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A multi-start metaheuristic approach for multi-objective car resequencing problem in just-
in-time assembly lines: a real-world case
Aline Frazon, Mariana Kleina, Alexandre Checoli Choueiri, Henrique Cunha, João Oliveira

• Approach to the Car Resequencing Problem in an unprecedented manner in the literature, leading a practical and
multi-objective approach;

• Optimization of the resequencing of cars affected by missing parts in Just-In-Time systems;
• Reduced inventory levels make production sequencing more unstable due to the increased impact of external

delays;
• Compared to manual solutions, the proposed approach achieved improvements across all objectives;
• The user-friendly implementation interface facilitated adoption and acceptance by the company’s planners.
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A B S T R A C T
This paper addresses the problem of car resequencing (CRP) in mixed automotive assembly
lines, aiming to minimize the impacts of supplier delays in companies with a Just-In-Time (JIT)
system. In this scenario, when there is a shortage of parts from suppliers, the cars that use
these parts must be resequenced to avoid production stoppages. However, the resequencing must
comply with several constraints related to production leveling, safety, operational effort, among
others. Thus, using a multi-objective approach, the study proposes a multi-objective multi-start
meta-heuristic that is unprecedented in the literature. The solution was implemented in Visual
Basic for Applications (VBA) Excel to facilitate integration into the planning routine of the
company studied. Tests demonstrated average reductions of 90% in resequencing time and up to
47% in delayed positions, significantly improving the performance of the tool compared to the
manual process. The tool automates Pareto dominance analysis, offering optimized solutions
and support for decision making. In addition to reducing operational costs and respecting
practical limitations, the model contributes to sustainability and innovation goals, aligned with
the Sustainable Development Goals (SDGs).

1. Introduction
Just-in-time (JIT) manufacturing has a significant impact on reducing waste and managing stock spaces, which in

turn reduces stock costs (Choi et al., 2023; Guo et al., 2025; Yu and Oron, 2025; Tan and Fu, 2024). It can, however, also
increase the production impact of supplier delays and supply crises, such as delays of imported ships and environmental
crises, among other factors (Yu et al., 2024; Ramani et al., 2022). Short-term occurrences within production networks
(suppliers, environment etc) negatively impacts the stability of production schedules (Moetz et al., 2019; Lahmar et al.,
2003; Iliadis and Lien, 1988; Li and Zhao, 2009; Yum and Ngai, 1986).

In this scenario, when a short-term shortage of parts from a supplier cannot be compensated by express deliveries
and to avoid costly rework and production stoppages, the production sequence must be resequenced (Moetz et al.,
2019). However, as presented in the study by Hozak and Hill (2009), resequencing triggers a series of far-reaching
reactions throughout the production network, since other cars will also be changed to avoid constraint violations in the
resequencing and, as a result, other suppliers may be impacted. In addition to its importance for the productive efficiency
of companies, the problem presented in this study is directly related to the UN Sustainable Development Goals (SDGs),
especially SDGs 8, 9 and 12. By addressing the problem of car resequencing, it promotes industrial efficiency and
innovation (SDG 9 on Industry, Innovation and Infrastructure), reduces waste and optimizes the use of resources,
aligned with the JIT system, for responsible consumption and production (SDG 12, Responsible Consumption and
Production). In addition, it improves working conditions by automatically performing resequencing in a fast and multi-
objective manner, reducing repetitive tasks for planners and reducing operating costs, boosting sustainable economic
growth (SDG 8, which deals with Decent Work and Economic Growth) (Tran et al., 2024; Santini et al., 2021; Argyris
et al., 2024). The car resequencing problem (CRP) is mainly applied in the automotive sector, but it can be applied
in other areas as long as production is characterized by producing different models on the same assembly lines or
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items with a high level of customization. Thus, when there is a shortage of parts, not all products are affected, and
therefore there is the possibility of postponing the affected products and resequencing production. Boysen and Zenker
(2013) demonstrate the CRP as NP-hard in the strong sense. Resequencing the original assembly sequence must, in
addition to minimize the impacts of the alteration, consider different sequencing constraints (Jalilvand et al., 2024;
Morin et al., 2009; Yilmazlar et al., 2024; Moya et al., 2019). However, even with this complexity, schedule instability
in production networks and car resequencing is a topic lacking research, unlike car sequencing (Moetz et al., 2019). In
mixed-model automotive assembly lines, different types or models of vehicles are produced on the same production
line. According to (Boysen et al., 2009), mixed-model automotive assembly line sequencing is addressed in three
major planning approaches: mixed-model sequencing, car sequencing problem (CSP) and level scheduling problem
(LSP). The authors show that mixed-model sequencing focuses on minimizing sequence workload based on detailed
scheduling, while Yavuz and Ergin (2018) shows that CSP focuses on ensuring that production constraints related
to the allocation of car options (for example, sun-roof and air conditioning) are satisfied, and LSP help achieve the
one-piece-flow, reducing the variability on assembly times in production line. Besides, car resequencing is presented
in different ways in the literature.

