10 P(| X

n
− 0.53| ≤ 0.02) � 2
( 0.02

√
n√

0.2491
) − 1 = 0.99, so that n = 4,146.

2.12 With Sn =∑n

i=1 Xi, we have:
(i) P(Sn ≤ λn) � 
(

√
λn) − 0.50.

(ii) P(Sn ≥ λn) � 
(
√

λn) − 
(1/
√

λn).
(iii) P(λn

2 ≤ Sn ≤ 3λn

2 ) � 
(
√

λn/2) − 
(
√

λn/4).
(iv) P(Sn ≤ 100) � 0.50, P(Sn ≥ 100) � 0.460172, P(50 ≤ Sn ≤ 75) �

0.00621.

2.14 The total life time is X = ∑50
i=1 Xi, where Xi’s are independently distri-

buted as Negative Exponential with λ = 1/1,500. Then P(X ≥ 80,000) �
1 − 
(0.47) = 0.319178.

2.16 (i) P(a ≤ X̄ ≤ b) � 
((2b − 1)
√

3n) − 
((2a − 1)
√

3n).
(ii) Here (2b − 1)

√
3n = 0.75, (2a − 1)

√
3n = −0.75, and the above

probability is: 2 
(0.75) − 1 = 0.546746.

2.18 P(|X̄ − μ| ≤ 0.0001) � 2
(0.2
√

n) − 1 = 0.99, and then n = 167.

2.20 (i) P(|X̄n − μ| < kσ ) � 2
(k
√

n) − 1 = p, so that n = [ 1
k

−1(1 + p

2 )]2.
(ii) Here n is the smallest integer ≥1/(1 − p)k2.

(iii) For p = 0.90, p = 0.95, and p = 0.99, and the respective values
of k, we determine the values of n by means of the CLT and the
Tchebichev inequality.
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Then, for the various values of k, the respective values of n are given in
the following table for part (i).

k\p 0.90 0.95 0.99

0.50 11 16 27
0.25 44 62 107
0.10 271 385 664

For the Tchebichev inequality, the values of n are given by the entries of
the table below.

k\p 0.90 0.95 0.99

0.50 40 80 400
0.25 160 320 1,600
0.10 1,000 2,000 10,000

2.22 (i) P(|X̄ − Ȳ| ≤ 0.25σ ) = P(|Z̄| ≤ 0.25σ ) � 2
(0.25
√

n√
2

) − 1 = 0.95 and
then n = 123.

(ii) From 1 − 2
0.0625n

≥ 0.95, we find n = 640.

2.24 (i) P(|X − 20| ≤ 2) � 
(22−np√
npq

) − 
(18−np√
npq

), and taking 18−np√
npq

= − 22−np√
npq

,
we find n = 50.

(ii) For n = 50, the approximate probability in part (i) is 0.438086.
(iii) As in the hint.

Chapter 9

Section 9.1

1.2 The matrix is negative definite, because for λ1, λ2 with λ2
1 + λ2

2 �= 0, we
have:

(λ1, λ2)
(−n/s2 0

0 −n/2s4

)(
λ1

λ2

)
= −λ2

1
n

s2
− λ2

2
n

2s4
< 0.

1.4 With Y = ∑n

i=1

(
Xi−X̄

σ

)2 ∼ χ2
n−1 and S2 = σ 2Y/(n − 1), we have

Varσ 2 (S2) = 2σ 4/(n − 1).

1.6 With L(θ | x) = θn(1− θ)n(x̄−1), x = (x1, . . . , xn), we have ∂
∂θ

log L(θ | x) =
0 produces θ = 1/x̄, and ∂2

∂θ2 log L(θ | x) = − n

θ2 − n(x̄−1)
(1−θ)2 < 0.

1.8 The MLE of θ is θ̂ = −n/
∑n

i=1 log xi.

1.10 (i) It follows from what it is given;
(ii) θ̂ = 2/x̄.
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1.12 (i) The first two expressions are immediate. The third follows from
d

dσ 2
1

( 1
σ 2

1
) = − 1

2σ 3
1

, and similarly for the fourth. The fifth follows from
d

dρ
( 1

1−ρ2 ) = 2ρ

(1−ρ2)2 and d

dρ
( ρ

1−ρ2 ) = 1 + ρ2

(1 − ρ2)2 .
(ii) Immediate from part (i).

(iii) μ̃1 = x̄ and μ̃2 = ȳ follow by solving the equations:

σ2μ1 − σ1ρμ2 = σ2x̄ − σ1ρ ȳ, σ2ρμ1 − σ1μ2 = σ2ρ x̄ − σ1 ȳ

following from the first two likelihood equations.
(iv) They follow from part (ii).
(v) They follow from part (iv) by solving for σ 2

1 , σ 2
2 , and ρ.

1.14 (i) Immediate by the fact that d̃13(=d̃31) = d̃14(=d̃41) = d̃15(=d̃51) =
d̃23(=d̃32) = d̃24(=d̃42) = d̃25(=d̃52) = 0.

(ii) Immediate by the fact that d̃12 = d̃21 and d̃34 = d̃43.
(iii) Immediate by the fact that d̃21 = d̃12, d̃43 = d̃34, d̃54 = d̃45, and

d̃53 = d̃35.
(iv) D̃1 = −nβ

δ
, D̃2 = n2

δ
, D̃3 = −n3(αβ + δ)

4α2δ2 , D̃4 = n4

4αβδ
.

(v) A = α3βn2

2δ3 , B = − αβγ 2n2

2δ3 , C = α1/2γ n2

4β1/2δ2 .

(vi) D̃5 = − αβn5

4δ4 .

(vii) D̃0 = 1 > 0, D̃1 = −nβ

δ
< 0, D̃2 = n2

δ
> 0, D̃3 = −n3(αβ+δ)

4α2δ2 < 0,
D̃4 = n4

4αβδ2 > 0, and D̃5 = − αβn5

4δ4 < 0.

Section 9.2

2.2 (i) R(x; θ) = e−x/θ ; (ii) The MLE of R(x ; θ) is e−x/x̄.

2.4 (i) θ̂ = 1
n

∑n

i=1 x
γ

i ; (ii) θ̂ = x̄.

2.6 (i) It follows by integration.
(ii)
∏n

i=1 Xi is a sufficient statistic for θ , and so is
∑n

i=1 log Xi.

2.8
∑n

i=1 |Xi| is a sufficient statistic for θ .

2.10 Here (X1, . . . , Xr) is a set of statistics sufficient for (p1, . . . ,pr), or (X1, . . . ,
Xr−1) is a set of statistics sufficient for (p1, . . . , pr−1). Furthermore,
(X(1), X(n)) is a set of statistics sufficient for (α, β).

2.12 They follow by integration.

Section 9.3

3.2 (i) Eθ X̄ = 1
θ
, Eθ (nY1) = 1

θ
.

(ii) Varθ (X̄ ) = 1
nθ2 ≤ 1

θ2 = Varθ (nY1).

3.4 (i) g1(y) = n

θ2−θ1
( θ2−y

θ2−θ1
)n−1, θ1 ≤ y ≤ θ2,

gn(y) = n

θ2−θ1
( y− θ1

θ2 − θ1
)n−1, θ1 ≤ y ≤ θ2.
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Then, with θ = (θ1, θ2),
EθY1 = nθ1 + nθ2

n+ 1 , EθYn = θ1 + nθ2
n+ 1 , and

Eθ(Y1 + Y2
2 ) = θ1 + θ2

2 , Eθ[ n+ 1
n−1 (Yn − Y1)] = θ2 − θ1.

(ii) The pair of statistics (Y1, Yn) is sufficient for the pair of the parameters
(θ1, θ2).

3.6 They follow by integration and by using part (ii) of Exercise 3.5.

3.8 (i) The Varθ (U1) and Varθ (U2) follow from the Varθ (Y1) and Varθ (Yn) in
Exercise 3.6, and the Covθ (Y1, Yn) from Exercise 3.7(ii).

(ii) Immediate by comparing variances.

3.10 (i) The required condition is
∑n

i=1 ci = 1.

(ii) ci = 1
n

, i = 1, . . . , n.

