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Exercises, pp. 23–7

1.
hc

λkT
=

(h in Js)
(
c in m

s
)

(λ in m)
(

k in J
K

)
(T in K)

in
Jm
mJ

is dimensionless;

hc2

λ5 =
(h in Js)

(
c2 in m2

s2

)
λ5 in m5 in

Js−1m2

m5 = Wm−3 =⇒ B(λ, T) has the dimension of radiance.

3.

F(T) = π
∫ ∞

0
B(λ, T)dλ

= 2πhc2
∫ ∞

0

1
λ5
(
ehc/λkT − 1

)dλ.

Therefore

x =
hc

λkT
, i.e., λ =

hc
xkT

=⇒ dλ

dx
= − hc

x2kT
and

1
λ5 =

(
kT
hc

)5
x5

=⇒ F(T) = 2πhc2
(

hc
kT

)(
k5T5

h5c5

)(
−
∫ 0

∞

x5

x2 (ex − 1)
dx
)

=⇒ F(T) =
2πk4T4

h3c2

(
1

15
π4
)

=⇒ F(T) =
2π5k4

15h3c2 T4.

8. (Q = S0
4 varies approximately between 341.375 Wm−2 and 341.75 Wm−2.)

(i) Since T∗ = T∗(Q) is increasing,1 T∗ varies approximately between(
(0.7)(341.375)

(0.6)(5.67 · 10−8)

)1/4

≈ 289.5002 K

and (
(0.7)(341.75)

(0.6)(5.67 · 10−8)

)1/4

≈ 289.5797 K,

whose difference is 0.0795 K.
(ii) Since T∗(Q) = ((1− α)Q− A)/B is increasing, T∗ varies approximately between

(0.7)(341.375)− (203.3)
2.09

≈ 17.0634 degrees Celsius

≈ 290.2134 K

and

(0.7)(341.75)− (203.3)
2.09

≈ 17.1890 degrees Celsius

≈ 290.3390 K,

whose difference is 0.1256 degrees Celsius or Kelvin.
(iii) The heat capacity of the Earth’s climate system quantifies the amount of incoming solar energy (heat) re-
quired to increase T(t) by 1 degree Celsius and its actual value (assumed to be constant over the entire globe)

1Cf. (2.9).
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depends on the medium under consideration.2 For example, land heats up faster than water, which has to ab-
sorb a great deal of energy before its temperature rises.3 For this reason, the ocean takes a long time to change
temperature significantly, whereas land can heat up very quickly.

10.
(i) Based on α(T) of section 2.5, let us consider

f (x) = a +
b
2
· tanh(x) (1)

as a function that connects the value a− 1
2 b smoothly with the value a + 1

2 b.
(ii) In (1), for ε > 0 sufficiently small, replace b and x by b− ε and εx respectively.
(iii) tanh(x) is a rescaled g(x). In fact, since

tanh(x) =
ex − e−x

ex + e−x

=
ex − 1

ex

ex + 1
ex

=
e2x − 1
e2x + 1

(2)

and

g(x) =
1

1 + e−x

=
1

1 + 1
ex

=
ex

ex + 1
, (3)

tanh(x) = 2g(2x)− 1.

Furthermore, tanh(R) = (−1, 1) and g(R) = (0, 1),4 there is a diffeomorphism between (−1, 1) to (0, 1), as
illustrated below,

−1 0 1

1 y = 0.5x + 0.5

tanh(x) is a diffeomorphism between the open intervals (−∞, ∞) and (−1, 1), g(x) is a diffeomorphism be-
tween the open intervals (−∞, ∞) and (0, 1), the inflection points of tanh(x) and g(x) occur at the points
(0, 0) and (0, 0.5), respectively, and the graphs of tanh(x) and g(x) are symmetric with respect to the inflection
points,5 as illustrated in the following figure.

2See p. 15.
3Heat capacity can also be defined as resistance to temperature change.
4Note that, by (2) and (3),

lim
x→−∞

tanh(x) =
0− 1
0 + 1

= −1;

lim
x→∞

tanh(x) = lim
x→∞

2e2x

2e2x (L’Hôpital’s Rule)

= 1;

lim
x→−∞

g(x) =
0

0 + 1
= 0;

lim
x→∞

g(x) = lim
x→∞

ex

ex (L’Hôpital’s Rule)

= 1.

5In fact, tanh(x) is an odd function!
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tanh(x)

g(x)

12. If x = T − T∗ and x → 0, that is, T → T∗, then

Cẋ = CṪ

= (1− α(x + T∗))Q− εσ(x + T∗)4

=
(

1− α(T∗)− α′(T∗)x−O
(

x2
))

Q− εσ
(

x4 + 4x3T∗ + 6x2(T∗)2 + 4x(T∗)3 + (T∗)4
)

≈ (1− α(T∗))Q− εσ(T∗)4 −
(

α′(T∗)Q + 4εσ(T∗)3
)

x

where (1− α(T∗))Q− εσ(T∗)4 = 0.
Without loss of generality, the general solution of ẋ = (−D/C)x is x = e(−D/C)t, which converges to 0 as
t→ ∞ if D > 0.6

6C > 0 is defined on page 15!
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================================================================================
================================================================================
3
================================================================================
================================================================================
Comment, p. 36, 1st sentence after (3.7)
The general solution of

dT0

dt
= −cT0

is given by
T0 = e−ct.

Therefore, since a particular solution of the first equation of (3.7) is given by

T0 = T∗0 , (4)

its general solution is given by
T0 = e−ct + T∗0 .

================================================================================
Comment, p. 37, (3.13)
By multiplying both sides of (3.12) by β

α∆T , rewriting the expression within the absolute value bars of (3.12) as
the product of α∆T and another expression, and using

t =
t′

2αk|∆T| ,

we get

d
dt

(
β∆S
α∆T

)
=

2βH
α∆T

− 2k
∣∣∣∣α∆T

(
1− β∆S

α∆T

)∣∣∣∣ β∆S
α∆T

=⇒ 2αk|∆T| dx
dt′

=
2βH
α∆T

− 2αk|∆T| |1− x|x.

================================================================================
Comment, p. 38, (3.15)
For x < 1, (3.13) becomes

ẋ = λ− (1− x)x

= λ− x + x2.

So

ẏ =
d
dt

(x− x∗)

= ẋ

= λ− (x∗ + y) + (x∗ + y)2

= λ− x∗ − y + (x∗)2 + 2x∗y + y2

= λ− (1− x∗) x∗ + (2x∗ − 1) y + y2.

Now let y be small enough and note that x∗ < 1 satisfies (3.14).7

================================================================================
Comment, p. 38, ultimate paragraph of 3.5.2
Since ∆T = 2T∗ by the first sentence of section 3.5,

x =
β∆S
α∆T

=
β∆S
2αT∗

7A similar reasoning can be applied with respect to x > 1. In any case,

y = e±(2x∗−1)t, x∗ ≶ 1,

is the solution of (3.15) and rest of the paragraph (related to (3.15)) is analyzed by considering x = x∗ + y as t→ ∞.
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and (3.5) can be rewritten as

q = k(α∆T − β∆S)

= kα∆T
(

1− β∆S
α∆T

)
= 2kαT∗(1− x).

On the other hand, by (3.9), 2T∗ = T∗2 − T∗1 is positive since the average temperature near the equator is higher
than the average temperature near the poles. Therefore q(1− x) > 0.
================================================================================
Exercises, pp. 39–40
3–4.

d
dt
(∆T) = Ṫ2 − Ṫ1

= c (T∗ − T2)− |q|∆T − c (−T∗ − T1)− |q|∆T
= c (2T∗ − ∆T)− 2|q|∆T
= −(c + 2|q|)∆T + 2cT∗,

d
dt
(∆S) = Ṡ2 − Ṡ1

= H + d (S∗ − S2)− |q|∆S + H − d (−S∗ − S1)− |q|∆S
= 2H + d (2S∗ − ∆S)− 2|q|∆S
= −(d + 2|q|)∆S + 2 (H + dS∗) .

Now suppose that H, T∗ and S∗ become zero.8 So the flow q ceases to exist and the equations above become

d
dt
(∆T) = −c∆T,

d
dt
(∆S) = −d∆S.

