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================================================================================
================================================================================

1
================================================================================
================================================================================
Erratum, p. 6, l. 8
‘∑n

k=1 |xj||yj|’ should be ‘∑n
j=1 |xj||yj|’ or ‘∑n

k=1 |xk||yk|’.
================================================================================
Comment, p. 5, Theo. 1.2.7, Proof, 2nd sentence
See Ex. 8, p. 35.
================================================================================
Comment, pp. 6–7, Theo. 1.2.8, Proof
The second inequality holds by Theo. 1.2.7 (Hölder’s inequality) provided that(

(xn + yn)
p−1
)
∈ lq!

So consider partial sums (and the last inequality obtained in the Proof of Theo. 1.2.7) instead:

m

∑
k=1
|xk + yk|p =

m

∑
k=1
|xk + yk||xk + yk|p−1

≤
m

∑
k=1
|xk||xk + yk|p−1 +

m

∑
k=1
|yk||xk + yk|p−1

≤
(

m

∑
k=1
|xk|p

)1/p ( m

∑
k=1
|xk + yk|q(p−1)

)1/q

+

(
m

∑
k=1
|yk|p

)1/p ( m

∑
k=1
|xk + yk|q(p−1)

)1/q

≤
(

∞

∑
n=1
|xn|p

)1/p ( m

∑
k=1
|xk + yk|q(p−1)

)1/q

+

(
∞

∑
n=1
|yn|p

)1/p ( m

∑
k=1
|xk + yk|q(p−1)

)1/q

ww�
m

∑
k=1
|xk + yk|p ≤


(

∞

∑
n=1
|xn|p

)1/p

+

(
∞

∑
n=1
|yn|p

)1/p

(

m

∑
k=1
|xk + yk|p

)1/q

. (1)

On the other hand, the inequality that completes the Proof of Theo. 1.2.8 is trivially satisfied if

∞

∑
n=1
|xn + yn|p = 0. (2)

So suppose (2) is not satisfied. Then there is an index M such that

m ≥ M =⇒
m

∑
k=1
|xk + yk|p > 0.

Therefore, by (1), (
m

∑
k=1
|xk + yk|p

)1−1/q

≤
(

∞

∑
n=1
|xn|p

)1/p

+

(
∞

∑
n=1
|yn|p

)1/p

for m ≥ M. Now let m→ ∞.
================================================================================
Erratum, p. 7, l. 14
‘Xj’ should be ‘Ej’.
================================================================================
Comment, p. 11, Ex. 1.3.8, penultimate sentence
Consider t ∈ [0, 1]. On the one hand,

gn(t)→ 0. (3)
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On the other hand,

fn(t) =
gn(t)
||gn||

→ 0

depending on the behavior of the sequence (1/ ||gn||) as n→ ∞. However, by (1.7), p. 11, and (3),

1
||gn||

→ ∞.

================================================================================
Comment, p. 12, Theo. 1.3.11, Proof, penultimate sentence
The contradiction is that ||yn||2 → 0 but ||yn||1 6→ 0!
================================================================================
Comment, p. 13, Theo. 1.3.13, Proof
Since the equivalence of norms is an equivalence relation, if two norms are equivalent to || · ||0, then they are
equivalent to each other.
================================================================================
Comments, p. 15, Ex. 1.3.19, 1st and 5th sets
Consider that g ∈ S1 := first set,1 r := min {( f − g)(x) : x ∈ Ω} and h ∈ B(g, r). So, for each x ∈ Ω,

(h− g)(x) ≤ |(h− g)(x)|
< r
< ( f − g)(x)

ww�
h(x) < f (x).

Therefore h ∈ S1.
Now let x be an arbitrary vector in Ω and consider that n is an arbitrary positive integer. Suppose that gn ∈
S5 := fifth set,2 g ∈ C(Ω) and ||gn − g|| → 0.3 So (gn − g)(x) ≤ ( f − g)(x) and (gn − g) (x) → 0. Then
g(x) ≤ f (x). Therefore g ∈ S5.4

================================================================================
Comment, p. 16, Theo. 1.3.23
Let X be the RHS of the equation. It suffices to show that X is closed. In fact, suppose X is closed. So, on the
one hand, due to the fact that S ⊂ X,

cl S ⊂ X.

On the other hand, if
X 6⊂ cl S,

there exists x ∈ X with x 6∈ cl S. Then x 6∈ C for some closed set C containing S. This leads to a contradiction
since there exist x1, x2, . . . ∈ S ⊂ C with xn → x. Therefore x ∈ C by Theo. 1.3.21, p. 16.
================================================================================
Comments, p. 17, sentence right before Theo. 1.3.31

‘only-if-part’
Since (||xn||) is bounded and |λn| → 0, |λn| ||xn|| → 0 by a very well-known result from Analysis on the
Real Line.

‘if-part’
Suppose S is not bounded and n is a positive integer. Thus ||xn|| ≥ n for some xn ∈ S. Hence

∣∣∣∣∣∣ 1
n xn

∣∣∣∣∣∣ ≥ 1,
which contradicts the convergence (to 0) hypothesis.

1That is, ( f − g)(x) > 0 for each x ∈ Ω.
2That is, gn(x) ≤ f (x).
3Hence |(gn − g)(x)| → 0.
4Now use Theo. 1.3.21, p. 16.
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================================================================================
Comment, p. 18, Theo. 1.3.33, Proof, 2nd sentence
Suppose d = 0 and consider a positive integer n. Hence there exists xn ∈ X such that ||z− xn|| < 1

n , which
leads to a contradiction. In fact, since E\X is open, there is an open ball B(z, ε) ⊂ E\X.
================================================================================
Comments, pp. 18–9, Theo. 1.3.34, Proof

‘only-if-part’
A sequence in B(0, 1) satisfies the condition

||α1,ne1 + · · ·+ αN,neN || = |α1,n|+ · · ·+ |αN,n|
≤ 1.

Furthermore, by the Bolzano-Weierstrass Theorem, (αi,n) has a convergent subsequence, i = 1, . . . , N.

‘if-part’
Note that when the 2nd sentence ends, its verification begins!

================================================================================
Comment, p. 21, l. 11, that is, 2nd series
By the 2nd sentence of Ex. 1.4.6, p. 20, an ∈ l2 for each n ∈N. In particular, an0 =

(
αn0,k

)
∈ l2.5

================================================================================
Comment, p. 22, penultimate sentence
Since max[0,1] |Pn(x)− ex| → 0, the absolute convergence criterion from Def. 1.4.8 is satisfied.
================================================================================
Comment, p. 23, Theo. 1.4.9, Proof, penultimate sentence(

xpk

)
is the sum of two convergent sequences:

(
xpk − xp1

)
=

(
k−1

∑
j=1

(
xpj+1 − xpj

))
and

(
xp1 , xp1 , . . .

)
.

================================================================================
Comment, p. 24, 1st paragraph
A linear isometry is automatically one-to-one. So the requirement for Φ to be one-to-one in (a) is a direct
consequence of (b).
================================================================================
Errata, p. 24, 2nd paragraph

• antepenultimate sentence
‘||[xn]||1’ should be ‘||[(xn)]||1’;

• ultimate sentence
‘... [(xn)] and [(yn)] ...’ should be ‘... (xn) and (yn) ...’.

================================================================================
Comments, p. 24

• 2nd paragraph, last sentence
Use the fact that ∣∣ ||xn|| − ||yn||

∣∣ ≤ ||xn − yn|| → 0.

