A SURVIVAL GUIDE TO

MATHEMATICS & CLIMATE 2013 SIAM EDITION **Hans Kaper and Hans Engler**

PARTIAL SCRUTINY, COMMENTS, SUGGESTIONS AND ERRATA **José Renato Ramos Barbosa** 2019

> Departamento de Matemática Universidade Federal do Paraná Curitiba - Paraná - Brasil jrrb@ufpr.br

== == **2** == == **Exercises**, pp. 23–7

1.

$$
\frac{hc}{\lambda kT} = \frac{(h \text{ in }\text{Js}) (c \text{ in }\frac{\text{m}}{\text{s}})}{(\lambda \text{ in }\text{m}) (k \text{ in }\frac{\text{J}}{\text{K}}) (T \text{ in }\text{K})} \text{ in } \frac{\text{Jm}}{\text{mJ}} \text{ is dimensionless;}
$$

*hc*² $\frac{\pi}{\lambda^5}$ = $(h \text{ in } \text{Js})\left(c^2 \text{ in } \frac{\text{m}^2}{\text{s}^2}\right)$ $\frac{\int \text{S} \left(c^2 \text{ in } \frac{\text{m}^2}{\text{s}^2} \right)}{\lambda^5 \text{ in } \text{m}^5}$ in $\frac{\int \text{S}^{-1} \text{m}^2}{\text{m}^5}$ = Wm⁻³ $\implies B(\lambda, T)$ has the dimension of radiance.

3.

$$
F(T) = \pi \int_0^{\infty} B(\lambda, T) d\lambda
$$

= $2\pi hc^2 \int_0^{\infty} \frac{1}{\lambda^5 (e^{hc/\lambda kT} - 1)} d\lambda.$

Therefore

$$
x = \frac{hc}{\lambda kT}, \text{ i.e., } \lambda = \frac{hc}{x kT} \Longrightarrow \frac{d\lambda}{dx} = -\frac{hc}{x^2 kT} \text{ and } \frac{1}{\lambda^5} = \left(\frac{kT}{hc}\right)^5 x^5
$$

$$
\Longrightarrow F(T) = 2\pi hc^2 \left(\frac{hc}{kT}\right) \left(\frac{k^5 T^5}{h^5 c^5}\right) \left(-\int_{\infty}^0 \frac{x^5}{x^2 (e^x - 1)} dx\right)
$$

$$
\Longrightarrow F(T) = \frac{2\pi k^4 T^4}{h^3 c^2} \left(\frac{1}{15} \pi^4\right)
$$

$$
\Longrightarrow F(T) = \frac{2\pi^5 k^4}{15h^3 c^2} T^4.
$$

8. ($Q = \frac{S_0}{4}$ varies approximately between 341.375 Wm⁻² and 341.75 Wm⁻².) (i) Since $\overline{T}^* = T^*(Q)$ is increasing,¹ T^* varies approximately between

$$
\left(\frac{(0.7)(341.375)}{(0.6)(5.67 \cdot 10^{-8})}\right)^{1/4} \approx 289.5002 \text{ K}
$$

and

$$
\left(\frac{(0.7)(341.75)}{(0.6)(5.67 \cdot 10^{-8})}\right)^{1/4} \approx 289.5797 \text{ K},
$$

whose difference is 0.0795 K.

(ii) Since $T^*(Q) = ((1 - \alpha)Q - A)/B$ is increasing, T^* varies approximately between

$$
\frac{(0.7)(341.375) - (203.3)}{2.09} \approx 17.0634 \text{ degrees Celsius}
$$

$$
\approx 290.2134 \text{ K}
$$

and

$$
\frac{(0.7)(341.75) - (203.3)}{2.09} \approx 17.1890 \text{ degrees Celsius}
$$

$$
\approx 290.3390 \text{ K},
$$

whose difference is 0.1256 degrees Celsius or Kelvin.

(iii) The *heat capacity* of the Earth's climate system quantifies the amount of incoming solar energy (heat) required to increase $T(t)$ by 1 degree Celsius and its actual value (assumed to be constant over the entire globe)

 ${}^{1}Cf. (2.9).$

depends on the medium under consideration.² For example, land heats up faster than water, which has to absorb a great deal of energy before its temperature rises.³ For this reason, the ocean takes a long time to change temperature significantly, whereas land can heat up very quickly.

10.

(i) Based on *α*(*T*) of section **2.5**, let us consider

$$
f(x) = a + \frac{b}{2} \cdot \tanh(x) \tag{1}
$$

as a function that connects the value $a - \frac{1}{2}b$ smoothly with the value $a + \frac{1}{2}b$. (ii) In (1), for $\varepsilon > 0$ sufficiently small, replace *b* and *x* by $b - \varepsilon$ and εx respectively. (iii) $tanh(x)$ is a rescaled $g(x)$. In fact, since

$$
\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
$$

=
$$
\frac{e^x - \frac{1}{e^x}}{e^x + \frac{1}{e^x}}
$$

=
$$
\frac{e^{2x} - 1}{e^{2x} + 1}
$$
 (2)

and

$$
g(x) = \frac{1}{1 + e^{-x}}
$$

=
$$
\frac{1}{1 + \frac{1}{e^x}}
$$

=
$$
\frac{e^x}{e^x + 1'}
$$
 (3)

$$
\tanh(x) = 2g(2x) - 1.
$$

Furthermore, $\tanh(\mathbb{R}) = (-1,1)$ and $g(\mathbb{R}) = (0,1),$ ⁴ there is a diffeomorphism between $(-1,1)$ to $(0,1)$, as illustrated below,

tanh(*x*) is a diffeomorphism between the open intervals $(-\infty, \infty)$ and $(-1, 1)$, $g(x)$ is a diffeomorphism between the open intervals (−∞, ∞) and (0, 1), the inflection points of tanh(*x*) and *g*(*x*) occur at the points $(0, 0)$ and $(0, 0.5)$, respectively, and the graphs of tanh(*x*) and $g(x)$ are symmetric with respect to the inflection points, 5 as illustrated in the following figure.

²See p. 15.

³Heat capacity can also be defined as resistance to temperature change.

 4 Note that, by (2) and (3),

$$
\lim_{x \to -\infty} \tanh(x) = \frac{0 - 1}{0 + 1}
$$
\n
$$
= -1;
$$
\n
$$
\lim_{x \to \infty} \tanh(x) = \lim_{x \to \infty} \frac{2e^{2x}}{2e^{2x}} \text{ (L'Hôpital's Rule)}
$$
\n
$$
= 1;
$$
\n
$$
\lim_{x \to -\infty} g(x) = \frac{0}{0 + 1}
$$
\n
$$
= 0;
$$
\n
$$
\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{e^x}{e^x} \text{ (L'Hôpital's Rule)}
$$
\n
$$
= 1.
$$

 5 In fact, tanh (x) is an odd function!

12. If $x = T - T^*$ and $x \to 0$, that is, $T \to T^*$, then

$$
C\dot{x} = C\dot{T}
$$

= $(1 - \alpha(x + T^*))Q - \varepsilon\sigma(x + T^*)^4$
= $(1 - \alpha(T^*) - \alpha'(T^*)x - \mathcal{O}(x^2))Q - \varepsilon\sigma(x^4 + 4x^3T^* + 6x^2(T^*)^2 + 4x(T^*)^3 + (T^*)^4)$
 $\approx (1 - \alpha(T^*))Q - \varepsilon\sigma(T^*)^4 - (\alpha'(T^*)Q + 4\varepsilon\sigma(T^*)^3)x$

 $where (1 − α(T[*]))Q − εσ(T[*])⁴ = 0.$

Without loss of generality, the general solution of $\dot{x} = (-D/C)x$ is $x = e^{(-D/C)t}$, which converges to 0 as $t \to \infty$ if $D > 0.6$

 $6C > 0$ is defined on page 15!

== == ==

== **Comment**, p. 36, 1st sentence after (3.7) The general solution of

is given by

3

Therefore, since a particular solution of the first equation of (3.7) is given by

 $T_0 = T_0^*$, (4)

its general solution is given by

Comment, p. 37, (3.13)

By multiplying both sides of (3.12) by $\frac{\beta}{\alpha\Delta T}$, rewriting the expression within the absolute value bars of (3.12) as the product of *α*∆*T* and another expression, and using

$$
t = \frac{t'}{2\alpha k |\Delta T|},
$$

we get

$$
\frac{d}{dt}\left(\frac{\beta\Delta S}{\alpha\Delta T}\right) = \frac{2\beta H}{\alpha\Delta T} - 2k\left|\alpha\Delta T\left(1 - \frac{\beta\Delta S}{\alpha\Delta T}\right)\right|\frac{\beta\Delta S}{\alpha\Delta T} \Longrightarrow 2\alpha k|\Delta T|\frac{dx}{dt'} = \frac{2\beta H}{\alpha\Delta T} - 2\alpha k|\Delta T|\left|1 - x\right|x.
$$

==

 $\dot{x} = \lambda - (1 - x)x$ $= \lambda - x + x^2$.

Comment, p. 38, (3.15)

For *x* < 1, (3.13) becomes

So

$$
\dot{y} = \frac{d}{dt} (x - x^*)
$$

= \dot{x}
= $\lambda - (x^* + y) + (x^* + y)^2$
= $\lambda - x^* - y + (x^*)^2 + 2x^*y + y^2$
= $\lambda - (1 - x^*) x^* + (2x^* - 1) y + y^2$.

Now let *y* be small enough and note that *x* [∗] < 1 satisfies (3.14).⁷

d

Comment, p. 38, ultimate paragraph of **3.5.2**

Since $\Delta T = 2T^*$ by the first sentence of section **3.5**,

$$
x = \frac{\beta \Delta S}{\alpha \Delta T}
$$

$$
= \frac{\beta \Delta S}{2\alpha T^*}
$$

==

⁷A similar reasoning can be applied with respect to $x > 1$. In any case,

$$
y=e^{\pm (2x^*-1)t},\quad x^*\lessgtr 1,
$$

is the solution of (3.15) and rest of the paragraph (related to (3.15)) is analyzed by considering $x = x^* + y$ as $t \to \infty$.

 $T_0 = e^{-ct} + T_0^*.$

==

 $\frac{dT_0}{dt} = -cT_0$

 $T_0 = e^{-ct}$.

and (3.5) can be rewritten as

$$
q = k(\alpha \Delta T - \beta \Delta S)
$$

= $k\alpha \Delta T \left(1 - \frac{\beta \Delta S}{\alpha \Delta T}\right)$
= $2k\alpha T^*(1 - x)$.

On the other hand, by (3.9), $2T^* = T_2^* - T_1^*$ is positive since the average temperature near the equator is higher than the average temperature near the poles. Therefore $q(1-x) > 0$.

