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EX.20, p.25

On the one hand, note that each vector u € U can be written as u = xuy + yup with uy = (1,1,0,0), up =
(0,0,1,1) and x,y € F. Then, since u; and u; are linearly independent (because none of them is a scalar
multiple of the other), {u1,u;} is a basis of U.l On the other hand, suppose that w; = (0,1,0,0) and wp, =
(0,0,1,0) spans W.2 So wy and w are linearly independent since none of them is a scalar multiple of the other.
Now consider B = {uj,up, wy,wy}. Therefore, on the one hand, the equality (x,x,y,y) = (0,4,b,0) implies
thatx =y =a =0 =0and thus UNW = {(0,0,0,0)}. On the other hand, by considering the matrix whose
columns are uq, up, w1 and wy written as column vectors, one has

100 0 1000
1010 010 0
det o 1 o 1 [=—detf g1 ¢ 1
010 0 1010
100 0
010 0
det| 1 9 1 o
010 1

—1

and thus uy, up, w1 and w; are linearly independent, that is, B is a basis of U + W. Hence dim(U + W) =4 =
dimF*.

EX.24, p.26
On the one hand, if f € U N U,, then
flx) = f(=x)
=—f(x)
for each x € R and thus f = 0. On the other hand, if f € RR is arbitrary, then
x)+ f(—x xX)—f(—x
) = 1) 2f( ), f) 2f( )

for each x € R with the first summand in U, and the second summand in U,.

1See CHAPTER 2.
21dem.



EX.1, p.37
On the one hand,
span(vy — 02, vy — U3, 03 — U4,04) C span(vy, 2, U3, Vy)
since
v1—0p=1-v1—1-04+0-v3+0-04
vp—v3=0-v1+1-0p—1-v3+0-04
v3—04=0-01+0-0p4+1-0v3—1-04
04 =0-014+0-024+0-v3+1-04.
On the other hand,
span(vy,v2,v3,v4) C span(vq — v, Uy — U3,V3 — U4, V4)
since
1 :1'(01—02)+1-(02—U3)+1 (U3—U4)+1‘U4
Vo :0~(vl—02)+1'(02—v3)+1 (v3 —v4) + 104
v3=0-(v1—0v2)+0-(vg—0v3)+1-(v3—vg)+1 04
v4=0-(v1—v2)+0:-(vp—v3)+0-(v3—vy4)+ 104
Therefore
span(vy — v2, Uy — V3,03 — U4, V) = span(vy, U2, U3, Vy)
=V.
EX.6, p.37
Considera; € F,i = 1,2,3,4, such that
a (?)1 — 7)2) +ap (7)2 — Z)g) + a3 ('03 - 04) + aqvy = 0. (1)
So
a1v1 + (a2 —a1) v + (a3 — a2) v3 + (a4 — a3) vg = 0.
Thus, due to the fact that vq, v, v3, v4 is linearly independent,
ap =0,
a —ayp =0,
az —ay =0,
ay—az = 0.
Then
a;,=0,1=1,2,3,4. (2)
Therefore, since (1) == (2), v1 — v2, V2 — U3, U3 — V4, 74 is linearly independent.
EX.7, p.37
Considera; € F,i =1,2,3,...,m, such that
a1 (5v1 — 4vp) + apvp + azvz + - - - + Ay = 0. (3)

So
5a1v1 + (ay — 4a1) vy + azv3 + - - - + ay vy = 0.



Thus, due to the fact that v, vy, ..., vy, is linearly independent,

5611 =0,

ap — 4&11 = 0,
a3 =0,

Ay = O.

Then
a;=0,1=1,2,3,...,m.

Therefore, since (3) = (4), 5v1 — 4vy, vy, U3, . . ., Uy is linearly independent.

(4)

EX.6,p.43
See EX.1 and EX.6, p.37.

EX.8, p.43

First, let us show that the list of m + n vectors spans V. In order to do that, consider v € V. Since V. =U+ W,

there exist u € U and w € W for which
v=u-+w.

On the other hand, the bases of U and W give us scalars ay, ..., &, B1, ..., Bn in F such that
u=woquy+ - +auy and w=Biw;+ -+ Brwy.

Substituting (6) in (5), it folllows that v is a linear combination of the m + n vectors.
Now, let us show that the list of m + n vectors is linearly independent. So, consider

aqpuy + -ty + Brwy + - 4 Brwy =0

®)

(6)

7)

with, as before, scalars in F. Denote u and w as in (6). Then 0 = u + w and, due to the fact that the sum is

direct,?
u=w=020.

8)

Therefore, substituting (8) in (6) and observing that the list of m vectors in U and the list of n vectors in W are

both linearly independent, all of the m + n scalars in (7) must be equal to zero.

