Introduction to Hilbert Spaces with Applications
 Third Edition (2010)
 Debnath and Mikusinski

PARTIAL SCRUTINY, SOLUTIONS OF SOME EXERCISES, Comments, Suggestions and Errata
José Renato Ramos Barbosa
2016
Departamento de Matemática Universidade Federal do Paraná
Curitiba - Paraná - Brasil
jrrb@ufpr.br

 1

Erratum, p.6,1.8
' $\sum_{k=1}^{n}\left|x_{j}\right|\left|y_{j}\right|^{\prime}$ should be ' $\sum_{j=1}^{n}\left|x_{j}\right|\left|y_{j}\right|^{\prime}$ or ' $\sum_{k=1}^{n}\left|x_{k}\right|\left|y_{k}\right|^{\prime}$.
Comment, p.5, Theo. 1.2.7, Proof, 2nd sentence
See Ex. 8, p. 35.
Comment, pp. 6-7, Theo. 1.2.8, Proof
The second inequality holds by Theo. 1.2.7 (Hölder's inequality) provided that

$$
\left(\left(x_{n}+y_{n}\right)^{p-1}\right) \in l^{q}!
$$

So consider partial sums (and the last inequality obtained in the Proof of Theo.1.2.7) instead:

$$
\begin{align*}
\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{p} & =\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|\left|x_{k}+y_{k}\right|^{p-1} \\
& \leq \sum_{k=1}^{m}\left|x_{k}\right|\left|x_{k}+y_{k}\right|^{p-1}+\sum_{k=1}^{m}\left|y_{k}\right|\left|x_{k}+y_{k}\right|^{p-1} \\
& \leq\left(\sum_{k=1}^{m}\left|x_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{q(p-1)}\right)^{1 / q}+\left(\sum_{k=1}^{m}\left|y_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{q(p-1)}\right)^{1 / q} \\
& \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{q(p-1)}\right)^{1 / q}+\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{q(p-1)}\right)^{1 / q} \\
& \sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{p} \leq\left\{\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{p}\right)^{1 / p}\right\}\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{p}\right)^{1 / q} \tag{1}
\end{align*}
$$

On the other hand, the inequality that completes the Proof of Theo.1.2.8 is trivially satisfied if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right|^{p}=0 \tag{2}
\end{equation*}
$$

So suppose (2) is not satisfied. Then there is an index M such that

$$
m \geq M \Longrightarrow \sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{p}>0
$$

Therefore, by (1),

$$
\left(\sum_{k=1}^{m}\left|x_{k}+y_{k}\right|^{p}\right)^{1-1 / q} \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{p}\right)^{1 / p}
$$

for $m \geq M$. Now let $m \rightarrow \infty$.

Erratum, p. 7, 1. 14
' X_{j} ' should be ' E_{j} '.
Comment, p.11, Ex. 1.3.8, penultimate sentence
Consider $t \in[0,1]$. On the one hand,

$$
\begin{equation*}
g_{n}(t) \rightarrow 0 . \tag{3}
\end{equation*}
$$

On the other hand,

$$
f_{n}(t)=\frac{g_{n}(t)}{\left\|g_{n}\right\|} \rightarrow 0
$$

depending on the behavior of the sequence $\left(1 /\left\|g_{n}\right\|\right)$ as $n \rightarrow \infty$. However, by (1.7), p.11, and (3),

$$
\frac{1}{\left\|g_{n}\right\|} \rightarrow \infty
$$

Comment, p.12, Theo.1.3.11, Proof, penultimate sentence
The contradiction is that $\left\|y_{n}\right\|_{2} \rightarrow 0$ but $\left\|y_{n}\right\|_{1} \nrightarrow 0$!

Comment, p. 13, Theo. 1.3.13, Proof

Since the equivalence of norms is an equivalence relation, if two norms are equivalent to $\|\cdot\|_{0}$, then they are equivalent to each other.

Comments, p. 15, Ex. 1.3.19, 1st and 5th sets
Consider that $g \in S_{1}:=$ first set, ${ }^{1} r:=\min \{(f-g)(x): x \in \Omega\}$ and $h \in B(g, r)$. So, for each $x \in \Omega$,

$$
\left.\begin{array}{rl}
(h-g)(x) & \leq|(h-g)(x)| \\
& <r \\
& <(f-g)(x) \\
& \Downarrow \\
& \downarrow(x)
\end{array}\right)<f(x) .
$$

Therefore $h \in S_{1}$.
Now let x be an arbitrary vector in Ω and consider that n is an arbitrary positive integer. Suppose that $g_{n} \in$ $S_{5}:=$ fifth set, ${ }^{2} g \in \mathcal{C}(\Omega)$ and $\left\|g_{n}-g\right\| \rightarrow 0 .{ }^{3}$ So $\left(g_{n}-g\right)(x) \leq(f-g)(x)$ and $\left(g_{n}-g\right)(x) \rightarrow 0$. Then $g(x) \leq f(x)$. Therefore $g \in S_{5}{ }^{4}$

Comment, p.16, Theo. 1.3.23
Let X be the RHS of the equation. It suffices to show that X is closed. In fact, suppose X is closed. So, on the one hand, due to the fact that $S \subset X$,

$$
\operatorname{cl} S \subset X
$$

On the other hand, if

$$
X \not \subset \mathrm{cl} S
$$

there exists $x \in X$ with $x \notin \operatorname{cl} S$. Then $x \notin C$ for some closed set C containing S. This leads to a contradiction since there exist $x_{1}, x_{2}, \ldots \in S \subset C$ with $x_{n} \rightarrow x$. Therefore $x \in C$ by Theo. 1.3.21, p. 16.

Comments, p.17, sentence right before Theo. 1.3.31
'only-if-part'
Since $\left(\left\|x_{n}\right\|\right)$ is bounded and $\left|\lambda_{n}\right| \rightarrow 0,\left|\lambda_{n}\right|\left\|x_{n}\right\| \rightarrow 0$ by a very well-known result from Analysis on the Real Line.

'if-part'

Suppose S is not bounded and n is a positive integer. Thus $\left\|x_{n}\right\| \geq n$ for some $x_{n} \in S$. Hence $\left\|\frac{1}{n} x_{n}\right\| \geq 1$, which contradicts the convergence (to 0) hypothesis.

[^0]
Comment, p.18, Theo. 1.3.33, Proof, 2nd sentence

Suppose $d=0$ and consider a positive integer n. Hence there exists $x_{n} \in X$ such that $\left\|z-x_{n}\right\|<\frac{1}{n}$, which leads to a contradiction. In fact, since $E \backslash X$ is open, there is an open ball $B(z, \varepsilon) \subset E \backslash X$.
$==$
Comments, pp. 18-9, Theo. 1.3.34, Proof
'only-if-part'
A sequence in $\bar{B}(0,1)$ satisfies the condition

$$
\begin{aligned}
\left|\left|\alpha_{1, n} e_{1}+\cdots+\alpha_{N, n} e_{N}\right|\right| & =\left|\alpha_{1, n}\right|+\cdots+\left|\alpha_{N, n}\right| \\
& \leq 1
\end{aligned}
$$

Furthermore, by the Bolzano-Weierstrass Theorem, $\left(\alpha_{i, n}\right)$ has a convergent subsequence, $i=1, \ldots, N$.
'if-part'
Note that when the 2 nd sentence ends, its verification begins!

Comment, p. 21, 1.11, that is, 2 nd series

By the 2nd sentence of Ex.1.4.6, p. 20, $a_{n} \in l^{2}$ for each $n \in \mathbb{N}$. In particular, $a_{n_{0}}=\left(\alpha_{n_{0}, k}\right) \in l^{2}$. ${ }^{\text {. }}$

Comment, p. 22, penultimate sentence
Since $\max _{[0,1]}\left|P_{n}(x)-e^{x}\right| \rightarrow 0$, the absolute convergence criterion from Def.1.4.8 is satisfied.
Comment, p. 23, Theo. 1.4.9, Proof, penultimate sentence
$\left(x_{p_{k}}\right)$ is the sum of two convergent sequences:

$$
\left(x_{p_{k}}-x_{p_{1}}\right)=\left(\sum_{j=1}^{k-1}\left(x_{p_{j+1}}-x_{p_{j}}\right)\right) \quad \text { and } \quad\left(x_{p_{1}}, x_{p_{1}}, \ldots\right) .
$$

Comment, p. 24, 1st paragraph

A linear isometry is automatically one-to-one. So the requirement for Φ to be one-to-one in (a) is a direct consequence of (b).

Errata, p. 24, 2nd paragraph

- antepenultimate sentence
${ }^{\prime}\left\|\left[x_{n}\right]\right\|_{1}^{\prime}$ should be ' $\left\|\left[\left(x_{n}\right)\right]\right\|_{1}{ }^{\prime} ;$
- ultimate sentence
'... $\left[\left(x_{n}\right)\right]$ and $\left[\left(y_{n}\right)\right] \ldots$ '..' should be '... $\left(x_{n}\right)$ and $\left(y_{n}\right) \ldots$...

Comments, p. 24

- 2nd paragraph, last sentence

Use the fact that

$$
\left|\left\|x_{n}\right\|-\left\|y_{n}\right\|\right| \leq\left\|x_{n}-y_{n}\right\| \rightarrow 0
$$

- 3rd paragraph, last sentence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Phi\left(x_{n}\right)=\left[\left(x_{n}\right)\right] \Longleftrightarrow \lim _{n \rightarrow \infty}\left\|\Phi\left(x_{n}\right)-\left[\left(x_{n}\right)\right]\right\|_{1} & =\lim _{n \rightarrow \infty}\left\|\left[\left(x_{n}-x_{1}, x_{n}-x_{2}, \ldots\right)\right]\right\|_{1} \\
& =\lim _{n, k \rightarrow \infty}\left\|x_{n}-x_{k}\right\| \\
& =0,
\end{aligned}
$$

because $\left(x_{n}\right)$ is a Cauchy sequence.

[^1]Comment, p. 27, 1st sentence after 2nd
It suffices to consider that E_{1} is finite dimensional. In fact, let $\left\{e_{1}, \ldots, e_{N}\right\}$ be a basis of E_{1} and assume, without loss of generality, ${ }^{6}$ that the norm on E_{1} is defined by

$$
x=\alpha_{1} e_{1}+\cdots+\alpha_{N} e_{N} \mapsto\|x\|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{N}\right| .
$$

Therefore

$$
\begin{aligned}
\|L x\| & \leq\left|\alpha_{1}\right|\left\|L e_{1}\right\|+\cdots+\left|\alpha_{N}\right|\left\|L e_{N}\right\| \\
& \leq \alpha\|x\|
\end{aligned}
$$

with $\alpha=\max \left\{\left\|L e_{i}\right\|: i=1, \ldots, N\right\}$.