== **Exercises**, pp. 39–40

3–4.

$$
\frac{d}{dt}(\Delta T) = \dot{T}_2 - \dot{T}_1
$$
\n
$$
= c (T^* - T_2) - |q|\Delta T - c (-T^* - T_1) - |q|\Delta T
$$
\n
$$
= c (2T^* - \Delta T) - 2|q|\Delta T
$$
\n
$$
= -(c + 2|q|)\Delta T + 2cT^*,
$$
\n
$$
\frac{d}{dt}(\Delta S) = \dot{S}_2 - \dot{S}_1
$$
\n
$$
= H + d (S^* - S_2) - |q|\Delta S + H - d (-S^* - S_1) - |q|\Delta S
$$
\n
$$
= 2H + d (2S^* - \Delta S) - 2|q|\Delta S
$$
\n
$$
= -(d + 2|q|)\Delta S + 2 (H + dS^*).
$$

Now suppose that *H*, *T* [∗] and *S* [∗] become zero.⁸ So the flow *q* ceases to exist and the equations above become

$$
\frac{d}{dt}(\Delta T) = -c\Delta T,
$$

$$
\frac{d}{dt}(\Delta S) = -d\Delta S.
$$

Therefore, for each $t \in \mathbb{R}$,

$$
\Delta T = c_1 e^{-ct},
$$

$$
\Delta S = c_2 e^{-dt},
$$

where c_i is constant, $i = 1, 2$.

⁸The authors (Kaper and Engler) provided an errata where, concerning this exercise, it is also assumed that both *T*[∗] and *S*[∗] vanish!

Comment, 2nd paragraph of section **4.1**, pp. 41–42

$$
(\dot{x}_1, \dot{x}_2, \dots, \dot{x}_{n-1}, \dot{x}_n) = \left(x^{(1)}, x^{(2)}, \dots, x^{(n-1)}, x^{(n)}\right)
$$

= $(x_2, x_3, \dots, x_n, g(x_1, \dots, x_n)).$

== **Comment**, p. 43, (ii) and (iii) Concerning the solutions,

$$
\frac{dx}{dt} = x^2 \Longrightarrow \int x^{-2} dx = \int dt
$$

\n
$$
\Longrightarrow -\frac{1}{x} = t + \text{constant with constant} = -\frac{1}{x_0} - t_0 \text{ if } x(t_0) = x_0
$$

\n
$$
\Longrightarrow x = -\frac{1}{t - \frac{1 + x_0 t_0}{x_0}}.
$$

and

$$
\frac{dx}{dt} = \sqrt{x} \Longrightarrow \int x^{-1/2} dx = \int dt
$$

\n
$$
\Longrightarrow 2\sqrt{x} = t + \text{constant with constant} = 2\sqrt{x_0} - t_0 \text{ if } x(t_0) = x_0
$$

\n
$$
\Longrightarrow 4x = (t - t_0 + 2\sqrt{x_0})^2.
$$

==

Comments, pp. 44–5

• 3rd paragraph, 1st sentence

f is Lipschitz \Longrightarrow *f* is continuous

⇒ there exists a solution for the IVP $\begin{cases} \n\dot{x} = f(x), \\ \n\dot{x}(t, x) = x.\n\end{cases}$ $x(t_0) = x_0$ (by **Theo. 4.1**).

Concerning the first implication above, for any $x_i \in D$, $i = 1, 2$, and $\varepsilon > 0$, consider $\delta < \frac{\varepsilon}{k}$. Therefore

$$
||x_1 - x_2|| < \delta \Longrightarrow ||f(x_1) - f(x_2)|| \le k ||x_1 - x_2|| < k\delta
$$

< $k\delta$
< ϵ .

• **Theo. 4.3** can be rewritten as

Let f be C^k on D.⁹ Fix
$$
t \in I(x_0)
$$
.¹⁰ So there is a neighborhood U of x_0 such that $x \stackrel{\phi_t}{\mapsto} \phi_t(x) := \phi(t, x)$ is C^k on U.

U could represent a very small open ball centered at x_0 , consisting of initial conditions arbitrarily close to x_0 . $\phi_t(U)$ represents the result of allowing *U* to evolve through *t* units of time (forward for $t > 0$ or backward for $t < 0$). The transition from *U* to $\phi_t(U)$ is as smooth as *f*.

$$
\begin{cases} \n\dot{x} = f(x), \\ \nx(0) = x_0. \n\end{cases}
$$

⁹In particular, *f* is Lipschitz on *D* if $k \geq 1$.

¹⁰By **Lemma 4.1**, *I*(x_0) represents the domain of the solution $\varphi(t, x_0) = \varphi(t; 0, x_0)$ for the IVP

• 2nd paragraph of section **4.2** Let \bar{f} be \bar{C}^k on *D*, $k = 1, 2, \ldots$ A *dynamical system* associated with $\dot{x} = f(x)$ is the set consisting of the maps ϕ_t , obtained as described above, for each initial condition $x_0 \in D$ and each $t \in I(x_0)$.

Comment, p. 46, **Def. 4.4**

 $\omega(x) = \{y \in D : \phi_{t_n}(x) = \phi(t_n, x) \to y \text{ for some sequence } t_n \to \infty\}$ and $\alpha(x) = \{y \in D : \phi_{t_n}(x) = \phi(t_n, x) \to y \text{ for some sequence } t_n \to -\infty\}.$

==

== **Comment**, p. 49, (4.10) The figure

illustrates an initial condition x_0 which is either in the interior ($r < 1$), boundary ($r = 1$) or exterior ($r > 1$) of the open ball centered at x_1^* . For $r \ge 0$, since $\theta \ge 0$, θ is a increasing function. So, for the $r < 1$ case, since $\dot{r} > 0$, \dot{r} is strictly increasing, which implies that solutions $\varphi(t, x_0)$ that start near x_1^* will spiral away from the origin.¹¹ For the $r = 1$ case, since $\dot{r} = 0$, solutions $\varphi(t, x_0)$ move along the boundary $r = 1$ and will converge to x_2^* as time goes by. For the *r* > 1 case, since *r* < 0, *r* is strictly decreasing, which implies that solutions $\varphi(t, x_0)$ will eventually converge to x_2^* .

==

Comments, p. 51

 \bullet (4.13)

The fact that the only critical point is the origin is a direct consequence of assuming the existence of A^{-1} :

$$
Ax = 0 \Longrightarrow A^{-1}Ax = A^{-1}0
$$

$$
\Longrightarrow x = 0.
$$

¹¹*x* ∗ 1 is called an *unstable spiral point*.

• Last paragraph

 \mathbb{R}^{n^2} is isomorphic to the space $\mathbb{R}^{n \times n}$ of matrices of order n .¹² For example, consider the isomorphism

$$
\mathbb{R}^{n \times n} \ni \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \mapsto (a_{11}, a_{12}, \ldots, a_{1n}, a_{21}, a_{22}, \ldots, a_{2n}, \ldots, a_{n1}, a_{n2}, \ldots, a_{nn}) \in \mathbb{R}^{n^2}.
$$

Since all norms in \mathbb{R}^{n^2} are equivalent, we might also consider

$$
\lim_{N \to \infty} \sum_{k=0}^{N} \frac{M^k}{k!} = e^M
$$

with respect to the Euclidean norm.

==

- **Comments**, p. 52
	- \bullet (4.15)

Differentiate (4.14) with respect to *t* term by term!

• 1st paragraph after **Theo. 4.4** Let *J* and \hat{P} be real matrices with P invertible and $A = P/P^{-1}$. So $A^k = PJ^kP^{-1}$ for $k = 0, 1, 2, ...$ Therefore

$$
e^{tA} = P\left(\sum_{k=0}^{\infty} \frac{t^k}{k!} J^k\right) P^{-1}
$$

$$
= P e^{tJ} P^{-1}
$$

by (4.14). For example, if *J* is the diagonal matrix with diagonal entries $\lambda_1,\ldots,\lambda_n$, then e^{tJ} is the diagonal matrix with diagonal entries $e^{\lambda_1 t}$, . . . , $e^{\lambda_n t}$.

• 2nd paragraph after **Theo. 4.4**

 E^s and $E^{\tilde{u}}$ are invariants under e^{tA} . In fact, for simplicity, let *A* be diagonalizable and consider an initial condition $x_0 \in E^s$. So

$$
x_0 = \sum_{j=1}^r \alpha_j v_{i_j} \tag{5}
$$

is a linear combination of eigenvectors v_{i_1}, \ldots, v_{i_r} associated with eingenvalues $\lambda_{i_1}, \ldots, \lambda_{i_r}$ of A which are in the left half of the complex plane, i.e.,

$$
Av_{i_j} = \lambda_{i_j} v_{i_j} \tag{6}
$$

where the real part of λ_{i_j} is negative for $j = 1, \ldots, r$. Therefore

$$
e^{tA}x_0 = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k x_0
$$

=
$$
\sum_{j=1}^r \alpha_j \sum_{k=0}^{\infty} \frac{t^k \lambda_{i_j}^k}{k!} v_{i_j}
$$

=
$$
\sum_{j=1}^r \alpha_j e^{\lambda_{i_j} t} v_{i_j} \in E^s
$$

by (5) and (6).

== **Comment/Erratum**, p. 53, (i)

 $^{12}L(\mathbb{R}^n)$ often denotes the space of linear operators on \mathbb{R}^n , which is also isomorphic to $\mathbb{R}^{n \times n}$.

• 1st paragraph Consider $e^{t\bar{I}}y_0$ with nonzero $y_0=(y_{0,1},y_{0,2})$. Without loss of generality, suppose $y_{0,2}\neq 0$. Therefore

$$
|y_1|^{|\lambda_2|} = |y_{0,1}e^{\lambda_1 t}|^{|\lambda_2|}
$$

= $|y_{0,1}e^{-|\lambda_1|t}|^{|\lambda_2|}$
= $|y_{0,1}|^{|\lambda_2|} |e^{-|\lambda_2|t}|^{|\lambda_1|}$
= $\frac{|y_{0,1}|^{|\lambda_2|}}{|y_{0,2}|^{|\lambda_1|}} |y_{0,2}e^{\lambda_2 t}|^{|\lambda_1|}$
= $C |y_2|^{|\lambda_1|}$.

- Antepenultimate sentence
	- $\ell'0 < \lambda_2 < \lambda_2'$ should be $0 < \lambda_1 < \lambda_2'.$

==

Comments/Erratum, p. 54

- Sentence that precedes (i)
	- **–** Consider $J = \alpha I + \beta B$ with

$$
I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).
$$

Note that the sequence with *k*-th term *B ^k* begins with the terms

$$
B^0 = I, B^1 = B, B^2 = -I, B^3 = -B, B^4 = I, B^5 = B, B^6 = -I, B^7 = -B, \ldots
$$

and continues to repeat indefinitely. Therefore

$$
e^{t}I = e^{t(\alpha I + \beta B)}
$$

\n
$$
= e^{\alpha t}I e^{\beta t B}
$$

\n
$$
= \left(\sum_{k=0}^{\infty} \frac{(\alpha t)^k}{k!} I^k\right) \left(\sum_{k=0}^{\infty} \frac{(\beta t)^k}{k!} B^k\right)
$$

\n
$$
= e^{\alpha t}I \left(I + \beta t B + \frac{(\beta t)^2}{2!} B^2 + \frac{(\beta t)^3}{3!} B^3 + \frac{(\beta t)^4}{4!} B^4 + \frac{(\beta t)^5}{5!} B^5 + \cdots\right)
$$

\n
$$
= e^{\alpha t} \left(I + \beta t B - \frac{(\beta t)^2}{2!} I - \frac{(\beta t)^3}{3!} B + \frac{(\beta t)^4}{4!} I + \frac{(\beta t)^5}{5!} B - \cdots\right)
$$

\n
$$
= e^{\alpha t} \left(\left(1 - \frac{(\beta t)^2}{2!} + \frac{(\beta t)^4}{4!} - \cdots\right) I + \left(\beta t - \frac{(\beta t)^3}{3!} + \frac{(\beta t)^5}{5!} - \cdots\right) B\right)
$$

\n
$$
= e^{\alpha t} \left((\cos \beta t)I + (\sin \beta t)B).
$$

– The diagonal entry at the bottom right corner, − cos *βt*, should be cos *βt*.