EX.16, p.49
It is a direct consequence of the following generalization of EX. 8, p.43:

Bl‘ = {uil,...,uini}

isabasisof U;,i =1,...,m, then

If

is a basis of U = & U;.

In fact, firstly, let u € U. Thenu = }' ; u; with u; € U;, i = 1,...,m. So, since u; is a linear combination of
the elements of B;, i = 1,...,m, BB clearly spans U. Now, it remains to show that the elements of B are linearly

independent. Hence we first write

Cllull + T _'_Clnlulnl + T +leum1 + e +Cm"mum"m = 0

with ¢; u;, oG, i, € U; and ¢i; € F,i=1,...,mandj = 1,...,n;. Then ¢;u; Gy Wy, = 0,

i=1,...,m,by 1.44, p.23. Therefore, since B, is a basis for U;, i = 1,...,m, Ci, = 0 for every i and j.

3See 1.44, p.23.



EX.3, p.57
Let ¢, denote the k-th vector of the standard basis of F". Substitute

T (ex) = (At  Amp)
in

T (i xkek> = i ka (ek) .
k=1 k=1

EX.4, p.57
Consider ay, ..., a, € F such that

So

by the linearity of T and 3.11. Now use the hypothesis that Tvy, ..., Tvy, is linearly independent.

EX.6, p. 67
dim R®> = dimnull T 4 dim range T by 3.22, p. 63, which implies that

5=2(dimrangeT),

contradicting the fact that dimrange T is a non-negative integer.

EX.9, p.67
Consider a4, ...,a,; € F such that

n
2T (o)) =0.
=1
Thus

T <i LljUj) = T(O)
j=1

by the linearity of T and 3.11, p. 57. Then, since T is injective,
n
2 a]-v]- =0.
j=1

Now use the hypothesis that v, ..., v, is linearly independent.

EX.10, p. 68
Let w € range T. Thus there exist ay, ..., a, € F such that

n
w=T (Z a]-v]-)
=1

n

= aiT (v;)

=1



by the linearity of T.

EX.14, p. 68
dim R® = dim U + dim range T by 3.22, p. 63, which implies that

dimrangeT =8 — 3
=b5.

Therefore range T = R, which implies that T is surjective.

Comment, p. 83, 1.-1
We can use 3.59 to prove 3.61 provided that both F”"" and £(V, W) are finite-dimensional. The former satisfies
this condition by 3.40, p. 74. Concerning the latter, use 3.22, p. 63, with M ~! in place of T. Therefore

range M1 = L(V, W)

is finite-dimensional.

Erratum, p. 85, 11.1-9
M (vy) should be M (Tvy), four times.

Comment, p.97, 3.90
Note that Tor = T.

V —" V/(nullT)

Comment, p. 98, 3.91, Proof, (b)
null T = 0 is an abuse of notation. It means null T = {null T}.

EX. 15, p.100
The condition ¢ # 0 implies that range ¢ = F, which is a one-dimensional space. Now use 3.91(d), p. 98.

Erratum, p.102, 3.98, Proof, 1.-6
F should be F.

Comments, p.112, 3.117, Proof

o 1st paragraph, 2nd sentence
Based on (the Proof of) 2.31, pp. 40-41, let

Tvq,...,To., v <mn,
be a basis of span(Tuvy, ..., Tv,). Thus
span(Tvy, ..., Tv,) = span(Tvq,..., Toy,)

and, if
w=aTv;+ - -+a7To,

with ay,...,a, € F, then, by 3.62, p. 84,

Now, clearly,
span(M(Tvy),..., M(Tv;)) = span(M(Tv1),..., M(Toy))
and
span(Toy,...,To,) 3w — M(w) € F

is an isomorphism.



e 2nd paragraph, 1st sentence
See EX. 10, p. 68.

EX.32, p.115

* (a) = (0) (and (b))
By 3.69,* T is injective. So, by 3.16,°> null T = {0}. Then, by 3.22,° dimrange T = n. Thus, by 3.117 and
3.40,7 the column rank of M(T) = dimF"!. Therefore, by 3.115 and 3.64,8 M(Tuy),..., M(Tuy) is a
basis of F*1.

. () = (b)
Use 2.42.°

o (b)=(a)
By 3.115 and 3.117,'° dimrange T = n. So, by 3.22 and 3.16,!! T is injective. Then, by 3.69,!% T is
invertible.

e ()= (e) = (d) = (a)
It follows from:
* T is invertible <= T’ is invertible;!3
*M(T') = (M(T))! by 3.114;14
* (a) = (c) = (b) = (a) with T’ in the role of T and M(T") in the role of M(T).

4See p. 87.
5See p. 61.
6See p. 63.
7See p.112 and p. 74.
8See p.111 and p. 85.
%See p. 46.
105ee pp. 111-112.
1See p. 63 and p. 61.
12Gee p. 87.
13See 3.108 and 3.110, pp. 107-108.
14See p. 110.