In car resequencing applications, the use of selectivity banks stands out, which function as intermediate buffers
for sequence adjustments, minimizing operational costs and penalties. Models such as those of Sun (2024) and Leng
et al. (2020) integrate virtual resequencing with these banks, while Boysen and Zenker (2013) use a decomposition
approach to optimize complex resequencing. Other studies, such as those of Hong et al. (2018) and Taube and Minner
(2018), explore algorithms to minimize setups and restore customer orders, although without incorporating selectivity
banks. Moetz et al. (2019) presented a conceptual model of a network-oriented resequencing method that solves the
interdependent tasks of production resequencing and network scheduling.

This study expands these contributions by approaching the problem in a multi-objective way in the Just In
Time context, focusing on different constraints, addressing the complexities of real-world production scenarios. To
summarize, the objective of this work is to automate the car resequencing process, which was previously done
manually, with multi-objective optimization. For this, in this work we address a multi-objective problem (CRP) with
multi-start metaheuristic and two heuristics, to reschedule mixed-model automotive assembly lines, addressing the
constraint satisfaction aspect of CSP, the production leveling aspect of LSP and the resequencing of the original
sequence of CRP. Specifically, we aim to address the challenges posed when certain cars, originally sequenced for
production, must be postponed due to, for example, supplier delay. The objectives are related to minimize the impacts
caused by these postponements while ensuring that all production constraints are not violated, through multi-objective
optimization. This integrated approach is crucial, as previous studies have demonstrated that combining different
aspects of planning can significantly reduce production costs and improve key performance indicators (Hosseini et al.,
2024). By considering both sequencing constraints and leveling objectives, our method seeks to enhance production
efficiency while maintaining the flexibility necessary to adapt to unexpected disruptions, such as delays in parts
delivery. Therefore, this study proposes a new approach for the car resequencing problem in a real-world case.

The remaining of the paper is organized as follows. The detailed description of the problem, their constraints and
objectives is presented in Section 2. Section 3 describes the general approach proposed to handle the car resequencing
problem of this study, present the metaheuristic of the problem and in 4 is the correction heuristics. Some relevant
implementation issues and challenges are commented in Section 5, and the conclusion in the last section.

2. Problem description
The car resequencing problem, on its simpler form, can be stated as follows: given a set of incremental indexes 𝑆,

and a set 𝑅 of indexes to be relocated (𝑅 ⊂ 𝑆), define new positions to 𝑅, providing that each element 𝑟 ∈ 𝑅 cannot
be assigned to a given position prior to index 𝑝, 𝑝 ∈ 𝑃 .

The set 𝑆 represents the initial sequence of cars that are to be produced, while 𝑅, subset of 𝑆, indicates the cars
that for some reason cannot be processed on the current time (index), and therefore must be postponed. The minimal
postponed indexes are given by 𝑃 , and it reflects the time dimension (after a given period of time it is feasible to
produce the car).