Comments, p. 28, Theo. 1.5.9, Proof, 2nd paragraph

- 1st sentence

Consider $\alpha \in \mathbb{F}$ and $x_{1}, x_{2} \in E_{1}$. So

$$
\begin{aligned}
L\left(\alpha x_{1}+x_{2}\right) & =\lim _{n \rightarrow \infty} L_{n}\left(\alpha x_{1}+x_{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(\alpha L_{n} x_{1}+L_{n} x_{2}\right) \\
& =\alpha \lim _{n \rightarrow \infty} L_{n} x_{1}+\lim _{n \rightarrow \infty} L_{n} x_{2} \\
& =\alpha L x_{1}+L x_{2} .
\end{aligned}
$$

- 2nd sentence
$\left(L_{n}\right)$ is bounded by Lemma 1.4.4, p. 20.
- 3rd sentence

The second equality holds by Ex. 1.5.3, p. 26.

Comments, p. 29, Theo. 1.5.10

- 1st sentence

Note that $\operatorname{cl} \mathcal{D}(L)$ is a subspace of E_{1}. In fact, consider $\alpha \in \mathbb{F}$ and $x, y \in \operatorname{cl} \mathcal{D}(L)$, that is, there are sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $\mathcal{D}(L)$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Therefore $\alpha x+y \in \operatorname{cl} \mathcal{D}(L)$ since $\alpha x_{n}+y_{n} \rightarrow \alpha x+y$. ${ }^{7}$

- 2 nd sentence

See Def. 1.3.25, p. 17.

- Proof, penultimate sentence

Since $x_{n} \rightarrow x$ and $L x_{n} \rightarrow \tilde{L} x,\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\|L x_{n}\right\| \rightarrow\|\tilde{L} x\|$. In fact,

$$
\left\|x_{n}\right\| \leq\left\|x_{n}-x\right\|+\|x\| \text { and }\|x\| \leq\left\|x-x_{n}\right\|+\left\|x_{n}\right\|
$$

imply that

$$
\left|\left\|x_{n}\right\|-\|x\|\right| \leq\left\|x-x_{n}\right\| .
$$

Erratum, p. 29, Theo. 1.5.11, 1st sentence
' E ' should be ' E_{1} '.
Comments/Erratum, p. 31

[^2]- 1.3,2nd inequality

Since $\left\|x_{p_{i} p_{i}}\right\| \geq \varepsilon$ for all $i \in \mathbb{N}$ and $\left\|x_{r_{i} r_{j}}\right\|<\varepsilon / 2^{j+1}$ for all $i \neq j$,

$$
\begin{aligned}
\left\|x_{s_{i} s_{i}}\right\|-\sum_{i \neq j}\left\|x_{s_{i} s_{j}}\right\|>\varepsilon-\sum_{i \neq j} \frac{\varepsilon}{2^{j+1}} & =\varepsilon\left(1-\sum_{i \neq j} \frac{1}{2^{j+1}}\right) \\
& =\varepsilon\left\{1-\left[\left(\frac{1}{2^{2}}+\cdots+\frac{1}{2^{i}}\right)+\left(\frac{1}{2^{i+2}}+\frac{1}{2^{i+3}}+\cdots\right)\right]\right\} \\
& =\varepsilon\left[1-\left(\frac{\frac{1}{4}\left(1-\frac{1}{2^{i-1}}\right)}{1-\frac{1}{2}}+\frac{\frac{1}{2^{i+2}}}{1-\frac{1}{2}}\right)\right] \\
& =\varepsilon\left[1-\left(\frac{1}{2}-\frac{1}{2^{i}}+\frac{1}{2^{i+1}}\right)\right] \\
& =\varepsilon\left[\frac{1}{2}+\frac{1}{2^{i}}\left(1-\frac{1}{2}\right)\right] \\
& =\varepsilon\left[\frac{1}{2}\left(1+\frac{1}{2^{i}}\right)\right]>\frac{\varepsilon}{2}
\end{aligned}
$$

if $i \geq 2$, whereas

$$
\begin{aligned}
\left\|x_{s_{i} s_{i}}\right\|-\sum_{i \neq j}\left\|x_{s_{i} s_{j}}\right\|>\varepsilon-\sum_{j=2}^{\infty} \frac{\varepsilon}{2^{j+1}} & =\varepsilon\left(1-\sum_{j=2}^{\infty} \frac{1}{2^{j+1}}\right) \\
& =\varepsilon\left(1-\frac{\frac{1}{8}}{1-\frac{1}{2}}\right) \\
& =\varepsilon\left(1-\frac{1}{4}\right) \\
& =\frac{3 \varepsilon}{4}>\frac{\varepsilon}{2}
\end{aligned}
$$

if $i=1$.

- Theo. 1.5.13, Proof
- 1st and 2nd sentences

In fact, for every strictly sequence $\left(M_{n}\right)$ with $M_{1}>0$, there exists a sequence $\left(T_{n}\right)$ of elements of \mathcal{T} such that $\left\|T_{n}\right\|>M_{n}$ for all $n \in \mathbb{N}$. Since $\mathcal{T} \subset \mathcal{B}(X, Y)$, where (1.14) holds, there exists a sequence $\left(x_{n}\right)$ of unit elements of X such that $\left\|T_{n} x_{n}\right\|>M_{n}$ for all $n \in \mathbb{N}$.

- 5 th sentence

See Theo. 1.4.9, p. 22.

- 6th sentence and 1st clause of 9th sentence
C does not depend on i since $C=M_{z} .{ }^{8}$ Similarly, since

$$
\left\|y_{i j}\right\|=\frac{1}{i}\left\|T_{p_{i}} \frac{x_{p_{j}}}{2^{j}}\right\| \underbrace{\frac{x_{p_{j}}}{2^{j}}:=x_{j}}_{\leq} \frac{M_{x_{j}}}{i}, \quad i, j \in \mathbb{N},
$$

$\lim _{i \rightarrow \infty} y_{i j}=0$ for all $j \in \mathbb{N}$.

- 8th sentence
$\left(y_{q_{i} q_{i}}\right)$ should be $\left(y_{q_{i} q_{j}}\right)$.

Comments, pp.32-3, Ex. 1.6.3

[^3]- 4th sentence

If $f(x)=x^{3}-x-1$, then $f(1)<0$ and $f(2)>0$. So there is some $x_{0} \in(1,2)$ such that $f\left(x_{0}\right)=0 .{ }^{9}$

- 6th sentence

The inequality holds since there exists some $c \in(1,2)$ such that

$$
\begin{aligned}
|T x-T y| & =\left|T^{\prime}(c)\right||x-y| \\
& =\frac{1}{3(1+c)^{2 / 3}}|x-y| \\
& <\frac{1}{3(1+1)^{2 / 3}}|x-y|=\frac{1 \cdot 2^{1 / 3}}{3 \cdot 2^{2 / 3} \cdot 2^{1 / 3}}|x-y| .
\end{aligned}
$$

- 7th/last sentence, $T x=x^{3}-1$

On the one hand, if T is a contraction, then

$$
\frac{\left|x^{3}-y^{3}\right|}{|x-y|} \leq \alpha<1
$$

On the other hand,

$$
\frac{\left|x^{3}-y^{3}\right|}{|x-y|}=\left|x^{2}+x y+y^{2}\right|>1
$$

Comment, p. 33, sentences betweeen 2nd \square and Ex.1.6.5
The method is known as fixed-point iteration.

Comment, p.34, Ex. 1.6.6, penultimate sentence

Suppose f is a contraction. So, since $F=\mathbb{R}^{+}$is closed, f has a fixed point by Theo. 1.6.4. ${ }^{10}$

Exercises, pp. 34-8

1. Consider $z, z^{\prime}, w \in E$ with $x+z=y=x+z^{\prime}$ and $z+w=z^{\prime}$. Then $y=x+z^{\prime}=x+z+w=y+w$. So $w=0$. Therefore $z^{\prime}=z+w=z$.
2.

(a) $\lambda 0=0$ for each λ since $\lambda 0=\lambda(0+0)=\lambda 0+\lambda 0$. Therefore, since $\lambda \neq 0$,

$$
\begin{aligned}
\lambda x=0 & \Longrightarrow \lambda^{-1}(\lambda x)=\lambda^{-1} 0 \\
& \Longrightarrow\left(\lambda^{-1} \lambda\right) x=0 \\
& \Longrightarrow 1 x=0 \\
& \Longrightarrow x=0
\end{aligned}
$$

(b) Consider $x \neq 0$. Suppose $\lambda \neq 0$. By (a), since $\lambda x=0$, it follows that $x=0$, which is a contradiction.
(c) Since $0 x=(0+0) x=0 x+0 x$, it follows that $0 x=0$. Then

$$
\begin{aligned}
x+(-1) x & =1 x+(-1) x \\
& =[1+(-1)] x \\
& =0 x \\
& =0 .
\end{aligned}
$$

Therefore $(-1) x=0-x=-x .{ }^{11}$
8. Since $h(x):=\frac{1}{p} x+\frac{1}{q}-x^{\frac{1}{p}}$ is continuous on $[0,1], h(0)=\frac{1}{q}>0, h^{\prime}(x)=\frac{1}{p}\left(1-x^{-\frac{1}{q}}\right)<0$ for $0<x<1$ and $h(1)=0$, it follows that $h(x) \geq 0$ for $0 \leq x \leq 1$.