Therefore, for each t ∈ R,

∆T = c1e−ct,

∆S = c2e−dt,

where ci is constant, i = 1, 2.

8The authors (Kaper and Engler) provided an errata where, concerning this exercise, it is also assumed that both T∗ and S∗ vanish!

6



================================================================================
================================================================================
4
================================================================================
================================================================================
Comment, 2nd paragraph of section 4.1, pp. 41–42

(ẋ1, ẋ2, . . . , ẋn−1, ẋn) =
(

x(1), x(2), . . . , x(n−1), x(n)
)

= (x2, x3, . . . , xn, g(x1, . . . , xn)) .

================================================================================
Comment, p. 43, (ii) and (iii)
Concerning the solutions,

dx
dt

= x2 =⇒
∫

x−2dx =
∫

dt

=⇒ − 1
x
= t + constant with constant = − 1

x0
− t0 if x (t0) = x0

=⇒ x = − 1

t− 1+x0t0
x0

.

and

dx
dt

=
√

x =⇒
∫

x−1/2dx =
∫

dt

=⇒ 2
√

x = t + constant with constant = 2
√

x0 − t0 if x (t0) = x0

=⇒ 4x = (t− t0 + 2
√

x0)
2 .

================================================================================
Comments, pp. 44–5

• 3rd paragraph, 1st sentence

f is Lipschitz =⇒ f is continuous

=⇒ there exists a solution for the IVP
{

ẋ = f (x),
x(t0) = x0

(by Theo. 4.1).

Concerning the first implication above, for any xi ∈ D, i = 1, 2, and ε > 0, consider δ < ε
k . Therefore

||x1 − x2|| < δ =⇒ || f (x1)− f (x2)|| ≤ k ||x1 − x2||
< kδ

< ε.

• Theo. 4.3 can be rewritten as

Let f be Ck on D.9 Fix t ∈ I(x0).10 So there is a neighborhood U of x0 such that x
φt7→ φt(x) := ϕ(t, x) is Ck on

U.

U could represent a very small open ball centered at x0, consisting of initial conditions arbitrarily close
to x0. φt(U) represents the result of allowing U to evolve through t units of time (forward for t > 0 or
backward for t < 0). The transition from U to φt(U) is as smooth as f .

9In particular, f is Lipschitz on D if k ≥ 1.
10By Lemma 4.1, I(x0) represents the domain of the solution ϕ(t, x0) = ϕ(t; 0, x0) for the IVP{

ẋ = f (x),
x(0) = x0.
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U

x0
x

φt(U)

ϕ(t, x0)
ϕ(t, x)

D

• 2nd paragraph of section 4.2
Let f be Ck on D, k = 1, 2, . . .. A dynamical system associated with ẋ = f (x) is the set consisting of the
maps φt, obtained as described above, for each initial condition x0 ∈ D and each t ∈ I(x0).

================================================================================
Comment, p. 46, Def. 4.4

ω(x) = {y ∈ D : φtn(x) = ϕ(tn, x)→ y for some sequence tn → ∞} and
α(x) = {y ∈ D : φtn(x) = ϕ(tn, x)→ y for some sequence tn → −∞} .

================================================================================
Comment, p. 49, (4.10)
The figure

x∗1 x∗2
ṙ < 0

ṙ = 0

ṙ > 0

illustrates an initial condition x0 which is either in the interior (r < 1), boundary (r = 1) or exterior (r > 1)
of the open ball centered at x∗1 . For r ≥ 0, since θ̇ ≥ 0, θ is a increasing function. So, for the r < 1 case, since
ṙ > 0, r is strictly increasing, which implies that solutions ϕ(t, x0) that start near x∗1 will spiral away from the
origin.11 For the r = 1 case, since ṙ = 0, solutions ϕ(t, x0) move along the boundary r = 1 and will converge to
x∗2 as time goes by. For the r > 1 case, since ṙ < 0, r is strictly decreasing, which implies that solutions ϕ(t, x0)
will eventually converge to x∗2 .
================================================================================
Comments, p. 51

• (4.13)
The fact that the only critical point is the origin is a direct consequence of assuming the existence of A−1:

Ax = 0 =⇒ A−1 Ax = A−10
=⇒ x = 0.

11x∗1 is called an unstable spiral point.
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• Last paragraph
Rn2

is isomorphic to the space Rn×n of matrices of order n.12 For example, consider the isomorphism

Rn×n 3


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 7→ (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann) ∈ Rn2
.

Since all norms in Rn2
are equivalent, we might also consider

lim
N→∞

N

∑
k=0

Mk

k!
= eM

with respect to the Euclidean norm.

================================================================================
Comments, p. 52

• (4.15)
Differentiate (4.14) with respect to t term by term!

• 1st paragraph after Theo. 4.4
Let J and P be real matrices with P invertible and A = PJP−1. So Ak = PJkP−1 for k = 0, 1, 2, . . ..
Therefore

etA = P

(
∞

∑
k=0

tk

k!
Jk

)
P−1

= PetJ P−1

by (4.14). For example, if J is the diagonal matrix with diagonal entries λ1, . . . , λn, then etJ is the diagonal
matrix with diagonal entries eλ1t, . . . , eλnt.

• 2nd paragraph after Theo. 4.4
Es and Eu are invariants under etA. In fact, for simplicity, let A be diagonalizable and consider an initial
condition x0 ∈ Es. So

x0 =
r

∑
j=1

αjvij (5)

is a linear combination of eigenvectors vi1 , . . . , vir associated with eingenvalues λi1 , . . . , λir of A which
are in the left half of the complex plane, i.e.,

Avij = λij vij (6)

where the real part of λij is negative for j = 1, . . . , r. Therefore

etAx0 =
∞

∑
k=0

tk

k!
Akx0

=
r

∑
j=1

αj

∞

∑
k=0

tkλk
ij

k!
vij

=
r

∑
j=1

αje
λij t vij ∈ Es

by (5) and (6).

================================================================================
Comment/Erratum, p. 53, (i)

12L(Rn) often denotes the space of linear operators on Rn, which is also isomorphic to Rn×n.
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• 1st paragraph
Consider etJy0 with nonzero y0 = (y0,1, y0,2). Without loss of generality, suppose y0,2 6= 0. Therefore

|y1||λ2| =
∣∣∣y0,1eλ1t

∣∣∣|λ2|

=
∣∣∣y0,1e−|λ1|t

∣∣∣|λ2|

= |y0,1||λ2|
∣∣∣e−|λ2|t

∣∣∣|λ1|

=
|y0,1||λ2|

|y0,2||λ1|

∣∣∣y0,2eλ2t
∣∣∣|λ1|

= C |y2||λ1| .

• Antepenultimate sentence
‘0 < λ2 < λ2’ should be ‘0 < λ1 < λ2’.

================================================================================
Comments/Erratum, p. 54

• Sentence that precedes (i)

– Consider J = αI + βB with

I =
(

1 0
0 1

)
and B =

(
0 1
−1 0

)
.

Note that the sequence with k-th term Bk begins with the terms

B0 = I, B1 = B, B2 = −I, B3 = −B, B4 = I, B5 = B, B6 = −I, B7 = −B, . . .

and continues to repeat indefinitely. Therefore

etJ = et(αI+βB)

= eαtIeβtB

=

(
∞

∑
k=0

(αt)k

k!
Ik

)(
∞

∑
k=0

(βt)k

k!
Bk

)

= eαt I
(

I + βtB +
(βt)2

2!
B2 +

(βt)3

3!
B3 +

(βt)4

4!
B4 +

(βt)5

5!
B5 + · · ·

)
= eαt

(
I + βtB− (βt)2

2!
I − (βt)3

3!
B +

(βt)4

4!
I +

(βt)5

5!
B− · · ·

)
= eαt

((
1− (βt)2

2!
+

(βt)4

4!
− · · ·

)
I +

(
βt− (βt)3

3!
+

(βt)5

5!
− · · ·

)
B
)

= eαt((cos βt)I + (sin βt)B
)
.

– The diagonal entry at the bottom right corner, − cos βt, should be cos βt.