The notation used for the formal description of the problems is summarized bellow:
• Sets:

• 𝑆 =
{

𝑠1, 𝑠2, ..., 𝑠𝑎
}: the set of original line sequence, with 𝑎 cars scheduled in 𝑎 positions;
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• 𝑅 =
{

𝑟1, 𝑟2, ..., 𝑟𝑏
}: the set of cars to be postponed;

• 𝑃 =
{

𝑝1, 𝑝2, ..., 𝑝𝑏
}: the set of minimum 𝑝𝑖 index (date/time) the 𝑟𝑖 car can be postponed;

• 𝑂 =
{

𝑜1, 𝑜2, ..., 𝑜𝑚
}: the set of options that a car may have;

• 𝑍 =
{

𝑧1, 𝑧2, ..., 𝑧𝑎
}: the set where each shift number 𝑧𝑖 ∈ 𝑍 corresponds to the number of the shift in which car

𝑠𝑖 will be produced;
• Considering a day with 2 shifts, two consecutive shifts (e.g., 𝑧𝑖 = 1 and 𝑧𝑗 = 2) occur on the same day, with

one shift representing the morning shift and the other the afternoon shift. Shifts 1 and 2 correspond to the first
day, shifts 3 and 4 to the second day etc.

• For example, if 𝑆 = {1, 2, 3, 4, 5, 6, 7, 8} and 𝑍 = {1, 1, 2, 2, 3, 3, 4, 4}, cars 𝑠1 and 𝑠2 are produced in shift 1
(the first shift of day 1), cars 𝑠3 and 𝑠4 in shift 2 (the second shift of day 1), cars 𝑠5 and 𝑠6 in shift 1 (the first
shift of day 2), and so on.

• Parameters:
• 𝑜𝑗 = 1, if option 𝑗 is a critical option (related to high-priority constraints), 𝑜𝑗 = 0 otherwise (𝑗 ∈ 𝑂);
For instance, let𝑆 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},𝑅 = {2, 3} and𝑃 = {5, 7}. The problem consists of postponing

cars 2 and 3 from positions 5 and 7, respectively. An example of this resequencing is illustrated in Figure 1.

1 2 3 4 5 6 7 8 9 10 11
S:

1

2 3

4 5 6 7 8 9 10 11

1

2 3

4 5 6 7 8 9 10 11

1 2 34 5 6 7 8 9 10 11S:
Index: 1 2 3 4 5 6 7 8 9 10 11

Cars of R Indexes of P

Figure 1: Example of a Car Resequencing Problem

Besides its apparent initial simplicity, there is a gamut of constraints that can be incorporated into the problem, in
order to make it reflect a real manufacturing environment. Subsection 2.1 describes these constraints, considering the
set of options 𝑂 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to exemplify them, whereas 2.2 presents the objectives of the problem.
2.1. Constraints

Performance and safety are some of the main values of the company studied, so a series of sequencing constraints
are imposed on the production system to ensure safety, productivity, supplier requirements, among others. All of them
are divided into five types of constraints, presented below.
2.1.1. Gap constraint

Certain combinations of car options can cause operational challenges if they are placed too closely together on a
single production line due the greater difficulty of assembly, for example, sun-roof and air conditioning. The assembly
line is balanced according to the flagship, but some models require more time and effort to be produced, that is, their
assembly times are longer than the line’s takt time.