[^4]22.
(a) Suppose $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|x_{n}-y\right\| \rightarrow 0$. Use $\|x-y\| \leq\left\|x-x_{n}\right\|+\left\|x_{n}-y\right\|$.
(b) Use
\[

$$
\begin{aligned}
\left\|\lambda_{n} x_{n}-\lambda x\right\| & =\left\|\lambda_{n} x_{n}-\lambda x_{n}+\lambda x_{n}-\lambda x\right\| \\
& =\left\|\left(\lambda_{n}-\lambda\right) x_{n}+\lambda\left(x_{n}-x\right)\right\| \\
& \leq\left|\lambda_{n}-\lambda\right|\left\|x_{n}\right\|+|\lambda|\left\|x_{n}-x\right\| \\
& \leq\left|\lambda_{n}-\lambda\right|\left(\left\|x_{n}-x\right\|+\|x\|\right)+|\lambda|\left\|x_{n}-x\right\| .
\end{aligned}
$$
\]

(c) Use $\left\|x_{n}+y_{n}-(x+y)\right\| \leq\left\|x_{n}-x\right\|+\left\|y_{n}-y\right\|$.
34.
(a) $\Longrightarrow(b)$

The proof is trivial by Theo. 1.3.23 and Def.1.3.25.
(b) \Longrightarrow (c)

Consider an open ball $B(x, \varepsilon)$. Since there exist $x_{1}, x_{2}, \ldots \in S$ with $x_{n} \rightarrow x$, there exists a number M such that $x_{n} \in B(x, \varepsilon)$ for every index $n \geq M .{ }^{12}$
(c) \Longrightarrow (a)

Let $x \in E$. Hence there exists $x_{n} \in S \cap B(x, 1 / n)$ for each positive integer n. Therefore $x \in \operatorname{cl} S$.
39.
(a) \Longrightarrow (b)

Note that $p_{n} \geq n$ and $q_{n} \geq n$ for each positive integer n. Now consider ε and M given in Def.1.4.1, p. 19. Therefore

$$
\begin{aligned}
n \geq M & \Longrightarrow p_{n}, q_{n} \geq M \\
& \Longrightarrow\left\|x_{p_{n}}-x_{q_{n}}\right\|<\varepsilon
\end{aligned}
$$

(b) \Longrightarrow (c)

Concerning (b), consider $q_{n}=p_{n+1}$.
(c) \Longrightarrow (a)

Suppose (a) is false. So there is a positive ε_{0} such that, for each positive integer M, there exist indices m_{0} and n_{0} where

$$
m_{0}, n_{0}>M \text { and }\left\|x_{m_{0}}-x_{n_{0}}\right\| \geq \varepsilon_{0} .
$$

Now consider $m_{0} \geq n_{0}$ and an increasing sequence of positive integers $\left(p_{n}\right)$ such that $p_{n_{0}}=n_{0}$ and $p_{n_{0}+1}=m_{0}$. Therefore

$$
n_{0}>M \text { and }\left\|x_{p_{n_{0}+1}}-x_{p_{n_{0}}}\right\| \geq \varepsilon_{0}
$$

which contradicts (c).
41. As in Ex. 1.4.6, pp. 20-1, the same argument applies if 2 nd powers and square roots are replaced with p th powers and p th roots, respectively.
48.
(a) \Longleftrightarrow (b)

Via Ex.35, p.37, F is continuous iff for every $x \in E_{1}$ and $\varepsilon>0$ there exists a $\delta>0$ such that $F(B(x, \delta)) \subset B(F(x), \varepsilon)$.
(a) $\Longrightarrow(b)$

Let $x \in F^{-1}(U)$ and take $\varepsilon>0$ and $\delta>0$ with

$$
F(B(x, \delta)) \underbrace{F \text { is continuous }}_{\subset}{ }_{B(F(x), \varepsilon)}^{\underbrace{U \text { is open in } E_{2}}_{C}} U .
$$

Hence $B(x, \delta) \subset F^{-1}(U)$.

[^5](a) \Longleftarrow (b)

For $x \in E_{1}$ and $\varepsilon>0, F^{-1}(B(F(x), \varepsilon))$ is open in E_{1}. Therefore there is a $\delta>0$ for which $B(x, \delta) \subset F^{-1}(B(F(x), \varepsilon))$. Thus $F(B(x, \delta)) \subset B(F(x), \varepsilon)$.
(b) \Longleftrightarrow (c)

Use that complements of open (resp.closed) sets are closed (resp. open) sets and inverse images commute with complements.
49. Concerning the 1st sentence, use that $\mathcal{N}(L)=L^{-1}(\{0\})$ and Theo. 1.5.4.
51. Uniform convergence is the one with respect to (1.14). ${ }^{13}$ That being said, on the one hand, suppose $\left\|L_{n}-L\right\| \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\left\|L_{n} x-L x\right\| \leq\left\|L_{n}-L\right\|\|x\| \rightarrow 0$ for every $x \in E_{1} .{ }^{14}$ Now, on the other hand, consider $E_{1}=E_{2}=l^{2}$ and the projection $x=\left(x_{1}, x_{2}, \ldots\right) \mapsto L_{n} x=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)$. Then $\left\|L_{n}-L_{m}\right\|=1$ for $n \neq m .{ }^{15}$ So, since $\left(L_{n}\right)$ is not a Cauchy sequence, it does not converge (uniformly). However, for $x \in l^{2}$, we have $L_{n} x \rightarrow x$ as $n \rightarrow \infty$. Thus $L_{n} \rightarrow I$ strongly.

[^6]In fact, on the one hand, $\sqrt{\sum_{i=n+1}^{m} x_{i}^{2}} \leq \sqrt{\sum_{i=1}^{\infty} x_{i}^{2}}=\|x\|=1$ for each unit vector x. On the other hand, consider $x=(0, \ldots, 0,1,0,0, \ldots)$ with $1=x_{i}, i \in\{n+1, \ldots, m\}$.

Comments, p. 42, Lemma 2.2.4, Proof

- 1st paragraph, penultimate sentence

Since $b_{n_{0}} \in\left(a_{n_{0}}, b\right]$ and $b_{n_{0}, n}=b_{n_{0}}$ for each positive integer n,

$$
\left\{n: a_{n}<b_{n_{0}, n}\right\}=\left\{n_{0}\right\} .
$$

- 3rd paragraph, penultimate sentence
$b_{b_{k}, n}=\min \left\{b_{n}, b_{k}\right\}$ and $b_{s, n}=\min \left\{b_{n}, s\right\}$ imply that

$$
\begin{aligned}
\sum_{a_{n}<b_{b_{k}, n}}\left(b_{b_{k}, n}-a_{n}\right) & =\left(b_{k}-a_{k}\right)+\left\{\left[\sum_{a_{n}<b_{s, n}}\left(b_{s, n}-a_{n}\right)\right]-\left(s-a_{k}\right)\right\} \\
& =b_{k}-a_{k}+s-a-s+a_{k} \\
& =b_{k}-a
\end{aligned}
$$

Comments, p. 43, Theo. 2.2.6, Proof

- 1st sentence

Use Theo. 2.2.2.(c), twice!

- 7th sentence
$[a, b) \subset \cup_{n=1}^{\infty} A_{n}$. In fact, suppose otherwise. So consider $a \leq \ell<b$ such that $f_{n}(\ell) \geq \alpha$ for each index n. Therefore $f_{n}(\ell) \nrightarrow 0$, which is a contradiction!

Comment, p. 44, (2.8)

g is a step function with support contained in the union of

$$
\left[a_{1,1}, b_{1,1}\right), \ldots,\left[a_{1, k_{1}}, b_{1, k_{1}}\right), \ldots,\left[a_{n_{0}, 1}, b_{n_{0}, 1}\right), \ldots,\left[a_{n_{0}, k_{n_{0}}}, b_{n_{0}, k_{n_{0}}}\right)
$$

Therefore

$$
\begin{aligned}
\int g & \leq \alpha \sum_{n=1}^{n_{0}} \sum_{k=1}^{k_{n}}\left(b_{n, k}-a_{n, k}\right) \\
& <\alpha(b-a) .
\end{aligned}
$$

Erratum, p. 44, Cor. 2.2.7

"... be nondecreasing sequences ..." should be "... be a nondecreasing sequence ...".

Comment, p.46, 1.2

For every $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} g_{n}(x) & =f_{1}(x)+\cdots+f_{n_{0}}(x)+\sum_{n=1}^{\infty}\left|f_{n_{0}+n}(x)\right| \\
& \geq f_{1}(x)+\cdots+f_{n_{0}}(x)+\sum_{n=1}^{\infty} f_{n_{0}+n}(x) \underbrace{(\mathrm{b}), \text { p. } 45}_{=} f(x)
\end{aligned}
$$

$$
\geq 0
$$

For $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ does not converge,

$$
\lim _{n \rightarrow \infty} g_{n}(x)=f_{1}(x)+\cdots+f_{n_{0}}(x)+\sum_{n=1}^{\infty}\left|f_{n_{0}+n}(x)\right|=+\infty
$$

Comments, p. 47, paragraph right after

- Penultimate sentence Since $f+g$ and $\left(f_{n}\right)$ satisfy Def. 2.3.1, both f and $f+g$ have the same representation and, by (2.10), the same integral.
- Ultimate sentence
$-f, f+g \in L^{1}(\mathbb{R}) \Longrightarrow-f+(f+g) \in L^{1}(\mathbb{R})$.

Comment, p. 48, sentence right before Theo. 2.4.1
If $z=0$ is a simple pole of an analytic function $g(z)$, then

$$
\lim _{\epsilon \rightarrow 0} \int_{\gamma(\epsilon)} g(z) d z=\pi i \operatorname{Res}(g, 0)
$$

where $\gamma(\epsilon)$ is a semicircle of small radius ϵ, centered at the origin, situated in the upper half-plane and described in the direction of increasing argument, and the residue $\operatorname{Res}\left(g, z_{0}\right)$ is the coefficient of $\left(z-z_{0}\right)^{-1}$ in the Laurent series expansion of g at $z_{0}=0 .{ }^{16}$ Hence, since $\frac{\sin x}{x}=\frac{e^{i x}-\cos x}{i x}$ and $\frac{\cos x}{x}$ is an odd function,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\sin x}{x} d x & =\frac{1}{i} \lim _{\epsilon \rightarrow 0}\left(\int_{-\infty}^{-\epsilon} \frac{e^{i x}}{x} d x+\int_{\epsilon}^{\infty} \frac{e^{i x}}{x} d x\right) \\
& =\frac{1}{i} \lim _{\epsilon \rightarrow 0} \int_{\gamma(\epsilon)} \frac{e^{i z}}{z} d z \\
& =\pi \operatorname{Res}\left(\frac{e^{i z}}{z}, 0\right) \\
& =\pi
\end{aligned}
$$

where $\operatorname{Res}\left(\frac{e^{i z}}{z}, 0\right)$ is the coeficient of z^{-1} in the Laurent series

$$
\frac{1}{z}+i-\frac{z}{2}-\frac{i z^{2}}{6}+\frac{z^{3}}{24}+\mathcal{O}\left(z^{4}\right)
$$

On the other side, $\frac{\sin x}{x}$ is not absolutely integrable over $[0, \infty)$ since