3.12 (i) Eθ X̄ = θ and Varθ (X̄ ) = 1
n× 1

σ2
= 1

nI(θ) .

(ii) Eθ S2 = θ and Varθ (S2) = 1
n× 1

2θ2
= 1

nI(θ) .

3.14 It follows by the hint and Exercise 3.13.

3.16 (i) See application to Theorem 3.
(ii) Eθh(X ) = 0 is equivalent to

∑n

x=0 h(x)
(

n

x

)
tx = 0 (t = θ

1−θ
) from which

it follows h(x) = 0, x = 0, 1, . . . , n.

(iii) It follows by the fact that X̄ = T

n
and T ∼ B(n, θ) is sufficient and

complete.

3.18 (i) X is sufficient by the Factorization Theorem, and also complete,
because Eθh(X ) = 1 − t

t

∑∞
x=1 h(x)tx = 0 (t = 1 − θ) implies h(x) =

0, x = 1, 2, . . . .

(ii) U is unbiased, because EθU = 1 × Pθ (U = 1) = Pθ (U = 1) =
Pθ (X = 1) = θ .

(iii) U is UMVU, because it is unbiased and depends only on the sufficient
statistic X.

(iv) Varθ (U) = θ(1 − θ) > θ2(1 − θ) = 1
I(θ) (0 < θ < 1).

3.20 (i) Sufficiency of Yn follows from Exercise 2.9(iii); completeness cannot
be established here.

(ii) It follows from part (i) and Exercise 3.3(ii).
(iii) Because the function L(θ | x) (= f (x; θ)) is not differentiable at θ = x.

Section 9.4

4.2 It follows by the fact that
∫ 1

0
�(α + β)
�(α)�(β) xα−1(1−x)β−1dx = 1 and the recursive

relation of the Gamma function.
4.4 Immediate from the hint.
4.6 R(θ ;d) = 1

n
, independent of θ , and then Theorem 9 applies.
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Section 9.5

5.2 (i) θ̃ = (1 − 2X̄)/(X̄ − 1); (ii) θ̃ = 3 and θ̂ � 3.116.

5.4 Follows from Exercise 3.15(i).

5.6 (i) The EX and EX2 follow by integration, and Var(X ) = β2.
(ii) α̃ = X̄ − S, β̃ = S, where S2 = 1

n

∑n

i=1(Xi − X̄ )2.

5.8 By equating the second-order sample moment to (2θ)2

12 , we get θ̃ =
( 3

n

∑n

i=1 X2
i )1/2.

5.10 (i) It follows by integration;
(ii) They also follow by integration.

(iii) θ̃ = 3X̄ and hence Eθ θ̃ = θ and Varθ (θ̃) = θ2/2n.

5.12 (i) and (ii) follow by straightforward calculations.
(iii) It follows by the expression of ρ̂n(X, Y ) and the WLLN applied to

n−1∑n

i=1(XiYi), X̄, Ȳ , n−1∑n

i=1(Xi − X̄)2, and n−1∑n

i=1(Yi − Ȳ)2.

5.14 x̄ = 2,423
15 � 161.533, sx =

√
175,826

15 � 27.954, ȳ = 140.6, and sy =
√

56,574
15 �

15.857.

Chapter 10

Section 10.1

1.2 m = 4n.

1.4 (i) n = (2zα/2σ/ l)2; (ii) n = 1,537.

1.6 (i) MU (t) = 1/(1 − θ t)n, t < 1
θ
, which is the m.g.f. of the Gamma distri-

bution with α = n and β = θ .
(ii) MV (t) = 1/(1 − 2t)2n/2, t < 1

2 , which is the m.g.f. of the χ2
2n distribu-

tion, so that V ∼ χ2
2n.

(iii) [2b−1∑n

i=1 Xi, 2a−1∑n

i=1 Xi].

1.8 (i) For x > θ , F(x ; θ) = 1 − e−(x−θ) and hence g(y ; θ) = ne−n(y−θ),
y > θ.

(ii) By setting t = 2n(y− θ), we get fT (t; θ) = 1
2 e−t/2, t > 0, which is the

p.d.f. of the χ2
2 distribution.

(iii) It follows by the usual arguments.

1.10 (i) The transformation y = |x| which yields x = y for x > 0, x = −y for
x < 0, and

∣∣ dx

dy

∣∣ = 1. Then, by Theorem 6, g(y ; θ) = 1
θ
e−y/θ , y > 0.

(ii) and (iii) are as in Exercise 1.9(ii) and (iii), respectively.

1.12 (i) e−a − e−b = 1 − α.
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(ii) Immediate by part (i) and the fact that T has the p.d.f. e−t, t > 0.

(iii) Follows from the hint.

1.14 From the transformations r = yn − y1, and s = y1, we get: y1 = s, yn =
r+s, and |J| = 1. Then fR,S(r, s ; θ) = n(n− 1)

θn rn−2, 0 < r < θ , 0 < s < θ−r,
and then fR(r ; θ) = n(n−1)

θn rn−2(θ − r), 0 < r < θ.

1.16 (i) It follows by using the transformation t = r/θ.

(ii) The required confidence interval is [R, R

C
]. The relation cn−1[n −

(n − 1)c] = α follows from:

1 − α = Pθ (c ≤ T ≤ 1) =
∫ 1

c

n(n − 1)tn−2(1 − t) dt

= n − ncn−1 − (n − 1) + (n − 1)cn.

1.18 Follows by the usual procedure and the fact that mS 2
X

σ 2
1

∼ χ2
m, nS 2

Y

σ 2
2

∼ χ2
n

independent, so that S 2
Y/σ 2

2

S2
X/σ 2

1
∼ Fn,m.

Section 10.2

2.2 The required interval is [aS ∗2
X

S ∗2
Y

, b
S∗2

X

S∗2
Y

], where 0 < a < b with P(a ≤ X ≤
b) = 1 − α, X ∼ Fn−1,m−1. In particular, a = Fn−1,m−1;1− α

2
, b = Fn−1,m−1; α

2
.

Section 10.4

4.2 (i) The required confidence interval is X̄n ± zα
2

Sn√
n

.

(ii) Here X̄100 ± 0.196S100.

(iii) The length is 2zα
2

Sn√
n

, which converges in probability to 0 since Sn

P−→
n→∞ σ.

4.4 (i) P(Yi ≤ xp) = P(at least i of X1, . . . , Xn ≤ xp) = ∑n

k=i

(
n

k

)
pkqn−k,

and also P(Yi ≤ xp) = P(Yi ≤ xp ≤ Yj) + P(Yj ≤ xp), so that
P(Yi ≤ xp ≤ Yj) =∑n

k=i

(
n

k

)
pkqn−k −∑n

k= j

(
n

k

)
pkqn−k

∑ j−1
k=i

(
n

k

)
pkqn−k.

(ii) and (iii) follow from part (i) and the Binomial tables.
(iv) It follows from the hint and the Binomial tables.

Chapter 11

Section 11.1

1.2 H0i and HAi, i = 1, . . . , 5 are all composite; H06 and HA6 are both simple.

Section 11.2

2.2 (i) The required n is determined by solving for n (and C) the two equa-
tions: C

√
n

σ
= 
−1(1 − α) and

√
n(C−1)

σ
= 
−1(1 − π(1)).

(ii) n = 9 (and C � 0.562).
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2.4 (i) The MP test rejects H0 when x̄ > Cn, where Cn = μ0+ σ√
n

−1(1−αn).

(ii) The required Cn and n are given by:

Cn = μ0 + (μ1 − μ0)
−1(1 − αn)

−1(1 − αn) − 
−1(1 − πn)

,

n =
{

σ

μ1 − μ0
[
−1(1 − αn) − 
−1(1 − πn)]

}2

.

(iii) That αn−−→
n→∞0 follows from 1 − 
[

√
n(Cn−μ0)

σ
] = αn and the fact that

μ0 < Cn; that πn−−→
n→∞1 follows from 1−
−1[

√
n(Cn−μ1)

σ
] = πn, and the

fact that Cn < μ1.

(iv) n = 33 and C33 � 0.546.