Therefore, the Gap constraint is designed to ensure that specific options on the cars are spaced out appropriately,
enforcing a minimum separation between cars with certain options to prevent difficulties, delays and production stops.
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Consider two sets, 𝐺 and 𝐺𝐶 . The set 𝐺 contains subsets of car options, where each subset 𝐺𝑖 ⊂ 𝑂 represents a
group of car options that must be separated by a minimum number of positions in the production sequence. The set 𝐺𝐶
defines the corresponding minimum separation distances required between successive cars that feature these options.
These sets can be mathematically expressed as follows:
• 𝐺 =

{

𝐺1, 𝐺2, ..., 𝐺ℎ
}: the collection of subsets, where each subset𝐺𝑖 represents a group of car options. The elements

within each subset 𝐺𝑖 are the specific options that need to be separated by a certain distance within the production
sequence;

• 𝐺𝐶 =
{

𝐺𝐶1, 𝐺𝐶2, ..., 𝐺𝐶ℎ
}: the set where each 𝐺𝐶𝑖 specifies the minimum number of positions that must separate

consecutive cars with any of the options in subset 𝐺𝑖.
For instance, let 𝐺 = {{1} , {2, 3} , {4, 7, 8}} and 𝐺𝐶 = {1, 6, 3}. Here, the first subset 𝐺1 = {1} indicates that

cars with the option 1 should have at least 𝐺𝐶1 = 1 position between them. Similarly, the second subset 𝐺2 = {2, 3}
means that cars with either option 2 or 3 must be separated by at least 𝐺𝐶2 = 6 positions with another car with either
2 or 3 option. The third subset 𝐺3 = {4, 7, 8} ensures that cars with options 4, 7, or 8 should have a minimum gap of
𝐺𝐶3 = 3 positions.
2.1.2. Consecutive cars constraint

As the Gap constraint presented previously, certain combinations of options can cause operational challenges.
Options may require limited resources, such as special types of mounting brackets, that cannot be made available if
similar cars are processed consecutively (air suspension mounting bracket, for example, are limited). Therefore, if
there are only 5 brackets available and 6 cars that require these brackets are programmed consecutively, there will be
no resources for the last car and, therefore, line stops will occur.

Hence, in order to reduce the impact of these options the Consecutive cars constraint establishes that the options
of 𝐶𝑖 ⊂ 𝑂 subset must appear at most in 𝐶𝐶𝑖 consecutively scheduled cars. Mathematically:
• 𝐶 =

{

𝐶1, 𝐶2, ..., 𝐶𝑘
}: the collection of subsets, where each 𝐶𝑖 ∈ 𝑂 subset represents a group of car options that

have consecutive occurrence limitations;
• 𝐶𝐶 =

{

𝐶𝐶1, 𝐶𝐶2, ..., 𝐶𝐶𝑘
}: the set where each 𝐶𝐶𝑖 element represent the maximum consecutively occurrences

of any option for subset 𝐶𝑖.
For example: consider a set 𝐶 = {{3, 5, 9} , {2}} and 𝐶𝐶 = {4, 6}. Here, the first subset 𝐶1 = {3, 5, 9} indicates

that cars with the option(s) 3 or 5 or 9 can be scheduled in at most 𝐶𝐶1 = 4 consecutively positions. Similarly, the
second subset 𝐶2 = {2} impose that cars with option 2 must be scheduled in at most 𝐶𝐶2 = 6 consecutively positions.
2.1.3. Neighbor cars constraint

Options with advanced features, such as an advanced driver assistance system package, may require specialized
handling and should not be positioned immediately adjacent to another complex option, but unlike the Gap constraint,
it can be adjacent to itself. If two cars with these options are programmed immediately adjacent to each other, there is
a risk of accidents due to operational difficulties, or line stoppages so that assembly of both models can be completed.

