

L. BROSSARD, J. NOBLET – INRA, France, 2012

Objectives of EvaPig®

- EvaPig[®] is a calculator of energy, amino acids and phosphorus values of ingredients and diets for growing and adult pigs according to actual composition.
- EvaPig[®] includes the chemical composition and nutritive values for the pig of about 100 reference ingredients, mostly derived from the INRA-AFZ Tables.
- It creates new ingredients either by copying and modifying the reference ingredients, or by using your own data.
- It creates and calculates nutritive values of complete diets either by mixing ingredients or by providing a chemical composition.
- Specific and/or generic equations and coefficients are used for calculating energy, amino acids and phosphorus values.

 Evarige proposes specific criteria in diet characteristics for adaptation to animal requirements.

	s in Ed (% of prodւ		cording
Ingredient	Growing	Adult	Δ,%dEg
Wheat	87.6	89.2	+1.8
Corn	87.9	91.4	+4.0
Soybean meal	85.2	90.4	+6.2
Wheat bran	56.7	62.7	+10.4
Corn gluten feed	65.6	76.4	+16.5
Soybean hulls	51.4	70.3	+36.8
+ effects	of technol	ogy?	

L. BROSSARD, J. NOBLET - INRA, France, 2012

Ingredient	DE	NE	
Corn	103	112	
Wheat	101	106	
Wheat bran	68	63	
Soybean meal	107	82	
Fat	243	300	

L. BROSSARD, J. NOBLET – INRA, France, 2012

Energy cal	culator				X			
Name	New diet.							
Step 1: dry metter (r	nandatory)							
Dry natter		1	Energy calcu	lator				
Step 2) esh			5,					
Adh	6.67 😥 %	~	Name No	se diet				
Step 2: oude protect								
Grude protein	19.84 🗹 %	~	Proximate analysis (%)		Energy values (kca(kg)	Growing pip	Adult pig	Retip (3
Step 4: fibre and/or i	n vitro doexbility of prossic matter		Dry matter	87.72	Gross energy (GE)	3790	3790	100
Orude fibre	2.96		Ash	6.87	Digestible energy (DE)	3251	3387	104
NOF	13.83 🖌 %	~	Crude protein	19.04	Netabolisable energy (ME)	3103	3215	105
ACP			Crude fat	3.09		2469	2564	103
d0PW (%)			Crude fibre	3.96	Net energy (NE)	2469	2564	10:
Step St oude fat an			NDP	13.83	Energy utilization (%)			
Crude Fat	3.09 2 %	~	ADF		Banus	Growing pig	Adult pig	
Gross energy	3 790 V Icality	~	Starch	37.11			89.4	
Step 6: starch			Sugars	4.17	dt (Dt / Gt)	85.8		
Stardh	37.11 🗹 👒	~			ME / DE	95.5	94.9	
Step 7: sugars			OMdv		NE / ME	79.6	79.8	
	4.17 2 %							

Energy bonus for ingredients and diets

- Feeding Tables and EvaPig[®] generate energy values for mash feeds. The (>0) energy bonus can be used when a technological process is applied to an ingredient or a diet
- The bonus (>0 or <0) can be applied to ingredients for technology and "disagreement" effects