2.6 (i) C(θ) = 1
θ
, Q(θ) = − 1

θ
strictly increasing, T(x) = x, and h(x) =

I(0,∞)(x).
(ii) The UMP test rejects H0 when

∑n

i=1 xi < C , where C is determined
by Pθ0 (

∑n

i=1 Xi < C) = α.

(iii) M∑n
i=1 Xi

(t) = 1
(1−θ t)n (t < 1

θ
), and M2(

∑n
i=1 Xi)/θ (t) = M∑n

i=1 Xi
(2t

θ
) =

1
(1−θ · 2t

θ
)n

= 1
(1−2t)2n/2 , which is the m.g.f. of the χ2

2n distribution.

(iv) C = θ0
2 χ2

2n;1−α , π(θ1) = P(X < 2C

θ1
), X ∼ χ2

2n.

(v) The closest value we can get by means of the χ2-tables is n = 23.

2.8 (i) The MP test rejects H0 when f1(x)
f0(x) > C, C � 0.842.

(ii) π � 0.823.

(iii) By means of geometric considerations, we find π = 0.822.

0 0.2105
C D B

0.71050.5

0.842
1

2
f1(x)

1
x

A
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2.10 (i) The MP test rejects H0 when x∈ {x ≥ 0 integer; 1.36 × x!
2x ≥ C},

where C is determined by PH0 ({1.36 × X!
2X ≥ C}) = α.

(ii) For C = 2, if follows that α � 0.02.

Section 11.3

3.2 (ii) The UMP test is given by:

ϕ(x1, . . . , xn) =

⎧⎪⎨⎪⎩
1 if

∑n

i=1 xi < C

γ if
∑n

i=1 xi = C

0 if
∑n

i=1 xi > C,

where C and γ are determined by:

Pp0 (X < C) + γ Pp0 (X = C) = α, X ∼ B(n, p0).

(iii) Here C � 3.139, and H0 is rejected when X ≤ 3.

3.4 (i) With each student associate a B(1, p) r.v. Xi, i = 1, . . . , 400, so that
X =∑400

i=1 Xi ∼ B(400, p). Then the UMP test is given by:

ϕ(x1, . . . , x400) =

⎧⎪⎨⎪⎩
1 if

∑400
i=1 xi < C

γ if
∑400

i=1 xi = C

0 if
∑400

i=1 xi > C,

where C and γ are determined by:

P0.25(X < C) + γ P0.25(X = C) = 0.05, X ∼ B(400, 0.25).

(ii) Here C � 85.7543, and H0 is rejected when
∑400

i=1 xi ≤ 85.

3.6 (i) The UMP test is given by relation (19) with C andγ defined by relation
(20).

(ii) Here C = 5 and γ � 0.519.
(iii) π(0.375) � 0.22 and π(0.500) � 0.505.
(iv) For θ > 0.5, π(θ) = P1−θ (X ≤ n − C − 1) + γ P1−θ (X = n − C).
(v) π(0.625) � 0.787, and π(0.875) � 0.998.

(vi) n = 62.

3.8 (i) H0 : λ = 10, HA : λ < 10.
(ii) The UMP test is given by:

ϕ(x) =
⎧⎨⎩

1 if x < C

γ if x = C, P10(X ≤ C − 1) + γ P10(X = C)
0 if x > C = 0.01, X ∼ P(10).

From the Poisson tables, C = 3 and γ = 0.96, and since x = 4, H0 is
not rejected.

3.10 (i) H0 is rejected when
∑n

i=1 xi < C , C = nμ0 − zασ
√

n.
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(ii) π(μ) = 
(C − nμ

σ
√

n
).

(iii) C = 43,252.5, H0 is rejected, and π(1,700) = 0.841345.

3.12 H0 is rejected when C1 <
∑4

i=1 zi < C2, where C1 and C2 are determined
by 
(0.4 + x) − 
(0.4 − x) = 0.05, x = C

10 . From the Normal tables, x �
0.07, so that C=0.7, and H0 is rejected when −0.7 < z1 + z2 + z3 + z4 < 0.7.

3.14 Here H0 : σ > 0.04, HA : σ ≤ 0.04, and the UMP test rejects H0 when∑n

i=1(xi −μ)2 < C, C = σ 2
0 χ2

n;1−α. For the numerical data, C = 0.0127392
� 0.013, and since

∑16
i=1(xi−μ)2 = 0.04, the hypothesis H0 is not rejected.

Section 11.4

4.2 (i) λ = (0.25)t(0.75)3−t/( t

3 )t(1 − t

3 )3−t, t = 0, 1, 2, 3, and H0 is rejected
when λ < C where C is determined by P0.25(λ < C) = 0.02.

(ii) At level α = 0.02, H0 is outright rejected when λ = 0.015625 (which
is equivalent to t = 3) and is rejected with probability 0.02−0.0156 =
0.0044 when λ = 0.31640625 (which is equivalent to t = 2).

4.4 (ii) With t(z) = √
n z̄/

√
1

n− 1

∑n

i=1 (zi − z̄)2, z = (z1, . . . ,zn), H0 is re-
jected when t(z) < −tn−1; α

2
or t(z) > tn−1; α

2
.

(iii) Here t89;0.025 = 1.9870, and therefore H0 is rejected when

|3√
10z̄|/
√

1
89

∑90
i=1(zi − z̄)2 > 1.9870.

4.6 Here H0 : μ = 2.5 and HA : μ �= 2.5, and H0 is rejected when
√

n(x̄−μ0)
σ

<

−zα/2 or
√

n(x̄−μ0)
σ

> zα/2. Since z0.025 = 1.96 and
√

n(x̄−μ0)
σ

= −0.8, H0 is
not rejected.

4.8 Here H0 : μ1 = μ2, HA : μ1 �= μ2, and H0 is rejected when t(x, y) <

−tm+n−2;α/2 or t(x, y) > tm+ n− 2;α/2, where

t(x, y) = √mn

mn
(x̄ − ȳ)/

√
1

m+ n− 2 [
∑m

i=1(xi − x̄)2 + ∑n

j=1(yj − ȳ)2], x =
(x1, . . . , xm), y = (y1, . . . , yn).Since t48;0.025 = 2.0106 and t(x, y) = −2.712,
the hypothesis H0 is rejected.

4.10 H0 is rejected when u(x, y) ≤ Fm−1,n−1;1− α
2

or u(x, y) ≥ Fm−1,n−1; α
2
, where

u(x, y) = 1
m− 1

∑m

i=1(xi − x̄)2/ 1
n− 1

∑n

j=1(yj − ȳ)2, x = (x1, . . . , xm), y =
(y1, . . . , yn). Here F3,3;0.975 � 0.065, F3,3;0.025 = 15.439, and u(x, y) � 2.168.

Therefore H0 is not rejected.

4.12 The LR test is the same as that given in Exercise 4.8. For the given nu-
merical data, t8;0.025 = 3.3060, t(x, y) � 2.014, and therefore H0 is not
rejected.

4.14 They follow by integrating by parts.

4.16 Withλ(u) = en/2un/2e−nu/2, u≥ 0, we haveλ′(u) = dλ(u)
du

= n

2 en/2u
n
2 −1e−nu/2×

(1 − u), so that λ′(u) ≥ 0 if (0 ≤) u ≤ 1 and λ′(u) ≤ 0 if u > 1. It follows
that λ(u) is strictly increasing for u ≤ 1 and strictly decreasing for u > 1.
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Since λ′(u) = 0 gives u = 1 and d2

du2 λ(u)|u=1 = −n

2 < 0, it follows that λ(u)
is maximized for u = 1. That λ(0) = 0 is immediate, and that λ(u) → 0 as
u→ ∞ follows by taking the limit of the ratio of derivatives of sufficiently
high order.

4.18 Maximization of (58) is equivalent to maximization of g = g(μ, τ ) =
−m+ n

2 log τ− 1
2τ

[
∑m

i=1(xi−μ)2+∑n

j=1(yj−μ)2], where τ = σ 2. From ∂g

∂μ
=

0, ∂g

∂τ
= 0, we find μ̂ω = nx̄+ nȳ

m+ n
, τ̂ = 1

m+ n
[
∑m

i=1(xi−μ̂ω)2+∑n

j=1(yj−μ̂ω)2].