• (ii)
The orbits are circles. In fact, for a nonzero initial condition

y0 =

(
y0,1
y0,2

)
,

(
y1(t)
y2(t)

)
= etJy0

=

(
y0,1 cos βt + y0,2 sin βt
−y0,1 sin βt + y0,2 cos βt

)

10



with

y2
1 + y2

2 = (y0,1)
2
(

cos2 βt + sin2 βt
)
+ (y0,2)

2
(

sin2 βt + cos2 βt
)

=

(√
(y0,1)

2 + (y0,2)
2
)2

.

================================================================================
Comments, 4.6.3, pp. 55–6

• (i) means that A is non-diagonalizable, that is, R2 does not have a basis consisting of eigenvectors of A.
So the λ-eigenspace of A, which is either Es or Eu, has dimension 1. On the other hand, since J0 = I and

Jk =

(
λk 0

kλk−1 λk

)
for k = 1, 2, 3, . . . ,

etJ =
∞

∑
k=0

tk

k!
Jk

= I +
∞

∑
k=1

 (tλ)k

k! 0
t(tλ)k−1

(k−1)!
(tλ)k

k!


=

(
eλt 0
teλt eλt

)
and, if y0 is an initial condition,

lim
t→±∞

etJy0 = (0, 0)

if λ ≶ 0.

• (ii) means that A is diagonalizable, that is, R2 has a basis consisting of eigenvectors of A. So either
Es = R2 or Eu = R2. Furthermore, for each initial condition x0 ∈ R2, since J = λI and

A = F−1 JF

= F−1(λI)F

= λF−1 IF

= λF−1F
= λI,

etAx0 = etJ x0

= eλtI x0

= eλt Ix0

= eλtx0

is a scalar multiple of x0 for every t ∈ R.

================================================================================
Exercises, pp. 58–62
1. Firstly,

X1 = x and X2 = ẋ =⇒
[

Ẋ1
Ẋ2

]
=

[
X2
X1

]
=⇒ Ẋ = AX with X =

[
X1
X2

]
and A =

[
0 1
1 0

]
.

11



So, by subsection 4.6.1, λ1 = −1 and λ2 = 1,

J =
[
−1 0
0 1

]
,

etJ =

[
e−t 0
0 et

]
and the orbits are similar to the ones of Figure 4.8 with a saddle point at the origin as the only fixed point.
Furthermore, concerning the trajectory {(

t, etAX0

)
: t ∈ I(X0)

}
of an initial condition X0,13 it is worth noting that, since A2k = I (2× 2 identity matrix) and A2k+1 = A for
k = 0, 1, 2, . . .,

etA =
∞

∑
k=0

tk

k!
Ak

=
∞

∑
k=0

t2k

(2k)!
I +

∞

∑
k=0

t2k+1

(2k + 1)!
A

= (cosh t)I + (sinh t)A

=

[
cosh t sinh t
sinh t cosh t

]
.

As an illustration, let us consider the solution with X0 =

[
1
2

]
:

X1(t) = cosh t + 2 sinh t

=
1
2
(
3et − e−t) ,

X2(t) = sinh t + 2 cosh t

=
1
2
(
3et + e−t) .

X1(t)

− ln 3
2

1

X2(t)2

3. Consider (4.5), p. 42. Therefore:

• x2 = 0 and sin x1 = 0 give us the fixed points

(x∗1 , x∗2) = (kπ, 0) for k ∈ Z;

In Figure 4.3, p. 46,A = (0, 0) andB = (±π, 0).

•
(

ẋ1
ẋ2

)
=

(
0 1
−1 0

)(
x1
x2

)
is the linearization of{

ẋ1 = x2,
ẋ2 = −x1 +O

(
x2

1
)

.

Furthermore, by subsection 4.6.2, λ1 = i and λ2 = −i, A = J,

etJ =

(
cos t sin t
− sin t cos t

)
and the orbits are similar to the ones of Figure 4.10, p. 55, with a center at the origin as the only fixed
point.

13Cf. Def. 4.2, p. 45.
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So the phase portrait around x∗ ∈ {A,B} and the phase portrait of Figure 4.10 (left) are locally similar.

5.
(i) On the one hand, a first integral is any function that is constant along the solutions of an ODE. So, if F(x, y)
is constant on a solution curve, dF

dt = ẋFx + ẏFy equals zero by the chain rule. Then

ẏ
ẋ
= − Fx

Fy
(7)

provided that ẋFy 6= 0. On the other hand, by considering y = ẋ, the equations of the exercise can be written
as (ẋ, ẏ)= f (x, y) with ẋ = y and

ẏ = −x− x2, ẏ = −x + x2,
ẏ = −x− x3, ẏ = −x + x3,

respectively. So, firstly, consider {
ẋ = y,
ẏ = −x− x2. (8)

Therefore, by (7) and due to fact that

dy
dx

=
ẏ
ẋ
=⇒ dy

dx
= − x + x2

y

=⇒
∫

y dy = −
∫ (

x + x2
)

dx

=⇒ y2

2
+

x2

2
+

x3

3
= constant,

F(x, y) = y2

2 + x2

2 + x3

3 is the first integral of (8).14 (The next figure depicts level curves F(x, y) = c, c ∈
{−1, 0, 1, 2}.)

−2.1494 −1.5 1.0786 1.4308

The mirror image of those curves in respect to the y-axis are level curves of the first integral of the system{
ẋ = y,
ẏ = −x + x2. (9)

Now, consider {
ẋ = y,
ẏ = −x− x3. (10)

14In fact, Fx = x + x2 and Fy = y confirm (7).
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Therefore, by (7) and due to fact that

dy
dx

=
ẏ
ẋ
=⇒ dy

dx
= − x + x3

y

=⇒
∫

y dy = −
∫ (

x + x3
)

dx

=⇒ y2

2
+

x2

2
+

x4

4
= constant,

F(x, y) = y2

2 + x2

2 + x4

4 is the first integral of (10).15 (The next figure depicts level curves F(x, y) = c, c ∈
{0.5, 1, 2}.)

x-intercepts:∓
(√

2, 0
)

,∓
(√√

5− 1, 0
)

,∓
(√√

3− 1, 0
)
.

Finally, consider {
ẋ = y,
ẏ = −x + x3. (11)

Therefore, by (7) and due to fact that

dy
dx

=
ẏ
ẋ
=⇒ dy

dx
= − x− x3

y

=⇒
∫

y dy = −
∫ (

x− x3
)

dx

=⇒ y2

2
+

x2

2
− x4

4
= constant,

F(x, y) = y2

2 + x2

2 −
x4

4 is the first integral of (11).16 (The next figure depicts some level curves of the first
integral.)

−
√

2

√
2

−1

1

−1/
√

2

1/
√

2

(ii) By considering f (x, y) = (0, 0), the critical points of (8), (9), (10) and (11) are obtained, respectively, via:

• −x(1 + x) = 0 and y = 0 =⇒ (x∗, y∗) ∈ {(0, 0), (−1, 0)};

• −x(1− x) = 0 and y = 0 =⇒ (x∗, y∗) ∈ {(0, 0), (1, 0)};
15In fact, Fx = x + x3 and Fy = y confirm (7).
16In fact, Fx = x− x3 and Fy = y confirm (7).
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• −x
(
1 + x2) = 0 and y = 0 =⇒ (x∗, y∗) = (0, 0);

• −x
(
1− x2) = 0 and y = 0 =⇒ (x∗, y∗) ∈ {(0, 0), (∓1, 0)}.

(iii) By definition, P ∈ Rn is a critical point of a real valued function F of several variables if ∇F(P) = 0. So,
since the critical points of the first integral F(x, y) are obtained via

(
Fx, Fy

)
= (0, 0), we have to solve(

x + x2, y
)
= (0, 0),

(
x− x2, y

)
= (0, 0),(

x + x3, y
)
= (0, 0),

(
x− x3, y

)
= (0, 0).

