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Comments

p- 27, paragraph right before the last sentence of 1.5,

“Every permutation ...”

A permutation p can be written as a product of cycles. A cycle (11 1 13 ... 1) can be written as a product

(11 tm) ... (11 13) (11 12)

of transpositions.! Now, once we write p as a product of cycles, let V'(p) denote the number of distinct cycles
of p, possibly including 1-cycles,? and consider a transposition T = ( ). Then

N(tp) = N(p)+1 ifiand belong to the same cycle of p;
P)= 0 N(p)—1 otherwise.

(In fact, in the first case,
T oo trjgr e Js) =01 oo )G oo Js)
increases the number of disjoint cycles by 1, whereas
T oo )G e gs) =000 coi e ] e Js)
decreases the number of disjoint cycles by 1 in the second case.) So, if T; is a transposition, i =1, ...k,

N(r--5p)=N(p)+k mod 2

(by induction on k). Finally, in considering permutations of S,, suppose that p can be written as a product of
transpositions in two different ways, say

p:TlTk
=00,
and let
po=1

Then (it follows from the previous result that)

N(p) =N (ppo) =n+k mod 2
=n+{ mod 2.
Therefore
k=/¢ mod 2,

which means that p is either a product of an even number of transpositions or a product of an odd number of
transpositions, but never both.

1As a matter of fact, there are many ways to write a cycle as a product of transpositions. For example, the 4-cycle (1 3 4 7) can be
written as (17)(1 4)(1 3)oras (4 7)(34)(13)(37)(14).
2For example, concerning the identity permutation of S,, A'(1) = n when considering 1 = (1) - - - (n).



Comments/Errata

p-40,1.12
‘Exercise 1.3" should be ‘Exercise 1.2".

p- 47, P. 2.4.3, last bullet
First, n/d is a positive integer and

(xk) nld _ ()

14
Now, suppose that ¢ is an integer such that (xk ) = 1. Since the second bullet also means that

_ qk/d
=1

=1 nlk,

it suffices to show that

In fact, it follows from

K =1= nlke

= kl = mn for some integer m

n/d|L.

k n
:>n/d]f J4
and ‘
ged (Z’d) =1
p- 63
e E.2.10.6

— Let H be a subgroup of S. First, H = S; if x,y € H. Second, if xy, x’y € H, then x*yxy = x € H,

which implies that xx?y = y € . Finally, if xy € H or x*y € H,
x € H, thatis, x> € H <y € H.

Therefore, whichever H one considers,
e {{1}, (x), (y), (xy), (xP), S5}

- Since K C A4, A4 corresponds to (x).

e last bullet®
Consider H = ¢! (H) and the restriction ¢|p. Since K C H, ker (¢|y) = K by (2.10.2). Therefore, since
¢(H) = H is the image of ¢|p, the first bullet of C. 2.8.13 implies that

[H| = [H]|K].

30n p- 64, its proof is left as an exercise!



p. 67, 11. 2-3 after D,‘ “... [C1Cy], Where ...”
‘W’ should be ‘w’.

p- 69, Proof

‘ Some points on the bijectivity of ¢:

1st, the elements of the image of ¢ correspond bijectively to the nonempty fibres of ¢ as stated on p. 55. 2nd,
not only all such fibres are nonempty, by virtue of the surjectivity hypothesis, but also they are the equivalence
classes for the relation defined by ¢ as stated on pp. 55-6. Furthermore, such fibres are the cosets of N by P.
2.7.15.

Another way to prove that ¢ is bijective:

e @ is surjective.
In fact, consider y € G'. Since ¢ is surjective, there is an element x € G such that y = ¢(x). Therefore
@ !(y) = ¥ is an element of G such that y = ¢ (%).

e ¢ is injective.
In fact,

9 (%) =9 @) = ¢x) = 9y)
=F=7
by P. 2.5.8.



Comments/Errata

p-82,1.9
IF; should be IF;

p. 85,112
{cw} should be cw.

p. 89, P. 3.4.15(a)
Concerning the if part, consider w € Span S. Now apply L. 3.4.5.

p- 90, T. 3.4.18, Proof, (SA)X = S(AX)

In fact,
X1 .
Xn =1
n
= Zl $ (Ajx))
]:

since, by abuse of notation, S : F* — V is linear by (3.4.2).4

p- 98, C. 3.7.7, 1st bullet

Suppose V has an infinite basis B. Therefore, on the one hand, B contains a finite subset S that spans V (L.
3.7.6), which is independent due to the independence of B. On the other hand, consider S, w and S’ are as in P.
3.4.15(b) with w € B. Then, since w € Span S, §’ is not independent, which is a contradiction since S’ is a finite
subset of B, which is independet.

4The notation for such a linear transformation appears in the sentence right after (3.5.3).



Comments/Errata

p.104,1.-1
(4.2.3) is consistent with possible repetitions of images.”

p. 106, P. 4.2.13, Proof

Once bases are fixed for the domain and codomain of T, the conclusion of part (a) is a consequence of the

uniqueness of A’. In fact, the coefficients of (4.2.7) are unique since C is independent.

p- 107, 1st three sentences after (4.2.15)

The restriction of Q to U’, the column space of A’, is an isomorphism from U’ to U, the column space of A,

since:
1. Qis linear;
2. Qisinvertible;

3. Q(A'X") = A(PX’) for each X’ € F".

p.108,1. -7
K = 0 should be K = {0}.

pp- 112-13, content of the ‘o’
For a complete and general proof, see the Perron-Frobenius Theorem.