 \bullet (ii)

The orbits are circles. In fact, for a nonzero initial condition

$$
y_0=\left(\begin{array}{c}y_{0,1}\\y_{0,2}\end{array}\right),\,
$$

$$
\begin{pmatrix}\ny_1(t) \\
y_2(t)\n\end{pmatrix} = e^{t} y_0
$$
\n
$$
= \begin{pmatrix}\ny_{0,1} \cos \beta t + y_{0,2} \sin \beta t \\
-y_{0,1} \sin \beta t + y_{0,2} \cos \beta t\n\end{pmatrix}
$$

with

$$
y_1^2 + y_2^2 = (y_{0,1})^2 \left(\cos^2 \beta t + \sin^2 \beta t \right) + (y_{0,2})^2 \left(\sin^2 \beta t + \cos^2 \beta t \right)
$$

= $\left(\sqrt{(y_{0,1})^2 + (y_{0,2})^2} \right)^2$.

Comments, **4.6.3**, pp. 55–6

• (i) means that *A* is non-diagonalizable, that is, **R**² does not have a basis consisting of eigenvectors of *A*. So the *λ*-eigenspace of *A*, which is either E^s or E^u , has dimension 1. On the other hand, since $J^0 = I$ and

==

$$
J^{k} = \begin{pmatrix} \lambda^{k} & 0 \\ k\lambda^{k-1} & \lambda^{k} \end{pmatrix} \text{ for } k = 1, 2, 3, ...,
$$

$$
e^{t} J = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k}
$$

$$
= I + \sum_{k=1}^{\infty} \begin{pmatrix} \frac{(t\lambda)^{k}}{k!} & 0 \\ \frac{t(t\lambda)^{k-1}}{(k-1)!} & \frac{(t\lambda)^{k}}{k!} \\ te^{\lambda t} & e^{\lambda t} \end{pmatrix}
$$

$$
= \begin{pmatrix} e^{\lambda t} & 0 \\ te^{\lambda t} & e^{\lambda t} \end{pmatrix}
$$

and, if y_0 is an initial condition,

$$
\lim_{t\to\pm\infty}e^{tJ}y_0=(0,0)
$$

if $\lambda \lessgtr 0$.

• (ii) means that *A* is diagonalizable, that is, **R**² has a basis consisting of eigenvectors of *A*. So either $E^s = \mathbb{R}^2$ or $E^u = \mathbb{R}^2$. Furthermore, for each initial condition $x_0 \in \mathbb{R}^2$, since $J = \lambda I$ and

$$
A = F^{-1}JF
$$

= $F^{-1}(\lambda I)F$
= $\lambda F^{-1}IF$
= λI ,
 $e^{tA}x_0 = e^{tJ}x_0$
= $e^{\lambda tI}x_0$
= $e^{\lambda t}Ix_0$
= $e^{\lambda t}x_0$

is a scalar multiple of x_0 for every $t \in \mathbb{R}$.

Exercises, pp. 58–62 1. Firstly,

$$
X_1 = x \text{ and } X_2 = \dot{x} \Longrightarrow \begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} X_2 \\ X_1 \end{bmatrix}
$$

$$
\Longrightarrow \dot{X} = AX \text{ with } X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \text{ and } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
$$

==

So, by subsection **4.6.1**, $\lambda_1 = -1$ and $\lambda_2 = 1$,

$$
J = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix},
$$

$$
e^{tJ} = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{t} \end{bmatrix}
$$

and the orbits are similar to the ones of **Figure 4.8** with a saddle point at the origin as the only fixed point. Furthermore, concerning the trajectory

$$
\left\{ \left(t, e^{tA}X_0\right) \, : \, t \in I(X_0) \right\}
$$

of an initial condition X_0 ,¹³ it is worth noting that, since $A^{2k} = I$ (2 × 2 identity matrix) and $A^{2k+1} = A$ for $k = 0, 1, 2, \ldots,$

$$
e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k
$$

=
$$
\sum_{k=0}^{\infty} \frac{t^{2k}}{(2k)!} I + \sum_{k=0}^{\infty} \frac{t^{2k+1}}{(2k+1)!} A
$$

=
$$
(\cosh t) I + (\sinh t) A
$$

=
$$
\begin{bmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{bmatrix}.
$$

As an illustration, let us consider the solution with $X_0 = \left[\begin{array}{c} 1 \ 2 \end{array} \right]$ 2 :

$$
X_1(t) = \cosh t + 2\sinh t
$$

= $\frac{1}{2}(3e^t - e^{-t})$,

$$
X_2(t) = \sinh t + 2\cosh t
$$

= $\frac{1}{2}(3e^t + e^{-t})$.

3. Consider (4.5), p. 42. Therefore:

• $x_2 = 0$ and $\sin x_1 = 0$ give us the fixed points

$$
(x_1^*, x_2^*) = (k\pi, 0)
$$
 for $k \in \mathbb{Z}$;

In **Figure 4.3**, p. 46, $A = (0, 0)$ and $B = (\pm \pi, 0)$.

 \bullet $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_1 \end{pmatrix}$ *x*˙2 $\bigg)=\left(\begin{array}{cc} 0 & 1 \ -1 & 0 \end{array}\right)\left(\begin{array}{c} x_1 \ x_2 \end{array}\right)$ is the linearization of

$$
\begin{cases} \n\dot{x}_1 = x_2, \\ \n\dot{x}_2 = -x_1 + \mathcal{O}(x_1^2) \n\end{cases}
$$

.

Furthermore, by subsection **4.6.2**, $\lambda_1 = i$ and $\lambda_2 = -i$, $A = J$,

$$
e^{tJ} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}
$$

and the orbits are similar to the ones of **Figure 4.10**, p. 55, with a center at the origin as the only fixed point.

¹³Cf. **Def. 4.2**, p. 45.

So the phase portrait around $x^* \in \{A, B\}$ and the phase portrait of **Figure 4.10** (left) are locally similar.

5.

(i) On the one hand, a first integral is any function that is constant along the solutions of an ODE. So, if $F(x, y)$ is constant on a solution curve, $\frac{dF}{dt} = \dot{x}F_x + \dot{y}F_y$ equals zero by the chain rule. Then

$$
\frac{\dot{y}}{\dot{x}} = -\frac{F_x}{F_y} \tag{7}
$$

provided that $\dot{x}F_y \neq 0$. On the other hand, by considering $y = \dot{x}$, the equations of the exercise can be written as $(\dot{x}, \dot{y}) = f(x, y)$ with $\dot{x} = y$ and

$$
\dot{y} = -x - x^2, \quad \dot{y} = -x + x^2, \n\dot{y} = -x - x^3, \quad \dot{y} = -x + x^3,
$$

respectively. So, firstly, consider

$$
\begin{cases} \n\dot{x} = y, \\ \n\dot{y} = -x - x^2. \n\end{cases} \n\tag{8}
$$

Therefore, by (7) and due to fact that

$$
\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} \Longrightarrow \frac{dy}{dx} = -\frac{x + x^2}{y}
$$

$$
\Longrightarrow \int y \, dy = -\int (x + x^2) \, dx
$$

$$
\Longrightarrow \frac{y^2}{2} + \frac{x^2}{2} + \frac{x^3}{3} = \text{constant},
$$

 $F(x, y) = \frac{y^2}{2} + \frac{x^2}{2} + \frac{x^3}{3}$ $\frac{c^3}{3}$ is the first integral of (8).¹⁴ (The next figure depicts level curves $F(x, y) = c, c \in$ $\{-1,0,1,2\}.$

The mirror image of those curves in respect to the *y*-axis are level curves of the first integral of the system

$$
\begin{cases} \n\dot{x} = y, \\ \n\dot{y} = -x + x^2. \n\end{cases} \n\tag{9}
$$

Now, consider

$$
\begin{cases} \n\dot{x} = y, \\ \n\dot{y} = -x - x^3. \n\end{cases} \n\tag{10}
$$

¹⁴In fact, $F_x = x + x^2$ and $F_y = y$ confirm (7).

Therefore, by (7) and due to fact that

$$
\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} \Longrightarrow \frac{dy}{dx} = -\frac{x + x^3}{y}
$$

$$
\Longrightarrow \int y \, dy = -\int (x + x^3) \, dx
$$

$$
\Longrightarrow \frac{y^2}{2} + \frac{x^2}{2} + \frac{x^4}{4} = \text{constant},
$$

 $F(x, y) = \frac{y^2}{2} + \frac{x^2}{2} + \frac{x^4}{4}$ $\frac{d^4}{4}$ is the first integral of (10).¹⁵ (The next figure depicts level curves $F(x, y) = c, c \in$ $\{0.5, 1, 2\}.$

Finally, consider

$$
\begin{cases} \n\dot{x} = y, \\ \n\dot{y} = -x + x^3. \n\end{cases} \n\tag{11}
$$

Therefore, by (7) and due to fact that

$$
\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} \Longrightarrow \frac{dy}{dx} = -\frac{x - x^3}{y}
$$

$$
\Longrightarrow \int y \, dy = -\int (x - x^3) \, dx
$$

$$
\Longrightarrow \frac{y^2}{2} + \frac{x^2}{2} - \frac{x^4}{4} = \text{constant},
$$

 $F(x, y) = \frac{y^2}{2} + \frac{x^2}{2} - \frac{x^4}{4}$ $\frac{\alpha^4}{4}$ is the first integral of (11).¹⁶ (The next figure depicts some level curves of the first integral.)

(ii) By considering $f(x, y) = (0, 0)$, the critical points of (8), (9), (10) and (11) are obtained, respectively, via:

•
$$
-x(1+x) = 0
$$
 and $y = 0 \Longrightarrow (x^*, y^*) \in \{(0,0), (-1,0)\};$

•
$$
-x(1-x) = 0
$$
 and $y = 0 \Longrightarrow (x^*, y^*) \in \{(0,0), (1,0)\};$

¹⁵In fact, $F_x = x + x^3$ and $F_y = y$ confirm (7).

¹⁶In fact, $F_x = x - x^3$ and $F_y = y$ confirm (7).