By (ii), P = (x∗, y∗) in each case.
(iv) Concerning (8), (9), (10) and (11), D f (x∗, y∗) equals(

0 1
−1− 2x∗ 0

)
,

(
0 1

−1 + 2x∗ 0

)
,(

0 1
−1− 3(x∗)2 0

)
and

(
0 1

−1 + 3(x∗)2 0

)
,

(12)

respectively. So, first, if x∗ = 0, then ±i are the eigenvalues of each matrix of (12) and the origin is a center.
Now, if x∗ = −1 (respectively, x∗ = 1), then ±1 are the eigenvalues of the first (respectively, second) matrix
of (12), implying that (x∗, y∗) is a saddle point. Finally, if x∗ = ∓1, then ±

√
2 are de eigenvalues of the fourth

matrix of (12), implying that (x∗, y∗) is a saddle point.
(v) Let us consider a tabular presentation of the 2nd derivative test for real-valued functions F(x, y) with Fxx,
Fxy, Fyx and Fyy continuous around a critical point X∗ = (x∗, y∗) of F:

Fxx(X∗) Fyy(X∗)−
(

Fxy(X∗)
)2 Fxx(X∗) X∗

positive positive local minimum
positive negative local maximum
negative positive/negative saddle

zero whatever no information

Therefore:

• For the 1st integral of (8), X∗ ∈ {(0, 0), (−1, 0)}, Fxx = 1 + 2x, Fxy = 0, Fyy = 1 and FxxFyy −
(

Fxy
)2

= 2x.
Then X∗ = (−1, 0) is a saddle point, confirming the nomenclature of (iv), but there is no information
about the origin.

• For the 1st integral of (9), X∗ ∈ {(0, 0), (1, 0)}, Fxx = 1− 2x, Fxy = 0, Fyy = 1 and FxxFyy −
(

Fxy
)2

= −2x.
Then X∗ = (1, 0) is a saddle point, confirming the nomenclature of (iv), but there is no information about
the origin.

• For the 1st integral of (10), X∗ = (0, 0), Fxx = 1 + 3x2, Fxy = 0, Fyy = 1 and FxxFyy −
(

Fxy
)2

= 3x2. Then
there is no information about the origin.

• For the 1st integral of (11), X∗ ∈ {(0, 0), (∓1, 0)}, Fxx = 1− 3x2, Fxy = 0, Fyy = 1 and FxxFyy −
(

Fxy
)2

=

−3x2. Then X∗ = (∓1, 0) are saddle points, confirming the nomenclature of (iv), but there is no informa-
tion about the origin.

18.
(i) The method of variation of parameters for a non-homogeneous 1st order linear equation

ẋ + p(t)x = f (t)

gives us the general solution
x(t) = AeP(t) + v(t)eP(t)

of the equation where A is a constant, P(t) is an antiderivative of −p(t) and v(t) is an antiderivative of
f (t)e−P(t). So, since p(t) = 1 and f (t) = cos t here, P(t) = −t and

v(t) =
∫

cos t etdt

=
sin t + cos t

2
et.

15



Therefore
x(t) = Ae−t +

sin t + cos t
2

and, for x(0) = x0,

x(t) =
(

x0 −
1
2

)
e−t +

sin t + cos t
2

. (13)

(ii) Take x0 = 1
2 in (13). Otherwise, (13) is not periodic.

(iii) For arbitrarily large t, the first summand of (13) becomes arbitrarily small and the second one becomes
bounded.

19.
(i) x + 2βẋ + ẍ equals

a cos ωt + b sin ωt + e−βt(c1 cos λt + c2 sin λt)

+

2β
(

ω(−a sin ωt + b cos ωt) + e−βt((−β)(c1 cos λt + c2 sin λt) + λ (−c1 sin λt + c2 cos λt))
)

+(
−ω2

)
(a cos ωt + b sin ωt)

+

e−βt
((

β2 − λ2
)
(c1 cos λt + c2 sin λt) + (−2βλ)(−c1 sin λt + c2 cos λt)

)
,

which equals
a
(

cos ωt− 2βω sin ωt−ω2cos ωt
)

+

b
(

sin ωt + 2βω cos ωt−ω2sin ωt
)

+

e−βt
((

1− 2β2 + β2 − λ2
)
(c1 cos λt + c2 sin λt) + (2β− 2β)λ(−c1 sin λt + c2 cos λt)

)
,

which equals
γ cos ωt

for λ, a and b given in the exercise.
(ii) Let x0(t) be the solution of (4.19) for c1 = c2 = 0. In this case, x0(t) is periodic and the nonperiodic solution
x(t) approaches x0(t) as t −→ ∞.
================================================================================

16



================================================================================
================================================================================
5
================================================================================
================================================================================
Comments, pp. 64–8
Firstly, consider

dϕ

dt
= f (λ, ϕ(t)). (14)

• 5.2.1
f (λ, x) = x(λ − x). So f (λ, x) = 0 implies that x∗ ∈ {0, λ} for each λ ∈ R. Now, consider λ < 0.
Therefore, by Fig. 5.1 (left) and (14),

ϕ(t) < λ =⇒ f (λ, ϕ(t)) < 0

=⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing,

ϕ(t) ∈ (λ, 0) =⇒ f (λ, ϕ(t)) > 0

=⇒ dϕ

dt
> 0

=⇒ ϕ(t) is increasing

and

ϕ(t) > 0 =⇒ f (λ, ϕ(t)) < 0

=⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing.

Analogously, for λ > 0,

ϕ(t) < 0 =⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing,

ϕ(t) ∈ (0, λ) =⇒ dϕ

dt
> 0

=⇒ ϕ(t) is increasing

and

ϕ(t) > λ =⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing,

and, for λ = 0,

ϕ(t) < 0 =⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing.

• 5.2.2–4
Use the same reason as above and consider the following points:

– Concerning (5.4), if

f (λ, x) = λ− x2

= 0,

then

17



∗ λ < 0 =⇒ @ x∗,
∗ λ = 0 =⇒ x∗ = 0,
∗ λ > 0 =⇒ x∗ = ±

√
λ;

– Concerning (5.6), if

f (λ, x) = x
(

µ− x2
)

= 0,

then

∗ µ ≤ 0 =⇒ x∗ = 0,
∗ µ > 0 =⇒ x∗∈

{
0,±√µ

}
;

– Concerning (5.7), if

f (λ, x) = x
(

µ + x2
)

= 0,

then

∗ µ < 0 =⇒ x∗∈{0,±√−µ},
∗ µ ≥ 0 =⇒ x∗ = 0;

– Concerning (5.5), λ∗ can be checked by solving

λ = x3 − x for x = ± 1√
3

from the system of page 67. So

λ =
1

3
√

3
− 1√

3

=
1− 3
3
√

3

= − 2√
27

= −
√

4
27

or

λ = − 1
3
√

3
+

1√
3

= −
(

1
3
√

3
− 1√

3

)
=

√
4

27
.

================================================================================
Errata/Comments, p. 71, 5.2.6

• The authors (Kapler and Engler) provided an errata correcting the first equation of (5.9):

λx1 should be λ.17

17The manner the equation is presented in the book give us x∗ = (2λ, λ). In fact, consider{
λx1 − x2

1 + x1x2 = 0,
x2

1 − 2x1x2 = 0.

Then, if you add the two equations,
λx1 − x1x2 = 0.

18



With that correction, consider {
λ − x2

1 + x1x2 = 0,
x2

1 − 2x1x2 = 0.
(15)

Then, if you add the two equations of (15),

λ− x1x2 = 0.

Now, substitute x1x2 = λ into the first equation of (15) to obtain

x2
1 − 2λ = 0.

Therefore
x1 = ±

√
2λ

for λ > 0 and, since x1x2 = λ,

x2 = ± λ√
2λ

= ±
√

2λ

2
.

• As discussed in the preceding subsections, where f (λ, x) was scalar, solution branches were expected to
meet at points (λ, x∗) where {

f (λ, x∗) = 0,
∂ f
∂x (λ, x∗) = 0.

Such points were candidates for bifurcation points. Here, the candidates for bifurcation points of planar
vector fields are obtained by solving {

f (λ, x∗) = 0,
det(D f (λ, x∗)) = 0.

