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Erratum, p.6,1.8
“Lk—1 |xjllyj|" should be ‘¥ |x;]|y;|" or "Ly [xil [yl -

Comment, p. 5, Theo. 1.2.7, Proof, 2nd sentence
See Ex. 8, p. 35.

Comment, pp. 6-7, Theo.1.2.8, Proof
The second inequality holds by Theo.1.2.7 (Holder’s inequality) provided that

((xn +yn)p71> € 1

So consider partial sums (and the last inequality obtained in the Proof of Theo. 1.2.7) instead:
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On the other hand, the inequality that completes the Proof of Theo.1.2.8 is trivially satisfied if
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|xn 4+ yu|P = 0. (2)

n=1

So suppose (2) is not satisfied. Then there is an index M such that
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Therefore, by (1),

for m > M. Now let m — oo.

Erratum, p.7,1.14
P should be ‘Ej".

Comment, p. 11, Ex. 1.3.8, penultimate sentence
Consider t € [0,1]. On the one hand,

8n<t> — 0. 3)



On the other hand,

o gn(t)
Sl =Yg 7 °

depending on the behavior of the sequence (1/ ||gx||) as n — co. However, by (1.7), p. 11, and (3),

1
——— — 00,
[18n]|

Comment, p.12, Theo. 1.3.11, Proof, penultimate sentence
The contradiction is that ||y,||, — 0 but ||y,||; # 0!

Comment, p.13, Theo. 1.3.13, Proof
Since the equivalence of norms is an equivalence relation, if two norms are equivalent to || - ||o, then they are
equivalent to each other.

Comments, p.15, Ex.1.3.19, 1st and 5th sets
Consider that ¢ € S := first set,! 7 := min {(f — ¢)(x) : x € Q} and h € B(g,r). So, for each x € Q,

(h—g)(x) <[(h—g) ()]
<r

<(f -8

I

h(x) < f(x).

Therefore h € S.

Now let x be an arbitrary vector in (2 and consider that # is an arbitrary positive integer. Suppose that g, €
S5 := fifthset? g € C(Q) and ||gn —g|| — 0.3 So (gn —¢)(x) < (f —¢)(x) and (g» — g) (x) — 0. Then
g(x) < f(x). Therefore g € Ss5.*

Comment, p. 16, Theo.1.3.23
Let X be the RHS of the equation. It suffices to show that X is closed. In fact, suppose X is closed. So, on the
one hand, due to the fact that S C X,

cS c X.

On the other hand, if
X ¢ S,

there exists x € X with x ¢ clS. Then x ¢ C for some closed set C containing S. This leads to a contradiction
since there exist x1, x2,... € S C C with x, — x. Therefore x € C by Theo.1.3.21, p. 16.

Comments, p. 17, sentence right before Theo.1.3.31

‘only-if-part’
Since (||xx|) is bounded and |A,| — 0, |A4|||xz]| — 0 by a very well-known result from Analysis on the
Real Line.

‘if-part’
Suppose S is not bounded and 7 is a positive integer. Thus |x,|| > n for some x, € S. Hence ||1x,| > 1

7

which contradicts the convergence (to 0) hypothesis.

IThatis, (f — g)(x) > 0 for each x € Q.
2That is, gu(x) < f(x).

SHence |(gn — £)(x)| — 0.

“Now use Theo.1.3.21, p. 16.



Comment, p.18, Theo. 1.3.33, Proof, 2nd sentence
Suppose d = 0 and consider a positive integer n. Hence there exists x, € X such that ||z — x,|| < %, which
leads to a contradiction. In fact, since E\ X is open, there is an open ball B(z,¢) C E\X.

Comments, pp.18-9, Theo.1.3.34, Proof

‘only-if-part’ B
A sequence in B(0, 1) satisfies the condition

Haq,nel + -4 “N,neNH = |"‘1,n| + -+ ‘“N,n
<1.

Furthermore, by the Bolzano-Weierstrass Theorem, («; , ) has a convergent subsequence, i =1,...,N.

‘if-part’
Note that when the 2nd sentence ends, its verification begins!

Comment, p.21, 1. 11, that is, 2nd series
By the 2nd sentence of Ex.1.4.6, p.20, a, € 12 for each n € N. In particular, a,, = (l"no,k) €125

Comment, p. 22, penultimate sentence
Since max(g 1) |Pu(x) — €*[ — 0, the absolute convergence criterion from Def. 1.4.8 is satistied.

Comment, p. 23, Theo. 1.4.9, Proof, penultimate sentence
(xpk) is the sum of two convergent sequences:

k-1

(x,,k_x,,l):<z(xpm_xm)> and  (xp, Xpy,..) -

j=1

Comment, p. 24, 1st paragraph
A linear isometry is automatically one-to-one. So the requirement for ® to be one-to-one in (a) is a direct
consequence of (b).

Errata, p. 24, 2nd paragraph

e antepenultimate sentence
“Ixn]ly” should be “|[[(xn )]l

e ultimate sentence

“...[(xn)] and [(yn)] ...” should be “... (x,,) and (yy) ...".

Comments, p. 24

e 2nd paragraph, last sentence
Use the fact that
| Ixnll = lynll | < %0 = yall = 0.

o 3rd paragraph, last sentence

lim @ (xx) = [(x4)] <= lim @ (xu) — [(xn)]];

lim Jlim ICxn — x1, %0 — x2,...)] 4

lm  |x, — x|
n,k—co

:0/

because (x,) is a Cauchy sequence.

5See Ex.1.2.6, p.4.



Comment, p. 27, 1st sentence after 2nd [
It suffices to consider that E; is finite dimensional. In fact, let {ey, ..., en} be a basis of E; and assume, without
loss of generality,® that the norm on E; is defined by

x=wmer+ - +anyey = [|x]| = fag] + - 4 fan]

Therefore

ILx] < far| |[Leq] 4 - - - + |an| [ Len |
< af|x]

with « = max {||Le|| : i=1,...,N}.