- $-x(1+x^2) = 0$ and $y = 0 \Longrightarrow (x^*, y^*) = (0, 0);$
- $-x(1-x^2) = 0$ and $y = 0 \Longrightarrow (x^*, y^*) \in \{(0,0), (\mp 1, 0)\}.$

(iii) By definition, $P \in \mathbb{R}^n$ is a critical point of a real valued function *F* of several variables if $\nabla F(P) = 0$. So, since the critical points of the first integral $F(x, y)$ are obtained via $(F_x, F_y) = (0, 0)$, we have to solve

$$
(x+x^2, y) = (0,0), (x-x^2, y) = (0,0), (x+x^3, y) = (0,0), (x-x^3, y) = (0,0).
$$

By (ii), $P = (x^*, y^*)$ in each case.

(iv) Concerning (8), (9), (10) and (11), *D f*(*x* ∗ , *y* ∗) equals

$$
\begin{pmatrix}\n0 & 1 \\
-1-2x^* & 0\n\end{pmatrix},\n\begin{pmatrix}\n0 & 1 \\
-1+2x^* & 0\n\end{pmatrix},\n\begin{pmatrix}\n0 & 1 \\
-1+2x^* & 0\n\end{pmatrix},\n\begin{pmatrix}\n0 & 1 \\
-1-3(x^*)^2 & 0\n\end{pmatrix},
$$
\n(12)

respectively. So, first, if $x^* = 0$, then $\pm i$ are the eigenvalues of each matrix of (12) and the origin is a center. Now, if $x^* = -1$ (respectively, $x^* = 1$), then ± 1 are the eigenvalues of the first (respectively, second) matrix of (12), implying that (x^*, y^*) is a saddle point. Finally, if $x^* = \mp 1$, then $\pm \sqrt{2}$ are de eigenvalues of the fourth matrix of (12), implying that (x^*, y^*) is a saddle point.

(v) Let us consider a tabular presentation of the 2nd derivative test for real-valued functions $F(x, y)$ with F_{xx} , *F_{xy}*, *F_{yx}* and *F_{yy}* continuous around a critical point $X^* = (x^*, y^*)$ of *F*:

Therefore:

- For the 1st integral of (8), $X^* \in \{(0,0), (-1,0)\}$, $F_{xx} = 1 + 2x$, $F_{xy} = 0$, $F_{yy} = 1$ and $F_{xx}F_{yy} (F_{xy})^2 = 2x$. Then $X^* = (-1,0)$ is a saddle point, confirming the nomenclature of (iv), but there is no information about the origin.
- For the 1st integral of (9), $X^* \in \{(0,0), (1,0)\}$, $F_{xx} = 1 2x$, $F_{xy} = 0$, $F_{yy} = 1$ and $F_{xx}F_{yy} (F_{xy})^2 = -2x$. Then $X^* = (1,0)$ is a saddle point, confirming the nomenclature of (iv), but there is no information about the origin.
- For the 1st integral of (10), $X^* = (0,0)$, $F_{xx} = 1 + 3x^2$, $F_{xy} = 0$, $F_{yy} = 1$ and $F_{xx}F_{yy} (F_{xy})^2 = 3x^2$. Then there is no information about the origin.
- For the 1st integral of (11), $X^* \in \{(0,0), (\mp 1, 0)\}$, $F_{xx} = 1 3x^2$, $F_{xy} = 0$, $F_{yy} = 1$ and $F_{xx}F_{yy} (F_{xy})^2 = 1$ $-3x^2$. Then $X^* = (\mp 1, 0)$ are saddle points, confirming the nomenclature of (iv), but there is no information about the origin.

18.

(i) The method of variation of parameters for a non-homogeneous 1st order linear equation

$$
\dot{x} + p(t)x = f(t)
$$

gives us the general solution

$$
x(t) = Ae^{P(t)} + v(t)e^{P(t)}
$$

of the equation where *A* is a constant, $P(t)$ is an antiderivative of $-p(t)$ and $v(t)$ is an antiderivative of $f(t)e^{-P(t)}$. So, since $p(t) = 1$ and $f(t) = \cos t$ here, $P(t) = -t$ and

$$
v(t) = \int \cos t \, e^t dt
$$

=
$$
\frac{\sin t + \cos t}{2} e^t.
$$

Therefore

$$
x(t) = Ae^{-t} + \frac{\sin t + \cos t}{2}
$$

and, for $x(0) = x_0$,

 $x(t) = \left(x_0 - \frac{1}{2}\right)$ 2 $\left\{ e^{-t} + \frac{\sin t + \cos t}{2} \right\}$ 2 . (13)

(ii) Take $x_0 = \frac{1}{2}$ in (13). Otherwise, (13) is not periodic. (iii) For arbitrarily large *t*, the first summand of (13) becomes arbitrarily small and the second one becomes bounded.

19. (i) $x + 2\beta \dot{x} + \ddot{x}$ equals

$$
a\cos\omega t + b\sin\omega t + e^{-\beta t}(c_1\cos\lambda t + c_2\sin\lambda t)
$$

+

$$
2\beta \left(\omega(-a\sin\omega t + b\cos\omega t) + e^{-\beta t}((-\beta)(c_1\cos\lambda t + c_2\sin\lambda t) + \lambda(-c_1\sin\lambda t + c_2\cos\lambda t))\right)
$$

+

$$
(-\omega^2)(a\cos\omega t + b\sin\omega t)
$$

+

$$
e^{-\beta t}\left(\left(\beta^2 - \lambda^2\right)(c_1\cos\lambda t + c_2\sin\lambda t) + (-2\beta\lambda)(-c_1\sin\lambda t + c_2\cos\lambda t)\right),
$$

which equals

$$
a\left(\cos \omega t - 2\beta \omega \sin \omega t - \omega^2 \cos \omega t\right)
$$

+

$$
b\left(\sin \omega t + 2\beta \omega \cos \omega t - \omega^2 \sin \omega t\right)
$$

+

$$
- \beta t \left(\left(1 - 2\beta^2 + \beta^2 - \lambda^2\right) (c_1 \cos \lambda t + c_2 \sin \lambda t) + (2\beta - 2\beta)\lambda (-c_1 \sin \lambda t + c_2 \cos \lambda t)\right),
$$

which equals

e

γ cos *ωt*

for λ , *a* and *b* given in the exercise.

(ii) Let $x_0(t)$ be the solution of (4.19) for $c_1 = c_2 = 0$. In this case, $x_0(t)$ is periodic and the nonperiodic solution *x*(*t*) approaches $x_0(t)$ as $t \rightarrow \infty$. ==

16

== == **5** == ==

Comments, pp. 64–8

Firstly, consider

$$
\frac{d\varphi}{dt} = f(\lambda, \varphi(t)).\tag{14}
$$

• **5.2.1** $f(\lambda, x) = x(\lambda - x)$. So $f(\lambda, x) = 0$ implies that $x^* \in \{0, \lambda\}$ for each $\lambda \in \mathbb{R}$. Now, consider $\lambda < 0$. Therefore, by **Fig. 5.1** (left) and (14),

$$
\varphi(t) < \lambda \Longrightarrow f(\lambda, \varphi(t)) < 0
$$
\n
$$
\Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing,}
$$

$$
\varphi(t) \in (\lambda, 0) \Longrightarrow f(\lambda, \varphi(t)) > 0
$$

$$
\Longrightarrow \frac{d\varphi}{dt} > 0
$$

$$
\Longrightarrow \varphi(t) \text{ is increasing}
$$

and

$$
\varphi(t) > 0 \Longrightarrow f(\lambda, \varphi(t)) < 0
$$
\n
$$
\Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing.}
$$

Analogously, for $\lambda > 0$,

$$
\varphi(t) < 0 \Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing,}
$$

$$
\varphi(t) \in (0, \lambda) \Longrightarrow \frac{d\varphi}{dt} > 0
$$

$$
\Longrightarrow \varphi(t) \text{ is increasing}
$$

and

$$
\varphi(t) > \lambda \Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing,}
$$

and, for $\lambda = 0$,

$$
\varphi(t) < 0 \Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing.}
$$

• **5.2.2–4**

Use the same reason as above and consider the following points:

– Concerning (5.4), if

$$
f(\lambda, x) = \lambda - x^2
$$

= 0,

then

$$
\begin{aligned}\n&*\lambda < 0 \Longrightarrow \nexists x^*, \\
&*\lambda &= 0 \Longrightarrow x^* = 0, \\
&*\lambda > 0 \Longrightarrow x^* = \pm \sqrt{\lambda};\n\end{aligned}
$$

– Concerning (5.6), if

$$
f(\lambda, x) = x(\mu - x^2)
$$

= 0,

then

$$
\begin{array}{c}\n\ast \mu \leq 0 \Longrightarrow x^* = 0, \\
\ast \mu > 0 \Longrightarrow x^* \in \{0, \pm \sqrt{\mu}\}.\n\end{array}
$$

- Concerning
$$
(5.7)
$$
, if

$$
f(\lambda, x) = x(\mu + x^2)
$$

= 0,

then

$$
\begin{aligned} \ast \ \mu &< 0 \Longrightarrow x^* \in \{0, \pm \sqrt{-\mu}\}, \\ \ast \ \mu &> 0 \Longrightarrow x^* = 0; \end{aligned}
$$

– Concerning (5.5), *λ* ∗ can be checked by solving

$$
\lambda = x^3 - x \text{ for } x = \pm \frac{1}{\sqrt{3}}
$$

from the system of page 67. So

$$
\lambda = \frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}}
$$

$$
= \frac{1-3}{3\sqrt{3}}
$$

$$
= -\frac{2}{\sqrt{27}}
$$

$$
= -\sqrt{\frac{4}{27}}
$$

or

$$
\lambda = -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}}
$$

$$
= -\left(\frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}}\right)
$$

$$
= \sqrt{\frac{4}{27}}.
$$

Errata/Comments, p. 71, **5.2.6**

• The authors (Kapler and Engler) provided an errata correcting the first equation of (5.9):

*λx*¹ should be *λ*. 17

¹⁷The manner the equation is presented in the book give us $x^* = (2\lambda, \lambda)$. In fact, consider

$$
\begin{cases}\n\lambda x_1 - x_1^2 + x_1 x_2 = 0, \\
x_1^2 - 2x_1 x_2 = 0.\n\end{cases}
$$

==

Then, if you add the two equations,

With that correction, consider

$$
\begin{cases}\n\lambda - x_1^2 + x_1 x_2 = 0, \\
x_1^2 - 2x_1 x_2 = 0.\n\end{cases}
$$
\n(15)

Then, if you add the two equations of (15),

$$
\lambda - x_1 x_2 = 0.
$$

Now, substitute $x_1x_2 = \lambda$ into the first equation of (15) to obtain

$$
x_1^2 - 2\lambda = 0.
$$

Therefore

$$
x_1 = \pm \sqrt{2\lambda}
$$

 $x_2 = \pm \frac{\lambda}{\sqrt{2}}$

 $=$ \pm

2*λ*

 \mathbf{v}_{i} 2*λ* $\frac{2}{2}$.

for $\lambda > 0$ and, since $x_1 x_2 = \lambda$,

• As discussed in the preceding subsections, where $f(\lambda, x)$ was scalar, solution branches were expected to meet at points (λ, x^*) where

$$
\begin{cases}\nf(\lambda, x^*) = 0, \\
\frac{\partial f}{\partial x}(\lambda, x^*) = 0.\n\end{cases}
$$

Such points were candidates for bifurcation points. Here, the candidates for bifurcation points of planar vector fields are obtained by solving

$$
\begin{cases}\nf(\lambda, x^*) = 0, \\
\det(Df(\lambda, x^*)) = 0.\n\end{cases}
$$

• Consider *T* and *D* as in section **4.6**. Then the discriminant

$$
T^2 - 4D = \left(\frac{49}{2} - 16\right)\lambda
$$

is positive. Therefore, since $D > 0$, the eigenvalues of $Df(\lambda, x^*_{\pm})$ are real with the same sign and the critical points x^*_{\pm} are nodes: $T \leq 0$ imply that the branch of x^*_{+} -solutions consists of stable nodes but, contrary to what is affirmed in the book, the branch of x^* -solutions consists of unstable nodes.