• Consider T and D as in section 4.6. Then the discriminant

T2 − 4D =

(
49
2
− 16

)
λ

is positive. Therefore, since D > 0, the eigenvalues of D f (λ, x∗±) are real with the same sign and the
critical points x∗± are nodes: T ≶ 0 imply that the branch of x∗+-solutions consists of stable nodes but,
contrary to what is affirmed in the book, the branch of x∗−-solutions consists of unstable nodes.

================================================================================
Comments, p. 72

• 1st paragraph
The positivity of the amplitude is used for discarding the minus sign in

λ− r2 = 0 =⇒ r = ±
√

λ.

Now, substitute x1x2 = λx1 into the first equation of the system. So

λx1 − x2
1 + λx1 = 0,

which implies that

x2
1 − 2λx1 = 0 =⇒ (x1 − 2λ) x1 = 0

=⇒ x1 = 2λ or x1 = 0.

By substituting x1 = 2λ into the second equation of the system, it follows that

4λ2 − 4λx2 = 0 =⇒ λ (λ− x2) = 0

=⇒ λ = 0 or x2 = λ.

Furthermore, we must add λ to the 1, 1 entry of D f (λ, x), which implies that det(D f (λ, x)) = −2λx1 + 2x2
1.

19



• 2nd paragraph
If I represents the 2× 2 identity matrix, consider

p(`) = det(A(λ)− `I)

= `2 − 2λ`+ λ2 + 1.

So, due to the fact that the discriminant of p(`) = 0 is equal to −4, A(λ) has a pair of complex conjugate
eigenvalues:

` =
2λ± 2i

2
= λ± i.

• (5.12)

ṙ =
d
dt

((
x2

1 + x2
2

)1/2
)

=
1
2

(
x2

1 + x2
2

)−1/2
(2x1 ẋ1 + 2x2 ẋ2)

=

(
x2

1 + x2
2
) (

λ− x2
1 − x2

2
)(

x2
1 + x2

2
)1/2

=
r2 (λ− r2)

r
,

θ̇ =
d
dt
(arctan(x2/x1))

=
1

1 + (x2/x1)
2 ·

ẋ2x1 − x2 ẋ1

x2
1

=
x2

1
x2

1 + x2
2
·
−x2

1 − x2
2

x2
1

= −
x2

1 + x2
2

x2
1 + x2

2
.

• 1st sentence after (5.14)
See the solid line in the first quadrant in Figure 5.4 (right), p. 68.

================================================================================
Exercises, pp. 75–6

1. Consider f (λ, x) = λ + x2. So f (λ, x) = 0 implies that x∗∈
{

0,±
√
−λ
}

exists only for λ ≤ 0:

λ + x2 = 0 =⇒ x2 = −λ

=⇒ x = ±
√
−λ.

So the phase portraits for λ ∈ {−1, 0}

x

f (λ, x)

+
+ +

−

20



and equation (14), p. 17 of this text, tell us that

ϕ(t) < −
√
−λ =⇒ f (λ, ϕ(t)) > 0

=⇒ dϕ

dt
> 0

=⇒ ϕ(t) is increasing

and

ϕ(t) > −
√
−λ =⇒ f (λ, ϕ(t)) < 0

=⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing

(meaning x∗ = −
√
−λ is stable), whereas

ϕ(t) <
√
−λ =⇒ f (λ, ϕ(t)) < 0

=⇒ dϕ

dt
< 0

=⇒ ϕ(t) is decreasing

and

ϕ(t) >
√
−λ =⇒ f (λ, ϕ(t)) > 0

=⇒ dϕ

dt
> 0

=⇒ ϕ(t) is increasing

(meaning x∗ =
√
−λ is unstable). Furthermore, x∗ = 0 is clearly unstable. The previous reasoning along with

fx(λ, x) = 2x = 0 (meaning x∗ = 0 is the candidate for bifurcation point) imply that there are two fixed points
for λ < 0: x∗− = −

√
−λ (stable) and x∗+ =

√
−λ (unstable). They merge with each other at λ = 0 and, from

this unstable point on, there are no fixed points as depicted in the following bifurcation diagram:

λ

x∗

0

2. If

f (λ, x) = sin x− λ

= 0,

then x∗ = arcsin λ exists only for
λ = sin x ∈ [−1, 1].

Therefore, there are no fixed points for λ ∈ [−2,−1)∪ (1, 2]. Furthermore, the phase portraits can be analyzed
by vertically translating the graph of f (0, x) = sin x (i.e., moving it up or down) in order to obtain the graph
of f (λ, x) = sin x− λ (as a function of x), where (λ, x) ∈ [−1, 1]× [−4π, 4π]. Now, recall that f (λ, x) changes
sign at x = x∗ and:

• x∗ is stable where f (λ, x) changes sign from positive to negative;18

• x∗ is unstable where f (λ, x) changes sign from negative to positive.19

18This takes place in an interval where f (λ, x) is decreasing.
19This takes place in an iterval where f (λ, x) is increasing.
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Concerning the bifurcation points, consider fx(λ, x) = cos x = 0. So, due to the fact that x ∈ [−4π, 4π],

x∗ ∈
{
±π

2
,±3π

2
,±5π

2
,±7π

2

}
,

which implies that λ = ±1 are the candidates for bifurcation points. This fact and the previous reasonig allow
us to depict bifurcation diagrams as follows:

λ

x∗ + π

−1 −0.5 0 0.5 1

−1

0

1

λ

x∗

−1 −0.5 0 0.5 1

−1

0

1

λ

x∗ − π

−1 −0.5 0 0.5 1

−1

0

1

where the vertical axis of the second diagram represents x∗ ∈
[
−π

2 , π
2
]
, the vertical axis of the first diagram

represents x∗ + π ∈
[

π
2 , 3π

2
]
, and the vertical axis of the third diagram represents x∗ − π ∈

[
− 3π

2 ,−π
2
]
. Fur-

thermore, compared to the aforementioned diagrams, the bifurcation diagrams for:

• x∗ ∈
[ 3π

2 , 5π
2
]

and x∗ ∈
[
− 5π

2 ,− 3π
2
]

are identical to the second one;

• x∗ ∈
[ 5π

2 , 7π
2
]

and x∗ ∈
[
− 7π

2 ,− 5π
2
]

are identical to the first/third one;

• x∗ ∈
[ 7π

2 , 4π
]

(respectively, x∗ ∈
[
−4π,− 7π

2
]
) is identical to the first (respectively, second) half of the

second diagram.

3. Since f (λ, x) = x
(
λ + x2 − x4),

x∗ ∈

0,±

√
1±
√

1 + 4λ

2


where x∗ = 0 exists for −1 < λ < 1, whereas the other fixed points exist for − 1

4 ≤ λ < 1,20 provided that
−2 < x∗ < 2.21 Then:

• −1 < λ < − 1
4 =⇒ there is only one fixed point: x∗ = 0;

• λ = − 1
4 =⇒ there are three fixed points: x∗ ∈

{
0,±

√
1
2

}
;

• − 1
4 < λ < 0 =⇒ there are five fixed points for each such λ;

• λ = 0 =⇒ there are three fixed points: x∗ ∈ {0,±1};

• 0 < λ < 1 =⇒ there are three fixed points for each such λ: x∗ ∈
{

0,±
√

1+
√

1+4λ
2

}
.

(So the number of fixed points changes three times as λ varies between−1 and 1.) Now, in order to analyze the
stability of such fixed points via sign diagrams, consider the phase portraits for λ ∈ {−0.5,−0.25,−0.2, 0.5}:

20In fact, consider the biquadratic equation x4 − x2 − λ = 0 and the change of variable x2 = t. So

t2 − t− λ = 0 =⇒ t =
1±
√

1 + 4λ

2

with 1 + 4λ ≥ 0 and −1 < λ < 1.
21As a matter of fact, x∗ ∈ (−2, 2) for

− 1
4
≤ λ < 1⇐⇒ 0 ≤ 1 + 4λ < 5

⇐⇒ 0 ≤
√

1 + 4λ <
√

5.
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x

f (−0.5, x)

x

f (−0.25, x)

x

f (−0.2, x)

x

f (0.5, x)

.