Erratum, p.123, last paragraph, 1st sentence
“..., uses analysis its proof.” should be “..., uses analysis in its proof.”.

Erratum, p.125, 4.14, Proof, 3rd paragraph, 3rd sentence
“...50 we need only show that...” should be “...So we need only to show that...”.

EX.2 and EX.3, p.129

The answer to both questions is “no”!*

15Consider, for example, the sum of p(x) = x? + x and g(x) = —x? + 1.



Erratum, p.134, 5.6
F should be F.

EX.2, p.138
v €nullS = S(v) =0
= T(S(v)) = T(0)
= TS(v) =

EX.3, p.139

v € range S = Jw € V such that v = S(w)
= T(v) = T(S(w))
= T(v) = TS(w)
= T(v) = ST(w)
= T(v) = S(T(w))
= T(v) = S(u) withu = T(w)
— Ju € V such that T(v) = S(u)
= T(v) € rangeS.

EX.4, p.139

m m
ve) U= 0v=) wwithuy;el,i=1,...,m
i—1 i=1

EX.33, p.142
First, since range T is invariant under T,16 we can consider T/ (range T).17 So,forv eV,

(T/(rangeT))(v+rangeT) = T(v) +range T
=rangeT

since T(v) € range T.

Comment, p. 145, 5.21, Proof, penultimate sentence
If the m operators are injective, the image of a nonzero vector under T — A;I is obtained for each index j.

Therefore
(1, (T = A1) )o # 0.

16See 5.3(d), p. 132.
7See 5.14, p.137.



Comment, p.149, Proof 1,1.7
To be more specific, “... (see 3.69) ..." should be ...(see 5.6)...".18

Comment, p. 150, Proof 2, sentence that begins with “Unraveling’
Consider a5, . .0, €F,j=2,...,n, such that
TU]‘ +U = (T/U) (U] + U)
=m(p+U)+ - +a;(v;+U)
= ((azvz)—‘r U) +--+ ((Cl]'()])+ U)
= (av2 +---+ajv;)+ U,
where the first equality comes from 5.14, p. 137, and the last two equalities come from 3.86, p. 96.

Thus, for each j € {2,...,n}, since
ij — (a2vz + -+ aj?)]') € U,lg

there exists a; € F such that
T?Jj =a101 + a0 + - -+ a;v;.

Comment - Erratum, p. 151

o 5th paragraph (“To prove the other direction, ...”)

Tv; = 0= nullT # {0}
= T is not injective (by 3.16, p. 61)
= T is not invertible (by 3.69, p. 87),

which contradicts the assumption that T is invertible.

o 6th paragraph: (“Let1 <j <mn,..”)
“... T restricted to dimspan(vy, ..., ;) ...” should be “... T restricted to span(vy, ..., ;) ...".

Comment, p.152, 5.32, Proof, last sentence
Consider 5.6, p.134.

EX.3, p.153
Suppose that T — I # 0. So there is a nonzero vector v € V such that
w:=(T—-1)(v)
#0.

Then, by 5.20, p. 144,

since T? = I. Therefore Tw = —w, which implies that —1 is an eigenvalue of T!

EX.7, p.153
By 5.20, p. 144,

T? — 91 = (T +3I)(T — 3I)
= (T —3I)(T +3I).

18See p. 134.
19See 3.85, p. 95.
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Therefore, by 5.6, p. 134,

9 is an eigenvalue of T? <= T? — 91 is not injective
<= (T —3I) or (T + 3I) is not injective

<= 3 or — 3isan eigenvalue of T.

EX.14, p.154
Define T € L(F?) by T(x,y) = (y, x). Obviously, T?> = I and the matrix of T with respect to the standard basis

i M(T):((l) é)

Comment, p. 155, sentence immediately preceding 5.37
See 5.6, p.134, and 3.16, p. 61.

Erratum, p. 156, 5.38, Proof, 1st sentence
‘E(A,T)" should be “E(A;,T)".

EX. 6, p. 160
Consider 2.39, p.45, and m = dimV in 5.10, p.136. Now let Af be an eigenvalue of S with Sv; = /\gvi,
i=1,...,dim V. Therefore, for each basis vector v;,

STv; = S(Tv;)
= 5(Aivi)
= A;Sv;
= AiAv;
= AiAjv;
= A/To;
= T(Aji)
= T(Sv;)
= TSv;.

EX.8, p. 160
Suppose T — 21 and T — 61 are not invertible. Thus 2 and 6 are eigenvalues of T by 5.6, p.134. So, since
dimE(8,T) = 4, dimF® = 5 and

dimE(2, T) + dim E(6, T) + dim E(8, T) < dim F°

by 5.38, p. 156, it follows that
E(2,T) ={0}orE(6,T) = {0},

which is a contradiction.0

EX.9, p.161
0 is in both eigenspaces and
Tv = Av <= T YTo) = T {(Av)
—=o0=AT 1
= T lo=7A"o

20See the sentence immediately preceding 5.37, p. 155.