• 3rd paragraph, last sentence

lim
n→∞

Φ (xn) = [(xn)]⇐⇒ lim
n→∞

||Φ (xn)− [(xn)]||1 = lim
n→∞

||[(xn − x1, xn − x2, . . .)]||1
= lim

n,k→∞
||xn − xk||

= 0,

because (xn) is a Cauchy sequence.

5See Ex. 1.2.6, p. 4.
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================================================================================
Comment, p. 27, 1st sentence after 2nd �
It suffices to consider that E1 is finite dimensional. In fact, let {e1, . . . , eN} be a basis of E1 and assume, without
loss of generality,6 that the norm on E1 is defined by

x = α1e1 + · · ·+ αNeN 7→ ||x|| = |α1|+ · · ·+ |αN | .

Therefore

||Lx|| ≤ |α1| ||Le1||+ · · ·+ |αN | ||LeN ||
≤ α||x||

with α = max {||Lei|| : i = 1, . . . , N}.
================================================================================
Comments, p. 28, Theo. 1.5.9, Proof, 2nd paragraph

• 1st sentence
Consider α ∈ F and x1, x2 ∈ E1. So

L(αx1 + x2) = lim
n→∞

Ln(αx1 + x2)

= lim
n→∞

(αLnx1 + Lnx2)

= α lim
n→∞

Lnx1 + lim
n→∞

Lnx2

= αLx1 + Lx2.

• 2nd sentence
(Ln) is bounded by Lemma 1.4.4, p. 20.

• 3rd sentence
The second equality holds by Ex. 1.5.3, p. 26.

================================================================================
Comments, p. 29, Theo. 1.5.10

• 1st sentence
Note that clD(L) is a subspace of E1. In fact, consider α∈F and x, y∈clD(L), that is, there are sequences
(xn) and (yn) in D(L) such that xn→ x and yn→y. Therefore αx+ y∈clD(L) since αxn+yn→αx+y.7

• 2nd sentence
See Def. 1.3.25, p. 17.

• Proof, penultimate sentence
Since xn → x and Lxn → L̃x, ||xn|| → ||x|| and ||Lxn|| →

∣∣∣∣L̃x
∣∣∣∣. In fact,

||xn|| ≤ ||xn − x||+ ||x|| and ||x|| ≤ ||x− xn||+ ||xn||

imply that
|||xn|| − ||x||| ≤ ||x− xn|| .

================================================================================
Erratum, p. 29, Theo. 1.5.11, 1st sentence
‘E’ should be ‘E1’.
================================================================================
Comments/Erratum, p. 31

6See Theo. 1.3.13.
7Anyway, cf. p. 26, 1st paragraph.
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• l. 3, 2nd inequality
Since

∣∣∣∣xpi pi

∣∣∣∣ ≥ ε for all i ∈N and
∣∣∣∣∣∣xrirj

∣∣∣∣∣∣ < ε/2j+1 for all i 6= j,

||xsisi || −∑
i 6=j

∣∣∣∣∣∣xsisj

∣∣∣∣∣∣ > ε−∑
i 6=j

ε

2j+1 = ε

(
1−∑

i 6=j

1
2j+1

)

= ε

{
1−

[(
1
22 + · · ·+ 1

2i

)
+

(
1

2i+2 +
1

2i+3 + · · ·
)]}

= ε

1−

 1
4

(
1− 1

2i−1

)
1− 1

2
+

1
2i+2

1− 1
2


= ε

[
1−

(
1
2
− 1

2i +
1

2i+1

)]
= ε

[
1
2
+

1
2i

(
1− 1

2

)]
= ε

[
1
2

(
1 +

1
2i

)]
>

ε

2

if i ≥ 2, whereas

||xsisi || −∑
i 6=j

∣∣∣∣∣∣xsisj

∣∣∣∣∣∣ > ε−
∞

∑
j=2

ε

2j+1 = ε

(
1−

∞

∑
j=2

1
2j+1

)

= ε

(
1−

1
8

1− 1
2

)

= ε

(
1− 1

4

)
=

3ε

4
>

ε

2

if i = 1.

• Theo. 1.5.13, Proof

– 1st and 2nd sentences
In fact, for every strictly sequence (Mn) with M1 > 0, there exists a sequence (Tn) of elements of T
such that ||Tn|| > Mn for all n ∈ N. Since T ⊂ B(X, Y), where (1.14) holds, there exists a sequence
(xn) of unit elements of X such that ||Tnxn|| > Mn for all n ∈N.

– 5th sentence
See Theo. 1.4.9, p. 22.

– 6th sentence and 1st clause of 9th sentence
C does not depend on i since C = Mz.8 Similarly, since

∣∣∣∣yij
∣∣∣∣ = 1

i

∣∣∣∣∣∣∣∣Tpi

xpj

2j

∣∣∣∣∣∣∣∣
xpj

2j := xj︸ ︷︷ ︸
≤

Mxj

i
, i, j ∈N,

limi→∞ yij = 0 for all j ∈N.

– 8th sentence
(yqiqi ) should be (yqiqj) .

================================================================================
Comments, pp. 32–3, Ex. 1.6.3

8See 2nd sentence of Theo. 1.5.13.
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• 4th sentence
If f (x) = x3 − x− 1, then f (1) < 0 and f (2) > 0. So there is some x0 ∈ (1, 2) such that f (x0) = 0.9

• 6th sentence
The inequality holds since there exists some c ∈ (1, 2) such that

|Tx− Ty| =
∣∣T′(c)∣∣ |x− y|

=
1

3(1 + c)2/3 |x− y|

<
1

3(1 + 1)2/3 |x− y| = 1 · 21/3

3 · 22/3 · 21/3 |x− y| .

• 7th/last sentence, Tx = x3 − 1
On the one hand, if T is a contraction, then ∣∣x3 − y3

∣∣
|x− y| ≤ α < 1.

On the other hand, ∣∣x3 − y3
∣∣

|x− y| =
∣∣∣x2 + xy + y2

∣∣∣ > 1.

================================================================================
Comment, p. 33, sentences betweeen 2nd � and Ex. 1.6.5
The method is known as fixed-point iteration.
================================================================================
Comment, p. 34, Ex. 1.6.6, penultimate sentence
Suppose f is a contraction. So, since F = R+ is closed, f has a fixed point by Theo. 1.6.4.10

================================================================================
Exercises, pp. 34–8

1. Consider z, z′, w ∈ E with x + z = y = x + z′ and z + w = z′. Then y = x + z′ = x + z + w = y + w. So
w = 0. Therefore z′ = z + w = z.

3.

(a) λ0 = 0 for each λ since λ0 = λ(0 + 0) = λ0 + λ0. Therefore, since λ 6= 0,

λx = 0 =⇒ λ−1(λx) = λ−10

=⇒ (λ−1λ)x = 0
=⇒ 1x = 0
=⇒ x = 0.

(b) Consider x 6= 0. Suppose λ 6= 0. By (a), since λx = 0, it follows that x = 0, which is a contradiction.

(c) Since 0x = (0 + 0)x = 0x + 0x, it follows that 0x = 0. Then

x + (−1)x = 1x + (−1)x
= [1 + (−1)]x
= 0x
= 0.

Therefore (−1)x = 0− x = −x.11

8. Since h(x) := 1
p x + 1

q − x
1
p is continuous on [0, 1], h(0) = 1

q > 0, h′(x) = 1
p

(
1− x−

1
q

)
< 0 for 0 < x < 1

and h(1) = 0, it follows that h(x) ≥ 0 for 0 ≤ x ≤ 1.
9Use the Intermediate Value Theorem.

10See the ultimate sentence.
11See p. 3, 2nd paragraph.
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22.