Next, ∂2g

∂μ2 , ∂2g

∂μ∂τ
= ∂2g

∂τ∂μ
, and ∂2g

∂τ 2 evaluated of μ = μ̂ω and τ = τ̂ , yield,
respectively; −m+ n

τ̂
, 0, and −m+ n

2τ̂ 2 . Setting C for the 2 × 2 matrix of the
second-order derivatives of g, we have, for λ1, λ2 with λ2

1 + λ2
2 �= 0:

(λ1, λ2)C
(

λ1

λ2

)
= −m+ n

τ̂

(
λ2

1 + λ2
2

2τ̂

)
< 0,

so that C is negative definite, and hence μ̂ω and τ̂ are the MLE of μ and
τ , respectively.

4.20 From the assumptions made, it follows that:

X̄ − Ȳ

σ

√
1
m

+ 1
n

∼ N(0, 1);
m∑

i=1

(
Xi − X̄

σ

)2

∼ χ2
m−1,

n∑
j=1

(
Yj − Ȳ

σ

)2

∼ χ2
n−1

independent, so that their sum is ∼χ2
m+ n− 2. This sum is also independent

of X̄−Ȳ . It follows that X̄−Ȳ

σ
√

1
m

+ 1
n

divided by [
∑m

i=1( Xi−X̄

σ
)2 +∑n

j=1(Yj−Ȳ

σ
)2]/

(m + n − 2) is distributed as tm+n−2. The cancellation of σ leads to the
assertion made.

4.22 Set c = (m + n)
m+ n

2 /m
m
2 n

n
2 and d = m− 1

n− 1 , so that λ = λ(u) = c(du)m/2/

(1 + du)(m+ n)/2. That λ(0) = 0 is immediate. Next, λ → 0 as u → ∞ is
also clear. Furthermore, dλ(u)

du
= cd

2 × (du)
m
2 −1

(1+du)(m+n+ 2)/2 × (m− n du) = 0 yields
u = m

nd
= m(n−1)

n(m−1) , call it u0. Also, dλ(u)
du

> 0 for u < u0, and dλ(u)
du

< 0 for
u > u0, so that λ(u) increases for u < u0 and decreases for u > u0. It
follows that λ(u) attains its maximum for u = u0. This maximum is 1.

4.24 (i) Since df (r)
dr

= −n

2 (1 − r)
n
2 −1 < 0, f (r) is decreasing in r.

(iv) Since dw(r)
dr

=
√

n−2
(1−r2)3/2 > 0, w(r) is increasing in r.

Chapter 12

Section 12.1

1.2 (ii), (iii) −2 log λ � 2(
∑12

i=1 xi log xi−335,490.304), where xi is the number
of births falling into the ith month. Finally, −2 log λ = 78.776 and χ2

11;0.01 =
24.725. The hypothesis H0 is rejected.
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1.4 (iii) Here −2 log λ � 27.952, and χ2
4;0.05 = 9.488. The hypothesis H0 is

rejected. Also, χ2
4;0.01 = 13.277 and the hypothesis H0 is still rejected.

Section 12.2

2.2 Here χ2
ω � 72.455 > 24.725 = χ2

11;0.01, and H0 is rejected.

2.4 Here χ2
ω̂

� 28.161 > 9.488 = χ2
4;0.05, and H0 is rejected. Also, χ2

ω̂
�

28.161 > 13.277 = χ2
4;0.01, and H0 is still rejected.

2.6 (i) Here χ2
ω = 4 > 2.706 = χ2

1;0.1, and H0 is rejected.
(ii) The P-value is approximately 0.047.

2.8 Here χ2
ω = 1.2 < 5.991 = χ2

2;0.05, and H0 is not rejected.

2.10 (ii) p10 = 0.251429, p20 = 0.248571, p30 = 0.248571,
p40 = 0.15967, p50 = 0.069009, p60 = 0.02275.

(iii) χ2
ω � 51.161 > 11.071 = χ2

5;0.05, and H0 is rejected.

2.12 Here χ2
ω̂

� 1.668 < 11.071 = χ2
5;0.05, and H0 is not rejected.

Chapter 13

Section 13.3

3.2
∑

i xi = 91.22,
∑

i yi = 15,228,
∑

i x2
i = 273.8244,

∑
i xiyi = 45,243.54.

Also, SSx � 5.402, SSy � 101,339.419, and SSxy � 433.922.

3.4 Var(β̂1) � 0.577σ 2, Var(β̂2) � 0.185σ 2, and σ̂ 2 � 2,144.701.

3.6 (i) It follows by differentiating and equating the derivatives to 0.
(ii) −(x) As indicated.

Section 13.4

4.2 From relations (24) and (25), we find t � −0.737 and t � 0.987. Since
t29;0.025 = 2.0452, none of the hypotheses is rejected.

4.4 (ii) Replacing the xi’s by the ti’s and taking into consideration that t̄ = 0,
we get from (5) and (8) the values specified for γ̂ and β̂.

(iii) Immediate by the fact that t̄ = 0.
(iv) β̂ ± tn−2; α

2

S√
n

and γ̂ ± tn− 2; α
2

S√
SSt

, where S = √
SSE/(n − 2), SSE =

SSy − SS2
xy

SSx
, SSy =∑i Y 2

i − ( 1
n

∑
i Yi

)2
, SSxy =∑i tiYi, SSx = SSt.

(v) t = β̂ − β0

S/
√

n
, t = γ̂−γ0

S/
√

SSt
.

(vi) ŷ0 ± tn− 2;α2
S

√
1
n

+ t2
0

SSt
, ŷ0 ± tn−2;α2

S

√
1 + 1

n
+ t2

0
SSt

.
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Section 13.5

5.2 (i) ŷ0 = 517.474.

(ii) S � 59.834,
√

1
n

+ (x0−x̄)2

SSx
� 0.205, and t32;0.025 = 2.0369. The observed

confidence interval is [492.489, 542.459].
(iii) ŷ0 = 448.937.
(iv) The observed confidence interval is [344.442, 553.432].

5.4 (i) ŷ0 = 15.374.
(ii) The observed confidence interval is [14.329, 16.419].

(iii) ŷ0 = 15.374.
(iv) The observed confidence interval is [14.278, 16.470].

5.6 (i) β̂1 � −9.768, β̂2 � 2.941, σ̂ 2 � 0.004.

(ii) t11;0.025 = 2.201, S � 0.071,
√

1
n

+ x̄2

SSx
� 10.575, so that the observed

confindence intervals for β1 and β2 are: [−11.421, −8.115] and [2.490,
3.392], respectively. Since χ2

11;0.025 = 21.92 and χ2
11;0.975 = 3.816, the

observed confidence interval for σ 2 is [0.003, 0.015].
(iii) Both EY0 and Y0 are predicted by 1.32. The respective observed con-

fidence intervals are [1.254, 1.386] and [1.15, 1.49].

Chapter 14

Section 14.1

1.2 In (1), set μ1 = · · · = μI = μ to obtain:

log L(y; μ, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2

∑
i

∑
j

(yij − μ)2.

Set S(μ) =∑i

∑
j(yij − μ)2, and observe that d

dμ
S(μ) = −2

∑
i

∑
j(yij −

μ) = 0 gives μ = 1
I J

∑
i

∑
j yij = y.., and d2

dμ2 S(μ) = 2I J > 0 for all
values of μ, so that μ̂ = y.. minimizes S(μ). Replacing μ by μ̂ in the above
expressions, and setting

Ŝ = S(μ̂), log L̂(y; μ̂, σ 2) = − I J

2
log(2π) − I J

2
log σ 2 − 1

2σ 2
Ŝ,

we obtain σ 2
H0

= Ŝ
I J

from d

dσ 2 log L̂(y; μ̂, σ 2) = 0. Also,

d2

d(σ 2)2
log L̂(y; μ̂, σ 2)|σ 2=σ 2

H0
= − I J

(σ 2
H0

)2
< 0,

so that σ̂ 2
H0

= Ŝ
I J

= 1
I J

∑
i

∑
j(yij − y..)2 = SST

I J
is the MLE of σ 2 under H0.
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1.4 Recall that for i = 1, . . . , I and j = 1, . . . , J, the r.v.’s Yij are independent
with EYij = μi and Var (Yij) = σ 2.