11



EX.13 and EX. 14, p.176
Let V be an arbitrary inner product space. Consider u,v € V are nonzero. Thus, by the Cauchy-Schwarz
Inequality,?!

=[lulllol} < (u,0) < ful[ ][]
Then, since ||u|| and ||v|| are positive,

< Swo) g
= lull{lo]] —

Now let 6 = 0(u,v) be the unique number in [0, 7] (measured in radians) such that

cost = M
[l [ ]|
1
(wo) DS
IEINE |
0 1 7r
6(u,v)
-1
Therefore (u,v) = |[ul| [|v]| cos§ and 6 = arccos H,fﬁ’ﬁi,||~

EX.16, p.176
Use the Parallelogram Equality.??

EX.17, p. 177
Ifx < 0and y < 0, then ||(x,y)|| < 0. However, by 6.8 and 6.3,2> a norm assigns to any v € V a non-negative
real number ||v]|.

EX.30, p.179
See 3.69, p. 87.

EX.2, p.189
Consider
m
[ol]> =Y (v, ¢5) 2
j=1
and
m
u=1Yy (v,¢)e
j=1

21Cf.6.15, p. 172.
2Cf.p.174.
23See pp. 168 and 166.

12



Thus

=Y I(o.e)

|[o]|?
= (v,0).
So (u —v,v) = 0. Then, by 6.13,2*
[[ul[* = [|u = o>+ |[o]|*.

Therefore, since ||u||? = ||v||? by 6.25,%
lu—o|? =0,

that is u = v, which implies that
v € span(ey, ..., em).

For the converse, since e, . . ., ey, is orthonormal, it is also linearly independent in U = span(ey, ..., ey). Then

e1,...,ey is an orthonormal basis of U. Therefore, if v € U,
2 ! 2
o> =) [(v, )]
j=1

by 6.30, p.182.

Comments, pp.193-194

Concerning the example (where U is a line or a plane in R?), since U is not necessarily a subspace of V by 6.45,

it is not necessary for U to contain the zero vector. Similarly, that is why
unu+ o {0}

does not necessarily hold for 6.46(d). By the way, the proof of 6.46(d) for U N U+ = @ is trivial.

EX.1, p.201
On the one hand, from {vy,...,v,} C span(vy,...,vy), it follows that

(span(vy,...,0,))" C {o1,...,0m}"

by 6.46(e), p. 193. On the other hand, consider v € {vy,..., vy }L and let u be a linear combination of vy, . ..

that is, consider ¢y, ..., ¢, € Fsuch thatu = cqv1 + ... + ¢, 0. So

(v,u) =c1(v,v1) + -+ + (v, V)
— 04 4T -0
=0.

Then v € (span(vy,...,vy,))". Therefore

{v1,...,0m}" C (span(v1,...,0m))".

24See p. 170.
2See p. 180.

13



EX.4, p.201
Forv, = (1,2,3,—4) and v, = (—5,4,3,2), consider

Uy =0 and Up = Uy — Pspan(vl)(UZ)

T
]| [Tz ]

is an orthonormal basis of U. On the other hand, since

as in example 6.54, p.196. So

Ut = {v;, 00} "
by EX.1, p. 201, and dim ut=2 by 6.50, p. 195, if wq, wy is linearly independent with
(w;, vj) =0,i,j€{1,2},
then {w, w,} is a basis of Ut.Soletw = (a,b,c,d) be a vector in R* for which

<w,vj> =0,j=1,2.

Then, since
a+2b+3c—4d =0
—5a+4+4b+3c+2d=0
and
a = 15¢ — 14d
{b = — 9 + 9

are equivalent systems,

w = (15c — 14d, —9c +9d, ¢, d)
=¢(15,-9,1,0) +d(—14,9,0,1)

for all real numbers ¢ and d. Therefore, if

w; = (15,-9,1,0) and wp = (—14,9,0,1) — Pepan(w,)(—14,9,0,1),

T T
s || []wal|

is an orthonormal basis of U-.

14



Comment, p. 204
Consider

Y (x,w).

So (—,w) € L(W,F). Then

¢=(—,w)oT e L(V,F). )
On the other hand, by 6.42,26 let u be the vector in V such that

Therefore, denoting u by T*w, T* is well-defined and, via (9) and (10),

(To,w) = (v, T"w).

Comment, p. 213, 7.21
Since T — Al is normal, another Proof comes from the small box in the bottom left corner of p.212. In fact, note
that

null (T — AI) = null (T* — AI).