(a) Suppose ||xn − x||→0 and ||xn − y||→0. Use ||x− y|| ≤ ||x− xn||+ ||xn − y||.
(b) Use

||λnxn − λx|| = ||λnxn − λxn + λxn − λx||
= ||(λn − λ) xn + λ (xn − x)||
≤ |λn − λ| ||xn||+ |λ| ||xn − x||
≤ |λn − λ| (||xn − x||+ ||x||) + |λ| ||xn − x|| .

(c) Use ||xn + yn − (x + y)|| ≤ ||xn − x||+ ||yn − y||.

34.

(a)=⇒ (b)
The proof is trivial by Theo. 1.3.23 and Def. 1.3.25.

(b)=⇒ (c)
Consider an open ball B(x, ε). Since there exist x1, x2, . . . ∈ S with xn → x, there exists a number M
such that xn ∈ B(x, ε) for every index n ≥ M .12

(c)=⇒ (a)
Let x ∈ E. Hence there exists xn ∈ S ∩ B(x, 1/n) for each positive integer n. Therefore x ∈ cl S.

39.

(a)=⇒ (b)
Note that pn ≥ n and qn ≥ n for each positive integer n. Now consider ε and M given in Def. 1.4.1,
p. 19. Therefore

n ≥ M =⇒ pn, qn ≥ M

=⇒
∣∣∣∣xpn − xqn

∣∣∣∣ < ε.

(b)=⇒ (c)
Concerning (b), consider qn = pn+1.

(c)=⇒ (a)
Suppose (a) is false. So there is a positive ε0 such that, for each positive integer M, there exist indices
m0 and n0 where

m0, n0 > M and ||xm0 − xn0 || ≥ ε0.

Now consider m0 ≥ n0 and an increasing sequence of positive integers (pn) such that pn0 = n0 and
pn0+1 = m0. Therefore

n0 > M and
∣∣∣∣∣∣xpn0+1 − xpn0

∣∣∣∣∣∣ ≥ ε0,

which contradicts (c).

41. As in Ex. 1.4.6, pp. 20–1, the same argument applies if 2nd powers and square roots are replaced with pth
powers and pth roots, respectively.

48.

(a)⇐⇒ (b)
Via Ex. 35, p. 37, F is continuous iff for every x ∈ E1 and ε > 0 there exists a δ > 0 such that
F(B(x, δ)) ⊂ B(F(x), ε).

(a)=⇒ (b)
Let x ∈ F−1(U) and take ε > 0 and δ > 0 with

F(B(x, δ))

F is continuous︸ ︷︷ ︸
⊂ B(F(x), ε)

U is open in E2︸ ︷︷ ︸
⊂ U.

Hence B(x, δ) ⊂ F−1(U).

12See Def. 1.3.6, p. 10.
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(a)⇐= (b)
For x ∈ E1 and ε > 0, F−1(B(F(x), ε)) is open in E1. Therefore there is a δ > 0 for which
B(x, δ) ⊂ F−1(B(F(x), ε)). Thus F(B(x, δ)) ⊂ B(F(x), ε).

(b)⇐⇒ (c)
Use that complements of open (resp. closed) sets are closed (resp. open) sets and inverse images commute with
complements.

49. Concerning the 1st sentence, use that N (L) = L−1 ({0}) and Theo. 1.5.4.

51. Uniform convergence is the one with respect to (1.14).13 That being said, on the one hand, suppose
||Ln − L|| → 0 as n → ∞. Therefore ||Lnx− Lx|| ≤ ||Ln − L|| ||x|| → 0 for every x ∈ E1.14 Now, on the
other hand, consider E1 = E2 = l2 and the projection x = (x1, x2, . . .) 7→ Lnx = (x1, . . . , xn, 0, 0, . . .). Then
||Ln − Lm|| = 1 for n 6= m.15 So, since (Ln) is not a Cauchy sequence, it does not converge (uniformly).
However, for x ∈ l2, we have Lnx → x as n→ ∞. Thus Ln → I strongly.

13See p. 28, sentence that precedes Theo. 1.5.9.
14See p. 28, sentence that follows �.
15Without loss of generality, assume n < m. Thus

||Ln − Lm|| = sup
||x||=1

||(Ln − Lm) x||

= sup
||x||=1

||(0, . . . , 0, xn+1, . . . , xm, 0, 0, . . .)||

= sup
||x||=1

√
m

∑
i=n+1

x2
i

= 1.

In fact, on the one hand,
√

∑m
i=n+1 x2

i ≤
√

∑∞
i=1 x2

i = ||x|| = 1 for each unit vector x. On the other hand, consider x = (0, . . . , 0, 1, 0, 0, . . .)
with 1 = xi , i ∈ {n + 1, . . . , m}.
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================================================================================
================================================================================
2
================================================================================
================================================================================
Comments, p. 42, Lemma 2.2.4, Proof

• 1st paragraph, penultimate sentence
Since bn0 ∈ (an0 , b] and bn0,n = bn0 for each positive integer n,

{n : an < bn0,n} = {n0} .

• 3rd paragraph, penultimate sentence
bbk ,n = min{bn, bk} and bs,n = min{bn, s} imply that

∑
an<bbk ,n

(
bbk ,n − an

)
= (bk − ak) +

{[
∑

an<bs,n

(bs,n − an)

]
− (s− ak)

}
= bk − ak + s− a− s + ak

= bk − a.

================================================================================
Comments, p. 43, Theo. 2.2.6, Proof

• 1st sentence
Use Theo. 2.2.2.(c), twice!

• 7th sentence
[a, b) ⊂ ∪∞

n=1 An. In fact, suppose otherwise. So consider a ≤ ` < b such that fn(`) ≥ α for each index n.
Therefore fn(`) 6→ 0, which is a contradiction!

================================================================================
Comment, p. 44, (2.8)
g is a step function with support contained in the union of

[a1,1, b1,1) , . . . ,
[
a1,k1 , b1,k1

)
, . . . ,

[
an0,1, bn0,1

)
, . . . ,

[
an0,kn0

, bn0,kn0

)
.

Therefore

∫
g ≤ α

n0

∑
n=1

kn

∑
k=1

(bn,k − an,k)

< α(b− a).

================================================================================
Erratum, p. 44, Cor. 2.2.7
“... be nondecreasing sequences ...” should be “... be a nondecreasing sequence ...”.
================================================================================
Comment, p. 46, l. 2
For every x ∈ R such that ∑∞

n=1 | fn(x)| < ∞,

lim
n→∞

gn(x) = f1(x) + · · ·+ fn0(x) +
∞

∑
n=1
| fn0+n(x)|

≥ f1(x) + · · ·+ fn0(x) +
∞

∑
n=1

fn0+n(x)
(b), p. 45︸ ︷︷ ︸

= f (x)

≥ 0.
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For x ∈ R such that ∑∞
n=1 | fn(x)| does not converge,

lim
n→∞

gn(x) = f1(x) + · · ·+ fn0(x) +
∞

∑
n=1
| fn0+n(x)| = +∞.

================================================================================
Comments, p. 47, paragraph right after �

• Penultimate sentence
Since f + g and ( fn) satisfy Def. 2.3.1, both f and f + g have the same representation and, by (2.10), the
same integral.

• Ultimate sentence
− f , f + g ∈ L1(R) =⇒ − f + ( f + g) ∈ L1(R).