Therefore:

• x∗ = 0 is unstable (respectively, stable) for λ < 0 (respectively, λ > 0);

• each x∗ is unstable for λ = −0.25;

• the fixed points farthest from (respectively, closest to) x∗ = 0 are unstable (respectively, stable) for
−0.25 < λ ≤ 0;

• the nonzero fixed points are unstable for 0 < λ < 1.

On the other hand, concerning the candidates for bifurcation points, consider fx(λ, x) = 5x4 − 3x2 − λ and
note that

fx(0, 0) = 0 and fx

(
−1

4
,∓ 1√

2

)
= 0.

The previous reasoning, along with the equations x = 0 and λ + x2 − x4 = 0, give us the bifurcation diagram

λ

x∗− 1√
2

− 1
4

0

0

1√
2

for (x∗, λ) ∈
(
−
√

1+
√

5
2 ,

√
1+
√

5
2

)
× (−1, 1).22

22Note that the bifurcation diagram is rotated about the origin at π/2 radians CCW.
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4.
Let f (λ, x) = sin x− λx with λ ∈ [0.5, 2]. So x∗ = 0 is a fixed point for each λ and, since

f (λ, x) = (1− λ)x− x3

3!
+

x5

5!
− · · ·

= x
(

1− λ− x2

3!
+

x4

5!
− · · ·

)
,

there are two more fixed points if and only if 1− λ > 0 (due to the fact that − x2

3! +
x4

5! − · · · is an even function
with a concave down graph). Now, in order to analyze the stability of the fixed points via sign diagrams,
consider the phase portraits for λ ∈ {0.5, 0.75, 1, 1.5, 2}:

x

f (0.5, x)

with x∗ = 0 unstable and x∗ ≈ ±1.8955 stable,

x

f (0.75, x)

with x∗ = 0 unstable and x∗ ≈ ±1.2757 stable,

x

f (1, x)

with x∗ = 0 stable,
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x

f (1.5, x)

with x∗ = 0 stable, and

x

f (2, x)

with x∗ = 0 stable. Therefore everything indicates that there is a pitchfork bifurcation at λ = 1 which is similar
to the mirror image of the supercritical pitchfork bifurcation of Figure 5.4, p. 68, with respect to the x∗-axis and
with λ− 1 in place of µ.23

5.
(i) By considering

f (λ, x) = λx
(

λ− x2
)(

λ + x2
)

= λ3x− λx5

23As a matter of fact, compare

f (λ, x) = −
(
(λ− 1)x +

x3

3!

)
+O

(
x5
)

to (5.6), p. 67.
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and Figure 5.9 (left),

x∗ =


0 for each λ;√

λ for λ > 0;
−
√
−λ for λ < 0.

The aforementioned figure shows us that x∗ = 0 changes from stable to unstable at λ = 0, x∗ = −
√
−λ is

unstable and nonexistent for λ > 0, whereas x∗ =
√

λ is stable and nonexistent for λ < 0. Furthermore, on the
one hand, the following two graphs represent the phase portraits for λ ≶ 0:

x

f (−1, x)

0
−1
−

+

−
x

f (1, x)

0
1
−

+

−

On the other hand, the candidates for bifurcation points can be obtained by

fx(λ, x) = 0 =⇒ λ3 − 5λx4 = 0

=⇒ λ
(

λ2 − 5x4
)
= 0

=⇒ λ ∈
{

0,±
√

5x2
}

.

Therefore, the previous analysis confirms Figure 5.9 (left), with λ = 0 being the bifurcation point.
(ii) It looks like that the bifurcation diagram of Figure 5.9 (right) is a rescaled version of the bifurcation diagram
of Figure 5.4 (right), which is given rise by the vector field f (λ, x) = x

(
λ− x2), after being rotated through

an angle of π/4 radians in anti-clockwise direction about the origin. So let us analyze the equations x = 0
and λ− x2 = 0, which are building blocks of the bifurcation diagram, after being subjected to such rotation.
Clearly, x = 0 becomes x = λ, whereas λ− x2 = 0 becomes x2 + λ2 − 2xλ−

√
2x −

√
2λ = 0.24 Therefore,

concerning Figure 5.9, the vector field which gives rise to the bifurcation diagram (on the right) is

f (λ, x) = (x− λ)
(

x2 + λ2 − 2xλ−
√

2x−
√

2λ
)

.

================================================================================

24Consider the parabola λ′ = x′2 and the rotation[
cos π

4 − sin π
4

sin π
4 cos π

4

] [
x
λ

]
=

[
x′
λ′

]
.
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================================================================================
================================================================================
6
================================================================================
================================================================================
Comment, p. 77, penultimate sentence
Consider p. 36, 1st sentence along with (3.8) and (3.9). Therefore

T̄∗2 = T∗2 − T∗0

= T∗2 −
1
2
(T∗1 + T∗2 )

=
1
2
(T∗2 − T∗1 )

:= T∗

and

T̄∗1 = T∗1 − T∗0

= T∗1 −
1
2
(T∗1 + T∗2 )

=
1
2
(T∗1 − T∗2 )

= −T∗.

Similarly,

S̄∗2 = S∗ and S̄∗1 = −S∗.

================================================================================
Comments, p. 78

• Sentence that follows (6.3)
Since

d
dt

(
1
2
(T1 + T2)

)
= −c

(
1
2
(T1 + T2)

)
and

d
dt

(
1
2
(S1 + S2)

)
= −d

(
1
2
(S1 + S2)

)
,

1
2
(T1 + T2) = constant · e−ct −→ 0 and

1
2
(S1 + S2) = constant · e−dt −→ 0

when t −→ ∞.

• (6.6)

ẋ =
dx
dt′

=
1

c∆S∗

(
d∆S
dt

)
=

d
c
(1− x)−

∣∣∣∣2q
c

∣∣∣∣ x,

ẏ =
dy
dt′

=
1

c∆T∗

(
d∆T

dt

)
= 1− y−

∣∣∣∣2q
c

∣∣∣∣ y.

27



================================================================================
Erratum, p. 79, right after (6.8)
λ f ∗ should be equal to Rx∗ − y∗.
================================================================================
Comments, p. 80

• (6.11)
The 1, 1 entry of A is obtained by

∂

∂x
(δ(1− x)− | f |x) = ∂

∂x

(
δ− δx∓ 1

λ

(
Rx2 − xy

))
= −δ∓ 1

λ
(2Rx− y)

= −δ∓ 1
λ
((Rx− y) + Rx)

= −δ−
(
±Rx− y

λ

)
∓ Rx

λ

= −(δ + | f |)∓ Rx
λ

.

Computing the 1, 2 and 2, 1 entries of A is straightforward. Finally, the 2, 2 entry of A is obtained by

∂

∂y
(1− y− | f |y) = ∂

∂y

(
1− y∓ 1

λ

(
Rxy− y2

))
= −1∓ 1

λ
(Rx− 2y)

= −1∓ 1
λ
((Rx− y)− y)

= −1−
(
±Rx− y

λ

)
± y

λ

= −(1 + | f |)± y
λ

.

• (6.12)

D = δ + δ | f ∗|+ | f ∗|+ | f ∗|2 ±
(

Rx∗

λ
− δy∗

λ

)
+ | f ∗|

(
±Rx∗ − y∗

λ

)
= δ + δ | f ∗|+ | f ∗|+ 2 | f ∗|2 ±

(
Rx∗

λ
− δy∗

λ

)
±
(
−y∗

λ
+

y∗

λ

)
= δ + δ | f ∗|+ 2 | f ∗|+ 2 | f ∗|2 ± (1− δ)

y∗

λ
.

• Penultimate and ultimate sentences
Since f ∗ > 0 and δ > 0,

(δ + 2 | f ∗|)(1 + | f ∗|)> 0

and, since δ ∈ (0, 1], y∗ > 0 and λ > 0,25

(1− δ)y∗

λ
≥ 0.