The Neighbor cars constraint addresses this issue by ensuring that a specific car option 𝑁𝑖 ∈ 𝑂 are kept apart from
a set of another options 𝑁𝐶𝑖 ⊂ 𝑂 by at least one position of distance. This minimizes potential assembly disruptions
and maintains production efficiency. This context can be expressed as follows:
• 𝑁 =

{

𝑁1, 𝑁2, ..., 𝑁𝑙
}: the set of car options that are subject to Neighbor cars constraint;

• 𝑁𝐶 =
{

𝑁𝐶1, 𝑁𝐶2, ..., 𝑁𝐶𝑙
}: the collection of subsets, where each 𝑁𝐶𝑖 ⊂ 𝑂 subset represents a group of car

options that must not be presented in a car scheduled prior or later a car with option 𝑁𝑖.
Let 𝑁 = {1, 2, 3} and 𝑁𝐶 = {{2, 6, 7} , {1} , {5, 7}}. The subset 𝑁𝐶1 = {2, 6, 7} specifies that cars with option

2 or 6 or 7 should not be found directly adjacent to a car with option 𝑁1 = 1, whether before or after in the sequence.
Hence, 𝑁𝐶2 = {1} defines that a car with option 1 must not be scheduled directly adjacent to another car with option
𝑁2 = 2. Similarly, none of the options of 𝑁𝐶3 = {5, 7} subset should be present in a car scheduled immediately
before or after another car with option 𝑁3 = 3.
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2.1.4. Quantity constraint
Some options can only be produced in a certain amount per day or shift because of daily supplier constraints or

equipment availability. For example, some additional vehicles pass through the painting area twice, occupying the
space of a car, and therefore, if the number of scheduled cars added to these additional vehicles exceeds the maximum
daily or shift capacity of the painting area, it is not possible to meet the demand. To ensure this restriction, Quantity
constraint limits the maximum quantity of these options that can be present in cars scheduled in a same day or shift.

This constraint establishes that option 𝐷𝑖 ∈ 𝑂 must be present in at most 𝐷𝐶𝑖 scheduled cars in a same day,
namely, the sum of cars with option 𝐷𝑖 in odd shift 𝑧𝑗 = 𝑥 and even shift 𝑧𝑘 = 𝑥 + 1 (considering a day with 2 shifts)
must be less than or equal to 𝐷𝐶𝑖. Similarly, option 𝑇𝑖 ∈ 𝑂 can be present in at most 𝑇𝐶𝑖 cars scheduled in a same
shift, that is the same 𝑧𝑗 , as follows:
• 𝐷 =

{

𝐷1, 𝐷2, ..., 𝐷𝑢
}: the set where each 𝐷𝑖 ∈ 𝑂 represents the options limited by a certain maximum quantity

per day;
• 𝐷𝐶 =

{

𝐷𝐶1, 𝐷𝐶2, ..., 𝐷𝐶𝑢
}: the set where each 𝐷𝐶𝑖 element represent the maximum quantity of occurrences per

day of option 𝐷𝑖.
• 𝑇 =

{

𝑇1, 𝑇2, ..., 𝑇𝑣
}: the set where each 𝑇𝑖 ∈ 𝑂 represents the options limited by a certain maximum quantity per

shift;
• 𝑇𝐶 =

{

𝑇𝐶1, 𝑇𝐶2, ..., 𝑇𝐶𝑣
}: the set where each 𝑇𝐶𝑖 element represent the maximum quantity of occurrences per

shift of option 𝑇𝑖.
Consider a set 𝐷𝐶 = {4, 6} and 𝐷 = {2, 5}, with 𝐷 ⊂ 𝑂. In this case, at most 4 (𝐷𝐶1 = 4) cars with option "2"

(𝐷1 = 2) can be scheduled in a same day, just as at most 6 cars with option "5".
Thus, let 𝑇𝐶 = {4, 4, 11} and 𝑇 = {3, 7, 9} (𝑇 ⊂ 𝑂). Similarly, at most 4 (𝑇𝐶1 = 4) cars with option "3" (𝑇1 = 3)

can be scheduled in a same shift, 4 (𝑇𝐶2 = 4) cars with option "7" (𝑇2 = 7) and 11 cars (𝑇𝐶3 = 11) with option "9"
(𝑇3 = 9).
2.1.5. Forbiddance constraint

Additionally, a supplier-specific restriction was raised in the case study, the Forbiddance constraint. Due to
specialized resources requirements (specialized trucks for the transport), some options cannot be produced in the same
shift as others.