================================================================================
Comment, p. 48, sentence right before Theo. 2.4.1
If z = 0 is a simple pole of an analytic function g(z), then

lim
ε→0

∫
γ(ε)

g(z) dz = πi Res(g, 0),

where γ(ε) is a semicircle of small radius ε, centered at the origin, situated in the upper half-plane and de-
scribed in the direction of increasing argument, and the residue Res(g, z0) is the coefficient of (z− z0)

−1 in the
Laurent series expansion of g at z0 = 0.16 Hence, since sin x

x = eix−cos x
ix and cos x

x is an odd function,

∫ ∞

−∞

sin x
x

dx =
1
i

lim
ε→0

(∫ −ε

−∞

eix

x
dx +

∫ ∞

ε

eix

x
dx
)

=
1
i

lim
ε→0

∫
γ(ε)

eiz

z
dz

= π Res
(

eiz

z
, 0
)

= π

where Res
(

eiz

z , 0
)

is the coeficient of z−1 in the Laurent series

1
z
+ i− z

2
− iz2

6
+

z3

24
+O

(
z4
)

.

On the other side, sin x
x is not absolutely integrable over [0, ∞) since

∫ ∞

0

∣∣∣∣ sin x
x

∣∣∣∣ dx =
∞

∑
k=0

∫ (k+1)π

kπ

| sin x|
x

dx ≥
∞

∑
k=0

1
(k + 1)π

∫ (k+1)π

kπ
| sin x|dx = s

with

s =
1
π

∫ π

0
sin x dx +

1
2π

∫ 2π

π
(− sin x)dx +

1
3π

∫ 3π

2π
sin x dx +

1
4π

∫ 4π

3π
(− sin x)dx + · · ·

=
1
π

2︷ ︸︸ ︷
cos x

∣∣0
π
+

1
2π

2︷ ︸︸ ︷
cos x

∣∣2π

π
+

1
3π

2︷ ︸︸ ︷
cos x

∣∣2π

3π
+

1
4π

2︷ ︸︸ ︷
cos x

∣∣4π

3π
+ · · ·

=
2
π

(
1 +

1
2
+

1
3
+

1
4
+ · · ·

)
= ∞.

16Refer to Elementary Theory of Analytic Functions of One or Several Complex Variables by Henri Cartan, p. 104.
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(Note that, since ∫ 0

−∞

∣∣∣∣ sin x
x

∣∣∣∣ dx =
∫ 0

−∞

∣∣∣∣− sin(−x)
x

∣∣∣∣ dx

= −
∫ 0

∞

∣∣∣∣ sin u
u

∣∣∣∣ du

=
∫ ∞

0

∣∣∣∣ sin u
u

∣∣∣∣ du,

integration on (−∞, ∞) was not necessary.)
================================================================================
Comment, p. 50, sentence right before Theo. 2.4.3 and 1st sentence of its Proof
See Exs. 7–8, p. 85.
================================================================================
Comment, p. 51, Lemma 2.5.2, Proof, 5th sentence, right before the comma
See Ex. 11, p. 85.
================================================================================
Comment/Erratum, p. 52, Theo. 2.5.3, Proof

• f '
∞

∑
n=1

∞

∑
k=1

fn,k since:

(a)
∞

∑
n=1

∞

∑
k=1

∫ ∣∣ fn,k
∣∣ ≤ ∞

∑
n=1

∫
| fn|+

∞

∑
n=1

2−n < ∞;

(b) f (x) =
∞

∑
n=1

fn(x) =
∞

∑
n=1

∞

∑
k=1

fn,k(x) for each x ∈ R such that

(∗)︷ ︸︸ ︷
∞

∑
n=1

∞

∑
k=1

∣∣ fn,k(x)
∣∣ < ∞.

In fact,
∞

∑
n=1
| fn(x)| =

∞

∑
n=1

∣∣∣∣∣ ∞

∑
k=1

fn,k(x)

∣∣∣∣∣ ≤ (∗).

• Change ‘gn,k’ to ‘ fn,k’.

================================================================================
Comments, p. 53

• ll. 7–9
The restriction of f = χ{0} to each [a, b] containing {0} is Riemann integrable and its Riemann integral is
0. Now use Theo. 2.10.1, p. 64.17

• Sentence right before Theo. 2.6.3
Use (2.14) with f in place of g.

================================================================================
Comment, p. 54, Theo. 2.6.6, Proof, 3rd sentence, right before the first comma
See Ex. 11, p. 85.
================================================================================
Comment, p. 55, paragraph right before Theo. 2.7.2
See Ex. 19, p. 86.
================================================================================
Comments, pp. 55–6, last 3 sentences before Theo. 2.7.5
If f , g ∈ L1(R) with f = g a.e., then

∣∣∫ ( f − g)
∣∣ ≤ ∫ | f − g| = 0. Thus

∫
f =

∫
g.

================================================================================
Comments, pp. 57–8, paragraph right before Theo. 2.7.10

17See also Ex. 9, p. 85.
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• 1st sentence
A sequence of functions f1, f2, . . . defined on X ⊂ R converges uniformly to f if

sup
x∈X
| fn(x)− f (x)| → 0 as n→ ∞.

So, concerning Ex. 2.7.8, fn → 0 uniformly since

sup
x∈R

| fn(x)| = 1√
n
∀n ∈N.

• 2nd and 3rd sentences
The inequality follows from

| fn − f | ≤ sup
x∈R

| fn(x)− f (x)| χ[a,b] ∀n ∈N.

================================================================================
Comments, p. 58

• Theo. 2.7.10, Proof
In place of the ultimate sentence, consider p. 47, paragraph that follows �, last three sentences.

• Theo. 2.7.12
f = f1 + f2 + · · · i.n. signifies f1 + · · ·+ fn → f i.n..

• Theo. 2.8.1, Proof, 2nd sentence
Recall that

∫
| fn| = || fn||, where || · || is the L1-norm.18

================================================================================
Comments, p. 59

• Theo. 2.8.2, Proof

– 3rd sentence, right before the second comma
See Cor. 2.5.4, p. 52.

– 4th sentence

fpn = fp1 +
(

fp2 − fp1

)
+ · · ·+

(
fpn − fpn−1

)
→ g a.e.

is another way to write the equality that ends the 3rd sentence.

– 5th sentence, right before the first comma
The equality that ends the 3rd sentence and Theo. 2.7.12, p. 58, imply that

g = fp1 +
(

fp2 − fp1

)
+
(

fp3 − fp2

)
+ · · · i.n.,

which can also be written as

fpn = fp1 +
(

fp2 − fp1

)
+ · · ·+

(
fpn − fpn−1

)
→ g i.n..

On the other hand,
fn → f i.n. =⇒ fpn → f i.n..

• Penultimate sentence
See Theo. 2.6.5, p. 54.

• Ultimate sentence
The equality is known as passage to the limit under the integral sign.

18See Def. 2.6.1, p. 52.
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================================================================================
Comment/Erratum, p. 60

• 1st sentence
See Ex. 2.7.8, pp. 56–7.

• Theo. 2.8.3, Proof, last equality
Change the last ‘−’ to ‘+’.

================================================================================
Comments/Errata, p. 61

• 1st sentence∫
h<∞ by Def. 2.3.1, p. 45, and Theo. 2.4.1, p. 48.

• 2nd sentence

– For a fixed m ∈N, define

un = gm,n+1 = max {| fm| , | fm+1| , . . . , | fm+n+1|} and vn = gm+1,n = max {| fm+1| , . . . , | fm+n+1|} .

Then un ≥ vn for every n ∈N. Therefore gm = lim
n→∞

un ≥ lim
n→∞

vn = gm+1.

– Change ‘| f1|’ to ‘h’.

• Case 1, 3rd sentence
Change ‘ fn’ to ‘gn’.