Exercises, pp. 125-131

2.4. (A proof without using row and column operations!)
Concerning (4.2.9), replace T with A and take B and C as in T. 4.2.10(a). Furthermore, if

B = {Pl,...,Pn} and C:{Ql,...,Qm},

consider the matrices

P=[P ... P,] and Q=[Q1 ... Qu].

Therefore the diagram

commutes.

5See p- 86, 2nd paragraph of 3.4.
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Comments

p.331,1.-3
Let I be an ideal and a a unit (of R). Then the 2nd bullet of D. 11.3.13 implies that 1 = a—'a € I and, for each
re€ R,r =rl € I. Therefore R C I.

p- 334, last sentence before L. 11.3.24

(Here, R[x|f denotes the multiples of f in R[x] with R = Z,Q (11.3.15).) On the one hand, since ker®' C
ker ® = Qlx]f (E. 11.3.23), if ¢ € Ker®/, then ¢ € Z[x] and f divides g in Q[x]. Thus f divides g in Z[x] (L.
11.3.24). Hence ker @' C Z|[x]f. On the other hand, since Z[x]f C Q[x|f = ker®, if ¢ € Z[x|f, then ¢ € Z|[x]
and ®(g) = 0. Hence g € ker ®'. Therefore ker ' = Z|x|f.

p- 336, last sentence
Since ¢ is surjective by hypothesis and 7t is surjective by T. 2.12.2, p. 66, it follows that f = /g is surjective.

Hence f is an isomorphism.

p- 337

E. 11.4.4(b)
Here, 7 is used in place of ¢ of the Correspondence Theorem. ker 7 = (t2 —1) follows from T. 11.4.1.
I = (f) follows from P. 11.3.22.

1.-9
Since 71 is surjective and ker 77 = I,if I = R, then R = {0}.

p. 338, E. 11.4.5

e Z[x] — Z][i] can be thought of as being the extension ® of ¢ : Z — Z]i] as considered in the Substitution
Principle. (As a matter of fact, here, ¢ is the inclusion map by P. 11.3.10.) Notice that K = ker ® is an
ideal as can be seen on page 331. Furthermore, K = (f). In fact, on the one hand, i?> + 1 = 0 shows that
f € K; hence (f) C K. On the other hand, if i € K, then h(i) = 0, which implies that h(—i) = 0 by the
Complex Conjugate Root Theorem. Thus x + i divide h in C[x]. Then

(x+i)(x—i) =x*+1
=f
divides h in Z[x]. So h € (f). Therefore K C (f).

e Z[x] — Z can be thought of as being the extension ® of ¢ : Z — Z as considered in the Substitution
Principle. (As a matter of fact, here, ¢ is the identity map by P. 11.3.10.) Notice that K = ker ® is an ideal
as can be seen on page 331. Furthermore, K = (g). In fact, on the one hand, x — 2 ~» 0 shows that g € K;
hence (g¢) C K. On the other hand, if h € K, then h(2) = 0. Thus x — 2 divides h in Z[x]. So h € (g).
Therefore K C (g).

p. 340, Proof of the proposition, (a), last sentence

B=ay1a" 4 am +ag

=by_a" - by + by

implies that (a, 1 —b,_1) x" 1+ -+ + (a1 — by) x + ag — by belongs to (f)!




p- 341, P. 11.6.1(d)
Note that (1,1) is neither in R x {0} norin {0} x R’.

p. 342, E. 11.6.3(b)
If f(x,0) =0and f(0,y) = 0, it follows from C. 11.3.9 that both y — 0 and x — 0 divide f(x,y) in C[x, y|.

p-343,1..6,7
See E. 7.2.

p- 343, Mapping Property
Note that, if ¢ denotes the embedding of R into F, then

p=Dog.
Now, @ is a homomorphism since

@(0/1) = @(¢(0))
#(0)

a c ad + bc
©Q+u)‘¢< b >
= ¢(ad + bc)fp(bd)_1
= (p(a)p(d) + 9(b)p(c)) p(b) " p(d)
= ¢(@)p(b) ' + p(c)p(d) !

—o(7)+o(5) and

p-345,1.7
For the use of ‘<’ in place of ‘C’, see p. 527.

Exercises, pp. 354-358

7.2. Consider p(x),q(x) € R[x] — {0}. Let ageg p and byeg 4 be the leading coefficients of p(x) and g(x), respec-
tively. Since R is a domain, ageg pbaegq is the leading coefficient of p(x)q(x). In particular, p(x)g(x) # 0
and

deg(pg) = degp + degq.
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Errata

p-421,16
r should be k.

Comments

p. 414, Proof, (a)
If Aisann x n matrix and L is an m X n matrix with LA = I,,;, then m = n.

p-421,11. 10-12, “(b) (d) ... O”
Note that, since A’ = Q" 1AP,if X’ = P~1Xand Y/ = Q'Y, then
AX =Y < (Q*Ap) plx=Qly
s AX =Y.
p- 421, C. 14.4.10
See (14.2.9) (with R = Z), (14.4.7) and the sentence right before P. 14.2.6.

p- 421, 1st sentence of the Proof of T. 14.4.11
As far as the existence of B is concerned, consider the very end of the proof.