Comments, p. 28, Theo.1.5.9, Proof, 2nd paragraph

e 1st sentence
Consider « € [F and x1,x, € E7. So

L(axy +x2) = ,}ij{}oLn(”‘xl + x7)
n—,oo
=walim L,x1 + lim Lyx;
n—oo n—oo
= waLxq + Lxp.

o 2nd sentence
(Ly) is bounded by Lemma 1.4.4, p. 20.

o 3rd sentence
The second equality holds by Ex.1.5.3, p. 26.

Comments, p.29, Theo.1.5.10
e 1st sentence
Note that cl D(L) is a subspace of E;. In fact, consider « € F and x, y € cl D(L), that is, there are sequences
(xn) and (y,) in D(L) such that x, — x and y, —y. Therefore ax+ y € cl D(L) since ax,+y, — ax+y.”

e 2nd sentence
See Def.1.3.25, p.17.

o Proof, penultimate sentence
Since x, — x and Lx, — Lx, [|x,| — | x| and |Lx,| — |[Lx|. In fact,

[xnll < lxn = x[ + x| and x|} < [lx — 2] + ]

imply that
[l = €[] < fl = xu] -

Erratum, p. 29, Theo.1.5.11, 1st sentence
‘E’ should be “E;’.

Comments/Erratum, p. 31

¢See Theo.1.3.13.
7Anyway, cf. p-26, 1st paragraph.



e 1.3, 2nd inequality

Since ||xp,p,|| > ¢ foralli € N and ‘ < ¢e/2* foralli # j,
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ifi=1.
e Theo.1.5.13, Proof

- Ist and 2nd sentences
In fact, for every strictly sequence (M) with M; > 0, there exists a sequence (T;) of elements of T
such that ||T,|| > M, for all n € IN. Since 7 C B(X,Y), where (1.14) holds, there exists a sequence
(x,,) of unit elements of X such that ||T,x,|| > M, forall n € N.

— 5th sentence
See Theo.1.4.9, p. 22.

— 6th sentence and 1st clause of 9th sentence
C does not depend on i since C = M,.? Similarly, since

Py
1 \"_/21 ~ ]M
Xp. .
il =3B 2| T view,

limi_m Yij = 0 for a11] € N.

— 8th sentence
(Yg:q;) | should be (yql.q/.).

Comments, pp. 32-3, Ex.1.6.3

8See 2nd sentence of Theo.1.5.13.



o 4th sentence
If f(x) = x3 —x —1,then f(1) < 0and f(2) > 0. So there is some xy € (1,2) such that f(xq) = 0.°

e 6th sentence
The inequality holds since there exists some ¢ € (1,2) such that

| Tx =Ty = |T'()| Ix — v

1
W|x*y|

1 1-21/3
WW*W:WV*W-

<

e 7th/last sentence, Tx = x3 — 1

On the one hand, if T is a contraction, then
3 3
x _
M S o < 1.
[x —y]

On the other hand,
s 22+ 2y + 7 > 1.
|x =yl

Comment, p. 33, sentences betweeen 2nd [J and Ex.1.6.5
The method is known as fixed-point iteration.

Comment, p. 34, Ex. 1.6.6, penultimate sentence
Suppose f is a contraction. So, since F = R* is closed, f has a fixed point by Theo.1.6.4.10

Exercises, pp. 34-8

1. Consider z,z/,w € Ewithx+z=y=x+z andz+w =2. Theny =x+2 =x+z+w =y +w. So
w = 0. Thereforez/ =z +w = z.

(a) A0 = 0 for each A since AO = A(0 + 0) = A0 + A0. Therefore, since A # 0,

A=0= A"1Ax)=2r"10
— A )x=0
—1x=0
—x=0.

(b) Consider x # 0. Suppose A # 0. By (a), since Ax = 0, it follows that x = 0, which is a contradiction.
(c) Since 0x = (0 + 0)x = Ox + Ox, it follows that 0x = 0. Then
x+ (=1)x=1x+(-1)x
=[1+(-Dlx
= Ox
=0.

Therefore (—1)x =0 — x = —x.!1

1 1
8. Since h(x) := %x+ % — x* is continuous on [0, 1], 1(0) = % >0, (x) = % (1 - x_q) <0for0<x<1
and k(1) = 0, it follows that h(x) > 0for0 < x < 1.

9Use the Intermediate Value Theorem.
105ee the ultimate sentence.
11gee p-3, 2nd paragraph.



22.

34.

39.

(a) Suppose | x, — x| —0and ||x, —y|| —0. Use |x —y|| < |x — xul| + [|xn — y|-
(b) Use

[Anxn — Ax| = [ Anxn — Axy + Axy — Ax||
= [(An = A) 20 +A (20 = x) |
< 2w = Al Jxal + A] 00— x]
< [An = A (en = x[ 4 lxl]) + A [lxn = %] -

() Use [lxn +yn — (x + )| < 2w = x| + lyn =yl

(a) = (b)
The proof is trivial by Theo.1.3.23 and Def.1.3.25.
(b) = (c)
Consider an open ball B(x, ¢). Since there exist x1, xp, ... € S with x, — x, there exists a number M
such that x, € B(x,¢) for every index n > M .12
(@ = (a)
Let x € E. Hence there exists x, € SN B(x,1/n) for each positive integer n. Therefore x € clS.

(a)=(b)

Note that p, > n and g, > n for each positive integer n. Now consider ¢ and M given in Def.1.4.1,

p-19. Therefore

n>M= pngn > M
= |xp, — x4, <&

(b)=(0)

Concerning (b), consider g, = pj41-
()= (a)

Suppose (a) is false. So there is a positive ¢y such that, for each positive integer M, there exist indices
mg and ny where
mo,ng > M and || xp, — X, || > eo.