• Case 2, 3rd sentence
See Theo. 1.4.2, pp. 19–20.

================================================================================
Erratum/Comments, p. 62

• 2.9, 1st sentence
Change ‘

∫
R

’ to ‘
∫

R
f ’.

• Theo. 2.9.2, Proof

Note that f χ[a.b] '
∞
∑

n=1
fnχ[a.b] =

∞
∑

n=1
gn.

• Ultimate paragraph, right before Def. 2.9.3
By Ex. 25, p. 87, the constant function f = 1 does not belong to L1(R). By Theo. 2.10.1, p. 64,

∫ b
a f exists

for every −∞ < a < b < ∞.

================================================================================
Comment/Erratum, p. 63

• 2nd sentence
Consider an arbitrary [a, b]. Let N be a positive integer such that [a, b] ⊂ [−N, N] and consider the Proof
of Theo. 2.9.2 with f χ[−N,N] in place of f .19 Therefore

f χ[a,b] = f χ[−N,N]χ[a,b] ' g1 + g2 + · · · .

• Penultimate paragraph
“In applications it often ...” should be “In applications it is often ...”.

================================================================================
Comments, pp. 64–5

19 N is used here since n is used in the above-mentioned Proof.
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• 1st sentence
See Ex. 28, p. 87.

• Theo. 2.10.1, Proof

– 1st paragraph
Denote the inf (resp. sup) of f ([a + (k− 1)c, a + kc)) by mk (resp. Mk) and the characteristic function
of [a + (k− 1)c, a + kc) by fk, k = 1, . . . , n. Therefore

gn = m1 f1 + · · ·+ mn fn (resp. hn = M1 f1 + · · ·+ Mn fn).20

– 2nd paragraph
∗ 1st sentence

As finer partitions of [a, b) are considered, (gn) (resp. (hn)) keeps nondecreasing (resp. nonin-
creasing).
∗ 3rd and 4th sentences

Consider n ∈N. Then, since f (R) ⊂ [−M, M],

−M ≤ gn ≤ f ≤ hn ≤ M,

that is,
−M ≤ −hn ≤ − f ≤ −gn ≤ M.

So, if

ϕ(x) :=
{

M if x ∈ [a, b),
0 otherwise,

then |gn| ≤ ϕ and |hn| ≤ ϕ. Therefore we can use Theo. 2.8.4 properly. Now, one the one hand,
note that

∫
gn and

∫
hn are Riemann sums.21 One the other hand, note that the passage to the limit

under the integral sign was used, twice.22

∗ Antepenultimate sentence
g = h a.e. by Theo. 2.7.4, p. 55.

∗ Penultimate sentence
By Theo. 2.7.4, p. 55,

∫
| f − g| = 0. Then f − g ∈ L1(R).23 So, since g ∈ L1(R), f = f − g + g ∈

L1(R).

• Theo. 2.10.2 and Theo. 2.10.3
To be Lebesgue integrable is to be Lebesgue integrable on R. Then f is Lebesgue integrable on (a, b) if
f χ(a,b) is Lebesgue integrable, that is, f is integrable over (a, b).24

================================================================================
Comments, pp. 68–9

• Def. 2.11.1
S is measurable if χSχ[a,b) is integrable for every −∞ < a < b < ∞.25

• Sentence that comes right after Def. 2.11.2
See Def. 2.7.1, p. 55, and Def. 2.6.2, p. 53.

• Theo. 2.11.3, Proof

– 3rd sentence
Note that ∫

| f | =
∫

χS

= µ(S)
= 0

due to the sentence that comes right after Def. 2.11.2.
20See p. 40, (2.1).
21See Def. 2.2.1, p. 41
22See p. 59, ultimate paragraph.
23See p. 53, right after Def. 2.6.2.
24See p. 62, 2.9, everything before Theo. 2.9.2.
25See 2.9.
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– 4th sentence
Since f1 + f2 + · · · ' χS and f1 + · · ·+ fn ≤ | f1|+ · · ·+ | fn| for each n ∈ N, there exists an index
n0 such that An0 6= ∅.26

– 7th sentence
kn

∑
k=1

(bn,k − an,k) =
∫

χAn

≤

∫ (
2

n

∑
i=1
| fi|
)

= 2
n

∑
i=1

∫
| fi|

≤ 2
∞

∑
n=1

∫
| fn|

<
2ε

3
,

where:
∗ the first equality comes from the fact that

χAn =
kn

∑
k=1

χ[an,k ,bn,k)
;27

∗ the first inequality comes from the fact that(
2

n

∑
i=1
| fi|
)
≥ χAn .

– Penultimate paragraph
∗ l. -6

Use Cor. 2.5.4, p. 52.
∗ Ultimate sentence

Since hn → h i.n., use the passage to the limit under the integral sign.28

• Theo. 2.11.4, Proof, 1st part

On the one hand, since S =
∞⋃

n=1
Sn is a disjoint union,

χS(x) =
(
χS1 + χS2 + · · ·

)
(x) for every x ∈ R. (4)

On the other hand, since each Sn is measurable, each χSn is a locally integrable function. So, since
χSn ≤ χ[a,b] for every n ∈ N, every χSn is an integrable function by Theo. 2.9.5, p. 63. Then, since(
χS1 + · · ·+ χSn

)
(x)→ χS(x) for every x ∈ R (by (4)) and χS1 + · · ·+ χSn ≤ χ[a,b] for every n ∈N, χS is

integrable and χS1 + · · ·+ χSn → χS i.n. by Theo. 2.8.4, p. 60. So
∞

∑
n=1

∫
χSn = lim

n→∞

n

∑
k=1

∫
χSk

= lim
n→∞

∫ n

∑
k=1

χSk

=
∫ (

lim
n→∞

n

∑
k=1

χSk

)
=
∫

χS

< ∞

(where the penultimate equality comes from the passage to the limit under the integral sign).
Therefore χS ' χS1 + χS2 + · · · .

26In fact, suppose otherwise to obtain a contradiction.
27See Def. 2.2.1, p. 41.
28p. 59, ultimate paragraph.
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================================================================================
Comments, p. 70

• Continuation of Theo. 2.11.4, Proof

– 2nd sentence
In fact, for each [a, b],

χS = χS1 + χS2 + · · · pointwise =⇒ χSχ[a,b] = χS1 χ[a,b] + χS2 χ[a,b] + · · · pointwise

and, by Theo. 2.9.4, p. 63, each χSn χ[a,b] is locally integrable. Therefore, by using a similar argument
as in the 1st part of the proof,

χSχ[a,b] ' χS1 χ[a,b] + χS2 χ[a,b] + · · · for each [a, b].

Therefore χS is locally integrable.

– Case 1
Each χSn is integrable by Theo. 2.9.5, p. 63. Now, note that since χS is integrable, (4) holds and
χS1 + · · ·+ χSn ≤ χS for every n ∈N, we have χS1 + · · ·+ χSn → χS i.n. by Theo. 2.8.4, p. 60. Then,
by using a similar argument as in the 1st part of the proof,

∞

∑
n=1

∫
χSn < ∞.

Therefore χS ' χS1 + χS2 + · · · .
– Case 2

∗
∞
∑

n=1

∫
χSn < ∞ =⇒

∫
χSn < ∞ for every n ∈N =⇒ χS1 , χS2 , . . . ∈ L1(R);

∗
∞
∑

n=1
χSn = f a.e. by Theo. 2.7.10, p. 58;

∗ Since | f − χS| is integrable (by Theo. 2.7.4, p. 55) and f is integrable, χS = f − ( f − χS) is
integrable.29

• 1st paragraph after �, ultimate sentence
Follow the Proof of Theo. 2.8.1, p. 58, but now with each fn in L1(Ω). So f ∈ L1(R). As a matter of fact,

f ∈ L1(Ω) since f =
∞
∑

n=1
fn a.e..30

• 2nd paragraph after �, ultimate sentence
Let g = | f | and consider Theo. 2.11.7, p. 71, and Theo. 2.9.5, p. 63.