To meet this requirement, the restriction verifies that if a car with option 𝐹𝑖 ∈ 𝑂 is scheduled, no option of the
subset 𝐹𝐶𝑖 ⊂ 𝑂 can be scheduled in the same shift. The constraint sets can be mathematically expressed as:
• 𝐹 =

{

𝐹1, 𝐹2, ..., 𝐹𝑞
}: the set where each 𝐹𝑖 element represents a car option with forbiddance restrictions;

• 𝐹𝐶 =
{

𝐹𝐶1, 𝐹𝐶2, ..., 𝐹𝐶𝑞
}: the collection of subset where each 𝐹𝐶𝑖 subsets specifies the options that must not be

present in the same shift of option 𝐹𝑖.
For instance, let 𝐹 = {4, 5, 7} and 𝐹𝐶 = {{1, 2} , {2} , {3, 6, 9}}. In this case, option 4 can not be present in a

shift that already have a car scheduled with option 1 neither 2. Similarly, option 5 and option 2 must not be scheduled
in the same shift, and a car with option 7 can’t be scheduled in the same shift of cars with options 3 or 6 or 9.
2.2. Objective functions

The goal of the problem is to reschedule affected cars minimizing five different objectives:
i. The number of high-priority constraints violations;

ii. The number of low-priority constraints violations;
iii. The total number of cars postponed by the sequence change;
iv. The overall cost associated with rescheduling;
v. The sum of positions by all postponed cars that are delayed;

vi. The maximum number of positions that a car was postponed. Each objective function is modeled below.
In equation 1, the first objective is modeled. High-priority constraints are related to critical options. If car 𝑠𝑖 causes

a high-priority constraint violation, then ℎ𝑖𝑔ℎ = 1; 0 otherwise. Thus, the objective is to minimize the occurrence of
high-priority constraints violations for all cars in the sequence.
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min 𝑂𝑏𝑗𝑖 =
𝑎
∑

𝑖=1
ℎ𝑖𝑔ℎ𝑖 (1)

On the other hand, non-critical options are part of the low-priority constraints. Objective 2, modeled in equation
2, consists of minimizing the occurrence of low-priority constraints violations in all cars in the sequence. Similar to
equation 1, if car 𝑠𝑖 presents a low-priority constraint violation, then 𝑙𝑜𝑤 = 1; 0 otherwise. The objective function
seeks to minimize the sum of 𝑙𝑜𝑤.

min 𝑂𝑏𝑗𝑖𝑖 =
𝑎
∑

𝑖=1
𝑙𝑜𝑤𝑖 (2)

Objective 3 is modeled in equation 3. If car 𝑠𝑖 was postponed, then 𝛿𝑖 = 1; 0 otherwise. Thus, the function seeks
to minimize the sum of cars that had to be postponed by user input or by constraints violations corrections.

min 𝑂𝑏𝑗𝑖𝑖𝑖 =
𝑎
∑

𝑖=1
𝛿𝑖 (3)

The cost function of objective 4 is presented mathematically in 4. The cost of a cars sequencing or resequencing
depends on the initial positions of each car that was postponed, given that the removal of a car from its initial position
and advancement of subsequent ones generates rework and waste costs proportional to how close this vehicle was to
the current moment before being postponed. Therefore, the cost function of equation 4, if car 𝑠𝑖 was postponed, will
be considered the cost of the initial position occupied by car 𝑠𝑖.

min 𝑂𝑏𝑗𝑖𝑣 =
𝑎
∑

𝑖=1
𝛿𝑖 ⋅ 𝐶𝑜𝑠𝑡𝑖 (4)

Similar to the previous equation, the objective function of 5, presented in equation 5, seeks to minimize the sum
of positions by all postponed cars that are delayed, therefore, if car 𝑠𝑖 was postponed, the distance between its initial
and final position will be considered in the sum that seeks to be minimized.