Now consider my > ng and an increasing sequence of positive integers (p;) such that p,, = ng and
Png+1 = Mmo. Therefore

> €,

ng > M and prnUH — Xpy,

which contradicts (c).

41. As in Ex.1.4.6, pp. 20-1, the same argument applies if 2nd powers and square roots are replaced with pth

48.

powers and pth roots, respectively.

(a) < (b)
Via Ex.35, p.37, F is continuous iff for every x € E; and ¢ > 0 there exists a § > 0 such that
F(B(x,6)) C B(F(x),¢).
(a)=(b)
Let x € F~1(U) and take ¢ > 0 and § > 0 with

Fis continuous Uis open in E»
—_— N
F(B(x,6)) C B(F(x),¢) - u.

Hence B(x,6) C F~1(U).

12See Def.1.3.6, p. 10.



(a) <= (b)
For x € Eyand e > 0, F"'(B(F(x),¢)) is open in E;. Therefore there is a 6 > 0 for which
B(x,8) € F~Y(B(F(x),¢)). Thus F(B(x,6)) C B(F(x),e).
(b) == (c)

Use that complements of open (resp. closed) sets are closed (resp. open) sets and inverse images commute with
complements.

49. Concerning the 1st sentence, use that V(L) = L~! ({0}) and Theo. 1.5.4.

51. Uniform convergence is the one with respect to (1.14).13 That being said, on the one hand, suppose
Ly, — L|| — 0 asn — oo. Therefore |L,x — Lx| < ||L, — L|||x| — O for every x € E1.!* Now, on the
other hand, consider E; = E, = 12 and the projection x = (xq,xp,...) — Lyx = (x1,...,%,,0,0,...). Then
Ly — Lw| = 1 for n # m.’> So, since (L,) is not a Cauchy sequence, it does not converge (uniformly).
However, for x € 12, we have L,x — xasn — oco. Thus L,, — I strongly.

13See p. 28, sentence that precedes Theo.1.5.9.
14Gee p. 28, sentence that follows (.
15Without loss of generality, assume n < m. Thus

ILn = Ll = sup [[(Ln — L) x|

=1
= sup [(0,...,0,Xp41,...,%u,0,0,...)|
=1
m
= sup 2 xzz
[x|=1V i=n+1

=1

In fact, on the one hand, \/):;”:wrl xiz < \/Z}’il xf = ||x|| = 1 for each unit vector x. On the other hand, consider x = (0,...,0,1,0,0,...)
withl=ux;,ie{n+1,...,m}.



Comments, p.42, Lemma 2.2.4, Proof

e 1st paragraph, penultimate sentence
Since by, € (any, b] and by, n = by, for each positive integer n,

{n:ay <bpn}={no}.

o 3rd paragraph, penultimate sentence
by,n = min{by,, by} and bs , = min{by,, s} imply that

Z (bsn — ﬂn)] —(s— ak)}

ay<bsy

Y (bogn —an) = (b —ap) + {

ﬂn<bhk,n
=br—ar+s—a—s+a
:bk—ﬂ.

Comments, p. 43, Theo. 2.2.6, Proof

e 1st sentence
Use Theo. 2.2.2.(c), twice!

o 7th sentence
[a,b) C U Ay. In fact, suppose otherwise. So consider a < ¢ < b such that f,(£) > « for each index n.
Therefore f,(¢) # 0, which is a contradiction!

Comment, p. 44, (2.8)
g is a step function with support contained in the union of

[al,ll bl,l) ey [al,k], bl,kl) ey [ano,l, bno,l) ey {anolkno, b"orkﬂo> .

Therefore
19 kn
/g <ua Z Z (bn,k _an,k)
n=1k=1
< a(b—a).

Erratum, p.44, Cor.2.2.7
“... be nondecreasing sequences ...” should be “... be a nondecreasing sequence ...”.

Comment, p.46,1.2
For every x € Rsuch that) ;" ; |fu(x)| < oo,

lim gu(x) = £1(0) -+ fug (1) + i oo (2)]

n—o0

Zfl(x)+---+fno(x)+ifnw(x) " £(x)

> 0.

10



For x € Rsuch that);” ; |f.(x)| does not converge,

lim g, (x) = f1(x) + -+ fuo(x) + z | frg+n(x)] = +oo.

n—00

Comments, p. 47, paragraph right after [

e Penultimate sentence
Since f + g and (f) satisfy Def.2.3.1, both f and f + g have the same representation and, by (2.10), the
same integral.

e Ultimate sentence

—f,f+g€Ll'(R) = —f+(f+g) € L'(R).

Comment, p. 48, sentence right before Theo. 2.4.1
If z = 0 is a simple pole of an analytic function g(z), then

lim ¢(z)dz = miRes(g,0),

€—0J(e)
where 7(€) is a semicircle of small radius €, centered at the origin, situated in the upper half-plane and de-
scribed in the direction of increasing argument, and the residue_ Res(g,zo) is the coefficient of (z — zg) “Lin the

X _
Laurent series expansion of g at zg = 0.1® Hence, since SIM¥ = ¢-=C0SX apq cosx

00 i 1 —€ ,ix 00 Hix
/ SIdex:flim (/ e—dx—i— edx)
o0 X 1e>0\J-o X e X

is an odd function,

where Res (%, 0) is the coeficient of z~! in the Laurent series

1 .z i2 2
2+1_§_?+ﬂ+0( ok
On the other side, S [0, ) since
o | qj o r(k+1)7 | gj o (k+1)m
/ s dx:Z/ M‘MZZ#/ |sinx|dx = s
0 x = Jkn x = (k+1)7 Jkn

with

27'( 31 47
—/ smxdx—i——/ —sinx dx—i——/ smxdx—i——/ (—sinx)dx + - -

1 f—/\T) 1 /—/\? f—/hz'\ /—/‘4\
U U T
= osx|n+£ cos x| +a cos x5 +t o cosx|, +
“2 (il
T 2 3 4
= Q.