• Ultimate paragraph

– 1st sentence
Let f ' f1 + f2 + · · · be as in Def. 2.3.1, p. 45. Then f1 + · · ·+ fn → f a.e. by Cor. 2.7.11, p. 58.

– 4th (last) sentence
Suppose that f χ[0,1] ∈ L1(R) to obtain a contradiction. In fact, on the one hand, for each positive
integer n,

ln n =
∫
[ 1

n ,1]
f (by Theo. 2.10.1, p. 64)

≤
∫
[0,1]

f .

On the other hand,
∫

f χ(0,1] < ∞ by Def. 2.3.1, p. 45, and Theo. 2.4.1, p. 48.

================================================================================
Comments/Erratum, p. 71

29See p. 53, right after Def. 2.6.2.
30See p. 55, Def. 2.7.3, and p. 47, antepenultimate and penultimate paragraphs, starting from the italicized sentence.
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• Theo. 2.11.6, Proof
Consider Exercises 21 and 19.(b), pp. 86-7.

• Sentence that precedes Theo. 2.11.7
See p. 49, Cor. 2.4.2, Proof, l. 2.

• (2.26)
‘ f (x)’ should be ‘ f ’. ‘ bn]’ should be ‘ bn)’.

================================================================================
Comment/Erratum, p. 73, Theo. 2.12.2, Proof

• only if part
Consider

C :=

{
x ∈ R :

∞

∑
n=1
| fn(x)| < ∞

}
,

Cr :=

{
x ∈ R :

∞

∑
n=1
|Re fn(x)| < ∞

}
and

Ci :=

{
x ∈ R :

∞

∑
n=1
|Im fn(x)| < ∞

}
.

So, since C ⊂ Cr ∩ Ci (by the triangle inequality) and R \ C is a null set,31 R \ (Cr ∩ Ci) is a null set.32 For
this reason, both Re f and Im f have representations where both Re fn and Im fn are used!

• if part
It seems that the representations of Re f and Im f were switched.

================================================================================
Comments, pp. 74–5

• Hölder’s inequality, Proof

– 1st sentence
If || f ||p = 0, then f p = 0 a.e. by Theo. 2.7.4, p. 55. Hence f = 0 a.e.. Thus f g = 0 a.e.. Therefore
|| f g||1 = 0 by Theo. 2.7.4.

– Last sentence
Since f and g are measurable,33 | f g| is measurable by Theo. 2.11.6, p. 71. So, by the first inequality
of p. 75 and Theo. 2.11.7, p. 71, f g is locally integrable. Then, by the first inequality of p. 75 and
Theo. 2.9.5, p. 63, f g ∈ L1(R). Therefore | f g| ∈ L1(R) by Theo. 2.4.1, p. 48.

• Minkowski’s inequality, Proof, 3rd sentence
Use an argument similar to the one presented in the previous item to prove that | f + g|p ∈ L1(R).

================================================================================
Erratum, p. 76, l. 5
Remove the preposition ‘in’.
================================================================================
Erratum, p. 81, (2.38),
‘
∫ d

c F’ should be ‘
∫ b

a F’.
================================================================================
Exercises, pp. 84–91

5. supp| f | = supp f is a finite union of semiopen intervals, which is contained in ∪n
k=1 [ak, bk). On the other

hand, consider the step function g = Mg1 + · · ·+ Mgn where gk is the characteristic function of [ak, bk),
k = 1, . . . , n. So | f | ≤ g. Now use Theo. 2.2.2.(c).

31See p. 55, Def. 2.7.1, and p. 47, antepenultimate and penultimate paragraphs, starting from the italicized sentence. The arguments are
similar for complex-valued functions.

32See Theo. 2.7.2, p. 55.
33See p. 70, last paragraph, second sentence.
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7–8.

• Let f and ( fn) be as in Def. 2.3.1, p. 45. Therefore:
(a) Since τz| fn|(x) = | fn|(x− z) = | fn(x− z)| = |τz fn(x)| = |τz fn|(x) for every x ∈ R,

∞

∑
n=1

∫
|τz fn| =

∞

∑
n=1

∫
τz| fn|

Theo. 2.2.2.(e), p. 41︸ ︷︷ ︸
=

∞

∑
n=1

∫
| fn| < ∞;

(b) τz f (x) = f (x − z) =
∞

∑
n=1

fn(x − z) =
∞

∑
n=1

τz fn(x) for every x ∈ R such that
∞

∑
n=1
|τz fn(x)| =

∞

∑
n=1
| fn(x− z)| < ∞.

So τz f ' τz f1 + τz f2 + · · · and

∫
τz f =

∞

∑
n=1

∫
τz fn

Theo. 2.2.2.(e), p. 41︸ ︷︷ ︸
=

∞

∑
n=1

∫
fn =

∫
f .

• Without loss of generality, suppose f is the characteristic function of [a, b) and z > 0 is sufficiently
small with [a, b) ∩ [a + z, b + z) 6= ∅.34 Therefore, since

(τz f − f )(x) =

 −1 if x ∈ [a, a + z),
0 if x ∈ [a + z, b),
1 if x ∈ [b, b + z),

if z→ 0, then ∫
|τz f − f | = 2z→ 0.

10. Let ( fn) be as in Def. 2.3.1, p. 45. Then fn =
m(n)

∑
m=1

λm,nχ[am,n ,bm,n) and | fn| =
m(n)

∑
m=1
|λm,n| χ[am,n ,bm,n) for every

n ∈N.35 Therefore

(a)
∞

∑
n=1

m(n)

∑
m=1

∫ ∣∣∣λm,nχ[am,n ,bm,n)

∣∣∣ = ∞

∑
n=1

∫
| fn| < ∞;36

(b) f (x) =
∞

∑
n=1

fn(x) =
∞

∑
n=1

m(n)

∑
m=1

λm,nχ[am,n ,bm,n)(x) whenever
∞

∑
n=1

m(n)

∑
m=1

∣∣∣λm,nχ[am,n ,bm,n)(x)
∣∣∣ = ∞

∑
n=1
| fn(x)| <

∞.

Now arrange the family of all intervals [am,n, bm,n) and the family of all scalars λm,n into sequences

[a1, b1) , [a2, b2) , . . . and λ1, λ2, . . .,

respectively, so that none of them are missed. Thus f ' λ1χ[a1,b1)
+ λ2χ[a2,b2) + · · · .

37

19.

(a) Let X be a countable subset of R. If X is finite, use Comments, p. 53, ll. 7–9 , p. 12 of this material,
with X in place of {0}. Now let X = {xn | n ∈N} be infinite and consider χ{xn} for each n ∈ N. So
χ{xn} ∈ L1 (R) and

∫
χ{xn} = 0 for each n ∈N.38 Therefore, due to the fact that

χX = χ{x1} + χ{x2} + · · · ,

χX ' χ{x1} + χ{x2} + · · · and, by Theo. 2.5.3, p. 52,
∫

χX = 0.