min 𝑂𝑏𝑗𝑣 =
𝑎
∑

𝑖=1
𝛿𝑖 ⋅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 (5)

Moreover, objective function 6 described in equation 6 seeks to minimize, instead sum, the maximum distance
between the initial and final position of a car 𝑠𝑖 that was delayed, that is, 𝛿𝑖 = 1.

min 𝑂𝑏𝑗𝑣𝑖 ={

max 𝛿𝑖 ⋅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
} (6)

Some of these objectives are often conflicting. Therefore, for a multi-objective optimization there is a set of trade-
off optimal solution, called Pareto Front. With this, the decision makers can choose the best solution according to
post-analysis preference information (Bui and Alam, 2008).

Section 3 presents the optimization approach and algorithm to search the Pareto Front.

3. Solution approach
As previously presented, some of the objectives are often conflicting, so the optimization algorithm must result in

a set of tradeoff solutions to balance all objectives, called the Pareto Front. Because of this conflict, it is difficult to
compare these solutions to determine which is the best solution, so they are compared in the form of Pareto dominance
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(Ning et al., 2018). This means that two dominant solutions, which are part of the Pareto Front, cannot be directly
compared to each other because one is better at objective i, for example, and the other is better at objective iii.

In the company studied, assembly sequence rescheduling is made with significant frequency, weekly or often daily.
Because of this, the solution approach had to be fast and user-friendly. Therefore, the algorithm developed was written
in Visual Basic for Applications (VBA), a programming language integrated with Excel, given the ease of use of the
tool and its usability by the company’s employees.

First, the user inputs the 𝑆 assembly sequence and 𝑍 shifts numbers (this step can be done manually or
automatically, through system integration), the 𝐾 number of iterations, as well as the 𝑅 cars that should be postponed
and their respective 𝑃 minimum positions. Then, the algorithm removes the 𝑅 cars from the sequence 𝑆 and advances
the subsequent ones, in order to follow the two main optimization steps: the correction of the constraints that were
violated with the removal of these cars, and the construction of the Pareto Front.

A characteristic of the problem is that, due to inventory limitations linked with JIT system, cars scheduled to start
production up to 5 hours after the current moment (approximately the first 30 positions) that are not included in set 𝑅
cannot be changed, even if they are causing constraint violations. Thus, after removing the 𝑅 cars and bringing forward
the subsequent ones, the algorithm checks and corrects the constraints by postponing cars that are scheduled after the
first 30 positions, pointing out, if any, the violations within this interval without correcting them. The correction of each
constraint follow correction heuristics presented in the section 4. After correcting all constraint violations, the algorithm
inserts the𝑅 cars that were removed in the sequence again, starting from their respective 𝑃 minimum positions so as not
to generate new constraints violations. Then, it updates the dominance analysis between the solutions. The process is
repeated until the number of solutions defined by the user (𝐾) is generated, according to the metaheuristic presented in
section 3.1. In each iteration, a new solution is generated to update the Pareto dominance analysis given the randomness
present in the correction process. Thus, the metaheuristic is classified as multi-start because it generates new solutions
in each iteration, and the greater the number of iterations, the more solutions will be generated. Finally, the solutions
of the Pareto Front are presented to the user, highlighting the value sof the objective functions, decision variables and
highlighting the remaining constraint violations and the cars that had their positions changed. The structure of the
algorithm is presented in Figure 2.