16Refer to Elementary Theory of Analytic Functions of One or Several Complex Variables by Henri Cartan, p. 104.
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(Note that, since

0 | -0 :
sinx —sin(—x
[0 |on = [ (s,
J—o0 X J—00 X
0|sinu
= — du
) u
® Isinu
:/ du,
0 u

integration on (—oco, 00) was not necessary.)

Comment, p. 50, sentence right before Theo. 2.4.3 and 1% sentence of its Proof
See Exs.7-8, p. 85.

Comment, p. 51, Lemma 2.5.2, Proof, 5t sentence, right before the comma
See Ex. 11, p. 85.

Comment/Erratum, p. 52, Theo. 2.5.3, Proof

o f~ i ifn,k since:

n=1k=1
@YY [ fuxl S X S1fal + Y27 <oo;
n=1k=1 n=1 n=1

()

(b) f(x) = ifn(x) = i ifn,k(x) for each x € R such that f:”i | fuge(x)] < oo.
n= n=1k=1

n=1k=1

In fact,
[ee]

Z fn,k(x)

k=1

il )] il < (%),

e Change ‘g, 1" to f, .

Comments, p. 53

o 11.7-9
The restriction of f = x{¢) to each [a,b] containing {0} is Riemann integrable and its Riemann integral is

0. Now use Theo. 2.10.1, p. 64.17

e Sentence right before Theo. 2.6.3
Use (2.14) with f in place of g.

Comment, p. 54, Theo. 2.6.6, Proof, 3'd sentence, right before the first comma
See Ex. 11, p. 85.

Comment, p. 55, paragraph right before Theo. 2.7.2
See Ex. 19, p. 86.

Comments, pp. 55-6, last 3 sentences before Theo. 2.7.5
If f,g € L'(R) with f =gae, then |[(f—g)| < [|f—g|=0.Thus [ f = [g.

Comments, pp. 57-8, paragraph right before Theo. 2.7.10

17See also Ex.9, p. 85.
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e 15" sentence
A sequence of functions f1, f2, ... defined on X C R converges uniformly to f if

s:g [fu(x) —f(x)] =0 as n — co.

So, concerning Ex.2.7.8, f, — 0 uniformly since

Vn € IN.

sl

sup | fu(x)| =

xeR

e 27 and 3™ sentences
The inequality follows from

[fo = fl <sup|fu(x) = f(*)[ X0y V1 € N.

xeR

Comments, p. 58

e Theo.2.7.10, Proof
In place of the ultimate sentence, consider p.47, paragraph that follows [J, last three sentences.

e Theo.2.7.12
f=fi+fo+- - insignifies f{ + -+ fy — fin.

e Theo.2.8.1, Proof, 2" sentence
Recall that [ |f,| = ||fx[, where | - || is the L'-norm.'8

Comments, p. 59
e Theo.2.8.2, Proof

- 3" sentence, right before the second comma
See Cor. 2.5.4, p. 52.

- 4t sentence
fou = for + (oo = for) +- -+ (fou — frur)
— gae.

3rd

is another way to write the equality that ends the 3' sentence.

- 5t sentence, right before the first comma
The equality that ends the 3" sentence and Theo. 2.7.12, p. 58, imply that

§=fout (fpo = for) + (fps = fpo) +-- in,

which can also be written as
fpn :fpl + (fpz _fpl> +oeee (fpn _fpn—l)
— gin.

On the other hand,
fn— fin. = fp, — fin.

e Penultimate sentence
See Theo.2.6.5, p. 54.

o Ultimate sentence
The equality is known as passage to the limit under the integral sign.

18See Def.2.6.1, p. 52.
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Comment/Erratum, p. 60

e 15t sentence
See Ex.2.7.8, pp. 56-7.

o Theo.2.8.3, Proof, last equality
Change the last ‘—" to *+".

Comments/Errata, p. 61

e 15t sentence
/h < oo by Def.2.3.1, p. 45, and Theo.2.4.1, p. 48.

o 2 gentence
— For a fixed m € IN, define
un = gmn1 = max{| ful, [fnstl, -/ | fmrns1l} and on = g1, = max{|fiuy1l, -/ | frns1l}-
Then u, > v, for every n € IN. Therefore g, = nlgrc}O Uy > nlgrolo Un = Sm+1-
— Change ‘| f1] to ‘h’".

e Case 1, 3" sentence
Change ‘f," to ‘g,

e Case 2, 3" sentence
See Theo.1.4.2, pp. 19-20.

Erratum/Comments, p. 62

e 2.9, 1% sentence
Change “ [" to [ f"-
o Theo.2.9.2, Proof
Note that fx(54 ~ 21 fnX(ap) = 21 n-
n= n=

o Ultimate paragraph, right before Def.2.9.3

By Ex.25, p. 87, the constant function f = 1 does not belong to L!(R). By Theo.2.10.1, p. 64, [ ab f exists
for every —co < a < b < oco.

Comment/Erratum, p. 63
e 2" sentence
Consider an arbitrary [a,b]. Let N be a positive integer such that [a,b] C [N, N] and consider the Proof
of Theo. 2.9.2 with fx|_y ] in place of f 19 Therefore
fXlap) = FXNNX@p) =81+ &2+

e Penultimate paragraph
“In applications it often ...” should be “In applications it is often...”.