So D > 0. Furthermore, since

T2 = (1 + δ)2 + 6(1 + δ) f ∗ + 9( f ∗)2

= 1 + 2δ + δ2 + 6 f ∗ + 6δ f ∗ + 9( f ∗)2

25δ ∈ (0, 1] and y∗ > 0⇐= l. 5 and (6.8), p. 79;
λ > 0⇐= λ = c

2αk(2T∗) , p. 78, and T∗ is the temperature anomaly in the basin surrounding Box 2, p. 77.
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and
−4D = −4δ− 4δ f ∗ − 8 f ∗ − 8( f ∗)2 − 4(1− δ)

y∗

λ
,

T2 − 4D = 1− 2δ + δ2 − 2 f ∗ + 2δ f ∗ + ( f ∗)2 − 4(1− δ)
y∗

λ

= (1− δ)2 − 2(1− δ) f ∗ + ( f ∗)2 − 4(1− δ)

( 1
1+ f ∗

λ

)

= ((1− δ)− f ∗)2 − 4(1− δ)

λ (1 + f ∗)
.

Now, note that T2 − 4D > 0 for δ = 1. So, here,

δ, 1− δ ∈ (0, 1). (16)

Let us prove that T2 − 4D < 0 holds with some simple heuristics. So, on the one hand,

((1− δ)− f ∗)2 <
4(1− δ)

λ(1 + f ∗)
⇐⇒ λ(1 + f ∗) < 4

(
1− δ

((1− δ)− f ∗)2

)

⇐⇒ λ f ∗ < 4

(
1− δ

((1− δ)− f ∗)2

)
− λ.

On the other hand, by subsection 6.2.1 along with Figure 6.1 ( f > 0),26

λ f ∗ = φ( f ∗) =⇒ 0 < λ f ∗ < 1.

Then T2 − 4D < 0 if

1 < 4

(
1− δ

((1− δ)− f ∗)2

)
− λ, (17)

which is equivalent to

((1− δ)− f ∗)2 <
4

λ + 1
(1− δ)⇐⇒ (1− δ)2 −

(
2 f ∗ +

4
λ + 1

)
(1− δ) + ( f ∗)2 < 0

with positive roots

1− δ± =
2 f ∗ + 4

λ+1 ±
√(

2 f ∗ + 4
λ+1

)2
− 4( f ∗)2

2
. (18)

So (17) holds for each 1− δ ∈ (1− δ−, 1− δ+). Then (17) holds for each δ ∈ (δ+, δ−) ⊂ (0, 1).27 Therefore
T2 − 4D < 0 for each f ∗ > 0.

================================================================================
Comment, p. 81, 3rd sentence

dD
d f ∗

= −δ− 2 + 4 f ∗ − 1− δ

λ (1− f ∗)2

is negative for f ∗ ∈ (−∞, 0),

lim
f ∗→−∞

D = +∞ and lim
f ∗→0

D = δ− 1− δ

λ
,

which is negative if λ ∈ (0, 1) is small enough.28

================================================================================
Erratum/Comments, p. 82, 3rd paragraph

26Since δ 6= 1, points like e and g are not considered here!
27On the one hand, if δ− > 1 , then 1− δ− < 0, which contradicts (18). On the other hand, if δ+ < 0, then δ can take nonpositive values,

which is a contradiction because δ ∈ (0, 1).
28See (16)!
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• 4th sentence29

Interchange ‘S-mode’ and ‘T-mode’.

• Last four sentences

– “..., a reversal of the flow, ...”
f depends on q.30

– “... an increase of the temperature anomaly.”
See Figure 6.3.31

– “... the salinity anomaly will also increase.”
Here, x∗ depends on y∗.32

– “... salinity anomaly on the vertical axis, ...”
See the previous comment.

================================================================================
Exercises, pp. 83–6

1.

φ+(0) =
δR
δ
− 1

= R− 1
> 0 if R > 1;

dφ+

d f

∣∣∣∣
f=0

= − δR
(δ + f )2 +

1
(1 + f )2

∣∣∣∣
f=0

= − δR
δ2 + 1

= −R
δ
+ 1

< 0 if R > δ;

lim
f−→∞

φ+( f ) = lim
f−→∞

δR(1 + f )− (δ + f )
(δ + f )(1 + f )

= lim
f−→∞

(δR− 1) f + δR− δ

f 2 + (δ + 1) f + δ

= lim
f−→∞

δR−1
f

1

= 0− if δR < 1.

The critical point ‘c’ satisfying (6.9) (for λ = 1
5 , R = 2 and δ = 1

6 ) is shown in figures 6.1 and 6.2, which are
consistent with the properties above. In fact, the graph of φ curves up as it moves toward ‘c’,33 crosses the
f -axis, keeps curving up a little bit more and approaches the f -axis asymptotically.34 Since λ ∈ (0, ∞), the
graphs of φ and λ f have exactly one point of intersection, which is ‘c’. Furthermore, concerning f ∈ [0, ∞),
‘c’ is close to the equiflow line f = 0 and the phase portrait does not have another steady state close to any
equiflow line.

2.
If δ = 1

6 and R = 3
2 , λ f = φ( f ) has exactly two (respectively, one) negative solutions (respectively, solution)

29The one after “..., y∗ = 4
5 .”.

30See p. 78.
31See the anomaly component y∗ on the right.
32See (6.7), p. 78.
33Which is consistent with the first two properties.
34Which is consistent with the ultimate property.
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f = f ∗ for each λ ∈ (0, 4
5 ) (respectively, for λ = 4

5 ). In fact,

λ f = φ( f )

=
1
4

1
6 − f

− 1
1− f

=
1
2

1−6 f
3

− 1
1− f

=
3(1− f )− 2(1− 6 f )

2(1− 6 f )(1− f )

=
9 f + 1

2(6 f 2 − 7 f + 1)
.

So, let us find the negative roots f ∗ of

p(λ, f ) = 12λ f 3 − 14λ f 2 + (2λ− 9) f − 1

for

λ ∈
{

1
20

,
1
10

,
1
5

,
3
10

,
2
5

,
1
2

,
3
5

,
7

10
,

4
5

}
,

that is, the cubic polynomials

0.6 f 3 − 0.7 f 2 − 8.9 f − 1 = 0,

1.2 f 3 − 1.4 f 2 − 8.8 f − 1 = 0,

12 f 3 − 14 f 2 − 43 f − 5 = 0,

3.6 f 3 − 4.2 f 2 − 8.4 f − 1 = 0,

24 f 3 − 28 f 2 − 41 f − 5 = 0,

6 f 3 − 7 f 2 − 8 f − 1 = 0,

36 f 3 − 42 f 2 − 39 f − 5 = 0,

8.4 f 3 − 9.8 f 2 − 7.6 f − 1 = 0 and

48 f 3 − 56 f 2 − 37 f − 5 = 0.

The negative roots of these polynomials are given by

f ∗ ≈ −3.246,−0.113,

f ∗ ≈ −2.115,−0.116,

f ∗ ≈ −1.316,−0.126,

f ∗ ≈ −0.961,−0.128,

f ∗ ≈ −0.747,−0.136,

f ∗ ≈ −0.598,−0.146,

f ∗ ≈ −0.482,−0.159,

f ∗ ≈ −0.383,−0.180 and

f ∗ = −1
4

,

respectively. Furthermore, note that λ = 4
5 is a candidate for bifurcation point since, at (λ, f ) =

(
4
5 ,− 1

4

)
,{

p(λ, f ) = 0;
∂p
∂ f = 0.

This analysis and the comments on page 81 allow us to consider the following bifurcation diagram:35

35Note the consistency with the bifurcation diagram of figure 6.3 (left), p. 82.
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(
4
5 ,− 1

4

)

λ

f ∗ < 0

3.
Firstly, by (6.8), p. 79, note that x∗i and y∗i are positive for each i ∈ {1, 2, 3}. Secondly, since f ∗1 < f ∗2 < 0, that is,
− f ∗1 > − f ∗2 > 0, it follows that, on the one hand,

1− f ∗1 > 1− f ∗2 > 1 =⇒ 0 <
1

1− f ∗1
<

1
1− f ∗2

< 1

=⇒ 0 < y∗1 < y∗2 < 1,

and, on the other hand, since δ > 0,

− f ∗1 + δ > − f ∗2 + δ > δ =⇒
δ− f ∗1

δ
>

δ− f ∗2
δ

> 1

=⇒ 1
x∗1

>
1
x∗2

> 1

=⇒ 0 < x∗1 < x∗2 < 1.