(i) From Y.. = 1
I J

∑
j

∑
j Yij , we have then EY.. = 1

I J

∑
i

∑
j EYij = 1

j
×

j × 1
I

∑
i μi = μ., and therefore E(Y.. − μ.)2 = Var(Y..) = Var( 1

I J

∑
i∑

j Yij) = 1
(I J)2 I Jσ 2 = σ 2

I J
.

(ii) From Yi. = 1
J

∑
j Yij , we have EYi. = 1

J

∑
j μi = 1

J
× Jμi = μi, so

that E(Yi. − μi)2 = Var(Yi.) = Var( 1
J

∑
j Yij) = 1

J2

∑
j σ 2 = σ 2

J
.

(iii) E(Yi. − μ.)2 = E[(Yi. − μi) + (μi − μ.)]2 = E(Yi. − μi)2 + (μi − μ.)2,
because E[(Yi.−μi)(μi−μ.)] = (μi−μ.)E(Yi.−μi) = (μi−μ.)×0 = 0.

Section 14.2

2.2 We have: μ̂1 = 11.25, μ̂2 = 17.00, μ̂3 = 15.50, μ̂4 = 14.75, so that ψ̂ =
11.25c1 + 17.00c2 + 15.50c3 + 14.75c4. Also, V̂ar (ψ̂) � 1.552(

∑4
i=1 c2

i ), and

S2 = 10.4709, so that S

√
V̂ar(ψ̂) � 4.031

√∑4
i=1 c2

i . Therefore the required
observed confidence interval is:⎡⎣11.25c1 + 17.00c2 + 15.50c3 + 14.75c4 ± 4.031

√√√√ 4∑
i=1

c2
i

⎤⎦.

Section 14.3

3.2 By (31) and (32), LA(y; μ, β, σ 2) = ( 1√
2πσ 2

)I J exp[−S( μ, β)], where
S(μ, β) =∑i

∑
j(yij −μ−β j)2. For each fixed σ 2, minimize S(μ, β) with

respect to μ and the β j ’s subject to the restriction
∑

j β j = 0. Doing this
minimization by using Langrange multipliers, we find the required MLE’s;
namely, μ̂A = y.., β̂ j, A = y. j − y.., j = 1, . . . , J.

3.4 (i) That η = X ′β is immediate, and from this it follows that η lies in the
vector space generated by the columns (rows) of X ′.

(ii) Here I + J + 1 ≤ I J, or J ≥ I + 1
I−1 , provided I ≥ 2. Thus, for I ≥ 2 and

J ≥ (I + 1)/(I − 1), it follows that min{I + J + 1, I J} = I + J + 1,
and hence rank X ′ ≤ I + J + 1.

(iii) Parts (a) and (b) are immediate. It then follows that rank X ′ ≤ I +
J −1. To see part (c), multiply the columns specified by the respective
scalars a1, a2, . . . , aI−1, b1, . . . , bJ and add them up to obtain

(b1, b2, . . . , bJ , a1 + b1, a1 + b2, . . . , a1 + bJ , . . . , aI−1 + b1, aI−1

+ b2, . . . , aI−1 + bJ),

and this vector is zero if and only if b1 = · · · = bJ = 0 = a1 = · · · =
aI−1. The conclusion of independence follows.

So, η, although it has I J coordinates, belongs in an (I + J −1)-dimensional
space (I + J − 1 ≤ I J), and therefore the dimension of η is I + J − 1.
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2-dimensional normal distribution, 143, 147
2-dimensional random vector, 110, 138

A
a priori probabilities, 45, 271
Acceptance region, 233, 361
Analysis of variance, 235, 397

basics, 236–238
column effects, 418
contrasts, 237, 407, 408
examples, 403–404, 409–413, 419–420
general linear models, 421
multicomparison method, 407–412
one-way (classification) layout model.

See One-way (classification) layout
model

row effects, 418
tables for, 402, 418
two models of, 397–427
two-way (classification) layout model.

See Two-way (classification) layout
model

uses, 236–237
ANOVA. See Analysis of variance
Asymptotically

normal, 444, 445, 446
unbiased, 443, 445

Axiomatic definition of probability, 25–26

B
Bayes approach, 272

decision function, 359
estimates, 271, 274, 278
formula, 46–48

Best linear predictor, 137
Beta

p.d.f., 273
expectation, 275

Binomial distribution, 79–81
application, 315–316
cumulative table, 450–457

expectation, 81, 477
graphs, 80
m.g.f., 81, 479
point estimation and, 228
Poisson distribution relationship to, 84–85,

98
p.d.f., 79, 477
variance, 81, 477

Binomial experiment, 79, 140
Bivariate normal distribution, 143–146

correlation coefficient, 148
example, 145–146
expectations, 148, 478
graph, 143
m.g.f., 146, 479
p.d.f., 143, 478
variances, 148, 478

C
Cauchy distribution, 76, 325
Cauchy-Schwarz inequality, 131
Center of gravity, 69
Central limit theorem (CLT), 90, 208, 210–213,

225
applications, 213–215
binomial and, 214
confidence intervals and, 295
continuity correction and, 215–217
examples, 212, 214–215
normal approximation and, 211

Chi-square distribution
critical values for, 465–466
expectation, 89, 477
graph, 90
m.g.f., 89, 479
p.d.f., 89, 477
variance, 89, 477

Chi-square goodness-of-fit test. See Goodness-
of-fit test

Combinations, 61
Completeness, 264

515
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Concept of probability and basic results.
See Probability and basic results,
concept of

Conditional and marginal probability density
functions, conditional expectation and
variance, 117–126

examples, 118–123
exercises, 123–126
k random variables and, 138
multinomial distribution and, 140

Conditional expectations, 138
Conditional probability and related results,

41–51
Bayes formula, 46–48
definition, 42
examples, 42, 43–44, 45
exercises, 48–51
multiplicative theorem, 44
total probability theorem, 45–46

Conditional
expectation, 120
variance, 123, 138

Confidence intervals, 228, 282–292
with approximate confidence coefficient,

282, 294–298
construction steps, 283, 407–408
definition, 282
examples, 283–285, 289–292, 295–296
exercises, 285–289, 292, 296–298
for quantiles of distribution function,

431–433
in linear regression model, 374–375, 383–389
nuisance parameters, presence of, 289–292
random interval and, 230–231
significance of, 282
with given approximate confidence

coefficient, 294–296, 429–431
Confidence regions, 292–294, 360

confidence interval and, 231
examples, 292–294, 361–362
testing hypotheses relationship to,

360–362
theorem, 361

Contingency tables, likelihood ratio tests in
multinomial case and, 343, 345–348

Continuity correction, 215–217
Continuous case distribution, 86–95

chi-square, 89, 90
gamma, 86–87
median and, 102, 103
negative exponential, 88–89
normal, 89, 90–93
uniform (or rectangular), 94–95

Continuous sample spaces, 13
Convergence modes of random variables,

applications, 202–226

central limit theorem, 210–215
continuity correction, 215–217
in distribution or in probability, 202–208
further limit theorems, 222–226
weak law of large numbers, 208–210

Correlation coefficient, 132
Counting, basic concepts and results in,

59–67
exercises, 64–67
fundamental principle of counting, 59–60,

61–62
problem of counting examples, 59, 62–64

Covariance, 126, 129–135
Cramér-Rao (C-R) inequality, 262–263, 265, 266

examples, 264
usage, 263

Cramér-Wold devise, 139
Critical or rejection region, 233
Critical values for chi-square distribution table,

465–466
Critical values for F -distribution table, 467–476
Critical values for student’s t-distribution table,

463–464
Cumulative binomial distribution table,

450–457
Cumulative Poisson distribution table, 458–459
Curve estimation, nonparametric, 442–449

D
Decision-theoretic approach to estimation, 229,

270–277
Bayes estimate, 271, 274
decision function, 272
examples, 273, 274–275
exercises, 275
loss function, 270
minimax, 270, 274, 275
risk function, 270
theorems, 271, 274

Decision-theoretic approach to testing
hypotheses, 234, 353–360

Bayes decision function, 359
examples, 356–359
loss function, 354
minimax, 354–355
nonrandomized decision function and,

353–354
risk function, 354
theorem, 355

Delta method, 225
DeMorgan’s laws, 15, 16
Dependent events, 51

r.v.’s, 151
Discrete case distributions, 79–86

binomial, 79–81
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geometric, 81–82, 83
hypergeometric, 85–86
median and, 102–103
Poisson, 83–85

Discrete sample spaces, 13
Disjoint, 14
Dispersion, 71
Distribution(s)

2-dimensional normal, 143, 147
bivariate normal, 143–146
characteristics table, 477–479
confidence intervals for quantiles of,

431–433
convergence, 202–222
function (d.f.), 34–35
graphs, 34–35, 203
joint, 110–117
k-variate normal, 146, 147
marginal and conditional, 117–126
multinomial, 140–142, 143
multivariate normal, 146–147
of random variable X properties, 34, 37
probability, 34, 69
reproductive property of certain

distributions, 159–167
Distribution of random variables, 33–41.