Comments, pp. 64-5

19N is used here since # is used in the above-mentioned Proof.
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o 15t sentence
See Ex. 28, p.87.

e Theo.2.10.1, Proof

- 1% paragraph
Denote the inf (resp. sup) of f([a + (k —1)c,a + kc)) by my (resp. My) and the characteristic function
of [a+ (k—1)c,a+kc) by fr, k =1,...,n. Therefore

§n = mifi+ -+ mufy (vesp.hy = Mifi + -+ Myfy)2

- 2" paragraph
* 15 sentence
As finer partitions of [a,b) are considered, (g,) (resp. (1)) keeps nondecreasing (resp. nonin-
creasing).

+ 3™ and 4™ sentences
Consider n € IN. Then, since f(R) C [-M, M],

—MSgnSfShMSM/

that is,
—MS—hnS—fS—gnSM.

So, if

0 otherwise,

o(x) = { M ifx € [a,b),

then |g,| < ¢ and |h,| < ¢. Therefore we can use Theo. 2.8.4 properly. Now, one the one hand,
note that [ g, and [h, are Riemann sums.! One the other hand, note that the passage to the limit

under the integral sign was used, twice.??
* Antepenultimate sentence
g = ha.e.by Theo.2.7.4, p.55.
* Penultimate sentence
By Theo.2.7.4,p.55, [ |f —g| = 0. Then f — g € L}(R).2 So,sinceg € L}(R), f=f —g+g €
L'(R).
e Theo.2.10.2 and Theo.2.10.3
To be Lebesgue integrable is to be Lebesgue integrable on R. Then f is Lebesgue integrable on (4, b) if
fX(ap) is Lebesgue integrable, that is, f is integrable over (a, b).2

Comments, pp. 68-9

e Def.2.11.1
S is measurable if X[, p) is integrable for every —co <a <b < 0.2

o Sentence that comes right after Def.2.11.2
See Def.2.7.1, p. 55, and Def.2.6.2, p. 53.

e Theo.2.11.3, Proof

- 3 sentence
Note that

Jifl=[xs
= u(S)
=0
due to the sentence that comes right after Def.2.11.2.

20See p.40, (2.1).

21See Def.2.2.1, p. 41

22Gee p-59, ultimate paragraph.
23Gee p. 53, right after Def. 2.6.2.

24Gee p. 62, 2.9, everything before Theo. 2.9.2.
25ee 2.9.
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— 4t gentence

Since fi + fo+ -~ xsand fi +---+ fu < |fi| + -+ |ful for each n € IN, there exists an index
ng such that A, # ©.26

- 7th sentence
kn
Z (bn,k - an,k) = /XA,,
k=1
n n
< [ [2x151) =21 [ 15
i—1 i—1
<2y [Ifu
n=1
2
3 7
where:

* the first equality comes from the fact that

ky
—_ 27
XAn - kzl X[ﬂn,k'bn,k) 7

% the first inequality comes from the fact that

<2é |fi|> > XA

- Penultimate paragraph
* 1.-6
Use Cor.2.5.4, p. 52.
* Ultimate sentence
Since h,, — h i.n., use the passage to the limit under the integral sign.?8

e Theo.2.11.4, Proof, 15 part

o0
On the one hand, since S = |J Sy is a disjoint union,
n=1

xs(x) = (xs, +xs, + ) (x) forevery x € R. (4)

On the other hand, since each S, is measurable, each xs, is a locally integrable function. So, since
XS, < X[ap) for every n € N, every xs, is an integrable function by Theo.2.9.5, p.63. Then, since

()(51 4+ +x5n)(x) — xs(x) for every x € R (by (4)) and x5, + - + xs, < Xa,b] foreveryn € IN, xs is
integrable and xs, + - - - + x5, — Xs in.by Theo.2.8.4, p. 60. So

n
Z/Xsn Zg{}o];/)(sk
. n
= tim [ 3 xs,

(where the penultimate equality comes from the passage to the limit under the integral sign).
Therefore xs ~ xs, + x5, + -

26Tn fact, suppose otherwise to obtain a contradiction.
YSee Def.2.2.1, p.41.
28p. 59, ultimate paragraph.

16



Comments, p.70
o Continuation of Theo.2.11.4, Proof

- 2™ gentence
In fact, for each [g, b],

Xs = Xs; + Xs, + - pointwise = XsX[s,5] = X8 X[a,p] T XS, X[a,p) + - -+ pointwise
and, by Theo.2.9.4, p. 63, each xs, X[,y is locally integrable. Therefore, by using a similar argument
as in the 1% part of the proof,
X5X[ap] = X1 X[ap] T X5,X[ap) T+ - - for each [a, b].

Therefore ) is locally integrable.

- Casel
Each xg, is integrable by Theo.2.9.5, p.63. Now, note that since xs is integrable, (4) holds and
Xs, + -+ Xxs, < xs forevery n € N, we have xs, + -+ xs, — xsin.by Theo.2.8.4, p.60. Then,
by using a similar argument as in the 15! part of the proof,

2 /)(Sn < ©oo.
n=1

Therefore xs ~ x5, + Xs, + -
— Case 2

* ¥ [xs, <oo= [xs, <ooforeveryn € N= xs,xs,,--- € L'(R);
n=1

[e9)
* Y. Xs, = f ae.by Theo.2.7.10, p.58;
n=1

* Since |f — xs| is integrable (by Theo.2.7.4, p.55) and f is integrable, xs = f — (f — xs) is
integrable.

e 15 paragraph after [J, ultimate sentence
Follow the Proof of Theo.2.8.1, p. 58, but now with each f, in L!(Q). So f € L!(R). As a matter of fact,

o
fell(Q)since f= Y frae. X
n=1
o 2™ paragraph after [, ultimate sentence
Let ¢ = |f| and consider Theo.2.11.7, p. 71, and Theo. 2.9.5, p. 63.
e Ultimate paragraph

- 1% sentence
Let f ~ f1 4+ fo + - -- beasin Def.2.3.1, p.45. Then f; + - - - + f, — f a.e.by Cor. 2.7.11, p. 58.

