

		e ww		1.	
samples	Kiel	Nigeria	Halle	China	Braunschw
n	60	30	32	19	69
breed	LW ¹ x DL ²	LW x Duroc	[DL x LW] x Pietrain	LW	$LW^1 \times DL^2$
weight	~ 30 kg	~35 kg	40-70 kg	~ 35 kg	40-70 kg
no. of diets	8	8	8	3	8
dominant feedstuffs	wheat (w), w gluten, w bran, soybean meal (SEM), corn starch, w bran fibre, rape seed fibre, cassava leaf fibre, cassava root peel fibre	corn, SEM, cassava leaves, cassava peel, fermented, cassava peel, shrimp waste	barley, w bran, molassed beat pulp, barley, soybean meal, lucerne	banana pseudostem, com, banana leaves	w, barley, peas, DDGS SEM, corn
<i>in vivo</i> digestibility	76-90%	72-87%	68-89%	31-85%	77-92%

17/29

19/29

<u>}/////</u> 28/29

- References cont.: Kidane, N.F. (2005): Fecal NIRS calibrations for predicting diet quality and intake of donkeys. PhD thesis, Texas A&M University, USA.
- unversity, USA. Landau, S., Nitzan, R., Barkai, D., Dvash, L. (2006): Excretal NIRS to monitor the nutrient content of diels of grazing young ostriches (Strutio camelus). South African J Anim Sci 36, 245-256. Leite, E., Stuth, J.W. (1995): Focal NIRS equations to assess diet quality of free-ranging goats. Small Rum Res 15, 223-230.
- LH, Toleson, D., Stuth, J., Bai, K., Mo, F., Kronberg, S. (2007): Faecal NIRS to predict diet quality for sheep. Small Rum Res 68, 265-270.
 Lukas, M., Sidekum, K.H., Rave, G., Friedel, K., Susenbeth, A. (2005). Relationship between facal crude protein concentration and diet organic matter digestibility in cattle. J Anim Sof 83, 1332-1344.
 Schiborra, A., Blank, B., Akinola, O.S., Bulang, M., Schlecht, E. (2010). Prediction of organic matter digestibility of pigd diet from faeces using near-infrared reflectance spectroscopy. Proc Soc Nutr Physiol 19, 110.
- pigs diels from terces using neer-ministre intercursce spectroscopy. Proc. Soc. Nat. Prop. 6, 100. Showers, S.E., Tolseno, D.R., Stuht, J.W., Korl, J.C., Kenth, B.H. (2006): Predicting diet quality of white-tailed deer via NRS fecal profiling. Rangeland Ecol Manage 59, 300-307. Wang, C.J., Tas, B.M., Gindemann, T., Rave, G., Schmid, L., Weißbach, F., Suscheith, A. (2009): Fecal code protein content as an estimate for the digestbility of forage in grazing sheep. Anim Feed Sci Technol 149, 199-208.