==

Comments, p. 72

• 1st paragraph

The positivity of the amplitude is used for discarding the minus sign in

$$
\lambda - r^2 = 0 \Longrightarrow r = \pm \sqrt{\lambda}.
$$

Now, substitute $x_1x_2 = \lambda x_1$ into the first equation of the system. So

$$
\lambda x_1 - x_1^2 + \lambda x_1 = 0,
$$

which implies that

$$
x_1^2 - 2\lambda x_1 = 0 \Longrightarrow (x_1 - 2\lambda) x_1 = 0
$$

$$
\Longrightarrow \underline{x_1 = 2\lambda} \text{ or } x_1 = 0.
$$

By substituting $x_1 = 2\lambda$ into the second equation of the system, it follows that

$$
4\lambda^2 - 4\lambda x_2 = 0 \Longrightarrow \lambda (\lambda - x_2) = 0
$$

$$
\Longrightarrow \lambda = 0 \text{ or } \underline{x_2} = \lambda.
$$

Furthermore, we must add $λ$ to the 1, 1 entry of $Df(λ, x)$, which implies that $det(Df(λ, x)) = -2λx_1 + 2x_1^2$.

• 2nd paragraph

If *I* represents the 2×2 identity matrix, consider

$$
p(\ell) = \det(A(\lambda) - \ell I)
$$

= $\ell^2 - 2\lambda \ell + \lambda^2 + 1$.

So, due to the fact that the discriminant of $p(\ell) = 0$ is equal to -4 , $A(\lambda)$ has a pair of complex conjugate eigenvalues:

$$
\ell = \frac{2\lambda \pm 2i}{2}
$$

$$
= \lambda \pm i.
$$

• (5.12)

$$
\dot{r} = \frac{d}{dt} \left(\left(x_1^2 + x_2^2 \right)^{1/2} \right)
$$
\n
$$
= \frac{1}{2} \left(x_1^2 + x_2^2 \right)^{-1/2} (2x_1 \dot{x}_1 + 2x_2 \dot{x}_2)
$$
\n
$$
= \frac{\left(x_1^2 + x_2^2 \right) \left(\lambda - x_1^2 - x_2^2 \right)}{\left(x_1^2 + x_2^2 \right)^{1/2}}
$$
\n
$$
= \frac{r^2 \left(\lambda - r^2 \right)}{r},
$$

$$
\dot{\theta} = \frac{d}{dt} (\arctan(x_2/x_1))
$$

= $\frac{1}{1 + (x_2/x_1)^2} \cdot \frac{\dot{x}_2 x_1 - x_2 \dot{x}_1}{x_1^2}$
= $\frac{x_1^2}{x_1^2 + x_2^2} \cdot \frac{-x_1^2 - x_2^2}{x_1^2}$
= $-\frac{x_1^2 + x_2^2}{x_1^2 + x_2^2}$.

• 1st sentence after (5.14) See the solid line in the first quadrant in **Figure 5.4** (right), p. 68.

Exercises, pp. 75–6

1. Consider $f(\lambda, x) = \lambda + x^2$. So $f(\lambda, x) = 0$ implies that $x^* \in \left\{0, \pm \right\}$ √ $\overline{-\lambda}$ } exists only for $\lambda \leq 0$:

$$
\lambda + x^2 = 0 \Longrightarrow x^2 = -\lambda
$$

$$
\Longrightarrow x = \pm \sqrt{-\lambda}.
$$

==

So the phase portraits for $\lambda \in \{-1,0\}$

and equation (14), p. 17 of this text, tell us that

$$
\varphi(t) < -\sqrt{-\lambda} \Longrightarrow f(\lambda, \varphi(t)) > 0
$$
\n
$$
\Longrightarrow \frac{d\varphi}{dt} > 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is increasing}
$$

and

$$
\varphi(t) > -\sqrt{-\lambda} \Longrightarrow f(\lambda, \varphi(t)) < 0
$$

$$
\Longrightarrow \frac{d\varphi}{dt} < 0
$$

$$
\Longrightarrow \varphi(t) \text{ is decreasing}
$$

(meaning $x^* = -\sqrt{2}$ $-\overline{\lambda}$ is stable), whereas

$$
\varphi(t) < \sqrt{-\lambda} \Longrightarrow f(\lambda, \varphi(t)) < 0
$$
\n
$$
\Longrightarrow \frac{d\varphi}{dt} < 0
$$
\n
$$
\Longrightarrow \varphi(t) \text{ is decreasing}
$$

and

$$
\varphi(t) > \sqrt{-\lambda} \Longrightarrow f(\lambda, \varphi(t)) > 0
$$

$$
\Longrightarrow \frac{d\varphi}{dt} > 0
$$

$$
\Longrightarrow \varphi(t) \text{ is increasing}
$$

(meaning $x^* = \sqrt{}$ $-\overline{\lambda}$ is unstable). Furthermore, $x^* = 0$ is clearly unstable. The previous reasoning along with $f_x(\lambda, x) = 2x = 0$ (meaning $x^* = 0$ is the candidate for bifurcation point) imply that there are two fixed points for $\lambda < 0$: $x_{-}^{*} = -\sqrt{-\lambda}$ (stable) and $x_{+}^{*} = \sqrt{-\lambda}$ (unstable). They merge with each other at $\lambda = 0$ and, from this unstable point on, there are no fixed points as depicted in the following bifurcation diagram:

2. If

$$
f(\lambda, x) = \sin x - \lambda
$$

= 0,

then $x^* = \arcsin \lambda$ exists only for

$$
\lambda = \sin x \in [-1, 1].
$$

Therefore, there are no fixed points for $\lambda \in [-2, -1) \cup (1, 2]$. Furthermore, the phase portraits can be analyzed by vertically translating the graph of $f(0, x) = \sin x$ (i.e., moving it up or down) in order to obtain the graph of $f(\lambda, x) = \sin x - \lambda$ (as a function of *x*), where $(\lambda, x) \in [-1, 1] \times [-4\pi, 4\pi]$. Now, recall that $f(\lambda, x)$ changes sign at $x = x^*$ and:

- x^* is stable where $f(\lambda, x)$ changes sign from positive to negative;¹⁸
- x^* is unstable where $f(\lambda, x)$ changes sign from negative to positive.¹⁹

¹⁸This takes place in an interval where $f(\lambda, x)$ is decreasing.

¹⁹This takes place in an iterval where $f(\lambda, x)$ is increasing.

Concerning the bifurcation points, consider $f_x(\lambda, x) = \cos x = 0$. So, due to the fact that $x \in [-4\pi, 4\pi]$,

$$
x^* \in \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2} \right\},\
$$

which implies that $\lambda = \pm 1$ are the candidates for bifurcation points. This fact and the previous reasonig allow us to depict bifurcation diagrams as follows:

where the vertical axis of the second diagram represents $x^* \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the vertical axis of the first diagram represents $x^* + \pi \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and the vertical axis of the third diagram represents $x^* - \pi \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$. Furthermore, compared to the aforementioned diagrams, the bifurcation diagrams for:

- $x^* \in \left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$ and $x^* \in \left[-\frac{5\pi}{2}, -\frac{3\pi}{2}\right]$ are identical to the second one;
- $x^* \in \left[\frac{5\pi}{2}, \frac{7\pi}{2}\right]$ and $x^* \in \left[-\frac{7\pi}{2}, -\frac{5\pi}{2}\right]$ are identical to the first/third one; 2 \prime 2 \vert and λ \vert 2 \vert 2 \prime 2
- $x^* \in \left[\frac{7\pi}{2}, 4\pi\right]$ (respectively, $x^* \in \left[-4\pi, -\frac{7\pi}{2}\right]$) is identical to the first (respectively, second) half of the second diagram.

3. Since $f(\lambda, x) = x(\lambda + x^2 - x^4)$,

$$
x^* \in \left\{0, \pm \sqrt{\frac{1 \pm \sqrt{1 + 4\lambda}}{2}}\right\}
$$

where $x^* = 0$ exists for $-1 < \lambda < 1$, whereas the other fixed points exist for $-\frac{1}{4} \leq \lambda < 1$,²⁰ provided that $-2 < x^* < 2.^{21}$ Then:

- $-1 < \lambda < -\frac{1}{4} \Longrightarrow$ there is only one fixed point: $x^* = 0$;
- $\lambda = -\frac{1}{4} \Longrightarrow$ there are three fixed points: $x^* \in \left\{0, \pm \sqrt{\frac{1}{2}}\right\}$;
- \bullet $-\frac{1}{4} < \lambda < 0 \Longrightarrow$ there are five fixed points for each such λ ;
- $\lambda = 0 \Longrightarrow$ there are three fixed points: $x^* \in \{0, \pm 1\}$;
- $0 < \lambda < 1$ \Longrightarrow there are three fixed points for each such λ : $x^* \in \left\{0, \pm \sqrt{\frac{1+\sqrt{1+4\lambda}}{2}}\right\}$ <u>)</u> .

(So the number of fixed points changes three times as *λ* varies between −1 and 1.) Now, in order to analyze the stability of such fixed points via sign diagrams, consider the phase portraits for $\lambda \in \{-0.5, -0.25, -0.2, 0.5\}$:

²⁰In fact, consider the biquadratic equation $x^4 - x^2 - \lambda = 0$ and the change of variable $x^2 = t$. So

$$
t^2 - t - \lambda = 0 \Longrightarrow t = \frac{1 \pm \sqrt{1 + 4\lambda}}{2}
$$

with $1 + 4\lambda \geq 0$ and $-1 < \lambda < 1$. ²¹As a matter of fact, *x* [∗] ∈ (−2, 2) for

$$
-\frac{1}{4} \le \lambda < 1 \Longleftrightarrow 0 \le 1 + 4\lambda < 5
$$
\n
$$
\Longleftrightarrow 0 \le \sqrt{1 + 4\lambda} < \sqrt{5}.
$$

Therefore:

- $x^* = 0$ is unstable (respectively, stable) for $\lambda < 0$ (respectively, $\lambda > 0$);
- each x^* is unstable for $\lambda = -0.25$;
- the fixed points farthest from (respectively, closest to) $x^* = 0$ are unstable (respectively, stable) for $-0.25 < \lambda \leq 0;$
- the nonzero fixed points are unstable for $0 < \lambda < 1$.