34Note that τz f is the characteristic function of [a + z, b + z).
35See p. 40.
36See Theo. 2.2.2.(a), p. 41.
37For the converse, the proof is obvious!
38Use Comments, p. 53, ll. 7–9 , p. 12 of this material, with {xn} in place of {0}.
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(b) Consider ε > 0 is sufficiently small, Sn ⊂ R is a null set for each n ∈ N and S =
∞⋃

n=1
Sn.39 By

Theo. 2.11.3, p. 68, there exist intervals In,k = [an,k, bn,k) such that

Sn ⊂
∞⋃

k=1

In,k and
∞

∑
k=1

l(In,k) <
ε

2n for each n ∈N.40

Now arrange the doubly-indexed family of intervals In,k into a sequence I1, I2, . . . (where none of
the In,k are missed).41 Therefore

S ⊂
∞⋃

n=1

(
∞⋃

k=1

In,k

)
=

∞⋃
i=1

Ii and
∞

∑
i=1

l(Ii) =
∞

∑
n=1

∞

∑
k=1

l(In,k) < ε.

28. See Ex. 37, p. 89.

33.

(a) The constant function χR = 1 is locally integrable,42 that is R ∈ M. Then ∅ = R\R ∈ M by (d).

(e) Let I be an arbitrary interval and consider arbitrary numbers a and b with a < b. Thus χI is locally
integrable since χIχI[a,b)

is Lebesgue integrable by Theo. 2.10.1, p. 64.

(f) Any open subset of R is a countable union of disjoint open intervals. Now use (e) and (b).

(g) Consider A = R and let B be an arbitrary open subset of A. So A\B ∈ M by (a), (f) and (d).

34.(b) Consider S = B, S1 = A, S2 = B\A and Sn = ∅ for n = 3, 4, . . .. Now use Theo. 2.11.4, p. 69.

35. By Ex. 33.(a,d), (b)⇐⇒(e) and (c)⇐⇒(d).

37. See Comments, p. 70, 1st paragraph after �, ultimate sentence , p. 17 of this material.

39. Comment
Neither g nor g2 is defined for x ∈ (−1, 0)!

39Notice that {n ∈N | Sn 6= ∅} can be finite or infinite.
40If I = [a, b), then l(I) = b− a.
41This is possible since In,k 7→n/k is a bijection between that doubly-indexed family of intervals and {x ∈ Q : x > 0}.
42See p. 62, right after the second �.

20



================================================================================
================================================================================
3
================================================================================
================================================================================
Comment, p. 95, Exs. 3.2.4–7
Concerning the conjugate simmetry condition (Def. 3.2.1.(a), p. 94), note that, since

|z− z0| = |z− z0| = |z− z0|

for all z, z0 ∈ C, z 7→ z is continuous at each z0 ∈ C. So complex conjugation is a continuous mapping.
================================================================================
Erratum, p. 98, l. -10
Change ‘(b)’ to ‘(a)’.
================================================================================
Erratum, p. 100, l. 1
Remove the comma.
================================================================================

Comment, p. 100, continuation of Ex. 3.3.5, || fn − fm|| ≤
(

1
n + 1

m

)1/2

Suppose n > m. Concerning Figure 3.1 on p. 99, visualize the graphs of fn and fm simultaneously and denote
the points where the oblique line segments intersect the x-axis by x1 = 1

2 + 1
2n and x2 = 1

2 + 1
2m .43 Hence

fn(x)− fm(x) =


0 if 0 ≤ x ≤ 1

2 ,
2(m− n)

(
x− 1

2

)
if 1

2 ≤ x ≤ x1,

2m
(

x− 1
2

)
− 1 if x1 < x ≤ x2,

0 if x2 ≤ x ≤ 1.

Then || fn − fm|| =
√

Im,n with

Im,n =
∫ 1

0
( fn(x)− fm(x))2 dx

= 4(m− n)2
∫ x1

1/2

(
x− 1

2

)2
dx + 4m2

∫ x2

x1

(
x− 1

2

)2
dx− 4m

∫ x2

x1

(
x− 1

2

)
dx +

∫ x2

x1

dx

= 4(m− n)2
∫ 1/2n

0
t2dt + 4m2

∫ 1/2m

1/2n
t2dt− 4m

∫ 1/2m

1/2n
tdt +

1
2m
− 1

2n

=
4(m− n)2

3

(
1

2n

)3
+

4m2

3

[(
1

2m

)3
−
(

1
2n

)3
]
− 2m

[(
1

2m

)2
−
(

1
2n

)2
]
+

1
2m
− 1

2n

=
1
2

{
(m− n)2

3

(
1
n

)3
+

m2

3

[(
1
m

)3
−
(

1
n

)3
]
−m

[(
1
m

)2
−
(

1
n

)2
]
+

1
m
− 1

n

}

=
1
2

[
− 2m

3n2 +
1

3n
+

1
3m

+
m
n2 −

1
n

]
=

1
2

[
m

3n2 −
2

3n
+

1
3m

]
=

1
2
· m2 − 2mn + n2

3mn2

=
(m− n)2

6mn2 .

Therefore, if (m−n)2

6mn2 > m+n
mn , then m > n +

√
6n(m + n) > n, which is a contradiction.

================================================================================
Comments, p. 103

43Note that x1 < x2.
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• 2nd paragraph following 1st �

– 2nd sentence
See Def. 1.5.2, p. 26.

– 3rd sentence
In fact, since 〈·, x〉 and complex conjugation are continuous,44 〈x, ·〉 = 〈·, x〉 is continuous.

• l. -1

Re〈xn, x〉 ≤ |〈xn, x〉|
≤ ||xn|| ||x|| → ||x||2.

================================================================================
Comment, p. 105, 1st sentence
See p. 103 (2nd paragraph following 1st �, 2nd sentence) and p. 27 (Theo. 1.5.7).
================================================================================
Erratum, p. 106, l. 9
‘N’ should be ‘{1, . . . , n}’.
================================================================================
Comments, p. 111, last sentence

• 2nd equality, last summand 〈
n

∑
j=1

αjxj,
n

∑
k=1

αkxk

〉
=

n

∑
k=1

〈
n

∑
j=1

αjxj, αkxk

〉

=
n

∑
k=1

n

∑
j=1

〈
αjxj, αkxk

〉
=

n

∑
k=1
〈αkxk, αkxk〉 .

• 4th equality, last summand

n

∑
k=1
|〈x, xk〉 − αk|2 =

n

∑
k=1

(〈x, xk〉 − αk) (〈x, xk〉 − αk)

=
n

∑
k=1

(
〈x, xk〉 〈x, xk〉 − αk 〈x, xk〉 − αk〈x, xk〉+ αkαk

)
.

================================================================================
Comments, p. 112, 2nd paragraph after �

• The sequence (
n

∑
k=1
|〈x, xk〉|2

)
is increasing and bounded above. Then the series in (3.26) is convergent. Therefore

lim
n→∞

|〈x, xn〉|2 = 0.

• zero (in the 2nd sentence) is the zero vector.45

================================================================================
Comments, p. 113, Ex. 3.4.11

44See the first comment of the previous page!
45See Def. 3.3.10, p. 102.
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• 2nd sentence
See Ex. 3.4.17.

• 3rd sentence
cos t sin nt is an odd function.

================================================================================
Comment, p. 120, 2nd sentence
See Theo. 3.4.14, p. 115.
================================================================================
Comments, p. 122

• 1st paragraph, 4th sentence
Concerning the 1st equality, f = f χ[−π,π] and

∫
f =

∫
τx f

by section 2.9, pp. 62–4, and Ex. 7, p. 85. The 2nd equality follows from Theo. 2.10.4, p. 66.