See also Distribution and Probability
density function

beta, 273
binomial, 79–81
Cauchy, 76, 325
chi-square, 89
continuous, 86–95
discrete, 79–86
double exponential, 247
exercises, 39–41
F , 179
function graphs, 34–35
gamma, 86–87
geometric, 81–82, 83
hypergeometric, 85–86
mode, 104–106
negative exponential, 88–89
normal, 89, 90–93
Poisson, 83–85
t, 177
uniform (or rectangular), 94–95
Weibull, 99

E
Effects

column, 412, 418
row, 412, 418

Error(s) sum of squares, 365, 402, 418
type I, 233
type II, 233

Event(s), 8
certain, 8
complement of, 13
difference of, 14
disjoint, 14, 26
happens, 8
impossible, 8
intersection of, 13, 14
monotone, 16–17
occurs, 8
related results and independent events,

51–59
union of, 13

Expectation of random variables, 68–77
definition, 69
examples, 70–74
exercises, 74–77
of selected discrete and continuous

distributions, 477, 478
Exponential type of families of probability

density functions, 307–308

F
F critical values for, 467–476

expectation, 181
graph, 180
p.d.f., 179
variance, 181

Factorization theorem, 151–152, 154
Failure rate, 99
Fisher information, 259
Fisher-Neyman factorization theorem, 256
Fitted regression line, 366, 370, 372, 377,

378
Fundamental concepts, 8–19

events, 8
exercises, 17–19
intersection of events, 13, 14
mutually or pairwise disjoint, 14
random experiment, 8
sample points, 8, 13
sample space, 8, 13
union of events, 13
Venn diagram, 8, 9, 13–15

Fundamental principle of counting theorem,
60, 61

corollary to, 61
proof of, 61–62
proof of corollary, 62

Further limit theorems, 222–226

G
Gamma distribution

expectation, 87, 477
graph, 86–87
m.g.f., 87, 479
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p.d.f., 86, 477
variance, 87, 477

Gamma function, 86
recursive property, 87

Geometric distribution
expectation, 82, 83, 477
graphs, 82
m.g.f., 82, 83, 479
p.d.f., 82, 83, 477
variance, 82, 83, 477

Goodness-of-fit test, 234, 349–353
exercises, 351–353
multinomial distribution and, 349
numerical examples, 350–351

Graduate Management Aptitude Test (GMAT),
7, 364, 384

H
Hypergeometric distribution

expectation, 85, 477
p.d.f., 85, 477
variance, 85, 477

I
Independence of random variables and some

applications, 150–167
criteria, 150–159
definition, 151
examples, 152–153, 162–163
exercises, 156–159, 164–167
factorization theorem, 151–152, 154
reproductive property, 159–167

Independent events and related results,
51–55

definitions, 51, 52–53, 55
examples, 52, 54–55
exercises, 55–59
theorem, 53

Interval estimation, 228
basics, 230–231
confidence interval, 231
lower confidence limit, 231
random, 230–231, 282
statistic(s), 230
upper confidence limit, 231, 282

Inversion formula, 73, 129

J
Joint moment generating function, 126–128,

146
Joint probability distribution functions,

110–117, 137
examples, 111–115
exercises, 115–117
k random variables and, 137–138

K
k random variables

generalizations, 137–139
sample mean and sample variance of, 159

k-variate normal distribution, 146, 147, 478
kernel-estimation approach, 239, 442, 443
Kolmogorov, 25

L
Lagrange multipliers, 409
Least squares (LS’s), 230, 277

estimate (LSE), 230, 363, 366–374
examples, 369–374
fitted regression line, 366, 370, 372
minimize sum of squares error, 365–366
pairs relationship, 364–365
principle of, 363, 365–366
regression line, 366
theorems, 366, 371, 373

Lehmann-Scheffé theorem, 265
Level of significance of test employed,

233, 234
Likelihood equation(s), 242, 245
Likelihood function, 229, 234, 241, 247, 254, 375,

398, 413
maximum, 325

Likelihood ratio (LR) tests, 234, 299, 324–342
applications, 327–337, 345–347
examples, 325–327
exercises, 337–342, 348–349
in multinomial case and contingency tables,

343–349
linear regression model and, 384
motivation, 235, 324
normal case applications, 327–337
numerical examples, 328, 330, 331, 335, 344,

348
one-way layout and, 398
theorem, 343–344
two-way layout and, 415

Linear regression model, simple, 236, 363–396
concluding remarks, 395–396
confidence intervals, 374
confidence intervals and hypotheses testing

problems, 383–389
errors, normally distributed, 374–383,

393–395
examples, 369–370, 376–379, 384–386
fitted regression line, 366, 370, 372, 377
general, 396, 421
least squares estimates of β1 and β2,

366–374
least squares principle, 365–366
likelihood ratio tests and, 384
multiple, 396
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pairs relationship, 364–365
prediction problems, 389–393
regression line, 366
setting up, 364–366
theorems, 366, 371, 373, 375, 379, 383, 384,

390, 391
Linear transformations, 185–191

definition, 186
exercises, 190–191
orthogonal, 186
theorems, 187, 189

Lower confidence limit, 231, 282

M
Marginal and conditional probability density

functions, conditional expectation and
variance, 117–126

examples, 118–123
exercises, 123–126, 139, 149
k random variables and, 138
multinomial distribution and, 140

Marginal moment generating function, 128
Markov inequality, 77
Mathematical expectation. See Expectation of

random variables
Matrix

orthogonal, 186
transpose, 186

Maximum likelihood estimates (MLE’s), 229,
278

definition, 241, 242
Fisher-Neyman factorization theorem, 256
identification of, 242
invariance property, 254
linear regression model and, 374–383
motivation and examples, 240–253
one-way layout and parameters, 399
properties, 253–261
sufficient statistics, 257–258
theorems, 253, 254, 256, 258–259
two-way layout and parameters, 413–414

Maximum likelihood function, 324–326
Mean, mean value, See expectation
Measure of

dispersion, 71
location, 69, 71

Median and mode of random variables,
102–108

continuous case, 102, 103
definitions, 103, 104
discrete case, 102–103
examples, 102–106
exercises, 106–108

Method of moments, 229, 277
exercises, 278–279

Minimax
decision function, 354–357
estimate, 270, 274, 275, 278

Minimum chi-square method, 277
Mode of distribution, 104–106
Moment estimates, 277
Moment generating function (m.g.f.), 72–74, 93

inversion formula and, 73, 129
joint, 126–129, 138, 142, 146
marginal, 128, 130
of selected discrete and continuous

distributions, 479
Moments, 71
Monotone events, 16–17
Most powerful (MP) test, 234, 303
Motivating examples, 1–8
Multicomparison method of analysis of

variance, 407–412
Multinomial distribution

correlation coefficients, 143
examples, 140–143
expectations, 142, 478
goodness-of-fit test and, 349
likelihood ratio tests and, 343–349
marginal and conditional probability density

functions and, 140
m.g.f., 142, 479
p.d.f., 140, 478
theorem, 141
variances, 142–143, 478