EX.2, p.214
Firstly, consider the following result

If T is invertible, then T* is invertible

and
()= (1)

In fact, by 7.6, items (d) and (e), p. 206, if

then

Therefore, by 5.6, p. 134, and by 7.6, items (a), (b) and (c), p. 206,

A is an eigenvalue of T <= T — Al is not invertible
<= (T — Al)* = T* — Al is not invertible

<= A is an eigenvalue of T*.

EX.4, p.214
It is a direct consequence of 7.7, p. 207.

Comments, p. 220, Proof

26See p. 188.

15



:
In fact, since V # {0},

n=dmV
> 1.

Therefore ag + ajx + - - - + a,x" is a nonconstant polynomial.

:
In fact, if there is no (T — A;I) factor, then M > 0 and the invertible operator

Cﬁ (T2 + b]'T—F C]'I)

is the zero vector at v # 0, which is a violation of 3.69, p. 87.

Comment, p. 222, Proof, (c) = (a)
Suppose dim V' = 1 and let 3 be the orthonormal basis mentioned in the 1st paragraph. Then, since M(T, B) €
R is diagonal,

M(T*,B) = M(T, B)

by 7.10, p. 208. Furthermore, from the fact that

M(—-,B) : L(V) — R
S —  M(S,B)

is an isomorphism,?” it follows that T* = T.

EX.6, p.223
Let T be a normal operator on a complex inner product space and, firstly, suppose that

T =T.
Furthermore, consider that A is an eigenvalue of T. Then, by 7.21, p.213, A is an eigenvalue of T and
E(A,T) =E(A,TY)
—E(LT).
So, by the Complex Spectral Theorem, p.218, T is diagonalizable. Then, by 5.41(d), p.157, A = A, that is,

A€eR.

THE PREVIOUS REASONING USES THE NORMALITY
HYPOTHESIS. A MORE STRAIGHTFORWARD PROOF
FOLLOWS FROM 7.13, P. 210.

Now, for the converse, suppose that
Ais an eigenvalue of T = A € R.
Hence, by the Complex Spectral Theorem, there exists an orthonormal basis B such that
D = M(T,B)

is diagonal (with its (real) eigenvalues lying on the main diagonal). Then, by 7.10, p. 208,

M(T*,B) =D'

:D,

27Cf. p. 83.

16



which implies that
T =T.

EX.13, p. 224
Consider the following modifications in the Proof of page 222:

o In the 1st paragraph, right before the last sentence, insert the sentence: ‘ Then T is normal. [?®

o In the 2nd paragraph, replace the word with the word ;
o In the 3rd paragraph, replace:

— the word with the word , twice;

— the result with the result ;

— the result with the result .

Comment, p. 226, Proof, (b) = (c)
Let B = {ey,...,en}. Then, since M (R, B) € R™" is diagonal,?

M(R*,B) = M(R, B)
by 7.10, p. 208. Furthermore, from the fact that

M(-,B) : L(V) — P
S — M(S,B)

is an isomorphism,30 it follows that R* = R, that is, R is self-adjoint.
Now, the positivity of R follows from the fact that

(Rej,ej) = /Aileire))

is nonnegative for each indices i, j.

EX.4, p.231
Firstly, T*T and TT* are self-adjoint operators since, by 7.6, (c) and (e
(T°T)" = T* (T*)*
=T*T

)'31

and

(IT") = (1) T

=TT".
Now, for v € V and w € W, the positivity follows from
((T*T)v,v) = (T*(Tv),v)
= (Tv, Tv)
>0
and
(TT*)w,w) = (T (T*"w) ,w)
= (T*w, T*w)
>0

2Every self-adjoint operator is normal!

PFor each j € {1,...,n}, the diagonal entry \/A; is the square root of a nonnegative number. Now see the last paragraph of p. 225.
30Cf. p. 83.

31See p. 206.
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EX.10, p. 232
By 7.42, p.229, (a) <= (g). Then one can replace S by 5* in (a), (b), (c) and (d) of 7.42.

Comment, p. 233
Concerning the sentence preceding 7.45, see EX. 4, p. 231.

Comment, p. 236, 7.50, Solution

e 1st sentence

< (Z1/ZZI z3, Z4) ’ T*(ZU1, wy, w3, w4) > = <T(21/ZZ/ 3, 24) ’ (wlr Wy, w3, w4) >
= < (O/ 3Z1/ 222/ *324) ’ (wll wp, w3, w4) >
= 3z1Wy + 2zow3 — 3z4Wy

= < (erZZI Z3, 24) ’ (3er 2ws, 0, *3W4)>

|

T* (w1, wp, w3, wy) = (3wy, 2w3,0, —3wy)

{

T*T(z1,22,23,24) = T*(0,321,225, —324)
= (921,42,0,924) .
e 2nd sentence
On the one hand, v T*T denotes the unique positive square root of the (self-adjoint) positive operator
T*T.32 On the other hand, the operator v/ T*T presented in the solution is (self-adjoint)>® positive since
<\/ T*T(Zl, 22,23, Z4) , (Zl, 22,23, 24) > = < (321, 2Z7_, 0, 324) , (Z], Z9,23, 24) >

= 32121 + 22275 + 32424

=3 |z1)* + 2 |zaf” + 3zaf

> 0.