— 4% (last) sentence
Suppose that fx[o1) € L'(R) to obtain a contradiction. In fact, on the one hand, for each positive

integer n,

Inn = /[1 ]f (by Theo.2.10.1, p. 64)
J[ia

< .
/o] /

On the other hand, [ f X(0,1] < co by Def.2.3.1, p.45, and Theo.2.4.1, p. 48.

Comments/Erratum, p.71

29Gee p. 53, right after Def. 2.6.2.
30See p. 55, Def.2.7.3, and p. 47, antepenultimate and penultimate paragraphs, starting from the italicized sentence.
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e Theo.2.11.6, Proof
Consider Exercises 21 and 19.(b), pp. 86-7.

o Sentence that precedes Theo.2.11.7
See p.49, Cor.2.4.2, Proof,1.2.

o (2.26)
“f(x)” should be “f". “b,]” should be “b,,)".

Comment/Erratum, p. 73, Theo. 2.12.2, Proof

e only if part
Consider

C:= {xG]R: i"l|fn(x)|<oo},

C,:

{x €ER: i |Refu(x)| < oo} and
n=1

Ci:= {x eER: ) [Imfy(x)] < oo}.
n=1
So, since C C C, N C; (by the triangle inequality) and R \ C is a null set,*! R\ (C, N C;) is a null set.>? For

this reason, both Ref and Imf have representations where both Ref,, and Imf; are used!

o if part
It seems that the representations of Ref and Imf were switched.

Comments, pp. 74-5
e Holder’s inequality, Proof

— 1% sentence
If [flp, = 0, then f? = 0 a.e.by Theo.2.7.4, p.55. Hence f = 0 a.e..Thus fg = 0 a.e.. Therefore
Ifgll = 0 by Theo.2.7.4.

- Last sentence
Since f and g are measurable,®® |f¢| is measurable by Theo.2.11.6, p.71. So, by the first inequality
of p.75 and Theo.2.11.7, p. 71, fg is locally integrable. Then, by the first inequality of p.75 and
Theo.2.9.5, p. 63, fg € L'(R). Therefore |fg| € L'(R) by Theo.2.4.1, p. 48.

e Minkowski’s inequality, Proof, 3" sentence
Use an argument similar to the one presented in the previous item to prove that |f + g|’ € L'(R).

Erratum, p.76,1.5
Remove the preposition “in’.

Erratum, p. 81, (2.38),
’ d 12 ’ b 7
J: F’ shouldbe “ [ F’.

Exercises, pp. 84-91

5. supp|f| = suppf is a finite union of semiopen intervals, which is contained in U}!_; [ax, b). On the other
hand, consider the step function § = Mgq + - - - + Mg, where gj is the characteristic function of [ay, by),
k=1,...,n.S0 |f| < g. Now use Theo.2.2.2.(c).

31See p. 55, Def.2.7.1, and p. 47, antepenultimate and penultimate paragraphs, starting from the italicized sentence. The arguments are
similar for complex-valued functions.

32Gee Theo.2.7.2, p-55.

33See p. 70, last paragraph, second sentence.
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7-8.

e Let f and (f,) be as in Def.2.3.1, p.45. Therefore:
(a) Since 2| fu|(x) = |ful(x — 2) = |fu(x = 2)| = |Tfu(x)| = [Tful(x) forevery x € R,

Theo.2.2.2.(e), p.41

§/|rzfn|—§/rz|fn| = Y [Vl <o

(b) wf(x) = f(x —z) an x—z) = ilrzfn(x) for every x € R such that i |t fu(x)] =

n=1

2 |fu(x —2)| < co.
So Tzf ~ T, f1 + Tofo + -+ and
Theo.2.2.2.(e), p.-41

_/rzf—ni;l/rzfn Y [h=[r

e Without loss of generality, suppose f is the characteristic function of [2,b) and z > 0 is sufficiently
small with [a,b) N [a +z,b + z) # @.3* Therefore, since

-1 ifxe€aa+z),

(Tzf—f)(x):{ 0 ifxeatzb),
1 ifxebb+z),

if z — 0, then

/|Tzf—f\ =2z—0.
m(n) m(n

10. Let (f,) be as in Def.2.3.1, p.45. Then f, = ) At X(ayyubm) @0 | fn| = Y Am, X{aysnbmn) fOT €VETY
m=1 m=

n € IN.3% Therefore

Z Z f ‘Am nX amn/bmn

= £ J1fil <

n=1lm=
(¢S] 0 m(n [
=Y A=Y ZAmnx[am,bm (x) whenever 32 3. Aoyt (9)] = L 1ol
o n=1 n=1lm= n=1lm= n=1

Now arrange the family of all intervals [a,;, by, ) and the family of all scalars A, , into sequences

[a1,b1),[a2,b2),... and Aq,Ay,...,

respectively, so that none of them are missed. Thus f ~ A1 x4, ;) + A2X[a0,) + - 37

19.

(a) Let X be a countable subset of R. If X is finite, use ’ Comments, p. 53, 11.7-9 |, p. 12 of this material,
with X in place of {0}. Now let X = {x, [n € N} be infinite and consider x,,  for eachn € N. So
X{xn} € L' (R) and fX{xn} = 0 for each n € IN.3® Therefore, due to the fact that

X=X} T Xy T s

XX = X{x;} + X{x,} T and, by Theo.2.5.3,p.52, [ xx = 0.

34Note that T, f is the characteristic function of [a + z,b + z).
%5See p. 40.

36See Theo. 2.2.2.(a), p-41.

37For the converse, the proof is obvious!