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\sum_{k=0}^{\infty} \int_{k \pi}^{(k+1) \pi} \frac{|\sin x|}{x} d x \geq \sum_{k=0}^{\infty} \frac{1}{(k+1) \pi} \int_{k \pi}^{(k+1) \pi}|\sin x| d x=s
$$

with

$$
\begin{aligned}
s & =\frac{1}{\pi} \int_{0}^{\pi} \sin x d x+\frac{1}{2 \pi} \int_{\pi}^{2 \pi}(-\sin x) d x+\frac{1}{3 \pi} \int_{2 \pi}^{3 \pi} \sin x d x+\frac{1}{4 \pi} \int_{3 \pi}^{4 \pi}(-\sin x) d x+\cdots \\
& =\frac{1}{\pi} \overbrace{\left.\cos x\right|_{\pi} ^{0}}^{2}+\frac{1}{2 \pi} \overbrace{\left.\cos x\right|_{\pi} ^{2 \pi}}^{2}+\frac{1}{3 \pi} \overbrace{\left.\cos x\right|_{3 \pi} ^{2 \pi}}^{2}+\frac{1}{4 \pi} \overbrace{\left.\cos x\right|_{3 \pi} ^{4 \pi}}^{2}+\cdots \\
& =\frac{2}{\pi}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots\right) \\
& =\infty .
\end{aligned}
$$

[^7](Note that, since
\[

$$
\begin{aligned}
\int_{-\infty}^{0}\left|\frac{\sin x}{x}\right| d x & =\int_{-\infty}^{0}\left|\frac{-\sin (-x)}{x}\right| d x \\
& =-\int_{\infty}^{0}\left|\frac{\sin u}{u}\right| d u \\
& =\int_{0}^{\infty}\left|\frac{\sin u}{u}\right| d u
\end{aligned}
$$
\]

integration on $(-\infty, \infty)$ was not necessary.)
Comment, p. 50, sentence right before Theo. 2.4.3 and $1^{\text {st }}$ sentence of its Proof See Exs. 7-8, p. 85.
$==$
Comment, p.51, Lemma 2.5.2, Proof, $5^{\text {th }}$ sentence, right before the comma
See Ex. 11, p. 85.
Comment/Erratum, p.52, Theo. 2.5.3, Proof

- $f \simeq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{n, k}$ since:
(a) $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \int\left|f_{n, k}\right| \leq \sum_{n=1}^{\infty} \int\left|f_{n}\right|+\sum_{n=1}^{\infty} 2^{-n}<\infty$;
(b) $f(x)=\sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{n, k}(x)$ for each $x \in \mathbb{R}$ such that $\overbrace{\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|f_{n, k}(x)\right|<\infty}^{(*)}$. In fact,

$$
\sum_{n=1}^{\infty}\left|f_{n}(x)\right|=\sum_{n=1}^{\infty}\left|\sum_{k=1}^{\infty} f_{n, k}(x)\right| \leq(*) .
$$

- Change ' $g_{n, k}$ ' to ' $f_{n, k}$ '.

Comments, p. 53

- 11. 7-9

The restriction of $f=\chi_{\{0\}}$ to each $[a, b]$ containing $\{0\}$ is Riemann integrable and its Riemann integral is 0 . Now use Theo. 2.10.1, p. 64. ${ }^{17}$

- Sentence right before Theo. 2.6.3

Use (2.14) with f in place of g.

Comment, p. 54, Theo. 2.6.6, Proof, $3^{\text {rd }}$ sentence, right before the first comma See Ex. 11, p. 85.

Comment, p. 55, paragraph right before Theo. 2.7.2
See Ex. 19, p. 86.
Comments, pp. 55-6, last 3 sentences before Theo. 2.7.5
If $f, g \in L^{1}(\mathbb{R})$ with $f=g$ a.e., then $\left|\int(f-g)\right| \leq \int|f-g|=0$. Thus $\int f=\int g$.
Comments, pp. 57-8, paragraph right before Theo. 2.7.10

[^8]- $1^{\text {st }}$ sentence

A sequence of functions f_{1}, f_{2}, \ldots defined on $X \subset \mathbb{R}$ converges uniformly to f if

$$
\sup _{x \in X}\left|f_{n}(x)-f(x)\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

So, concerning Ex. 2.7.8, $f_{n} \rightarrow 0$ uniformly since

$$
\sup _{x \in \mathbb{R}}\left|f_{n}(x)\right|=\frac{1}{\sqrt{n}} \quad \forall n \in \mathbb{N}
$$

- $2^{\text {nd }}$ and $3^{\text {rd }}$ sentences

The inequality follows from

$$
\left|f_{n}-f\right| \leq \sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right| \chi_{[a, b]} \quad \forall n \in \mathbb{N}
$$

Comments, p. 58

- Theo. 2.7.10, Proof

In place of the ultimate sentence, consider p. 47, paragraph that follows \square, last three sentences.

- Theo. 2.7.12
$f=f_{1}+f_{2}+\cdots$ i.n. signifies $f_{1}+\cdots+f_{n} \rightarrow f$ i.n..
- Theo. 2.8.1, Proof, $2^{\text {nd }}$ sentence

Recall that $\int\left|f_{n}\right|=\left\|f_{n}\right\|$, where $\|\cdot\|$ is the L^{1}-norm. ${ }^{18}$

Comments, p. 59

- Theo. 2.8.2, Proof
$-3^{\text {rd }}$ sentence, right before the second comma See Cor. 2.5.4, p. 52.
$-4^{\text {th }}$ sentence

$$
\begin{aligned}
f_{p_{n}} & =f_{p_{1}}+\left(f_{p_{2}}-f_{p_{1}}\right)+\cdots+\left(f_{p_{n}}-f_{p_{n-1}}\right) \\
& \rightarrow g \text { a.e. }
\end{aligned}
$$

is another way to write the equality that ends the $3{ }^{\text {rd }}$ sentence.

- $5^{\text {th }}$ sentence, right before the first comma

The equality that ends the $3^{\text {rd }}$ sentence and Theo. 2.7.12, p. 58, imply that

$$
g=f_{p_{1}}+\left(f_{p_{2}}-f_{p_{1}}\right)+\left(f_{p_{3}}-f_{p_{2}}\right)+\cdots \text { i.n., }
$$

which can also be written as

$$
\begin{aligned}
f_{p_{n}} & =f_{p_{1}}+\left(f_{p_{2}}-f_{p_{1}}\right)+\cdots+\left(f_{p_{n}}-f_{p_{n-1}}\right) \\
& \rightarrow \text { gi.n.. }
\end{aligned}
$$

On the other hand,

$$
f_{n} \rightarrow f \text { i.n. } \Longrightarrow f_{p_{n}} \rightarrow f \text { i.n.. }
$$

- Penultimate sentence

See Theo. 2.6.5, p. 54.

- Ultimate sentence

The equality is known as passage to the limit under the integral sign.

[^9]
Comment/Erratum, p. 60

- $1^{\text {st }}$ sentence

See Ex. 2.7.8, pp. 56-7.

- Theo. 2.8.3, Proof, last equality

Change the last ' - ' to ' + '.

Comments/Errata, p. 61

- $1^{\text {st }}$ sentence
$\int h<\infty$ by Def. 2.3.1, p. 45, and Theo. 2.4.1, p. 48.
- $2^{\text {nd }}$ sentence
- For a fixed $m \in \mathbb{N}$, define

$$
u_{n}=g_{m, n+1}=\max \left\{\left|f_{m}\right|,\left|f_{m+1}\right|, \ldots,\left|f_{m+n+1}\right|\right\} \text { and } v_{n}=g_{m+1, n}=\max \left\{\left|f_{m+1}\right|, \ldots,\left|f_{m+n+1}\right|\right\}
$$

Then $u_{n} \geq v_{n}$ for every $n \in \mathbb{N}$. Therefore $g_{m}=\lim _{n \rightarrow \infty} u_{n} \geq \lim _{n \rightarrow \infty} v_{n}=g_{m+1}$.

- Change ' $\left|f_{1}\right|^{\prime}$ to ' h '.
- Case $1,3{ }^{\text {rd }}$ sentence

Change ' f_{n} ' to ' g_{n} '.

- Case $2,3^{\text {rd }}$ sentence

See Theo. 1.4.2, pp.19-20.

Erratum/Comments, p. 62

- 2.9, $1^{\text {st }}$ sentence

Change ' $\int_{\mathbb{R}}$ ' to ' $\int_{\mathbb{R}} f^{\prime}$.

- Theo. 2.9.2, Proof

Note that $f \chi_{[a . b]} \simeq \sum_{n=1}^{\infty} f_{n} \chi_{[a . b]}=\sum_{n=1}^{\infty} g_{n}$.

- Ultimate paragraph, right before Def. 2.9.3

By Ex. 25, p. 87, the constant function $f=1$ does not belong to $L^{1}(\mathbb{R})$. By Theo. 2.10.1, p. 64, $\int_{a}^{b} f$ exists for every $-\infty<a<b<\infty$.

Comment/Erratum, p. 63

- $2^{\text {nd }}$ sentence

Consider an arbitrary $[a, b]$. Let N be a positive integer such that $[a, b] \subset[-N, N]$ and consider the Proof of Theo. 2.9.2 with $f \chi_{[-N, N]}$ in place of $f .{ }^{19}$ Therefore

$$
f \chi_{[a, b]}=f \chi_{[-N, N]} \chi_{[a, b]} \simeq g_{1}+g_{2}+\cdots
$$

- Penultimate paragraph
"In applications it often ..." should be "In applications it is often ...".

Comments, pp. 64-5

[^10]- $1^{\text {st }}$ sentence

See Ex. 28, p. 87.

- Theo. 2.10.1, Proof
- $1^{\text {st }}$ paragraph

Denote the $\inf ($ resp.sup $)$ of $f([a+(k-1) c, a+k c))$ by m_{k} (resp. M_{k}) and the characteristic function of $[a+(k-1) c, a+k c)$ by $f_{k}, k=1, \ldots, n$. Therefore

$$
g_{n}=m_{1} f_{1}+\cdots+m_{n} f_{n}\left(\text { resp. } h_{n}=M_{1} f_{1}+\cdots+M_{n} f_{n}\right) \cdot{ }^{20}
$$

$-2^{\text {nd }}$ paragraph

* $1^{\text {st }}$ sentence

As finer partitions of $[a, b)$ are considered, $\left(g_{n}\right)$ (resp. $\left(h_{n}\right)$) keeps nondecreasing (resp. nonincreasing).