Furthermore

(ﬁ\/ﬁ) (z1,22,23,24) = \/W(F(Zl,22,23,24)>

T*T (321, 22,0, 324)
=(3(321),2(222),0,3(324))
T* T(le 22,23, 24)

Comment, p. 238, 7.52, Proof
If B={ey,...,en}, then

2
(M (\/T*T, B) ) = M(T*T, B)
2
since (\/ T* T) = T*T. Therefore, for each index j,
vV T*Te]- =wjej = 06]2 = )L]

- DC]' = ,/)\]'.
32See p. 233.

331f B is the standard basis, M (\/ T*T, B) is diagonal with real entries!
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EX.1, p.238
In the exercise,

So, on the one hand,

(T*T) v = T*(To)
= T"((o,u)x)
= (v,u)T*x
= (v, u)(x,x)u

= |lx| (0, uju.

(11)

(12)

(13)
(14)
(15)
(16)
17)

On the other hand, v/'T*T denotes the unique positive square root of the (self-adjoint) positive operator T*T.3*

Furthermore, the operator v/T*T presented in the exercise is self-adjoint,® positive (since

(VT*To,v) = <M<v,u>u,v>

ul
—Mvu u,v
= g 000
il o
- ‘M|||<’ >|

v

for each v € V) and a root of T*T (since, for eachv € V,

(\/W)Zv = VTT(VTTo)

o

X

— |||”I| (v,u)VT*Tu
xll 1]

= —(v,u)+—(u,u)u
al] ¢ a0

2

X

— 11 )P

=(T"T)v

by (17)).
34Gee p. 233.

35Use (11) and (12)
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EX.3, p.239
By 7.45, p. 233, there exists an isometry X € £(V) such that

where (19) holds by 7.6(c).3¢ So

(18)
(19)

where the first equality holds by 7.6(c), the second equality holds by (19) (as stated above), the third equality
holds by 7.6(e),*” and the last equality holds because each positive operator is self-adjoint by definition. Now

use S to denote X*.

EX.17, p. 240
(@)

n
T*w = Zl si(w, fi)ej
]:

since, for each j € {1,...,n}, s; is an eigenvalue of /T*T, which is self-adjoint.3®

(b)
(T*T)v = T*(To)
= T* (Z Sl'(Z), ei>fi>
i=1
n
=) si(v,e)T*f;
i=1
n
=) si(v,e)sie;
i=1
n
=) s7(v, e;)e;.
i=1
36See p. 206.
%See p. 206.

38Cf.7.13, p. 210.
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(c) Consider B = {eq,...,e,}. Then

Zeros

M(T*T,B) =

=N

Zeros S

by (b). Now use 7.52, p.238.
(d) Firstly, note that, for each j € {1,...,n}, sj # 0if T~ exists. In fact, by 3.43, p.75,if B = {ey,...,es} and

B ={f1,..., fu}, then
M(T7Y,B,B) M(T,B,B) = M(T'T,B)
= M(I,B)

does not hold if some diagonal entry of the matrix M (T, B, B') shown on page 237, last line, is zero.
Now, consider the operator ‘T~!" presented in the exercise. Then

(T*lT) v =T Y(To)

_y sj<v,ej>7<ﬁ'sfj>ej
j=1 j

= i@' ¢j)ej
j=1

and

Therefore T 1T =Tand TT" 1 = 1.
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Comment, p. 247, Proof, 2nd paragraph
By 5.20, p. 144, concerning the operator

(T =MD (T = AD)" -+ (T = Awl)",

the factors (T — A1 )k, (T — AI)", etc, commute with each other.

Comment, p. 248, Proof
There is some positive integer p such that N¥ = 0. Therefore

null (Ndimv) = null (N7)

=V
by 8.2 and 8.4, pp. 242-3.
EX.4, p.250
Firstly, note that
E(a, T)NG(B,T) = {0}. (20)

In fact, consider v € E(x, T) N G(B, T). So
0=(T-pn4™"y
= (T pN*™Y YT — pl)o
= (a = p)(T - p1)*™"" 1.
Repeated use of these steps eventually give
0= (a~p)mVo,

and since & # B, we must have v = 0. Then (20) holds.
Now consider

G(e, T)NG(B,T) = W.
By 8.21, (b), T|w € L(W). As such, if W # {0}, provided that V is a complex vector space, T|y has at least
one eigenvalue with an associated eigenvector v € W, which contradicts the fact that G(B, T) contains all the
eigenvectors of T corresponding to § but no other eigenvectors (by (20)). Therefore W = {0}.