38Use | Comments, p. 53, 11.7-9 |, p. 12 of this material, with {x,} in place of {0}.
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(b) Consider ¢ > 0 is sufficiently small, S, C R is a null set for eachn € INand S = fj S, By
n=1

Theo. 2.11.3, p. 68, there exist intervals I, y = [a, , b,, k) such that

Sn C U Ink and klel(In'k) < 2% for each n € IN.40
k=1 =

Now arrange the doubly-indexed family of intervals I,  into a sequence Iy, I, ... (wWhere none of
the I, ; are missed).*! Therefore

[e)

S C G ([jLi,k) = [jll and Zl(ll):
n=1 \k=1 i=1

i=1 n

e}

I(In,k) <&
-1

hgk

1k

28. See Ex. 37, p. 89.

33.

(a) The constant function yr = 1 is locally integrable,42 thatis R € M. Then ® = R\R € M by (d).

(e) Let I be an arbitrary interval and consider arbitrary numbers 2 and b with a < b. Thus y; is locally
integrable since x; Xl 18 Lebesgue integrable by Theo.2.10.1, p. 64.

(f) Any open subset of R is a countable union of disjoint open intervals. Now use (e) and (b).
(g) Consider A = R and let B be an arbitrary open subset of A. So A\B € M by (a), (f) and (d).

34.(b) Consider S =B, S1 = A, S, = B\Aand S, = @ for n = 3,4,.... Now use Theo.2.11.4, p. 69.

35. By Ex.33.(a,d), (b)<=(e) and (c)<=(d).

37. See | Comments, p. 70, 15 paragraph after [J, ultimate sentence |, p. 17 of this material.

39. Comment

Neither g nor ¢? is defined for x € (—1,0)!

%Notice that {n € N | S, # @} can be finite or infinite.

O1f [ = [a,b), then () = b —a.

41 This is possible since I, x> n/k is a bijection between that doubly-indexed family of intervals and {x € Q : x > 0}.
42Gee p. 62, right after the second [1.
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Comment, p. 95, Exs. 3.2.4-7
Concerning the conjugate simmetry condition (Def. 3.2.1.(a), p. 94), note that, since

Z =20 = [z = 20] = |z — 20

forall z,zg € C, z — Z is continuous at each zy € C. So complex conjugation is a continuous mapping.

Erratum, p.98,1.-10
Change ‘(b)’ to “(a) .

Erratum, p.100, 1. 1
Remove the comma.

1/2

Comment, p. 100, continuation of Ex.3.3.5, | || f — fu < (% + %)

Suppose n > m. Concerning Figure 3.1 on p. 99, visualize the graphs of f;; and f; simultaneously and denote
the points where the oblique line segments intersect the x-axis by x; = 3 + 5 and x, = 3 + »--.*> Hence

0 ifo<x<i,
2(m —n) (x—%) if I <x<x,

fu(x) = fn(x) =

2m<x—%)—l if x; <x<uxy,
0 ifx, <x<1.

Then | fu — fm| = /Imn with
= [ ()~ fnl) Pl

5 X1 1 2 5 X 1 2 X 1 X
=4(m—n) / x— = | dx+4m / x—=) dx—4m x—=)dx+ dx
1/2 2 x 2 X 2 X
1/2n 1/2m
=4(m — n)z/ t2dt 4 4m? £2dt — 4m tdt + — — —
0 1/2n 1/2n 2m  2n

S () () - @) ] ) -G

RS
2m  2n

s 30O
2 3 n 3 m n m n m n
1 2m 1 1 m 1
_2[_3112 3 am nz_n]
C1[m 21
—z[snz‘gﬂﬁsm]
1 m?*—2mn+ n?
T2 3mn?
_ (m—n)?
6mn?

_ )2
Therefore, if % > MR then m > n+ \/6n(m+ n) > n, which is a contradiction.

Comments, p. 103

43Note that x; < x,.
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e 2nd paragraph following 1st [

— 2nd sentence
See Def.1.5.2, p. 26.

- 3rd sentence
In fact, since (-, x) and complex conjugation are continuous,* (x, -) = (-, x) is continuous.

o [.-1

Re(xy, x) < |{xn, x)|

< el = 1%

Comment, p. 105, 1st sentence
See p.103 (2nd paragraph following 1st [, 2nd sentence) and p. 27 (Theo. 1.5.7).

Erratum, p.106, 1.9
‘N’ should be ‘{1,...,n}".

Comments, p.111, last sentence

e 2nd equality, last summand

DC]'X]', uckxk>
1

(jx, o)

<sz] . szkxk> _

M:
—
NagE

»
Il
—

j

I
=
M:

1

x-
I
—

-
Il

I
=

(g, ok xy) -

»
Il
—

o 4th equality, last summand

n

Y ) — il = 3 (0 x) — ) (3] — )

k=1 k=

—_

((x, Xi) (%, Xg) — @ (%, x5) — g (%, x¢) + “kﬂTk) :

1=

k=1

Comments, p. 112, 2nd paragraph after [J

o The sequence
n
(Z | (x, %) |2>
k=1
is increasing and bounded above. Then the series in (3.26) is convergent. Therefore

2 _
Tim |(x, %) > = 0.

e zero (in the 2nd sentence) is the zero vector.*

Comments, p. 113, Ex. 3.4.11

44Gee the first comment of the previous page!
45See Def.3.3.10, p. 102.
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e 2nd sentence
See Ex.3.4.17.

e 3rd sentence
cos tsinnt is an odd function.

Comment, p. 120, 2nd sentence
See Theo.3.4.14, p.115.