Multiple random variables, transforming,
173–185

Multiplicative theorem, 44
Multivariate normal distribution, 146–147

N
Negative exponential distribution, 88

expectation, 88, 477
graph, 88
m.g.f., 88, 479
p.d.f., 88, 477
variance, 88, 477

Negatively correlated, 133
Neyman-Pearson fundamental lemma, 299,

302–307
application examples, 305–307
most powerful test and, 303, 305–306
proof of theorem, 303–304
uniformly most powerful test and, 306

Nonparametric curve estimation, 442–449
Nonparametric inference, topics in,

428–449
basics, 238–239
confidence intervals with given confidence

coefficient, 429–431
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confidence intervals for quantiles of
distribution function, 431–433

curve estimation, 442–449
definition, 227
kernel method, 239, 442
probability density function estimation,

442–444
rank sum tests, 435–438, 440–442
regression estimation, 444–447
two-sample sign test, 433–435
weak law of large numbers and, 239
Wilcoxon-Mann-Whitney test, 438

Nonrandomized decision function, 353
Nonrandomized test, 233, 303
Normal distribution, 89, 90–93, 95

central limit theorem, 90
expectation, 92, 477
graphs, 90, 91
importance of, 89, 90
likelihood ratio tests and, 327–337
m.g.f., 93, 479
p.d.f., 90, 477
standard, 91
table, 460–462
testing hypotheses about the mean, 317–319,

320–321
testing hypotheses about the variance,

319–320
variance, 92, 477

Nuisance parameters, confidence intervals in
presence of, 289–292

Numerical characteristics of random
variables, 68–108

expectation, variance, and moment
generating function, 68–77

O
One-way (classification) layout model analysis

of variance, 237, 397, 398–407
Order statistics, 193–201

definition, 193
examples, 196, 197–199
exercises, 199–201
theorems, 194, 196

P
Parameter space, 227, 228
Parametric statistical inference,

227
Partition, 45
Permutations, 61
Point estimation, 227, 240–280

basics, 228–230
binomial distribution and, 228
decision-theoretic method, 229, 270–277

least squares, 230, 277, 364–374
maximum likelihood estimate, 229,

240–246
maximum likelihood estimation motivation

and examples, 240–253
maximum likelihood estimation properties,

253–261
method of moments, 229, 277
other methods, 277–280
parameter(s), 228, 240
Poisson distribution and, 228
unbiasedness, 229
uniformly minimum variance unbiased, 229,

261–270
Point of equilibrium, 69
Poisson distribution, 83–85, 95, 215

application, 316–317
binomial distribution relationship to, 84–85
cumulative table for, 458–459
expectation, 84, 477
graph, 83
m.g.f., 84, 479
point estimation and, 228
p.d.f., 83, 477
uses for, 84
variance, 84, 477

Principle of least squares. See Least squares
(LS’s)

Probability
axiomatic definition, 25–26
classical definition, 24–25
conditional, 41
inequalities, 77–79
justification of basic properties, 28–29
relative frequency definition, 25

Probability and basic results, concept of,
23–67

conditional probability and related results,
41–51

counting, basic concepts and results in,
59–67

definition, 24–26
examples in calculating probabilities, 26–31
independent events and related results,

51–59
random variable distribution, 33–41
theorems, 31, 44, 45, 46–47, 53, 60

Probability density function (p.d.f.), 37
definition, 35, 36
graph examples, 80, 82 ,83, 86–88, 90, 91, 94,

178, 180
nonparametric estimation of, 442–444
of selected discrete and continuous

distributions, 477–479
probability inequalities, 77
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Probability integral transform, 192–193
Prior probabilities, 45

Q
Quantile(s), 103

R
Random experiment, 8

examples, 2–8
Random interval, 230–231, 282
Random sample, 155
Random variables (r.v.’s)

continuous, 36, 86–95
convergence modes of, 202–226
definition, 20
degrees of freedom (d.f.), 34
denoting a, 20
discrete, 36, 79–86
distribution, 33–41
exercises, 21–22
expectation, variance, and moment

generating function, 68–77
independence of, 150–167
introduction of, 19–21
k, generalization to, 137–139
median and mode of, 102–108
numerical characteristics of, 68–108
special, 79–101
transformation of, 168–201
types of, 21

Randomized tests, 233, 303
Rank sum test, 435–438, 440–441
Rank test, 239, 429, 435–438, 440–442
Rao-Blackwell theorem, 265
Recursive relation for

binomial p.d.f., 95, 96
gamma function, 87
hypergeometric p.d.f., 98
Poisson p.d.f., 97

Regression analysis
basics, 235–236
linear regression model, 236,

363–396
simplest form, 235–236

Regression estimation, nonparametric,
444–447

Regression line, 366
Regression model

fixed design, 447
linear. See Linear regression model, simple
stochastic design, 447

Relative frequency definition of probability,
25

Reproductive property of certain distribution,
159–167

examples, 162–163
exercises, 164–167
theorems, 160–161, 164

Risk function, 270, 354

S
Sample mean, 159
Sample points, 8, 13
Sample range, 200
Sample space, 8

continuous, 13
discrete, 13
examples with countably infinite points,

10–11
examples with finitely many sample points,

9–10
examples with nondegenerate finite or

infinite intervals in real line, 11
random experiment and, 19, 20

Sample variance, 159
Sign test, 239, 433–435
Single random variables, transforming, 168–173
Standard deviation (s.d.), 71–72, 77
Statistic, 229

sufficient, 256
Statistical analysis. See Analysis of variance
Statistical hypothesis, 232

alternative, 232
null, 232

Statistical inference overview, 227–239
aim, 227
analysis of variance basics, 236–238
interval estimation basics, 228, 230–231
nonparametric inference basics, 227,

238–239
parametric, 227
point estimation basics, 227, 228–230
regression analysis basics, 235–236
testing hypotheses basics, 228, 231–235

Stirling formula, 185

T
t distribution, 177, 178

expectation, 172
p.d.f., 177
variance, 172

Tchebichev inequality, 77, 208
Test function, 232
Testing hypotheses, 228, 299–342, 343–362

acceptance region, 233, 361
basics, 231–235
binomial case application, 315–316
concepts, general, 300–302
confidence regions relationship to, 360–362
critical or rejection region, 233
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decision-theoretic approach, 234, 353–360
equality of means, 399–404
exponential type families of probability

density functions, 307–308
for parameters in single normal population,

327–332
for parameters in two normal populations,

332–337
formulating, 300–302
goodness-of-fit test, 234, 349–353
level of significance, 233, 234
likelihood ratio tests, 234, 235, 299, 324–342
linear regression model and problems in,

383–389, 389–392
most powerful test, 234, 303, 305, 306
Neyman-Pearson fundamental lemma, 299,

302–307
nonrandomized test, 233, 303
normal case application, 317–321
p-value (probability value), 235
Poisson case application, 316–317
power, 234, 304, 309, 311, 312, 318, 319, 321,

328, 340
randomized tests, 233, 303
statistical hypotheses, 232
two-way layout, 414–420
type I error, 233
type II error, 233–234
uniformly most powerful tests, 234, 299, 301,

306
uniformly most powerful tests for composite

hypotheses, 308–312, 315–321
Theorems, 31–32, 104, 105, 131, 134, 135

Bayes formula, 46–48, 271, 359
Cauchy-Schwarz inequality, 131
central limit, 90, 208, 210–215
confidence interval for contrasts, 408

LSE’s (MLE’s), 383
predictor, 390, 391
quantiles, 432

confidence regions and testing hypotheses,
361

continuity, 206
convergence in distribution, 203, 206
convergence in probability, 204, 206
convergence of MLE, 258, 259
correlation coefficient, 134
Cramér-Rao inequality, 263
decision-theoretic approach to estimation,

271, 274
decision-theoretic approach to testing

hypotheses, 355
decomposition of total variability, 373–374
distribution of LSE’s (MLE’s), 375
distribution of sums of squares, 379, 393–395

factorization, 151–152, 154
Fisher-Neymann factorization, 256
fundamental principle of counting, 60,

61–62
further limit, 222–226
independence of sample mean and sample

variance in a normal distribution,
163, 189

independent events, 53
invariance property of MLE, 253, 254
LSE’s, 366
likelihood ratio tests, 343–344
linear regression model, 366, 370, 373, 375,