EX.5, p. 250
Firstly, note that:

e v # ( since

" 1o £0; (21)
o Ty = ( implies that
" =0,j=0,1,2,.... (22)
Now consider
m—1 )
Y 4j1To=0 (23)
j=0

witha]'H €F j=0,1,...,m—1. Then

m—1 . m—1 .
TN Y aigTo | =T" 0= Y 4, T" "Wo=0
j=0 j=0
— T lv=0
—a; =0

22



by (22) and (21). Then (23) becomes

m—1 .
11]'+1 T'v = 0.
=

]

Therefore

m—1 ) m—1 )
T" 2 Y apqTo | =T"20= Y aj 1 T" *Ho=0
j=1 j=1
= 5, T" v =0
—a; =0

by (22) and (21). Continuing with the same reasoning, we also have

43 = =ay =0.

EX.7, p.250
Consider A € F,0 # v € V and NP = 0 for a positive integer p. Therefore

Nv = Av = NPv = APo

= AMov=0
= A =0.

Comment, p. 252, Proof
By 5.20, p. 144,

p(T)T = Tp(T).

Comment, p. 253, Proof, 4th sentence
Firstly, note that G(A;, T) is invariant under T — A;I by (b). Therefore

(T — /\fl)|G(Aj,T) € ,C(G ()\], T)) .
Now, if v € G(A}, T), that is, if
(T— A0V o =0,

then

)dimV

(T=ND o) o= (=AD" o
=0

7

which implies that (T — A;T) | (A7) is nilpotent.
]/

EX.1, p.267
By 8.36, the characteristic polynomial of T belongs to

{(t—3)2(t—5)(t—s),(t—3)(t—5)2(t—8),(t—3)(t—5)(t—8)2}.

Now use 8.37 and the fact that, by commutativity,

(T — 31)3(T — 51)2(T — 81)2 = (T — 51)(T — 81 [(T —30)%(T - 5I)(T — 81)}
= (T —3I)(T - 8I) [(T—SI)(T—SI)Z(T—M)}

= (T—3I)(T - 5I) [(T —3I)(T —5I)(T — 81)2] .
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EX.2, p.267
By 8.36, the characteristic polynomial of T belongs to

{(t—5)”’i(t—6)i Li= 1,...,n—1}.
Now use 8.37 and the fact that, by commutativity,

(T — 51" 1T — 61)"~L = (T — 51)\1(T — 6I)"~(+1) [(T — 51T — 61)1} Ji=1,...,n—1.
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Erratum, p.277, 9.4, Proof, 1. -4
‘Im,,” should be ‘Im A,,".

Comment, p. 279, 9.10, P(oof, 2nd sentence
Consider p(t) = ]m:o ajt! witha; €R,j=0,1,...,m,and u,v € V. Therefore

—~

(p(T)) c(u+iv) = p(T)u+ip(T)o

3

m
_ T i Ti
=, a]TLH—l;)a]TU
]:

—
o

|
=

Oa]- (Tfu + iij)

-.
i

aj (Tc)! (u+ iv)

Il

-
i
=}

p(Tc) (u + iv).

Erratum, p. 284, 9.23, Proof, last sentence
’8.36(a)’ should be ‘8.36(b)".

EX.8, p.285
On the one hand, 5 and 7 are eigenvalues of T¢ by 9.11. On the other hand, the sum of the multiplicities of all
the eigenvalues of T¢ equals 3 by 8.26. So there are only two possibilities:

1. 5 and 7 are the eigenvalues of T¢, one of multiplicity 1 and one of multiplicity 2;
2. 5,7 and another scalar A are the eigenvalues of T¢, each with multiplicity 1.

By 9.16, A € R.

EX.11, p.286

Consider q(t) = #> + bt + c and let p denote the minimal polynomial of T. So, by 8.46, either g = p or there is
s € P(R) such that g = ps.* Therefore, by 8.49,

T has an eigenvalue <= p has a zero

> —4c>0.