On the other hand, concerning the candidates for bifurcation points, consider $f_x(\lambda, x) = 5x^4 - 3x^2 - \lambda$ and note that

$$
f_x(0,0) = 0
$$
 and $f_x\left(-\frac{1}{4}, \pm \frac{1}{\sqrt{2}}\right) = 0.$

The previous reasoning, along with the equations $x=0$ and $\lambda+x^2-x^4=0$, give us the bifurcation diagram

²²Note that the bifurcation diagram is rotated about the origin at $\pi/2$ radians CCW.

4. Let $f(\lambda, x) = \sin x - \lambda x$ with $\lambda \in [0.5, 2]$. So $x^* = 0$ is a fixed point for each λ and, since

$$
f(\lambda, x) = (1 - \lambda)x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
$$

= $x \left(1 - \lambda - \frac{x^2}{3!} + \frac{x^4}{5!} - \cdots \right),$

there are two more fixed points if and only if $1 - \lambda > 0$ (due to the fact that $-\frac{x^2}{3!} + \frac{x^4}{5!} - \cdots$ is an even function with a concave down graph). Now, in order to analyze the stability of the fixed points via sign diagrams, consider the phase portraits for $\lambda \in \{0.5, 0.75, 1, 1.5, 2\}$:

with $x^* = 0$ unstable and $x^* \approx \pm 1.8955$ stable,

with $x^* = 0$ unstable and $x^* \approx \pm 1.2757$ stable,

with $x^* = 0$ stable,

with $x^* = 0$ stable, and

with $x^* = 0$ stable. Therefore everything indicates that there is a pitchfork bifurcation at $\lambda = 1$ which is similar to the mirror image of the supercritical pitchfork bifurcation of **Figure 5.4**, p. 68, with respect to the *x* ∗ -axis and with $\lambda - 1$ in place of μ ²³

5.

(i) By considering

$$
f(\lambda, x) = \lambda x (\lambda - x^2) (\lambda + x^2)
$$

= $\lambda^3 x - \lambda x^5$

 $23\overline{\text{As}}$ a matter of fact, compare

$$
f(\lambda, x) = -\left((\lambda - 1)x + \frac{x^3}{3!}\right) + \mathcal{O}\left(x^5\right)
$$

to (5.6), p. 67.

and **Figure 5.9** (left),

$$
x^* = \begin{cases} 0 \text{ for each } \lambda; \\ \sqrt{\lambda} \text{ for } \lambda > 0; \\ -\sqrt{-\lambda} \text{ for } \lambda < 0. \end{cases}
$$

The aforementioned figure shows us that $x^* = 0$ changes from stable to unstable at $\lambda = 0$, $x^* = -\sqrt{2\pi}$ changes from stable to unstable at $\lambda = 0$, $x^* = -\sqrt{-\lambda}$ is unstable and nonexistent for $\lambda>0$, whereas $x^*=\sqrt{\lambda}$ is stable and nonexistent for $\lambda<0.$ Furthermore, on the one hand, the following two graphs represent the phase portraits for $\lambda \leq 0$:

On the other hand, the candidates for bifurcation points can be obtained by

$$
f_x(\lambda, x) = 0 \Longrightarrow \lambda^3 - 5\lambda x^4 = 0
$$

$$
\Longrightarrow \lambda \left(\lambda^2 - 5x^4\right) = 0
$$

$$
\Longrightarrow \lambda \in \left\{0, \pm \sqrt{5}x^2\right\}.
$$

Therefore, the previous analysis confirms **Figure 5.9** (left), with $\lambda = 0$ being the bifurcation point.

(ii) It looks like that the bifurcation diagram of **Figure 5.9** (right) is a rescaled version of the bifurcation diagram of **Figure 5.4** (right), which is given rise by the vector field $f(\lambda, x) = x(\lambda - x^2)$, after being rotated through an angle of $\pi/4$ radians in anti-clockwise direction about the origin. So let us analyze the equations $x = 0$ and $\lambda - x^2 = 0$, which are building blocks of the bifurcation diagram, after being subjected to such rotation. Clearly, $x = 0$ becomes $x = \lambda$, whereas $\lambda - x^2 = 0$ becomes $x^2 + \lambda^2 - 2x\lambda - \sqrt{2}x - \sqrt{2}\lambda = 0.24$ Therefore, concerning **Figure 5.9**, the vector field which gives rise to the bifurcation diagram (on the right) is

$$
f(\lambda, x) = (x - \lambda) \left(x^2 + \lambda^2 - 2x\lambda - \sqrt{2}x - \sqrt{2}\lambda \right).
$$

==

$$
\left[\begin{array}{cc} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{array}\right] \left[\begin{array}{c} x \\ \lambda \end{array}\right] = \left[\begin{array}{c} x' \\ \lambda' \end{array}\right].
$$

²⁴ Consider the parabola $\lambda' = x'^2$ and the rotation

Comment, p. 77, penultimate sentence

Consider p. 36, 1st sentence along with (3.8) and (3.9). Therefore

$$
\begin{aligned} \bar{T}_2^* &= T_2^* - T_0^* \\ &= T_2^* - \frac{1}{2} (T_1^* + T_2^*) \\ &= \frac{1}{2} (T_2^* - T_1^*) \\ &:= T^* \end{aligned}
$$

and

$$
\begin{aligned} \bar{T}_1^* &= T_1^* - T_0^* \\ &= T_1^* - \frac{1}{2}(T_1^* + T_2^*) \\ &= \frac{1}{2}(T_1^* - T_2^*) \\ &= -T^*. \end{aligned}
$$

Similarly,

$$
\bar{S}_2^* = S^* \text{ and } \bar{S}_1^* = -S^*.
$$

Comments, p. 78

• Sentence that follows (6.3) Since

$$
\frac{d}{dt} \left(\frac{1}{2} (T_1 + T_2) \right) = -c \left(\frac{1}{2} (T_1 + T_2) \right) \text{ and}
$$
\n
$$
\frac{d}{dt} \left(\frac{1}{2} (S_1 + S_2) \right) = -d \left(\frac{1}{2} (S_1 + S_2) \right),
$$
\n
$$
\frac{1}{2} (T_1 + T_2) = \text{constant} \cdot e^{-ct} \longrightarrow 0 \text{ and}
$$
\n
$$
\frac{1}{2} (S_1 + S_2) = \text{constant} \cdot e^{-dt} \longrightarrow 0
$$

when
$$
t \rightarrow \infty
$$
.

• (6.6)

$$
\dot{x} = \frac{dx}{dt'}
$$
\n
$$
= \frac{1}{c\Delta S^*} \left(\frac{d\Delta S}{dt}\right)
$$
\n
$$
= \frac{d}{c}(1-x) - \left|\frac{2q}{c}\right| x,
$$
\n
$$
\dot{y} = \frac{dy}{dt'}
$$
\n
$$
= \frac{1}{c\Delta T^*} \left(\frac{d\Delta T}{dt}\right)
$$
\n
$$
= 1 - y - \left|\frac{2q}{c}\right| y.
$$

Erratum, p. 79, right after (6.8) λf^* should be equal to $Rx^* - y^*$. ==

Comments, p. 80

 \bullet (6.11)

The 1, 1 entry of *A* is obtained by

$$
\frac{\partial}{\partial x}(\delta(1-x) - |f|x) = \frac{\partial}{\partial x} \left(\delta - \delta x \mp \frac{1}{\lambda} \left(Rx^2 - xy \right) \right)
$$

$$
= -\delta \mp \frac{1}{\lambda} (2Rx - y)
$$

$$
= -\delta \mp \frac{1}{\lambda} ((Rx - y) + Rx)
$$

$$
= -\delta - \left(\pm \frac{Rx - y}{\lambda} \right) \mp \frac{Rx}{\lambda}
$$

$$
= -(\delta + |f|) \mp \frac{Rx}{\lambda}.
$$

====================

Computing the 1, 2 and 2, 1 entries of *A* is straightforward. Finally, the 2, 2 entry of *A* is obtained by

$$
\frac{\partial}{\partial y}(1 - y - |f|y) = \frac{\partial}{\partial y}\left(1 - y + \frac{1}{\lambda}\left(Rxy - y^2\right)\right)
$$

$$
= -1 + \frac{1}{\lambda}(Rx - 2y)
$$

$$
= -1 + \frac{1}{\lambda}((Rx - y) - y)
$$

$$
= -1 - \left(\pm \frac{Rx - y}{\lambda}\right) \pm \frac{y}{\lambda}
$$

$$
= -(1 + |f|) \pm \frac{y}{\lambda}.
$$

 \bullet (6.12)

$$
D = \delta + \delta |f^*| + |f^*| + |f^*|^2 \pm \left(\frac{Rx^*}{\lambda} - \frac{\delta y^*}{\lambda}\right) + |f^*| \left(\pm \frac{Rx^* - y^*}{\lambda}\right)
$$

= $\delta + \delta |f^*| + |f^*| + 2|f^*|^2 \pm \left(\frac{Rx^*}{\lambda} - \frac{\delta y^*}{\lambda}\right) \pm \left(-\frac{y^*}{\lambda} + \frac{y^*}{\lambda}\right)$
= $\delta + \delta |f^*| + 2|f^*| + 2|f^*|^2 \pm (1 - \delta) \frac{y^*}{\lambda}.$

• Penultimate and ultimate sentences Since $f^* > 0$ and $\delta > 0$,

$$
(\delta+2\,|f^*|)(1+|f^*|)>0
$$

and, since $\delta \in (0,1]$, $y^* > 0$ and $\lambda > 0$,²⁵

$$
\frac{(1-\delta)y^*}{\lambda}\geq 0.
$$

So *D* > 0. Furthermore, since

$$
T^{2} = (1 + \delta)^{2} + 6(1 + \delta)f^{*} + 9(f^{*})^{2}
$$

= 1 + 2\delta + \delta^{2} + 6f^{*} + 6\delta f^{*} + 9(f^{*})^{2}

 $^{25}\delta \in (0,1]$ and $y^* > 0 \Longleftarrow 1.5$ and (6.8), p. 79;

 $\lambda > 0 \Longleftarrow \lambda = \frac{\tilde{c}}{2\alpha k(2T^*)}$, p. 78, and T^* is the temperature anomaly in the basin surrounding Box 2, p. 77.

and

$$
-4D = -4\delta - 4\delta f^* - 8f^* - 8(f^*)^2 - 4(1 - \delta)\frac{y^*}{\lambda},
$$

\n
$$
T^2 - 4D = 1 - 2\delta + \delta^2 - 2f^* + 2\delta f^* + (f^*)^2 - 4(1 - \delta)\frac{y^*}{\lambda}
$$