* $3^{\text {rd }}$ and $4^{\text {th }}$ sentences

Consider $n \in \mathbb{N}$. Then, since $f(\mathbb{R}) \subset[-M, M]$,

$$
-M \leq g_{n} \leq f \leq h_{n} \leq M,
$$

that is,

$$
-M \leq-h_{n} \leq-f \leq-g_{n} \leq M
$$

So, if

$$
\varphi(x):=\left\{\begin{array}{cc}
M & \text { if } x \in[a, b) \\
0 & \text { otherwise }
\end{array}\right.
$$

then $\left|g_{n}\right| \leq \varphi$ and $\left|h_{n}\right| \leq \varphi$. Therefore we can use Theo. 2.8.4 properly. Now, one the one hand, note that $\int g_{n}$ and $\int h_{n}$ are Riemann sums. ${ }^{21}$ One the other hand, note that the passage to the limit under the integral sign was used, twice. ${ }^{22}$

* Antepenultimate sentence $g=h$ a.e. by Theo. 2.7.4, p. 55.
* Penultimate sentence

By Theo. 2.7.4, p. 55, $\int|f-g|=0$. Then $f-g \in L^{1}(\mathbb{R}) .{ }^{23}$ So, since $g \in L^{1}(\mathbb{R}), f=f-g+g \in$ $L^{1}(\mathbb{R})$.

- Theo. 2.10.2 and Theo. 2.10.3

To be Lebesgue integrable is to be Lebesgue integrable on \mathbb{R}. Then f is Lebesgue integrable on (a, b) if $f \chi_{(a, b)}$ is Lebesgue integrable, that is, f is integrable over $(a, b){ }^{24}$

Comments, pp. 68-9

- Def. 2.11.1
S is measurable if $\chi_{S} \chi_{[a, b)}$ is integrable for every $-\infty<a<b<\infty .{ }^{25}$
- Sentence that comes right after Def. 2.11.2

See Def. 2.7.1, p. 55, and Def. 2.6.2, p. 53.

- Theo. 2.11.3, Proof
- $3^{\text {rd }}$ sentence

Note that

$$
\begin{aligned}
\int|f| & =\int \chi_{S} \\
& =\mu(S) \\
& =0
\end{aligned}
$$

due to the sentence that comes right after Def. 2.11.2.

[^11]$-4^{\text {th }}$ sentence
Since $f_{1}+f_{2}+\cdots \simeq \chi_{S}$ and $f_{1}+\cdots+f_{n} \leq\left|f_{1}\right|+\cdots+\left|f_{n}\right|$ for each $n \in \mathbb{N}$, there exists an index n_{0} such that $A_{n_{0}} \neq \varnothing .{ }^{26}$
$-7^{\text {th }}$ sentence
\[

$$
\begin{aligned}
\sum_{k=1}^{k_{n}}\left(b_{n, k}-a_{n, k}\right) & =\int \chi_{A_{n}} \\
& \leq \int\left(2 \sum_{i=1}^{n}\left|f_{i}\right|\right)=2 \sum_{i=1}^{n} \int\left|f_{i}\right| \\
& \leq 2 \sum_{n=1}^{\infty} \int\left|f_{n}\right| \\
& <\frac{2 \varepsilon}{3}
\end{aligned}
$$
\]

where:

* the first equality comes from the fact that

$$
\chi_{A_{n}}=\sum_{k=1}^{k_{n}} \chi_{\left[a_{n, k}, b_{n, k}\right)} ;{ }^{27}
$$

* the first inequality comes from the fact that

$$
\left(2 \sum_{i=1}^{n}\left|f_{i}\right|\right) \geq \chi_{A_{n}}
$$

- Penultimate paragraph
* 1. -6

Use Cor. 2.5.4, p. 52.

* Ultimate sentence

Since $h_{n} \rightarrow h$ i.n., use the passage to the limit under the integral sign. ${ }^{28}$

- Theo. 2.11.4, Proof, $1^{\text {st }}$ part

On the one hand, since $S=\bigcup_{n=1}^{\infty} S_{n}$ is a disjoint union,

$$
\begin{equation*}
\chi_{S}(x)=\left(\chi_{S_{1}}+\chi_{S_{2}}+\cdots\right)(x) \text { for every } x \in \mathbb{R} . \tag{4}
\end{equation*}
$$

On the other hand, since each S_{n} is measurable, each $\chi_{S_{n}}$ is a locally integrable function. So, since $\chi_{S_{n}} \leq \chi_{[a, b]}$ for every $n \in \mathbb{N}$, every $\chi_{S_{n}}$ is an integrable function by Theo.2.9.5, p.63. Then, since $\left(\chi_{S_{1}}+\cdots+\chi_{S_{n}}\right)(x) \rightarrow \chi_{S}(x)$ for every $x \in \mathbb{R}\left(\right.$ by (4)) and $\chi_{S_{1}}+\cdots+\chi_{S_{n}} \leq \chi_{[a, b]}$ for every $n \in \mathbb{N}, \chi_{S}$ is integrable and $\chi_{S_{1}}+\cdots+\chi_{S_{n}} \rightarrow \chi_{S}$ i.n. by Theo. 2.8.4, p.60. So

$$
\begin{aligned}
\sum_{n=1}^{\infty} \int \chi_{S_{n}} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int \chi_{S_{k}} \\
& =\lim _{n \rightarrow \infty} \int \sum_{k=1}^{n} \chi_{S_{k}} \\
& =\int\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \chi_{S_{k}}\right) \\
& =\int \chi_{S} \\
& <\infty
\end{aligned}
$$

(where the penultimate equality comes from the passage to the limit under the integral sign).
Therefore $\chi_{S} \simeq \chi_{S_{1}}+\chi_{S_{2}}+\cdots$.

[^12]
Comments, p. 70

- Continuation of Theo. 2.11.4, Proof
$-2^{\text {nd }}$ sentence
In fact, for each $[a, b]$,

$$
\chi_{S}=\chi_{S_{1}}+\chi_{S_{2}}+\cdots \text { pointwise } \Longrightarrow \chi_{S} \chi_{[a, b]}=\chi_{S_{1}} \chi_{[a, b]}+\chi_{S_{2}} \chi_{[a, b]}+\cdots \text { pointwise }
$$

and, by Theo. 2.9.4, p. 63, each $\chi_{S_{n}} \chi_{[a, b]}$ is locally integrable. Therefore, by using a similar argument as in the $1^{\text {st }}$ part of the proof,

$$
\chi_{S} \chi_{[a, b]} \simeq \chi_{S_{1}} \chi_{[a, b]}+\chi_{S_{2}} \chi_{[a, b]}+\cdots \text { for each }[a, b] .
$$

Therefore χ_{S} is locally integrable.

- Case 1

Each $\chi_{S_{n}}$ is integrable by Theo.2.9.5, p.63. Now, note that since χ_{S} is integrable, (4) holds and $\chi_{S_{1}}+\cdots+\chi_{S_{n}} \leq \chi_{S}$ for every $n \in \mathbb{N}$, we have $\chi_{S_{1}}+\cdots+\chi_{S_{n}} \rightarrow \chi_{S}$ i.n. by Theo.2.8.4, p.60. Then, by using a similar argument as in the $1^{\text {st }}$ part of the proof,

$$
\sum_{n=1}^{\infty} \int \chi_{S_{n}}<\infty
$$

Therefore $\chi_{S} \simeq \chi_{S_{1}}+\chi_{S_{2}}+\cdots$.

- Case 2
$* \sum_{n=1}^{\infty} \int \chi_{S_{n}}<\infty \Longrightarrow \int \chi_{S_{n}}<\infty$ for every $n \in \mathbb{N} \Longrightarrow \chi_{S_{1}}, \chi_{S_{2}}, \ldots \in L^{1}(\mathbb{R})$;
* $\sum_{n=1}^{\infty} \chi_{S_{n}}=f$ a.e. by Theo. 2.7.10, p. 58;
* Since $\left|f-\chi_{S}\right|$ is integrable (by Theo. 2.7.4, p.55) and f is integrable, $\chi_{S}=f-\left(f-\chi_{S}\right)$ is integrable. ${ }^{29}$
- $1^{\text {st }}$ paragraph after \square, ultimate sentence

Follow the Proof of Theo. 2.8.1, p. 58, but now with each f_{n} in $L^{1}(\Omega)$. So $f \in L^{1}(\mathbb{R})$. As a matter of fact, $f \in L^{1}(\Omega)$ since $f=\sum_{n=1}^{\infty} f_{n}$ a.e.. ${ }^{30}$

- $2^{\text {nd }}$ paragraph after \square, ultimate sentence

Let $g=|f|$ and consider Theo. 2.11.7, p. 71, and Theo. 2.9.5, p. 63.

- Ultimate paragraph
- $1^{\text {st }}$ sentence

Let $f \simeq f_{1}+f_{2}+\cdots$ be as in Def. 2.3.1, p. 45. Then $f_{1}+\cdots+f_{n} \rightarrow f$ a.e. by Cor. 2.7.11, p. 58 .

- $4^{\text {th }}$ (last) sentence

Suppose that $f \chi_{[0,1]} \in L^{1}(\mathbb{R})$ to obtain a contradiction. In fact, on the one hand, for each positive integer n,

$$
\begin{aligned}
\ln n & =\int_{\left[\frac{1}{n}, 1\right]} f(\text { by Theo. 2.10.1, p. 64 }) \\
& \leq \int_{[0,1]} f .
\end{aligned}
$$

On the other hand, $\int f \chi_{(0,1]}<\infty$ by Def. 2.3.1, p.45, and Theo. 2.4.1, p. 48.

Comments/Erratum, p. 71

[^13]- Theo. 2.11.6, Proof

Consider Exercises 21 and 19.(b), pp. 86-7.

- Sentence that precedes Theo. 2.11.7

See p.49, Cor. 2.4.2, Proof, 1. 2.

- (2.26)
' $f(x)$ ' should be ' f '. ' $\left.b_{n}\right]$ ' should be ' $\left.b_{n}\right)^{\prime}$.

Comment/Erratum, p. 73, Theo. 2.12.2, Proof

- only if part

Consider

$$
\begin{aligned}
C & :=\left\{x \in \mathbb{R}: \sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty\right\}, \\
C_{r} & :=\left\{x \in \mathbb{R}: \sum_{n=1}^{\infty}\left|\operatorname{Re} f_{n}(x)\right|<\infty\right\} \text { and } \\
C_{i} & :=\left\{x \in \mathbb{R}: \sum_{n=1}^{\infty}\left|\operatorname{Im} f_{n}(x)\right|<\infty\right\} .
\end{aligned}
$$

So, since $C \subset C_{r} \cap C_{i}$ (by the triangle inequality) and $\mathbb{R} \backslash C$ is a null set, ${ }^{31} \mathbb{R} \backslash\left(C_{r} \cap C_{i}\right)$ is a null set. ${ }^{32}$ For this reason, both $\operatorname{Re} f$ and $\operatorname{Im} f$ have representations where both $\operatorname{Re} f_{n}$ and $\operatorname{Im} f_{n}$ are used!