Comment, p. 288, penultimate paragraph before B

M(T, (e1,€2)) = ( Z b )

a

¢

Tey = aeq + bey

=ae; + (—b)(—e2),
Te; = —bey + aey

= (—1) (bey +a(—ep))

4

%n this case, p and s are monic polynomials of degree one.
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M, o) = (4 1),

EX.4, p.294
Foru,v,x,y €V,

(Te(u+iv),x +iy) = (Tu+iTv, x +iy)

= (Tu,x) +(Tv,y) + ({Tv, x) — (T, y))i
= (u, Tx) + (o, Ty) + ((v, Tx) — (u, Ty))i
= (u+iv, Tx +iTy)

=

u+iv, Te(x +iy)).
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Comment, 10.10, p. 299
Because the use of Determinants to obtain eigenvalues is established in the next section, 10.B, in order to verify
here that A € {1,2 &+ 3i} is an eigenvalue of T, we may determine a basis (v, ) of null(T — AI) and verify that

3—-A -1 =2
3 2—A =3 O\ = )\U)\.
1 2 —A

For example, consider A = 1. So the reduced row echelon form of

2 -1 =2
31 =3
1 2 -1
1 0 -1
01 O
00 O

is

and
1
o) = 0 .
1
EX.4, p.304
M(T/ (Ull"°/vl’l)) - M(IT/ (Ull /UH)/(Ull /v}’l))
=M(I, (u1, ..., un), (v1,...,00) ) M(T, (01, ...,0n), (u1,...,un)) (by 10.4)
= M(I/ (ul/ /ui’l)/(vll /UH))I
EX.13, p.305

By 10.9, 10.13 and 10.16, we may consider the eigenvalue A of T such that
—48 424+ A =51+ (—40) + 1.

EXERCISES 14-5, p. 305

trace(cT) = trace M(cT)
= trace(cM(T))
= ctrace M(T)
= ctraceT,

where the first and last equalities come from 10.16, the second equality comes from 3.38, and the third equality
is trivial.
trace(ST) = trace M (ST)
= trace(M(S)M(T))
= trace(M(T)M(S))
= trace M (TS)
= trace(TS),

where the first and last equalities come from 10.16, the second and penultimate equalities come from 3.43, and
the third equality comes from 10.14.
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Comment, 10.26, Solution, 3rd paragraph, 1st sentence, p. 310
Here P(j) represents the claim
T"vj = ay - - - ayv; for each j.

So P(1) is valid since T""'vy = ay - - - a,_1v, implies that
T'v1 =ay---a,_1To,
=4aq1 - 0ay-1an01.
Now suppose P(j — 1) holds for a fixed j € {2,...,n}. Therefore
ij—l =aj_1vj = T”z]]-_l = a]-_lT”_lvj
a1 - ﬂnU]'_l = llj_lTnil?J]'
== a;--- ”]’72‘1]' e gny]r71 = Tn_l’(]j
= ay - apvj = T”v]-
= P(j) holds.

Erratum, 10.54, Proof, 1st sentence, p. 326
‘V’ should be ‘R™’.

EX.1, p.330

T is assumed to have no real eigenvalues. So Tc¢ has no real eigenvalues by 9.11. However, by 5.21 and 9.16,
Tc has a pair of complex conjugate eigenvalues. Therefore, by 10.20, det T = det Tc is a product of positive
real numbers, with each number expressed in the form AA where A is a complex eigenvalue of T¢.

EX.8, p.331
Suppose firstly that A4, ..., A, are the eigenvalues of T (or of T¢ if V is a real vector space) with each eigenvalue
repeated according to its multiplicity. So

detT = Ay - A,
v
= det T*

by definition and by exercise 2 in SECTION 7.A.* Therefore

|det T|> = det TdetT

=detTdetT*

=det(TT")

= det (\/ﬁ\/ﬁ)

= det (\/ﬁ) det (\/ﬁ)

- (da(v7T))

where the first equality holds because |z|> = zZ for each complex number z, the third and fifth equalities hold
by 10.44, p. 320, and the fourth equality holds by the remarks made before 10.46, p. 322.

EX.9, p.331
Firstly, in 10.56, p. 327, replace T with T; € L(R"), i = 1,2. Now, by the Triangle Inequality,*!

Ty — Tayl| < [lo(x+y) —o(x) — Tay|| + [Ty — o (x +y) + o (x)]|

405ee pages 307 and 214.
416.18, p.173.
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for x € Qand y € R" such that x +y € Q). So
y=0 [yl

Then, in particular, for each nonzero vector y and all sufficiently small nonzero real number ¢,

o — oo (T = ) (19)]

M Tl
o (Y (T - D)
ﬂ%@0< ] )
- Tl

[yl

Hence (T7 — T2)(y) = 0 for each y # 0. Therefore, along with the fact that every linear transformation maps
the zero vector to the zero vector, Ty — T, = 0.

EX.10, p.331
By 10.56, p.327, T € L(R") is differentiable at x € R" if

T —Tx—-L
fim NI y) =T — Lyl| _ (24)
y=0 [yl
for an operator L € £(R"). Furthermore, by EX.9, p.331, this L := T’(x) is unique. So, since

x,yeR"=|[T(x+y) - Tx - Ty|| =0,

(24) holds and T'(x) = T for each x € R".
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