\n
$$
= (1 - \delta)^2 - 2(1 - \delta)f^* + (f^*)^2 - 4(1 - \delta)\left(\frac{1}{\lambda}\right)
$$

\n
$$
= ((1 - \delta) - f^*)^2 - \frac{4(1 - \delta)}{\lambda(1 + f^*)}.
$$

Now, note that $T^2 - 4D > 0$ for $\delta = 1$. So, here,

$$
\delta, 1 - \delta \in (0, 1). \tag{16}
$$

Let us prove that $T^2 - 4D < 0$ holds with some simple heuristics. So, on the one hand,

$$
((1 - \delta) - f^*)^2 < \frac{4(1 - \delta)}{\lambda(1 + f^*)} \Longleftrightarrow \lambda(1 + f^*) < 4\left(\frac{1 - \delta}{\left(\left(1 - \delta\right) - f^*\right)^2}\right) \Longleftrightarrow \lambda f^* < 4\left(\frac{1 - \delta}{\left(\left(1 - \delta\right) - f^*\right)^2}\right) - \lambda.
$$

On the other hand, by subsection **6.2.1** along with **Figure 6.1** ($f > 0$), ²⁶

$$
\lambda f^* = \phi(f^*) \Longrightarrow 0 < \lambda f^* < 1.
$$

Then $T^2 - 4D < 0$ if

$$
1 < 4\left(\frac{1-\delta}{\left(\left(1-\delta\right)-f^*\right)^2}\right) - \lambda,\tag{17}
$$

which is equivalent to

$$
((1 - \delta) - f^*)^2 < \frac{4}{\lambda + 1}(1 - \delta) \Longleftrightarrow (1 - \delta)^2 - \left(2f^* + \frac{4}{\lambda + 1}\right)(1 - \delta) + (f^*)^2 < 0
$$

with positive roots

$$
1 - \delta_{\pm} = \frac{2f^* + \frac{4}{\lambda + 1} \pm \sqrt{\left(2f^* + \frac{4}{\lambda + 1}\right)^2 - 4(f^*)^2}}{2}.
$$
\n(18)

==

So (17) holds for each $1-\delta\in(1-\delta_-,1-\delta_+)$. Then (17) holds for each $\delta\in(\delta_+,\delta_-)\subset(0,1).^{27}$ Therefore $T^2 - 4D < 0$ for each $f^* > 0$.

Comment, p. 81, 3rd sentence

$$
\frac{dD}{df^*} = -\delta - 2 + 4f^* - \frac{1-\delta}{\lambda(1-f^*)^2}
$$

is negative for $f^* \in (-\infty, 0)$,

$$
\lim_{f^* \to -\infty} D = +\infty \text{ and } \lim_{f^* \to 0} D = \delta - \frac{1-\delta}{\lambda},
$$

which is negative if $\lambda \in (0, 1)$ is small enough.²⁸ ==

Erratum/Comments, p. 82, 3rd paragraph

²⁸See (16)!

²⁶Since $\delta \neq 1$, points like e and g are not considered here!

²⁷On the one hand, if *δ*[−] > 1 , then 1 − *δ*[−] < 0, which contradicts (18). On the other hand, if *δ*⁺ < 0, then *δ* can take nonpositive values, which is a contradiction because $\delta \in (0, 1)$.

- \bullet 4th sentence²⁹ Interchange '*S*-mode' and '*T*-mode'.
- Last four sentences
	- **–** "..., a reversal of the flow, ..." *f* depends on *q*. 30
	- **–** "... an increase of the temperature anomaly." See **Figure 6.3**. 31
	- **–** "... the salinity anomaly will also increase." Here, *x*^{*} depends on *y*^{∗ 32}
	- **–** "... salinity anomaly on the vertical axis, ..." See the previous comment.

Exercises, pp. 83–6

1.

$$
\begin{aligned}\n\phi_{+}(0) &= \frac{\delta R}{\delta} - 1 \\
&= R - 1 \\
&> 0 \text{ if } R > 1; \\
\frac{d\phi_{+}}{df}\Big|_{f=0} &= -\frac{\delta R}{(\delta + f)^2} + \frac{1}{(1+f)^2}\Big|_{f=0} \\
&= -\frac{\delta R}{\delta^2} + 1 \\
&= -\frac{R}{\delta} + 1 \\
&< 0 \text{ if } R > \delta; \\
\lim_{f \to \infty} \phi_{+}(f) &= \lim_{f \to \infty} \frac{\delta R(1+f) - (\delta + f)}{(\delta + f)(1+f)} \\
&= \lim_{f \to \infty} \frac{(\delta R - 1)f + \delta R - \delta}{f^2 + (\delta + 1)f + \delta} \\
&= \lim_{f \to \infty} \frac{\frac{\delta R - 1}{f}}{1} \\
&= 0^- \text{ if } \delta R < 1.\n\end{aligned}
$$

==

The critical point 'c' satisfying (6.9) (for $\lambda = \frac{1}{5}$, $R = 2$ and $\delta = \frac{1}{6}$) is shown in figures 6.1 and 6.2, which are consistent with the properties above. In fact, the graph of ϕ curves up as it moves toward 'c',³³ crosses the *f*-axis, keeps curving up a little bit more and approaches the *f*-axis asymptotically.³⁴ Since $\lambda \in (0,\infty)$, the graphs of ϕ and λf have exactly one point of intersection, which is 'c'. Furthermore, concerning $f \in [0, \infty)$, 'c' is close to the equiflow line $f = 0$ and the phase portrait does not have another steady state close to any equiflow line.

2. If $\delta = \frac{1}{6}$ and $R = \frac{3}{2}$, $\lambda f = \phi(f)$ has exactly two (respectively, one) negative solutions (respectively, solution)

²⁹The one after "..., $y^* = \frac{4}{5}$.".

³⁰See p. 78.

³¹See the anomaly component *y* [∗] on the right.

³²See (6.7), p. 78.

³³Which is consistent with the first two properties.

³⁴Which is consistent with the ultimate property.

 $f = f^*$ for each $\lambda \in (0, \frac{4}{5})$ (respectively, for $\lambda = \frac{4}{5}$). In fact,

$$
\lambda f = \phi(f)
$$

= $\frac{\frac{1}{4}}{\frac{1}{6} - f} - \frac{1}{1 - f}$
= $\frac{\frac{1}{2}}{\frac{1 - 6f}{3}} - \frac{1}{1 - f}$
= $\frac{3(1 - f) - 2(1 - 6f)}{2(1 - 6f)(1 - f)}$
= $\frac{9f + 1}{2(6f^2 - 7f + 1)}$.

So, let us find the negative roots *f* [∗] of

$$
p(\lambda, f) = 12\lambda f^3 - 14\lambda f^2 + (2\lambda - 9)f - 1
$$

for

$$
\lambda \in \left\{ \frac{1}{20}, \frac{1}{10}, \frac{1}{5}, \frac{3}{10}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{7}{10}, \frac{4}{5} \right\},\
$$

that is, the cubic polynomials

$$
0.6f3 - 0.7f2 - 8.9f - 1 = 0,
$$

\n
$$
1.2f3 - 1.4f2 - 8.8f - 1 = 0,
$$

\n
$$
12f3 - 14f2 - 43f - 5 = 0,
$$

\n
$$
3.6f3 - 4.2f2 - 8.4f - 1 = 0,
$$

\n
$$
24f3 - 28f2 - 41f - 5 = 0,
$$

\n
$$
6f3 - 7f2 - 8f - 1 = 0,
$$

\n
$$
36f3 - 42f2 - 39f - 5 = 0,
$$

\n
$$
8.4f3 - 9.8f2 - 7.6f - 1 = 0
$$
 and
\n
$$
48f3 - 56f2 - 37f - 5 = 0.
$$

The negative roots of these polynomials are given by

$$
f^* \approx -3.246, -0.113,
$$

\n
$$
f^* \approx -2.115, -0.116,
$$

\n
$$
f^* \approx -1.316, -0.126,
$$

\n
$$
f^* \approx -0.961, -0.128,
$$

\n
$$
f^* \approx -0.747, -0.136,
$$

\n
$$
f^* \approx -0.598, -0.146,
$$

\n
$$
f^* \approx -0.482, -0.159,
$$

\n
$$
f^* \approx -0.383, -0.180
$$
 and
\n
$$
f^* = -\frac{1}{4},
$$

respectively. Furthermore, note that $\lambda = \frac{4}{5}$ is a candidate for bifurcation point since, at $(\lambda, f) = \left(\frac{4}{5}, -\frac{1}{4}\right)$,

$$
\begin{cases}\np(\lambda, f) = 0; \\
\frac{\partial p}{\partial f} = 0.\n\end{cases}
$$

This analysis and the comments on page 81 allow us to consider the following bifurcation diagram:³⁵

 35 Note the consistency with the bifurcation diagram of figure 6.3 (left), p. 82.

3.

Firstly, by (6.8), p. 79, note that x_i^* and y_i^* are positive for each $i \in \{1, 2, 3\}$. Secondly, since $f_1^* < f_2^* < 0$, that is, $-f_1^*$ > $-f_2^*$ > 0, it follows that, on the one hand,

$$
1 - f_1^* > 1 - f_2^* > 1 \Longrightarrow 0 < \frac{1}{1 - f_1^*} < \frac{1}{1 - f_2^*} < 1
$$

$$
\Longrightarrow 0 < y_1^* < y_2^* < 1,
$$

and, on the other hand, since $\delta > 0$,

$$
-f_1^* + \delta > -f_2^* + \delta > \delta \Longrightarrow \frac{\delta - f_1^*}{\delta} > \frac{\delta - f_2^*}{\delta} > 1
$$
\n
$$
\Longrightarrow \frac{1}{x_1^*} > \frac{1}{x_2^*} > 1
$$
\n
$$
\Longrightarrow 0 < x_1^* < x_2^* < 1.
$$

Now, note that

$$
y_2^* < y_3^* \Longleftrightarrow \frac{1}{1 - f_2^*} < \frac{1}{1 + f_3^*}
$$
\n
$$
\Longleftrightarrow 1 + f_3^* < 1 - f_2^*
$$
\n
$$
\Longleftrightarrow f_3^* < -f_2^*
$$
\n
$$
\Longleftrightarrow f_3^* + \delta < -f_2^* + \delta
$$
\n
$$
\Longleftrightarrow \frac{1}{\delta - f_2^*} < \frac{1}{\delta + f_3^*}
$$
\n
$$
\Longleftrightarrow \frac{\delta}{\delta - f_2^*} < \frac{\delta}{\delta + f_3^*}
$$
\n
$$
\Longleftrightarrow x_2^* < x_3^*.
$$

Similarly, $y_2^* = y_3^* \iff x_2^* = x_3^*$ and $y_2^* > y_3^* \iff x_2^* > x_3^*$. However, if $x_2^* = x_3^*$ and $y_2^* = y_3^*$, then $f_2^* = f_3^*$, which is a contradiction. In the same vein, $x_2^* > x_3^*$ and $y_2^* > y_3^*$ also contradicts the hypothesis $f_2^* < 0 < f_3^*$.