• (3.34), 1st equality
Let us prove

f0 + f1 + · · ·+ fn =
n

∑
k=−n

(n + 1− |k|)〈 f , ϕk〉ϕk (5)

by induction on n. In fact, since (5) holds trivially for n ∈ {0, 1} and

f0 + f1 + · · ·+ fn + fn+1 =
n

∑
k=−n

(n + 1− |k|)〈 f , ϕk〉ϕk +
n+1

∑
k=−(n+1)

〈 f , ϕk〉ϕk

=
n

∑
k=−n

(n + 1− |k|+ 1)〈 f , ϕk〉ϕk + 〈 f , ϕ−(n+1)〉ϕ−(n+1) + 〈 f , ϕn+1〉ϕn+1

=
n+1

∑
k=−(n+1)

((n + 1) + 1− |k|)〈 f , ϕk〉ϕk,

(5) also holds true for n = 2, 3, . . ..

================================================================================
Erratum, p. 124, Proof of Lemma 3.5.3
‘x’ should be ‘t’.
================================================================================
Comment, p. 126, Proof of Theo. 3.5.6, 1st sentence
See Ex. 41, p. 89.
================================================================================
Erratum, p. 127, 2nd paragraph after Def. 3.6.1
‘H’ should be ‘E’.
================================================================================
Comment, p. 128, Proof of Theo. 3.6.2, 4th sentence
‘(xn) ∈ S⊥’ is an abuse of notation.
================================================================================
Comments, pp. 128–9, Proof of Theo. 3.6.4

• 4th sentence
It is straightforward to prove the first two equalities. (3.5) is used to prove the third equality.
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• penultimate sentence

4
∣∣∣∣∣∣∣∣x− y + y1

2

∣∣∣∣∣∣∣∣2 + ||y− y1||2 = ||2x− (y + y1)||2 + ||y− x + x− y1||2

= ||x− y1 + x− y||2 + ||x− y1 − (x− y)||2

= 2
(
||x− y1||2 + ||x− y||2

)
= 2

(
d2 + d2

)
.

(Note that (3.5) was used in the penultimate equality.)

================================================================================
Erratum, p. 132, 1st sentence of Section 3.7
‘3.5’ should be ‘3.3’. In fact, cf. p. 103, 3rd and 4th sentences after the Proof of Theo. 3.3.11.46

================================================================================
Exercises, pp. 135–143

10.

4× RHS = 〈x + y, x + y〉 − 〈x− y, x− y〉+ i(〈x + iy, x + iy〉 − 〈x− iy, x− iy〉)
= 2(〈x, y〉+ 〈x, y〉) + 2i(〈x, iy〉+ 〈x, iy〉)
= 2(〈x, y〉+ 〈x, y〉+ i(i〈x, y〉+ i〈x, y〉))
= 2(2〈x, y〉).

15.

4
∣∣∣∣∣∣∣∣z− x + y

2

∣∣∣∣∣∣∣∣2 + ||x− y||2 = ||2z− (x + y)||2 + ||x− z + z− y||2

= ||z− y + z− x||2 + ||z− y− (z− x)||2

= 2
(
||z− y||2 + ||z− x||2

)
.

(Note that (3.5) was used in the ultimate equality.)

34. Consider p ∈ H = span {p1, p2, p3} where p1(x) = 1, p2(x) = x and p3(x) = x2.47 Note that

||x3 − p(x)||2 =
∫ 1

−1
|x3 − p(x)|2dx

reaches its minimum where p(x) = PH(x3). So calculate

p =
〈

x3, q1
〉
q1 +

〈
x3, q2

〉
q2 +

〈
x3, q3

〉
q3

where B = {q1, q2, q2} is an orthonormal basis of H. To obtain B, apply Gram-Schmidt to {p1, p2, p3}.

43. See Ex. 3.4.17, pp. 116–7.

44–5. Concerning the orthonormality, see Ex. 3.4.17, pp. 116–7.

46See p. 27, Theo. 1.5.7.
47Clearly, p1, p2 and p3 are linearly independent.
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================================================================================
================================================================================

4
================================================================================
================================================================================
Comment, pp. 146–7, Ex. 4.2.2, penultimate sentence
As in Ex. 3.2.3, pp. 94–5, consider the standard inner product. Then, since

Ax =
N

∑
i=1

〈
Ax, ei

〉
ei,

||Ax||2 =

√√√√ N

∑
i=1

∣∣∣∣∣ N

∑
j=1

αijλj

∣∣∣∣∣
2

≤

√√√√√√√√√√√
N

∑
i=1


√√√√ N

∑
j=1

∣∣αij
∣∣2√√√√ N

∑
j=1

∣∣λj
∣∣2

︸ ︷︷ ︸
||x||2



2

by (4.1) and the Cauchy-Schwarz inequality. Therefore√√√√ N

∑
i=1

N

∑
j=1

∣∣αij
∣∣2

is an upper bound of {||Ax||2 : ||x||2 = 1}.
================================================================================
Erratum, pp. 150–1, Proof of Theo. 4.2.9, ultimate sentence
‘aij’ should be ‘αij’.
================================================================================
Erratum, p. 155, Proof of Theo. 4.3.12, 3rd sentence
‘||ϕ||||Ax||||Ax||’ should be ‘||ϕ||||x||||Ax||’.
================================================================================
Comment, p. 161, Cor. 4.4.12
Note that the product (Theo. 4.4.11) and the sum (first consequence of Def. 4.4.1, p. 158) of self-adjoint opera-
tors are self-adjoint.
================================================================================
Comments, p. 162, Proof of Theo. 4.4.14

• Note that T is bounded by Def. 4.4.1 and Def. 4.4.3, pp. 158–9.

• (4.6)
Consider ϕ(x, z) = 〈Tx, z〉 with ϕ = ϕ1 and T = A as in Ex. 4.3.3, p. 151, and let Φ be the quadratic form
of ϕ as in p. 152. Therefore

4 Re〈Tx, z〉 = Φ(x + z)−Φ(x− z),

||Φ|| = M and the inequality follows from the sentence presented after Def. 4.3.6, p. 152. Furthermore,
the equality holds by the Parallelogram law, p. 97.

================================================================================
Comment, p. 165, Ex. 4.5.9
For all x ∈ H, if Lx = −ix, then 〈

T∗x, x
〉
= 〈x, Tx〉
= 〈x, ix〉
= −i〈x, x〉
= 〈−ix, x〉
= 〈Lx, x〉.
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So T∗ = L by Cor. 4.3.8.
================================================================================
Comment, p. 166, (4.11)
There is no need to use Theo. 4.4.14. In fact,∣∣∣∣∣∣T2x

∣∣∣∣∣∣ = ||TTx||

= ||T∗Tx|| (Theo. 4.5.8)
= ||T∗Tx||||x||
≥ |〈T∗Tx, x〉| (Schwarz’s inequality, p. 96).

================================================================================
Comment, p. 167
On the one hand,

T is unitary⇒ T is isometric

by Def. 4.5.16 and Theo. 4.5.15. On the other hand,

T is isometric 6⇒ T is unitary.

In fact, the operator A in Ex. 4.5.3, p. 164, is isometric by Def. 4.5.13. However, since A is not surjective, A is
not invertible. Therefore, A is not unitary by Theo. 4.5.17.48

================================================================================
Exercises, pp. 211–6

11. Let C and D be operators with T = C + iD and T∗ = C− iD. Therefore

C =
1
2
(T + T∗)

= A,

D =
1
2i
(T − T∗)

= B.

28. Check my Comment in regard to p. 167.

48Concerning Exercise 28, p. 213, the answer is NO!
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