Comments, p.122

o 1st paragraph, 4th sentence
Concerning the 1st equality, f = fx[_,, - and

Jr=]ws
by section 2.9, pp. 62—4, and Ex.7, p. 85. The 2nd equality follows from Theo. 2.10.4, p. 66.

o (3.34), 1st equality
Let us prove

n

fot A+t fa= Y, (m+1= kD), ox) ok (5)

k=—n

by induction on #. In fact, since (5) holds trivially for n € {0,1} and

n n+1
fotfit At fut fur = kz (n+1—|k){f, px) P + ; )<f/(l’k>§0k
=—n k=—(n+1

n

= Y (1= [k + D), o) @+ {f 9 (ns1)) P (ns1) + {F Pui1) P
k=—n

n+1

= )Y ((n+D)+1-[kD{f. o),

k=—(n+1)

(5) also holds true forn = 2,3, .. ..

Erratum, p. 124, Proof of Lemma 3.5.3
‘x” should be “t'.

Comment, p. 126, Proof of Theo. 3.5.6, 1st sentence
See Ex. 41, p. 89.

Erratum, p.127, 2nd paragraph after Def.3.6.1
‘H’ should be ‘E’.

Comment, p. 128, Proof of Theo. 3.6.2, 4th sentence
‘(xn) € S*" is an abuse of notation.

Comments, pp.128-9, Proof of Theo. 3.6.4

o 4th sentence
It is straightforward to prove the first two equalities. (3.5) is used to prove the third equality.
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e penultimate sentence

2

_l’_
e T syl = 2r - ) Pt Iy = -l

=x—yi+x—y[>+ |x—y1 - (x—y)|?

=2 (Jx =yl + Ix — yI?)
=2 (d2 +d2> .

(Note that (3.5) was used in the penultimate equality.)

Erratum, p.132, 1st sentence of Section 3.7
‘3.5" should be ‘3.3". In fact, cf. p. 103, 3rd and 4th sentences after the Proof of Theo. 3.3.11.%¢

Exercises, pp. 135-143

10.
4xRHS = (x+y,x+y) —(x —y,x —y) +i({x + iy, x +iy) — (x — iy, x —iy))
= 2((x,y) + ) +2i( (i) + 5 )
= 2((x,y) + () + (il y) + T, 9))
— 22(x))
15.
2
e L i e R PR

=lz—y+z—x>+z—y—(z-»)
2
=2(Jz =y + |z xI?).
(Note that (3.5) was used in the ultimate equality.)

34. Consider p € H = span {p, p2, p3} where p1(x) = 1, p2(x) = x and p3(x) = x2.*’ Note that

1
[ = p)P = [ ¥ = px) Pex
reaches its minimum where p(x) = Py(x3). So calculate

p= <x3, q1)q1 + <x3, 92)q2 + <x3,q3>q3
where B = {41,2,42} is an orthonormal basis of H. To obtain B, apply Gram-Schmidt to {p1, p2, p3}.
43. See Ex.3.4.17, pp. 116-7.

44-5. Concerning the orthonormality, see Ex.3.4.17, pp. 116-7.

46See p.27, Theo. 1.5.7.
47Clearly, p1, p2 and p; are linearly independent.
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Comment, pp. 146-7, Ex. 4.2.2, penultimate sentence
As in Ex.3.2.3, pp. 94-5, consider the standard inner product. Then, since

N
Ax =) (Ax,e)e;,

i=

—

N | N 2
|Axl2 = 4| X |32 wijh;
i=1|j=1
2
N N , N
=S DON NPT DAY
i=1 j=1 j=1
—_———
[Ixll2

by (4.1) and the Cauchy-Schwarz inequality. Therefore

is an upper bound of {|Ax|2 : [|x[2 = 1}.

Erratum, pp.150-1, Proof of Theo. 4.2.9, ultimate sentence
’al-]-’ should be IIXZ']".

Erratum, p. 155, Proof of Theo. 4.3.12, 3rd sentence
‘lolllAx[|| Ax|” should be ‘|| [ x] [ Ax

7

Comment, p. 161, Cor. 4.4.12
Note that the product (Theo. 4.4.11) and the sum (first consequence of Def.4.4.1, p. 158) of self-adjoint opera-
tors are self-adjoint.

Comments, p. 162, Proof of Theo. 4.4.14
o Note that T is bounded by Def. 4.4.1 and Def. 4.4.3, pp. 158-9.

e (4.6)
Consider ¢(x,z) = (Tx,z) with ¢ = ¢1 and T = A as in Ex.4.3.3, p. 151, and let ® be the quadratic form
of ¢ as in p. 152. Therefore
4Re(Tx,z) = P(x+z) — O(x — z),
[®| = M and the inequality follows from the sentence presented after Def.4.3.6, p.152. Furthermore,
the equality holds by the Parallelogram law, p.97.

Comment, p. 165, Ex.4.5.9
Forall x € H, if Lx = —ix, then
(T*x,x) = (x, Tx)
= (x,ix)
= —i(x, x)
= (—ix, x)
= (Lx, x).
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So T* = L by Cor.4.3.8.

Comment, p. 166, (4.11)
There is no need to use Theo. 4.4.14. In fact,
HTZxH = |TTx|
= ||T*Tx|  (Theo.4.5.8)
= |IT*Tx|l| x|
> |(T*Tx, x)| (Schwarz’s inequality, p. 96).

Comment, p. 167
On the one hand,
T is unitary = T is isometric

by Def.4.5.16 and Theo. 4.5.15. On the other hand,
T is isometric # T is unitary.

In fact, the operator A in Ex.4.5.3, p.164, is isometric by Def. 4.5.13. However, since A is not surjective, A is
not invertible. Therefore, A is not unitary by Theo. 4,5.17.48

Exercises, pp.211-6
11. Let C and D be operators with T'= C 4-iD and T* = C — iD. Therefore

1
= (T+T
C=5(T+T)
= A,

1
D=_(T-T*
=B.

28. Check my Comment in regard to p.167.

48Concerning Exercise 28, p. 213, the answer is NO!
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