4. Since $\delta > 1$ and $R > 1$, $\delta R > 1$. So

$$
\delta R - 1 > 0, \ \delta > 0 \ \text{and} \ 1 - R < 0. \tag{19}
$$

Now, concerning (6.9), a necessary condition for finding three points of intersection is that the graph of *φ*(*f*)

dips below the horizontal axis, $\phi(f) = 0$ for some $f > 0.36$ However,

$$
\begin{aligned} \phi(f^*) = 0 &\Longrightarrow \frac{\delta R}{\delta + |f^*|} = \frac{1}{1 + |f^*|} \\ &\Longrightarrow (\delta R - 1) |f^*| = \delta (1 - R), \end{aligned}
$$

which contradicts (19) for $f^* > 0$. Therefore (6.6) has only one equilibrium solution with $f^* > 0$. Furthermore, f^* is a stable node. In fact, $T < 0$ and, since $1 - \delta < 0$ and $\lambda > 0$, $D > 0$ and $T^2 - 4D > 0.37$ ==

 36 See p. 79.

³⁷See p. 80, last paragraph.

Comments, pp. 88–90

• **7.2**, 2nd bullet, 1st paragraph By the existence and uniqueness theorems,³⁸

$$
\varphi(t)=\left(0,0,e^{\beta t}\right), t\in\mathbb{R},
$$

is the unique solution of (7.1) passing through the point $(0, 0, z_0)$.

• 2nd sentence after (7.2) Being a subset of **R***ⁿ* ,

 \mathscr{D} is closed and bounded $\Longleftrightarrow \mathscr{D}$ is compact,

which implies that $\phi_t(\mathscr{D})$ is compact.³⁹ Furthermore, since the intersection of a decreasing family of compact sets is compact, $40 \nless$ is compact by (7.2). 41

• (7.3)

For each $c \in \mathbb{R}$, the level surface of value c for V , that is,

$$
V^{-1}(\{c\}) = \left\{ P \in \mathbb{R}^3 : V(P) = c \right\},\,
$$

is an ellipsoid.

 \bullet (7.4)

Note that

$$
\frac{d}{dt} (V(\phi_t(P)) = \nabla V((\phi_t(P)) \cdot \frac{d}{dt}(\phi_t(P))
$$
\n
$$
= \|\nabla V(\phi_t(P))\| \left\| \frac{d}{dt}(\phi_t(P)) \right\| \cos \theta,
$$

where θ is the smallest angle between the gradient $\nabla V(\phi_t((P))$ and the velocity vector $\frac{d}{dt}(\phi_t(P))$. Therefore, since $\nabla V(\phi_t(P))$ is perpendicular to the level surface of value $V(\phi_t(P))$ at $\phi_t(P)$, that is, the ellipsoid $V^{-1}(\{\phi_t(P)\})$ at $\phi_t(P)$, if $\frac{d}{dt}(V(\phi_t(P)) < 0$, the vector field is directed inward at $\phi_t(P)$.

 \bullet $\mathscr E$ and m

 $\mathscr E$ being open, *m* may not exist. So, concerning the definition of $\mathscr E$, change $<$ to \leq .

• 1st sentence after (7.5) Suppose $\mathscr{E} \not\subset \mathscr{D}$. So, there exists some $P \in \mathscr{E}$ such that $V(P) > m$, which contradicts the definition of *m*.

• **7.3**

– 1st sentence and $'C_{+}'$

Let the right-hand sides of Eq. (7.1) be zero. So, from the first equation, $x = y$. Then, the second equation becomes $x(\rho - 1 - z) = 0$, which implies that $z = \rho - 1$ for $x \neq 0$, and the third equation becomes $-\beta z + x^2 = 0$. Therefore,

$$
x^2 = \beta(\rho - 1).
$$

– 1st sentence after (7.7) $(1+\sigma)^2 > 4(1-\rho)\sigma$ must hold for $0 < \rho < 1 < 1+\beta < \sigma$. **–** (7.8) For example, $A_{21} = 1$ since $\frac{\partial}{\partial x}(\rho x - y - xz)$ at C_+ is equal to $\rho - (\rho - 1)$.

³⁸Cf. pp. 43-4.

³⁹Because *φ^t* is continuous.

⁴⁰By the Cantor Intersection Theorem.

⁴¹See **7.5**, 1.(ii).

– (ii) for (7.9) On the one hand,

$$
\rho<\rho_H \Longrightarrow \rho<\rho_H\sigma
$$

On the other hand

$$
(1 + \beta + \sigma)\beta(\rho + \sigma) > 2\beta(\rho - 1)\sigma \Longleftrightarrow (1 + \beta + \sigma)(\rho + \sigma) > 2(\rho - 1)\sigma
$$

$$
\Longleftrightarrow (1 + \beta + \sigma - 2\sigma)\rho > -(1 + \beta + \sigma + 2)\sigma
$$

$$
\Longleftrightarrow -(\sigma - \beta - 1)\rho > -(\sigma + \beta + 3)\sigma
$$

$$
\Longleftrightarrow \rho < \frac{\sigma + \beta + 3}{\sigma - \beta - 1}\sigma.
$$

== **Exercises**, pp. 92–94

1.

(i) By Definition 7.1, p.88, a trapping set $\mathscr D$ is a closed connected set in $\mathbb R^n$. Besides being closed, let $\mathscr D$ be bounded. So, since $\mathscr D$ is compact and ϕ_t is continuous, $\phi_t(\mathscr D)$ is compact. Now, consider $t_0\in\mathbb R$ and let T be as in **Definition 7.1**. Therefore,

$$
\phi_t(\phi_{t_0}(\mathscr{D})) \subset \phi_{t_0}(\mathscr{D}) \text{ for all } t \geq T.
$$

In fact, consider $z \in \phi_t(\phi_{t_0}(\mathscr{D}))$. Then, there is a point $y \in \phi_{t_0}(\mathscr{D})$ such that $z = \phi_t(y)$. Therefore, since there is a point $x \in \mathscr{D}$ such that $y = \phi_{t_0}(x)$,

$$
z = \phi_t(\phi_{t_0}(x))
$$

= $\phi_{t+t_0}(x)$
= $\phi_{t_0+t}(x)$
= $\phi_{t_0}(\phi_t(x)) \in \phi_{t_0}(\mathcal{D})$

because, by **Definition 7.1**,

$$
x\in\mathscr{D}\Longrightarrow\phi_t(x)\in\mathscr{D}.
$$

Comments, p. 109

• (9.8)

The criterion is to minimize (9.2) with

$$
\varepsilon_i = r_i
$$
 and $f(\mathbf{x}_i; \alpha) = \mathbf{x}_i^T \alpha, i = 1, ..., n$,

that is,

$$
\begin{aligned}\n\sum_{i=1}^{n} \varepsilon_{i}^{2} &= \varepsilon^{T} \varepsilon \\
&= (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\alpha}) \\
&= \mathbf{y}^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{X}\boldsymbol{\alpha} - (\mathbf{X}\boldsymbol{\alpha})^{T} \mathbf{y} + (\mathbf{X}\boldsymbol{\alpha})^{T} \mathbf{X}\boldsymbol{\alpha} \\
&= \mathbf{y}^{T} \mathbf{y} - 2\mathbf{y}^{T} \mathbf{X}\boldsymbol{\alpha} + \boldsymbol{\alpha}^{T} \mathbf{X}^{T} \mathbf{X}\boldsymbol{\alpha}.\n\end{aligned}
$$

Therefore

$$
\nabla_{\boldsymbol{\alpha}}\left(\sum_{i=1}^{n}\varepsilon_{i}^{2}\right)=\mathbf{0}\Longrightarrow\mathbf{0}-2\mathbf{y}^{T}\mathbf{X}+\mathbf{X}^{T}\mathbf{X}\boldsymbol{\alpha}+\boldsymbol{\alpha}^{T}\mathbf{X}^{T}\mathbf{X}=\mathbf{0}
$$

$$
\Longrightarrow-2\mathbf{y}^{T}\mathbf{X}+\mathbf{X}^{T}\mathbf{X}\boldsymbol{\alpha}+(\mathbf{X}\boldsymbol{\alpha})^{T}\mathbf{X}=\mathbf{0}
$$

$$
\Longrightarrow-2\mathbf{X}^{T}\mathbf{y}+2\mathbf{X}^{T}\mathbf{X}\boldsymbol{\alpha}=\mathbf{0}
$$

$$
\Longrightarrow\mathbf{X}^{T}\mathbf{y}=\mathbf{X}^{T}\mathbf{X}\boldsymbol{\alpha}.
$$

• (9.9)

The invertibility of $\mathbf{X}^T\mathbf{X}$ means that \mathbf{X} should have rank $p.^{42}$ This requires in particular that $n\geq p.^{43}$ ==

Comments, p. 110, **9.3** Suppose that $\nabla_{\alpha} Q_2 = 0$. Therefore

$$
\frac{\partial Q_2}{\partial \alpha_1} = 0 \Longrightarrow -2 \sum_{i=1}^n (y_i - \alpha_1 - \alpha_2 x_i) = 0
$$

$$
\Longrightarrow \sum_{i=1}^n y_i = n\alpha_1 + \alpha_2 \sum_{i=1}^n x_i
$$

$$
\Longrightarrow \overline{y} = \alpha_1 + \alpha_2 \overline{x},
$$

which confirms (9.13), and, furthermore,

$$
\frac{\partial Q_2}{\partial \alpha_2} = 0 \Longrightarrow -2 \sum_{i=1}^n x_i (y_i - \alpha_1 - \alpha_2 x_i) = 0
$$

$$
\Longrightarrow \sum_{i=1}^n (x_i y_i - x_i (\overline{y} - \alpha_2 \overline{x}) - \alpha_2 x_i^2) = 0
$$

$$
\Longrightarrow \sum_{i=1}^n (x_i y_i - x_i \overline{y}) - \alpha_2 \sum_{i=1}^n (x_i^2 - x_i \overline{x}) = 0
$$

$$
\Longrightarrow \alpha_2 = \frac{(\sum_{i=1}^n x_i y_i) - n \overline{x} \overline{y}}{(\sum_{i=1}^n x_i^2) - n \overline{x}^2}.
$$

⁴²So, in that case, the nullity of **X** ∈ $\mathbb{R}^{n \times p}$ is zero. Therefore, due to the fact that the kernel of **X**^T**X** is contained in the kernel of **X**, the rank of $\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{p \times p}$ is also p.

 43 That is, the number of parameters is smaller than or equal to the number of observations.

Concerning (9.12), it is worth recalling that the correlation coefficient can be defined as

$$
r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}.
$$

Now, consider the last paragraph. Note that

$$
\hat{y} - \overline{y} = \hat{\alpha}_2 (x - \overline{x})
$$

$$
= r_{xy} \frac{s_y}{s_x} (x - \overline{x})
$$

==

is (9.14) with \hat{y} in place of *y*.