QUESTÃO 1)

 $\begin{array}{ll} \min & D = 6y_1 + 3y_2 \\ sa & 3y_1 + 6y_2 \geq 6 \\ & 4y_1 + 1y_2 \geq 3 \\ & y_1, y_2 \geq 0 \end{array}$

Resolvendo o ppl primal, obtém-se o seguinte quadro ótimo.

Variáveis do Dual	E_1^*	E_2^*	<i>y</i> 1 [*]	<i>y</i> 2 [*]	
Variáveis do Primal	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	b
Z	0	0	4/21	5/21	13/7
x2	0	1	2/7	-1/7	9/7
x1*	1	0	-1/21	4/21	2/7

Solução ótima do primal	Solução ótima do dual
$x_1^* = 2/7$	$y_1^* = 4/21$
$x_2^* = 9 / 7$	$y_2^* = 5/21$
$F_{1}^{*} = 0$	$E_{1}^{*} = 0$
$F_{2}^{*} = 0$	$E_{2}^{*} = 0$
$Z^* = 13/7$	$D^* = 13/7$

QUESTÃO 2)

$\max Z =$	$5x_1$	$+2x_{2}$	
<u>s.a</u>	x_1		≤3
		x_2	≤4
	x_1	$+2x_{2}$	≥9
	x_1 ,	<i>x</i> ₂	≥ 0

Resolvendo o ppl primal, obtém-se o seguinte quadro ótimo.

Variáveis do Dual	E_1^*	E_2^*	y_1^*	y_2^*	<i>y</i> 3 [*]	
Variáveis do Primal	x_l	x_2	F_{l}	F_2	Ε	В
Z	0	0	5	2	0	23
E	0	0	1	2	1	2
x_2	0	1	0	1	0	4
<i>x</i> 1	1	0	1	0	0	3

Solução ótima do primal	Solução ótima do dual
$x_1^* = 3$	$y_1^* = 5$
$x_2^* = 4$	$y_{2}^{*} = 2$
$F_{1}^{*} = 0$	$y_{3}^{*} = 0$
$F_{2}^{*} = 0$	$E_1^* = 0$
$E^* = 2$	$E_{2}^{*} = 0$
$Z^* = 23$	$D^* = 23$

QUESTÃO 3)

- Acha a solução do dual através do teorema da folga complementar
- Como Z(x) = D(y), para os valores dados de x e para os valores encontrados de y, podese afirmar que x=(4,1) é solução ótima do problema.

QUESTÃO 4)

Answer: The dual of this LPP is:

Therefore $w_1 = 10/3$, $w_2 = 0$, and $w_3 = 5/3$ gives an optimal solution to the dual problem.

QUESTÃO 5)

maximize	Z =	pany. Then the L.P. p $12x_1 + 3x_2 + x_3$,		Basis	CB.
subject to		$10x_1 + 2x_2 + x_3 \le 100,$	0		
The search proof X # 30 P		$7x_1 + 3x_2 + 2x_3 \le 77,$			
		$2x_1 + 4x_2 + x_3 \le 80,$			
		$x_1, x_2, x_3 \ge 0.$	Ne totaj	projit. x.	
(ii) Dual proble			igh to the		
minimize	Z' =	$100y_1 + 77y_2 + 80y_3$,	30 0	- les	

subject to	$10y_1 + 7y_2 + 2y_3 \ge 12$,	
	$2y_1 + 3y_2 + 4y_3 \ge 3,$	
	$y_1 + 2y_2 + y_3 \ge 1$,	
	$y_1, y_2, y_3 \ge 0.$	

(iii) The primal problem can be solved by using the simplex method.

Optimal solution to the given problem is

 $x_1 = 73/8$, $x_2 = 35/8$, $x_3 = 0$; $Z_{max} = Rs. (876/8 + 105/8) = Rs. 122.63$.

(iv) Optimal solution to the dual problem is

 $y_1 = 15/16, y_2 = 3/8, y_3 = 0$; $Z'_{min} = \text{Rs.} [100 \times 15/16 + 77 \times 3/8 + 80 \times 0] = \text{Rs.} 122.63.$

(v) Shadow prices of the resources are

timber = Rs.15/16 per cubit foot,

time in manufacturing deptt. = Rs. 3/8 per hour,

The second secon

Note that racks are not to be produced as $c_j - Z_j$ value in the optimal table (-11/16) indicates that every rack produced would cause a loss of Rs. 11/16 in the profit.

(vi) Economic interpretation of the dual problem can be explained as follows :

Suppose this manufacturing company is thinking of renting its production facilities and selling out timber to some other firm, say *ABC* company, instead of using them by itself and then selling the products — tables, chairs and racks to get a profit of Rs. 122.63. Then *ABC* company is interested in minimizing the sum to be paid (cost to it), while the parent manufacturing company will be interested in knowing the rates it should charge for timber/cubic feet and production time/hour in manufacturing as well as finishing departments.

Let y_1 be the price of timber/cubic feet, y_2 be the charges/hour of manufacturing department and y_3 be the charges/hour of finishing department. Then the total amount *ABC* company would have to pay is $100 y_1 + 77y_2 + 80 y_3$ and its objective is to

minimize $Z' = 100y_1 + 77y_2 + 80y_3$.

Having known this total cost, *ABC* company would be interested in knowing the values of y_1 , y_2 and y_3 respectively. The total this company has to pay to make a table is Rs. $(10y_1 + 7y_2 + 2y_3)$. As the parent company can earn a profit of Rs. 12 / table if it produces by itself, *ABC* company has no option but to settle for paying a minimum of Rs. 12 / table.

QUESTÃO 6)

 $x_1 = 4, x_2 = 3$ and $Z_{max} = -3 \times 4 - 2 \times 3 = -18$.

QUESTÃO 7)

- Escreve o dual do problema e resolve por dual simplex
- Soluções encontradas: x₁ = x₂ = x₃ = x₄ = 0, F₁ = -10, F₂ = -2, F₃ = -15 e Z = 0