- if part

It seems that the representations of $\operatorname{Re} f$ and $\operatorname{Im} f$ were switched.

Comments, pp. 74-5

- Hölder's inequality, Proof
- $1^{\text {st }}$ sentence

If $\|f\|_{p}=0$, then $f^{p}=0$ a.e. by Theo.2.7.4, p.55. Hence $f=0$ a.e.. Thus $f g=0$ a.e.. Therefore $\|f g\|_{1}=0$ by Theo. 2.7.4.

- Last sentence

Since f and g are measurable, ${ }^{33}|f g|$ is measurable by Theo. 2.11.6, p.71. So, by the first inequality of p. 75 and Theo. 2.11.7, p. 71, $f g$ is locally integrable. Then, by the first inequality of p. 75 and Theo. 2.9.5, p. 63, $f g \in L^{1}(\mathbb{R})$. Therefore $|f g| \in L^{1}(\mathbb{R})$ by Theo. 2.4.1, p. 48.

- Minkowski's inequality, Proof, $3^{\text {rd }}$ sentence

Use an argument similar to the one presented in the previous item to prove that $|f+g|^{p} \in L^{1}(\mathbb{R})$.

Erratum, p.76, 1.5
Remove the preposition 'in'.
Erratum, p. 81, (2.38),
' $\int_{c}^{d} F^{\prime}$ should be ' $\int_{a}^{b} F^{\prime}$.

Exercises, pp. 84-91

5. supp $|f|=\operatorname{supp} f$ is a finite union of semiopen intervals, which is contained in $\cup_{k=1}^{n}\left[a_{k}, b_{k}\right)$. On the other hand, consider the step function $g=M g_{1}+\cdots+M g_{n}$ where g_{k} is the characteristic function of $\left[a_{k}, b_{k}\right)$, $k=1, \ldots, n$. So $|f| \leq g$. Now use Theo. 2.2.2.(c).
[^14]- Let f and $\left(f_{n}\right)$ be as in Def. 2.3.1, p. 45. Therefore:
(a) Since $\tau_{z}\left|f_{n}\right|(x)=\left|f_{n}\right|(x-z)=\left|f_{n}(x-z)\right|=\left|\tau_{z} f_{n}(x)\right|=\left|\tau_{z} f_{n}\right|(x)$ for every $x \in \mathbb{R}$,

$$
\sum_{n=1}^{\infty} \int\left|\tau_{z} f_{n}\right|=\sum_{n=1}^{\infty} \int \tau_{z}\left|f_{n}\right| \underbrace{\text { Theo. 2.2.2.(e), p. } 41}_{=} \sum_{n=1}^{\infty} \int\left|f_{n}\right|<\infty
$$

(b) $\tau_{z} f(x)=f(x-z)=\sum_{n=1}^{\infty} f_{n}(x-z)=\sum_{n=1}^{\infty} \tau_{z} f_{n}(x)$ for every $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty}\left|\tau_{z} f_{n}(x)\right|=$
$\sum_{n=1}^{\infty}\left|f_{n}(x-z)\right|<\infty$.
So $\tau_{z} f \simeq \tau_{z} f_{1}+\tau_{z} f_{2}+\cdots$ and

$$
\int \tau_{z} f=\sum_{n=1}^{\infty} \int \tau_{z} f_{n} \underbrace{\text { Theo. 2.2.2.(e), p. } 41}_{=} \sum_{n=1}^{\infty} \int f_{n}=\int f .
$$

- Without loss of generality, suppose f is the characteristic function of $[a, b)$ and $z>0$ is sufficiently small with $[a, b) \cap[a+z, b+z) \neq \varnothing .{ }^{34}$ Therefore, since

$$
\left(\tau_{z} f-f\right)(x)=\left\{\begin{aligned}
-1 & \text { if } x \in[a, a+z) \\
0 & \text { if } x \in[a+z, b) \\
1 & \text { if } x \in[b, b+z)
\end{aligned}\right.
$$

if $z \rightarrow 0$, then

$$
\int\left|\tau_{z} f-f\right|=2 z \rightarrow 0
$$

10. Let $\left(f_{n}\right)$ be as in Def. 2.3.1, p.45. Then $f_{n}=\sum_{m=1}^{m(n)} \lambda_{m, n} \chi_{\left[a_{m, n}, b_{m, n}\right)}$ and $\left|f_{n}\right|=\sum_{m=1}^{m(n)}\left|\lambda_{m, n}\right| \chi_{\left[a_{m, n}, b_{m, n}\right)}$ for every $n \in \mathbb{N} .{ }^{35}$ Therefore
(a) $\sum_{n=1}^{\infty} \sum_{m=1}^{m(n)} \int\left|\lambda_{m, n} \chi_{\left[a_{m, n}, b_{m, n}\right)}\right|=\sum_{n=1}^{\infty} \int\left|f_{n}\right|<\infty, 36$
(b) $f(x)=\sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{\infty} \sum_{m=1}^{m(n)} \lambda_{m, n} \chi_{\left[a_{m, n}, b_{m, n}\right)}(x)$ whenever $\sum_{n=1}^{\infty} \sum_{m=1}^{m(n)}\left|\lambda_{m, n} \chi_{\left[a_{m, n}, b_{m, n}\right)}(x)\right|=\sum_{n=1}^{\infty}\left|f_{n}(x)\right|<$ ∞.

Now arrange the family of all intervals $\left[a_{m, n}, b_{m, n}\right)$ and the family of all scalars $\lambda_{m, n}$ into sequences

$$
\left[a_{1}, b_{1}\right),\left[a_{2}, b_{2}\right), \ldots \quad \text { and } \quad \lambda_{1}, \lambda_{2}, \ldots,
$$

respectively, so that none of them are missed. Thus $f \simeq \lambda_{1} \chi_{\left[a_{1}, b_{1}\right)}+\lambda_{2} \chi_{\left[a_{2}, b_{2}\right]}+\cdots .{ }^{37}$
19.
(a) Let X be a countable subset of \mathbb{R}. If X is finite, use Comments, p.53,11.7-9, p. 12 of this material, with X in place of $\{0\}$. Now let $X=\left\{x_{n} \mid n \in \mathbb{N}\right\}$ be infinite and consider $\chi_{\left\{x_{n}\right\}}$ for each $n \in \mathbb{N}$. So $\chi_{\left\{x_{n}\right\}} \in L^{1}(\mathbb{R})$ and $\int \chi_{\left\{x_{n}\right\}}=0$ for each $n \in \mathbb{N} .^{38}$ Therefore, due to the fact that

$$
\chi_{X}=\chi_{\left\{x_{1}\right\}}+\chi_{\left\{x_{2}\right\}}+\cdots,
$$

$\chi_{X} \simeq \chi_{\left\{x_{1}\right\}}+\chi_{\left\{x_{2}\right\}}+\cdots$ and, by Theo. 2.5.3, p. 52, $\int \chi_{X}=0$.

[^15](b) Consider $\varepsilon>0$ is sufficiently small, $S_{n} \subset \mathbb{R}$ is a null set for each $n \in \mathbb{N}$ and $S=\bigcup_{n=1}^{\infty} S_{n} .39$ By Theo. 2.11.3, p. 68, there exist intervals $I_{n, k}=\left[a_{n, k}, b_{n, k}\right)$ such that
$$
S_{n} \subset \bigcup_{k=1}^{\infty} I_{n, k} \quad \text { and } \quad \sum_{k=1}^{\infty} l\left(I_{n, k}\right)<\frac{\varepsilon}{2^{n}} \quad \text { for each } n \in \mathbb{N} .4^{40}
$$

Now arrange the doubly-indexed family of intervals $I_{n, k}$ into a sequence I_{1}, I_{2}, \ldots (where none of the $I_{n, k}$ are missed). ${ }^{41}$ Therefore

$$
S \subset \bigcup_{n=1}^{\infty}\left(\bigcup_{k=1}^{\infty} I_{n, k}\right)=\bigcup_{i=1}^{\infty} I_{i} \quad \text { and } \quad \sum_{i=1}^{\infty} l\left(I_{i}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} l\left(I_{n, k}\right)<\varepsilon
$$

28. See Ex. 37, p. 89.
29.

(a) The constant function $\chi_{\mathbb{R}}=1$ is locally integrable, ${ }^{42}$ that is $\mathbb{R} \in \mathcal{M}$. Then $\varnothing=\mathbb{R} \backslash \mathbb{R} \in \mathcal{M}$ by (d).
(e) Let I be an arbitrary interval and consider arbitrary numbers a and b with $a<b$. Thus χ_{I} is locally integrable since $\chi_{I} \chi_{I_{[a, b)}}$ is Lebesgue integrable by Theo. 2.10.1, p. 64.
(f) Any open subset of \mathbb{R} is a countable union of disjoint open intervals. Now use (e) and (b).
(g) Consider $A=\mathbb{R}$ and let B be an arbitrary open subset of A. So $A \backslash B \in \mathcal{M}$ by (a), (f) and (d).
34.(b) Consider $S=B, S_{1}=A, S_{2}=B \backslash A$ and $S_{n}=\varnothing$ for $n=3,4, \ldots$. Now use Theo. 2.11.4, p. 69 .
35. By Ex. 33.(a,d), (b) $\Longleftrightarrow(\mathrm{e})$ and (c) $\Longleftrightarrow(\mathrm{d})$.
37. See Comments, p. 70, $1^{\text {st }}$ paragraph after \square, ultimate sentence, p. 17 of this material.

39. Comment

Neither g nor g^{2} is defined for $x \in(-1,0)$!