379, 383, 384, 390, 391
linear transformations, 187, 189
maximum likelihood estimates, 253, 254,

258–259
minimax decision function, 355–356
minimax estimate, 274
mode, 104, 105
multicomparison method in analysis of

variance, 407
multinomial distribution, 141
multiplicative, 44
Neyman-Pearson fundamental lemma,

302–303
nonparametric curve estimation, 443–444
nonparametric inference, 432
nonparametric regression estimation, 445,

446
one-way layout model, 399, 401
order statistics, 194, 196
probability inequalities, 77, 78
probability integral transform, 192
rank sum test, 437
Rao-Blackwell and Lehmann-Scheffé, 265
reproductive property of distributions,

160–161, 164
sign test, 434
Slutsky, 223
testing hypotheses in linear regression

model, 384–385
total probability, 45–46
transforming multiple random variables, 174,

182–183
transforming single random variable, 169,

170, 171
two-sample sign test, 434
two-way layout, 414, 418
uniformly most powerful test for composite

hypotheses, 308–309, 311
variance of LSE’s, 371
variance of sums of r.v.’s, 135, 139
WLLN, 208
Wilcoxon-Mann-Whitney test, 438
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Total probability theorem, 45–46
Transformation of random variables,

168–201
examples, 168, 170–171, 173, 174–181,

192–193, 196–199
exercises, 171–173, 183–185, 190–191, 193,

199–201
linear, 185–191
order statistics, 193–201
orthogonal, 186
probability integral transform, 192–193
single, 168–173
two or more, 173–185

Triangular probability density function,
176

Two-sample sign test, 433–435
Two-way (classification) layout model, 238,

412–420
examples, 412–413, 419, 420
exercises, 425–427
lemmas and proof, 413–414, 415–418,

420–425
maximum likelihood estimates parameters,

413–414
table, 418
testing hypotheses, 414–420
theorems, 414, 418
with one observation per cell, 412–427

U
Unbiasedness, 229
Uniform (or rectangular) distribution, 94–95,

477
expectation, 94, 477
m.g.f., 94, 479
p.d.f., 94, 477
variance, 94, 477

Uniformly minimum variance unbiased
(UMVU) estimates, 229, 261–270, 278

completeness, 264
Cramér-Rao inequality, 262–264
definition, 261, 262
desirability of, 262
examples, 261–262, 264, 265–266
Rao-Blackwell and Lehmann-Scheffé

theorems, 265
Uniformly most powerful (UMP) tests, 234, 299,

301
exercises, 313–314
for composite hypotheses, 308–312
Neyman-Pearson fundamental lemma and,

306
power for one-sided hypotheses, 310
power for two-sided hypotheses, 312

Upper confidence limit, 231

V
Variance analysis basics, 236–238
Variance analysis models. See Analysis of

variance
Variance of random variables, 71–72

of selected discrete and continuous
distributions, 477, 478

Venn diagram, 9, 13–15

W
Weak law of large numbers (WLLN), 208–210,

224, 225, 277
applications, 209–213
confidence intervals and, 295
example, 212–213
interpretation and most common use, 209
nonparametric inference and, 239
theorem, 208

Weibull distribution, 99
Wilcoxon-Mann-Whitney test, 429, 438

examples, 439–440
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Table of Selected Discrete and Continuous Distributions and Some of their Characteristics

PROBABILITY DENSITY FUNCTIONS IN ONE VARIABLE

Distribution Probability Density Function Mean Variance

Binomial, B(n, p) f (x) =
(

n

x

)
pxqn−x, x = 0, 1, . . . , n; np npq

0 < p < 1, q = 1 − p

(Bernoulli, B(1, p) f (x) = pxq1−x, x = 0, 1 p pq)

Geometric f (x) = pqx−1, x = 1, 2, . . . ;
1
p

q

p2

0 < p < 1, q = 1 − p

Poisson, P(λ) f (x) = e−λ
λx

x!
, x = 0, 1, . . . ; λ > 0 λ λ

Hypergeometric f (x) =

(
m

x

)(
n

r − x

)
(
m+ n

r

) , where
mr

m+ n

mnr(m+ n − r)
(m+ n)2(m+ n − 1)

x = 0, 1, . . . , r

((
m

r

)
= 0, r > m

)
Gamma f (x) = 1

�(α)βα
xα−1 exp

(
− x

β

)
, x > 0; αβ αβ2

α, β > 0

Negative Exponential f (x) = λ exp(−λx), x > 0; λ > 0; or
1
λ

1
λ2

f (x) = 1
μ

e−x/μ, x > 0; μ > 0 μ μ2

Chi-Square f (x) = 1

�
( r

2

)
2r/2

x
r
2 −1 exp

(
− x

2

)
, x > 0; r 2r

r > 0 integer

Normal, N(μ, σ2) f (x) = 1√
2πσ

exp

[
− (x − μ)2

2σ 2

]
, μ σ 2

x ∈ �; μ ∈ �, σ > 0

(Standard Normal, N(0, 1) f (x) = 1√
2π

exp

(
− x2

2

)
, x ∈ � 0 1)

Uniform, U(α, β) f (x) = 1
β − α

, α ≤ x ≤ β;
α + β

2
(α − β)2

12

−∞ < α < β < ∞

(Continued)



PROBABILITY DENSITY FUNCTIONS IN MANY VARIABLES

Distribution Probability Density Function Means Variances

Multinomial f (x1, . . . , xk) = n!
x1!x2! · · · xk!

× np1, . . . , npk np1q1, . . . , npkqk.

p
x1
1 p

x2
2 · · · p

xk

k , xi ≥ 0 integers, qi = 1 − pi, j = 1, . . . , k

x1 + x2 + · · · + xk = n; pj > 0, j = 1,

2, . . . , k, p1 + p2 + · · · + pk = 1

Bivariate Normal f (x1, x2) = 1

2πσ1σ2
√

1 − ρ2
exp

(
− q

2

)
, μ1, μ2 σ 2

1 , σ 2
2

q = 1
1 − ρ2

[(
x1 − μ1

σ1

)2

− 2ρ

(
x1 − μ1

σ1

)

×
(

x2 − μ2

σ2

)
+
(

x2 − μ2

σ2

)2]
,

x1, x2, ∈ �; μ1, μ2 ∈ �, σ1, σ2 > 0, −1 ≤ ρ ≤ 1, ρ = correlation coefficient

k-Variate Normal, N(μ, Σ) f (x) = (2π)−k/2|�|−1/2× μ1, . . . , μk Covariance matrix: Σ

exp

[
− 1

2
(x − μ)′Σ−1(x − μ),

x ∈ �k; μ ∈ �k,Σ : k × k

nonsingular symmetric matrix



Distribution Moment Generating Function

Binomial, B(n, p) M(t) = (pet + q)n, t ∈ �
(Bernoulli, B(1, p) M(t) = pet + q, t ∈ �)

Geometric M(t) = pet

1 − qet
, t < − log q

Poisson, P(λ) M(t) = exp(λet − λ), t ∈ �
Hypergeometric —

Gamma M(t) = 1
(1 − βt)α

, t <
1
β

Negative Exponential M(t) = λ

λ − t
, t < λ; or M(t) = 1

1 − μt
, t <

1
μ

Chi-Square M(t) = 1
(1 − 2t)r/2 , t <

1
2

Normal, N(μ, σ2) M(t) = exp

(
μt + σ 2t2

2

)
, t ∈ �

(Standard Normal, N(0, 1) M(t) = exp

(
t2

2

)
, t ∈ �)

Uniform, U(α, β) M(t) = etβ − etα

t(β − α)
, t ∈ �

Multinomial M(t1, . . . , tk) = (p1et1 + · · · + pketk )n,

t1, . . . , tk ∈ �

Bivariate Normal M(t1, t2) = exp

[
μ1t1 + μ2t2

+ 1
2

(
σ 2

1 t2
1 + 2ρσ1σ2t1t2 + σ 2

2 t2
2

)]
,

t1, t2 ∈ �

k-Variate Normal, N(μ, Σ) M(t) = exp

(
t ′μ + 1

2
t′Σt

)
,

t ∈ �k
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