Now, note that

y∗2 < y∗3 ⇐⇒
1

1− f ∗2
<

1
1 + f ∗3

⇐⇒ 1 + f ∗3 < 1− f ∗2
⇐⇒ f ∗3 < − f ∗2
⇐⇒ f ∗3 + δ < − f ∗2 + δ

⇐⇒ 1
δ− f ∗2

<
1

δ + f ∗3

⇐⇒ δ

δ− f ∗2
<

δ

δ + f ∗3
⇐⇒ x∗2 < x∗3 .

Similarly, y∗2 = y∗3 ⇐⇒ x∗2 = x∗3 and y∗2 > y∗3 ⇐⇒ x∗2 > x∗3 . However, if x∗2 = x∗3 and y∗2 = y∗3 , then f ∗2 = f ∗3 ,
which is a contradiction. In the same vein, x∗2 > x∗3 and y∗2 > y∗3 also contradicts the hypothesis f ∗2 < 0 < f ∗3 .

4.
Since δ > 1 and R > 1, δR > 1. So

δR− 1 > 0, δ > 0 and 1− R < 0. (19)

Now, concerning (6.9), a necessary condition for finding three points of intersection is that the graph of φ( f )
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dips below the horizontal axis, φ( f ) = 0 for some f > 0.36 However,

φ( f ∗) = 0 =⇒ δR
δ + | f ∗| =

1
1 + | f ∗|

=⇒ (δR− 1) | f ∗| = δ(1− R),

which contradicts (19) for f ∗ > 0. Therefore (6.6) has only one equilibrium solution with f ∗ > 0. Furthermore,
f ∗ is a stable node. In fact, T < 0 and, since 1− δ < 0 and λ > 0, D > 0 and T2 − 4D > 0.37

================================================================================

36See p. 79.
37See p. 80, last paragraph.
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================================================================================
================================================================================
7
================================================================================
================================================================================
Comments, pp. 88–90

• 7.2, 2nd bullet, 1st paragraph
By the existence and uniqueness theorems,38

ϕ(t) =
(

0, 0, eβt
)

, t ∈ R,

is the unique solution of (7.1) passing through the point (0, 0, z0).

• 2nd sentence after (7.2)
Being a subset of Rn,

D is closed and bounded⇐⇒ D is compact,

which implies that φt(D) is compact.39 Furthermore, since the intersection of a decreasing family of
compact sets is compact,40 A is compact by (7.2).41

• (7.3)
For each c ∈ R, the level surface of value c for V, that is,

V−1({c}) =
{

P ∈ R3 : V(P) = c
}

,

is an ellipsoid.

• (7.4)
Note that

d
dt

(V(φt(P)) = ∇V((φt(P)) · d
dt
(φt(P))

= ||∇V(φt(P))||
∣∣∣∣∣∣∣∣ d

dt
(φt(P))

∣∣∣∣∣∣∣∣ cos θ,

where θ is the smallest angle between the gradient∇V(φt((P)) and the velocity vector d
dt (φt(P)). There-

fore, since∇V(φt(P)) is perpendicular to the level surface of value V(φt(P)) at φt(P), that is, the ellipsoid
V−1({φt(P)}) at φt(P), if d

dt (V(φt(P)) < 0, the vector field is directed inward at φt(P).

• E and m
E being open, m may not exist. So, concerning the definition of E , change < to ≤.

• 1st sentence after (7.5)
Suppose E 6⊂ D . So, there exists some P ∈ E such that V(P) > m, which contradicts the definition of m.

• 7.3

– 1st sentence and ‘C±’
Let the right-hand sides of Eq. (7.1) be zero. So, from the first equation, x = y. Then, the second
equation becomes x(ρ− 1− z) = 0, which implies that z = ρ− 1 for x 6= 0, and the third equation
becomes −βz + x2 = 0. Therefore,

x2 = β(ρ− 1).

– 1st sentence after (7.7)
(1 + σ)2 > 4(1− ρ)σ must hold for 0 < ρ < 1 < 1 + β < σ.

– (7.8)
For example, A21 = 1 since ∂

∂x (ρx− y− xz) at C+ is equal to ρ− (ρ− 1).

38Cf. pp. 43–4.
39Because φt is continuous.
40By the Cantor Intersection Theorem.
41See 7.5, 1.(ii).

34



– (ii) for (7.9)
On the one hand,

ρ < ρH =⇒ ρ < ρHσ.

On the other hand

(1 + β + σ)β(ρ + σ) > 2β(ρ− 1)σ⇐⇒ (1 + β + σ)(ρ + σ) > 2(ρ− 1)σ
⇐⇒ (1 + β + σ− 2σ)ρ > −(1 + β + σ + 2)σ
⇐⇒ −(σ− β− 1)ρ > −(σ + β + 3)σ

⇐⇒ ρ <
σ + β + 3
σ− β− 1

σ.

================================================================================
Exercises, pp. 92–94

1.
(i) By Definition 7.1, p. 88, a trapping set D is a closed connected set in Rn. Besides being closed, let D be
bounded. So, since D is compact and φt is continuous, φt(D) is compact. Now, consider t0 ∈ R and let T be as
in Definition 7.1. Therefore,

φt(φt0(D)) ⊂ φt0(D) for all t ≥ T.

In fact, consider z ∈ φt(φt0(D)). Then, there is a point y ∈ φt0(D) such that z = φt(y). Therefore, since there is
a point x ∈ D such that y = φt0(x),

z = φt(φt0(x))
= φt+t0(x)
= φt0+t(x)
= φt0(φt(x)) ∈ φt0(D)

because, by Definition 7.1,
x ∈ D =⇒ φt(x) ∈ D .
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================================================================================
================================================================================
9
================================================================================
================================================================================
Comments, p. 109

• (9.8)
The criterion is to minimize (9.2) with

εi = ri and f (xi;α) = xT
i α, i = 1, . . . , n,

that is,

n

∑
i=1

ε2
i = εTε

= (y− Xα)T(y− Xα)

= yTy− yTXα− (Xα)T y + (Xα)T Xα

= yTy− 2yTXα+αTXTXα.

Therefore

∇α

(
n

∑
i=1

ε2
i

)
= 0 =⇒ 0− 2yTX + XTXα+αTXTX = 0

=⇒ −2yTX + XTXα+ (Xα)T X = 0

=⇒ −2XTy + 2XTXα = 0

=⇒ XTy = XTXα.

• (9.9)
The invertibility of XTX means that X should have rank p.42 This requires in particular that n ≥ p.43

================================================================================
Comments, p. 110, 9.3
Suppose that ∇αQ2 = 0. Therefore

∂Q2

∂α1
= 0 =⇒ −2

n

∑
i=1

(yi − α1 − α2xi) = 0

=⇒
n

∑
i=1

yi = nα1 + α2

n

∑
i=1

xi

=⇒ y = α1 + α2x,

which confirms (9.13), and, furthermore,

∂Q2

∂α2
= 0 =⇒ −2

n

∑
i=1

xi (yi − α1 − α2xi) = 0

=⇒
n

∑
i=1

(
xiyi − xi (y− α2x)− α2x2

i

)
= 0

=⇒
n

∑
i=1

(xiyi − xiy)− α2

n

∑
i=1

(
x2

i − xix
)
= 0

=⇒ α2 =
(∑n

i=1 xiyi)− nx y(
∑n

i=1 x2
i
)
− nx2 .

42So, in that case, the nullity of X ∈ Rn×p is zero. Therefore, due to the fact that the kernel of XTX is contained in the kernel of X, the
rank of XTX ∈ Rp×p is also p.

43That is, the number of parameters is smaller than or equal to the number of observations.
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Concerning (9.12), it is worth recalling that the correlation coefficient can be defined as

rxy =
∑n

i=1 (xi − x) (yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

.

Now, consider the last paragraph. Note that

ŷ− y = α̂2 (x− x)

= rxy
sy

sx
(x− x)

is (9.14) with ŷ in place of y.
================================================================================
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