[^16]Comment, p. 95, Exs. 3.2.4-7
Concerning the conjugate simmetry condition (Def.3.2.1.(a), p. 94), note that, since

$$
\left|\bar{z}-\overline{z_{0}}\right|=\left|\overline{z-z_{0}}\right|=\left|z-z_{0}\right|
$$

for all $z, z_{0} \in \mathbb{C}, z \mapsto \bar{z}$ is continuous at each $z_{0} \in \mathbb{C}$. So complex conjugation is a continuous mapping.
$===$
Erratum, p. 98, 1. -10
Change '(b)' to '(a)'.
Erratum, p. 100, 1. 1
Remove the comma.
Comment, p.100, continuation of Ex. 3.3.5, $\left\|f_{n}-f_{m}\right\| \leq\left(\frac{1}{n}+\frac{1}{m}\right)^{1 / 2}$
Suppose $n>m$. Concerning Figure 3.1 on p.99, visualize the graphs of f_{n} and f_{m} simultaneously and denote the points where the oblique line segments intersect the x-axis by $x_{1}=\frac{1}{2}+\frac{1}{2 n}$ and $x_{2}=\frac{1}{2}+\frac{1}{2 m} .43$ Hence

$$
f_{n}(x)-f_{m}(x)= \begin{cases}0 & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2(m-n)\left(x-\frac{1}{2}\right) & \text { if } \frac{1}{2} \leq x \leq x_{1} \\ 2 m\left(x-\frac{1}{2}\right)-1 & \text { if } x_{1}<x \leq x_{2} \\ 0 & \text { if } x_{2} \leq x \leq 1\end{cases}
$$

Then $\left\|f_{n}-f_{m}\right\|=\sqrt{I_{m, n}}$ with

$$
\begin{aligned}
I_{m, n} & =\int_{0}^{1}\left(f_{n}(x)-f_{m}(x)\right)^{2} d x \\
& =4(m-n)^{2} \int_{1 / 2}^{x_{1}}\left(x-\frac{1}{2}\right)^{2} d x+4 m^{2} \int_{x_{1}}^{x_{2}}\left(x-\frac{1}{2}\right)^{2} d x-4 m \int_{x_{1}}^{x_{2}}\left(x-\frac{1}{2}\right) d x+\int_{x_{1}}^{x_{2}} d x \\
& =4(m-n)^{2} \int_{0}^{1 / 2 n} t^{2} d t+4 m^{2} \int_{1 / 2 n}^{1 / 2 m} t^{2} d t-4 m \int_{1 / 2 n}^{1 / 2 m} t d t+\frac{1}{2 m}-\frac{1}{2 n} \\
& =\frac{4(m-n)^{2}}{3}\left(\frac{1}{2 n}\right)^{3}+\frac{4 m^{2}}{3}\left[\left(\frac{1}{2 m}\right)^{3}-\left(\frac{1}{2 n}\right)^{3}\right]-2 m\left[\left(\frac{1}{2 m}\right)^{2}-\left(\frac{1}{2 n}\right)^{2}\right]+\frac{1}{2 m}-\frac{1}{2 n} \\
& =\frac{1}{2}\left\{\frac{(m-n)^{2}}{3}\left(\frac{1}{n}\right)^{3}+\frac{m^{2}}{3}\left[\left(\frac{1}{m}\right)^{3}-\left(\frac{1}{n}\right)^{3}\right]-m\left[\left(\frac{1}{m}\right)^{2}-\left(\frac{1}{n}\right)^{2}\right]+\frac{1}{m}-\frac{1}{n}\right\} \\
& =\frac{1}{2}\left[-\frac{2 m}{3 n^{2}}+\frac{1}{3 n}+\frac{1}{3 m}+\frac{m}{n^{2}}-\frac{1}{n}\right] \\
& =\frac{1}{2}\left[\frac{m}{3 n^{2}}-\frac{2}{3 n}+\frac{1}{3 m}\right] \\
& =\frac{1}{2} \cdot \frac{m^{2}-2 m n+n^{2}}{3 m n^{2}} \\
& =\frac{(m-n)^{2}}{6 m n^{2}} .
\end{aligned}
$$

Therefore, if $\frac{(m-n)^{2}}{6 m n^{2}}>\frac{m+n}{m n}$, then $m>n+\sqrt{6 n(m+n)}>n$, which is a contradiction.

Comments, p. 103

[^17]- 2nd paragraph following 1st
- 2nd sentence See Def. 1.5.2, p. 26.
- 3rd sentence

In fact, since $\langle\cdot, x\rangle$ and complex conjugation are continuous, ${ }^{44}\langle x, \cdot\rangle=\overline{\langle\cdot, x\rangle}$ is continuous.

- 1. -1

$$
\begin{aligned}
\operatorname{Re}\left\langle x_{n}, x\right\rangle & \leq\left|\left\langle x_{n}, x\right\rangle\right| \\
& \leq\left\|x_{n}\right\|\|x\| \rightarrow\|x\|^{2} .
\end{aligned}
$$

Comment, p.105, 1 st sentence

See p. 103 (2nd paragraph following 1st \square, 2nd sentence) and p. 27 (Theo. 1.5.7).
Erratum, p. 106, 1.9
' \mathbb{N}^{\prime} should be ' $\{1, \ldots, n\}$ '.
Comments, p. 111, last sentence

- 2nd equality, last summand

$$
\begin{aligned}
\left\langle\sum_{j=1}^{n} \alpha_{j} x_{j}, \sum_{k=1}^{n} \alpha_{k} x_{k}\right\rangle & =\sum_{k=1}^{n}\left\langle\sum_{j=1}^{n} \alpha_{j} x_{j}, \alpha_{k} x_{k}\right\rangle \\
& =\sum_{k=1}^{n} \sum_{j=1}^{n}\left\langle\alpha_{j} x_{j}, \alpha_{k} x_{k}\right\rangle \\
& =\sum_{k=1}^{n}\left\langle\alpha_{k} x_{k}, \alpha_{k} x_{k}\right\rangle
\end{aligned}
$$

- 4th equality, last summand

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle-\alpha_{k}\right|^{2} & =\sum_{k=1}^{n}\left(\left\langle x, x_{k}\right\rangle-\alpha_{k}\right) \overline{\left(\left\langle x, x_{k}\right\rangle-\alpha_{k}\right)} \\
& =\sum_{k=1}^{n}\left(\left\langle x, x_{k}\right\rangle \overline{\left\langle x, x_{k}\right\rangle}-\overline{\alpha_{k}}\left\langle x, x_{k}\right\rangle-\alpha_{k} \overline{\left\langle x, x_{k}\right\rangle}+\alpha_{k} \overline{\alpha_{k}}\right) .
\end{aligned}
$$

Comments, p. 112, 2nd paragraph after

- The sequence

$$
\left(\sum_{k=1}^{n}\left|\left\langle x, x_{k}\right\rangle\right|^{2}\right)
$$

is increasing and bounded above. Then the series in (3.26) is convergent. Therefore

$$
\lim _{n \rightarrow \infty}\left|\left\langle x, x_{n}\right\rangle\right|^{2}=0
$$

- zero (in the 2 nd sentence) is the zero vector. ${ }^{45}$

Comments, p. 113, Ex.3.4.11

[^18]- 2nd sentence

See Ex. 3.4.17.

- 3rd sentence
$\cos t \sin n t$ is an odd function.

Comment, p.120, 2nd sentence
See Theo. 3.4.14, p. 115.

Comments, p. 122

- 1st paragraph, 4th sentence

Concerning the 1st equality, $f=f \chi_{[-\pi, \pi]}$ and

$$
\int f=\int \tau_{x} f
$$

by section 2.9, pp. 62-4, and Ex.7, p. 85. The 2nd equality follows from Theo. 2.10.4, p. 66 .

- (3.34), 1st equality

Let us prove

$$
\begin{equation*}
f_{0}+f_{1}+\cdots+f_{n}=\sum_{k=-n}^{n}(n+1-|k|)\left\langle f, \varphi_{k}\right\rangle \varphi_{k} \tag{5}
\end{equation*}
$$

by induction on n. In fact, since (5) holds trivially for $n \in\{0,1\}$ and

$$
\begin{aligned}
f_{0}+f_{1}+\cdots+f_{n}+f_{n+1} & =\sum_{k=-n}^{n}(n+1-|k|)\left\langle f, \varphi_{k}\right\rangle \varphi_{k}+\sum_{k=-(n+1)}^{n+1}\left\langle f, \varphi_{k}\right\rangle \varphi_{k} \\
& =\sum_{k=-n}^{n}(n+1-|k|+1)\left\langle f, \varphi_{k}\right\rangle \varphi_{k}+\left\langle f, \varphi_{-(n+1)}\right\rangle \varphi_{-(n+1)}+\left\langle f, \varphi_{n+1}\right\rangle \varphi_{n+1} \\
& =\sum_{k=-(n+1)}^{n+1}((n+1)+1-|k|)\left\langle f, \varphi_{k}\right\rangle \varphi_{k}
\end{aligned}
$$

(5) also holds true for $n=2,3, \ldots$.

Erratum, p. 124, Proof of Lemma 3.5.3

' x ' should be ' t '.

Comment, p.126, Proof of Theo.3.5.6, 1st sentence
See Ex. 41, p. 89.

Erratum, p. 127, 2nd paragraph after Def.3.6.1
' H ' should be ' E '.

Comment, p.128, Proof of Theo. 3.6.2, 4th sentence
' $\left(x_{n}\right) \in S^{\perp \prime}$ is an abuse of notation.

Comments, pp.128-9, Proof of Theo. 3.6.4

- 4th sentence

It is straightforward to prove the first two equalities. (3.5) is used to prove the third equality.

- penultimate sentence

$$
\begin{aligned}
4\left\|x-\frac{y+y_{1}}{2}\right\|^{2}+\left\|y-y_{1}\right\|^{2} & =\left\|2 x-\left(y+y_{1}\right)\right\|^{2}+\left\|y-x+x-y_{1}\right\|^{2} \\
& =\left\|x-y_{1}+x-y\right\|^{2}+\left\|x-y_{1}-(x-y)\right\|^{2} \\
& =2\left(\left\|x-y_{1}\right\|^{2}+\|x-y\|^{2}\right) \\
& =2\left(d^{2}+d^{2}\right)
\end{aligned}
$$

(Note that (3.5) was used in the penultimate equality.)

Erratum, p. 132, 1st sentence of Section 3.7

' 3.5^{\prime} ' should be ' 3.3 '. In fact, cf. p. 103, 3rd and 4th sentences after the Proof of Theo. 3.3.11. ${ }^{46}$

Exercises, pp. 135-143

10.

$$
\begin{aligned}
4 \times \mathrm{RHS} & =\langle x+y, x+y\rangle-\langle x-y, x-y\rangle+i(\langle x+i y, x+i y\rangle-\langle x-i y, x-i y\rangle) \\
& =2(\langle x, y\rangle+\overline{\langle x, y\rangle})+2 i(\langle x, i y\rangle+\overline{\langle x, i y\rangle}) \\
& =2(\langle x, y\rangle+\overline{\langle x, y\rangle}+i(\bar{i}\langle x, y\rangle+i \overline{\langle x, y\rangle})) \\
& =2(2\langle x, y\rangle) .
\end{aligned}
$$

15.

$$
\begin{aligned}
4\left\|z-\frac{x+y}{2}\right\|^{2}+\|x-y\|^{2} & =\|2 z-(x+y)\|^{2}+\|x-z+z-y\|^{2} \\
& =\|z-y+z-x\|^{2}+\|z-y-(z-x)\|^{2} \\
& =2\left(\|z-y\|^{2}+\|z-x\|^{2}\right)
\end{aligned}
$$

(Note that (3.5) was used in the ultimate equality.)
34. Consider $p \in H=\operatorname{span}\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}(x)=1, p_{2}(x)=x$ and $p_{3}(x)=x^{2} .{ }^{47}$ Note that

$$
\left\|x^{3}-p(x)\right\|^{2}=\int_{-1}^{1}\left|x^{3}-p(x)\right|^{2} d x
$$

reaches its minimum where $p(x)=P_{H}\left(x^{3}\right)$. So calculate

$$
p=\left\langle x^{3}, q_{1}\right\rangle q_{1}+\left\langle x^{3}, q_{2}\right\rangle q_{2}+\left\langle x^{3}, q_{3}\right\rangle q_{3}
$$

where $B=\left\{q_{1}, q_{2}, q_{2}\right\}$ is an orthonormal basis of H. To obtain B, apply Gram-Schmidt to $\left\{p_{1}, p_{2}, p_{3}\right\}$.
43. See Ex. 3.4.17, pp. 116-7.

44-5. Concerning the orthonormality, see Ex.3.4.17, pp.116-7.

[^19] 4

Comment, pp.146-7, Ex. 4.2.2, penultimate sentence
As in Ex. 3.2.3, pp. 94-5, consider the standard inner product. Then, since
\[

$$
\begin{gathered}
A x=\sum_{i=1}^{N}\left\langle A x, e_{i}\right\rangle e_{i}, \\
\|A x\|_{2}=\sqrt{\sum_{i=1}^{N}\left|\sum_{j=1}^{N} \alpha_{i j} \lambda_{j}\right|^{2}} \\
\leq \sqrt{\sum_{i=1}^{N}(\sqrt{\sum_{j=1}^{N}\left|\alpha_{i j}\right|^{2}} \underbrace{\sqrt{\sum_{j=1}^{N}\left|\lambda_{j}\right|^{2}}}_{\|x\|_{2}})^{2}}
\end{gathered}
$$
\]

by (4.1) and the Cauchy-Schwarz inequality. Therefore

$$
\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N}\left|\alpha_{i j}\right|^{2}}
$$

is an upper bound of $\left\{\|A x\|_{2}:\|x\|_{2}=1\right\}$.
Erratum, pp. 150-1, Proof of Theo. 4.2.9, ultimate sentence
' $a_{i j}$ ' should be ' $\alpha_{i j}$ '.

Erratum, p. 155, Proof of Theo. 4.3.12, 3rd sentence
' $\|\varphi\|\|A x\|\|A x\|$ ' should be ' $\|\varphi\|\|x\|\|A x\|$ '.

Comment, p.161, Cor. 4.4.12

Note that the product (Theo. 4.4.11) and the sum (first consequence of Def. 4.4.1, p. 158) of self-adjoint operators are self-adjoint.

Comments, p. 162, Proof of Theo. 4.4.14

- Note that T is bounded by Def.4.4.1 and Def.4.4.3, pp.158-9.
- (4.6)

Consider $\varphi(x, z)=\langle T x, z\rangle$ with $\varphi=\varphi_{1}$ and $T=A$ as in Ex.4.3.3, p.151, and let Φ be the quadratic form of φ as in p.152. Therefore

$$
4 \operatorname{Re}\langle T x, z\rangle=\Phi(x+z)-\Phi(x-z)
$$

$\|\Phi\|=M$ and the inequality follows from the sentence presented after Def.4.3.6, p.152. Furthermore, the equality holds by the Parallelogram law, p. 97.

Comment, p.165, Ex.4.5.9

For all $x \in H$, if $L x=-i x$, then

$$
\begin{aligned}
\left\langle T^{*} x, x\right\rangle & =\langle x, T x\rangle \\
& =\langle x, i x\rangle \\
& =-i\langle x, x\rangle \\
& =\langle-i x, x\rangle \\
& =\langle L x, x\rangle .
\end{aligned}
$$

So $T^{*}=L$ by Cor. 4.3.8.

=================

Comment, p. 166, (4.11)
There is no need to use Theo. 4.4.14. In fact,

$$
\begin{aligned}
\left\|T^{2} x\right\| & =\|T T x\| \\
& =\left\|T^{*} T x\right\| \quad \text { (Theo.4.5.8) } \\
& =\left\|T^{*} T x\right\|\|x\| \\
& \geq\left|\left\langle T^{*} T x, x\right\rangle\right| \text { (Schwarz's inequality, p.96). }
\end{aligned}
$$

Comment, p. 167
On the one hand,

$$
T \text { is unitary } \Rightarrow T \text { is isometric }
$$

by Def.4.5.16 and Theo. 4.5.15. On the other hand,

$$
T \text { is isometric } \nRightarrow T \text { is unitary. }
$$

In fact, the operator A in Ex.4.5.3, p.164, is isometric by Def.4.5.13. However, since A is not surjective, A is not invertible. Therefore, A is not unitary by Theo. 4.5.17. ${ }^{48}$

Exercises, pp. 211-6
11. Let C and D be operators with $T=C+i D$ and $T^{*}=C-i D$. Therefore

$$
\begin{aligned}
C & =\frac{1}{2}\left(T+T^{*}\right) \\
& =A \\
D & =\frac{1}{2 i}\left(T-T^{*}\right) \\
& =B .
\end{aligned}
$$

28. Check my Comment in regard to p. 167.
[^20]
[^0]: ${ }^{1}$ That is, $(f-g)(x)>0$ for each $x \in \Omega$.
 ${ }^{2}$ That is, $g_{n}(x) \leq f(x)$.
 ${ }^{3}$ Hence $\left|\left(g_{n}-g\right)(x)\right| \rightarrow 0$.
 ${ }^{4}$ Now use Theo. 1.3.21, p. 16.

[^1]: ${ }^{5}$ See Ex. 1.2.6, p. 4.

[^2]: ${ }^{6}$ See Theo. 1.3.13.
 ${ }^{7}$ Anyway, cf. p. 26, 1st paragraph.

[^3]: ${ }^{8}$ See 2nd sentence of Theo. 1.5.13.

[^4]: ${ }^{9}$ Use the Intermediate Value Theorem.
 ${ }^{10}$ See the ultimate sentence.
 ${ }^{11}$ See p.3, 2nd paragraph.

[^5]: ${ }^{12}$ See Def. 1.3.6, p. 10.

[^6]: ${ }^{13}$ See p. 28, sentence that precedes Theo. 1.5.9.
 ${ }^{14}$ See p. 28, sentence that follows \square.
 ${ }^{15}$ Without loss of generality, assume $n<m$. Thus

 $$
 \begin{aligned}
 \left\|L_{n}-L_{m}\right\| & =\sup _{\|x\|=1}\left\|\left(L_{n}-L_{m}\right) x\right\| \\
 & =\sup _{\|x\|=1}\left\|\left(0, \ldots, 0, x_{n+1}, \ldots, x_{m}, 0,0, \ldots\right)\right\| \\
 & =\sup _{\|x\|=1} \sqrt{\sum_{i=n+1}^{m} x_{i}^{2}} \\
 & =1 .
 \end{aligned}
 $$

[^7]: ${ }^{16}$ Refer to Elementary Theory of Analytic Functions of One or Several Complex Variables by Henri Cartan, p. 104.

[^8]: ${ }^{17}$ See also Ex. 9, p. 85.

[^9]: ${ }^{18}$ See Def. 2.6.1, p. 52.

[^10]: ${ }^{19} N$ is used here since n is used in the above-mentioned Proof.

[^11]: ${ }^{20}$ See p.40, (2.1).
 ${ }^{21}$ See Def. 2.2.1, p. 41
 ${ }^{22}$ See p.59, ultimate paragraph.
 ${ }^{23}$ See p. 53, right after Def. 2.6.2.
 ${ }^{24}$ See p.62, 2.9, everything before Theo. 2.9.2.
 ${ }^{25}$ See 2.9.

[^12]: ${ }^{26}$ In fact, suppose otherwise to obtain a contradiction.
 ${ }^{27}$ See Def. 2.2.1, p. 41.
 ${ }^{28}$ p. 59, ultimate paragraph.

[^13]: ${ }^{29}$ See p. 53, right after Def. 2.6.2.
 ${ }^{30}$ See p. 55, Def. 2.7.3, and p.47, antepenultimate and penultimate paragraphs, starting from the italicized sentence.

[^14]: ${ }^{31}$ See p. 55, Def. 2.7.1, and p.47, antepenultimate and penultimate paragraphs, starting from the italicized sentence. The arguments are similar for complex-valued functions.
 ${ }^{32}$ See Theo. 2.7.2, p. 55.
 ${ }^{33}$ See p. 70, last paragraph, second sentence.

[^15]: ${ }^{34}$ Note that $\tau_{z} f$ is the characteristic function of $[a+z, b+z)$.
 ${ }^{35}$ See p. 40.
 ${ }^{36}$ See Theo. 2.2.2.(a), p. 41.
 ${ }^{37}$ For the converse, the proof is obvious!
 ${ }^{38}$ Use Comments, p. 53, 11. 7-9, p. 12 of this material, with $\left\{x_{n}\right\}$ in place of $\{0\}$.

[^16]: ${ }^{39}$ Notice that $\left\{n \in \mathbb{N} \mid S_{n} \neq \varnothing\right\}$ can be finite or infinite.
 ${ }^{40}$ If $I=[a, b)$, then $l(I)=b-a$.
 ${ }^{41}$ This is possible since $I_{n, k} \mapsto n / k$ is a bijection between that doubly-indexed family of intervals and $\{x \in \mathbb{Q}: x>0\}$.
 ${ }^{42}$ See p. 62, right after the second \square.

[^17]: ${ }^{43}$ Note that $x_{1}<x_{2}$.

[^18]: ${ }^{44}$ See the first comment of the previous page!
 ${ }^{45}$ See Def. 3.3.10, p. 102.

[^19]: ${ }^{46}$ See p. 27, Theo. 1.5.7.
 ${ }^{47}$ Clearly, p_{1}, p_{2} and p_{3} are linearly independent.

[^20]: ${ }^{48}$ Concerning Exercise 28, p. 213, the answer is NO!