𝐒𝐍 ∈ 𝐑

S୒

Figure 2: Algorithm structure

3.1. Car resequencing problem metaheuristic
The metaheuristic of the car resequencing problem proposed in this study was named CRP. The metaheuristic

procedure is presented in the pseudocode 1, then, are presented the heuristic for generating new solutions in 2 and the
heuristic for correcting constraints in 3.
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First, 𝑃𝑎𝑟 receives the set of all inputs made by the user, including the sets described in the 2 section, number
of iterations, among others, that is: 𝑃𝑎𝑟 = {

𝑆,𝑅, 𝑃 ,𝐾,𝐿𝑖𝑚𝑖𝑡, 𝑜𝑗 ,
}. The number of iterations performed is provided

by the user, and in each iteration a solution is found. The fewer iterations, the faster the algorithm will run, but the
lower the chance of finding the dominant solutions that are closest to the optimum, which consists of a 6-dimensional
graphic, where each dimension refers to the value of each objective function. Moreover, 𝐿𝑖𝑚𝑖𝑡 is the maximum number
of positions that each car can be postponed (except those in set 𝑅). Then, the heuristic presented in the algorithm
1 generates the initial solution (𝑆𝑜𝑙𝑏𝑒𝑠𝑡), which is Pareto Front. Finally, the multi-start metaheuristic runs during 𝐾
iterations randomly changing the order of constraint correction, generating new solutions with CRP heuristic presented
in 2 and updating the Pareto Front in each iteration.

Dominance analysis of the UpdatePareto function consists of comparing the current solution with each solution
fixed in the Pareto Front until then through the value of their objective functions. If the solution found is not dominated
by any previous solution, it enters the Pareto Front as follows: if the current solution is better than some previous
solution(s) of the Pareto Front in at least one objective and equal in the other objectives, the current solution dominates
the other in question and replaces it in the Pareto Front; If there is no other solution that the current solution can replace
(i.e. it does not dominate any previous solution) but no previous solution dominates the current one, it enters the Pareto
Front because it is not dominated by any other solution. Thus, the Pareto Front is formed by all non-dominated solutions.
After updating the dominance analysis between the solutions, the algorithm generates another solution by changing
the order of correction of the constraints in line 7 and, thus, generating different solutions, since the order of correction
of the constraints changes the final assembly sequence.

Algorithm 1 Multi-Start Metaheuristic
1: 𝑃𝑎𝑟 = 𝑈𝑠𝑒𝑟𝐼𝑛𝑝𝑢𝑡()
2: 𝑘 = 𝑃𝑎𝑟.𝐾
3: 𝐶𝑜𝑛𝑠𝑡 = {1, 2, 3, 4, 5}
4: 𝑆𝑜𝑙𝑏𝑒𝑠𝑡 = 𝐶𝑅𝑃 (𝐶𝑜𝑛𝑠𝑡, 𝑃 𝑎𝑟)
5: 𝑃𝑎𝑟𝑒𝑡𝑜 = UpdatePareto (𝑆𝑜𝑙𝑏𝑒𝑠𝑡

)

6: for 𝑖 = 1, ..., 𝐾 do
7: 𝐶 = Randomize (Const)
8: 𝑆𝑜𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐶𝑅𝑃 (𝐶, 𝑃𝑎𝑟)
9: 𝑃𝑎𝑟𝑒𝑡𝑜 = UpdatePareto (𝑆𝑜𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡

)

10: end for

As presented previously, new solutions (i.e., new resequencings) are generated in each iteration by the CRP heuristic
presented in 2, which uses as inputs the order of the constraints generated in pseudocode 1 and the user inputs 𝑃𝑎𝑟.
First, the original assembly sequence 𝑆 is stored, with the cars ∈ 𝑃 already removed, the cardinality of 𝑆, that is,
the size of the assembly sequence, the 𝑅 and 𝑃 sets, as well as the number of cars to be postponed (cardinality of
𝑃 ). The high-priority constraints, inputed by user, are included in HPC in line 6. In lines 7-11, the constraints are
corrected in the required order through the CH correction heuristic presented in 3. After correcting the constraints, in
lines 12-18 all the 𝑏 cars of 𝑅 (set of cars to be postponed) are inserted in the line sequence in the first positions after
their respective 𝑃 minimum positions, so as not to generate new violations of the constraints, and then the other cars
positions are changed to give space for them. Thus, the main strategies for generating new solutions are changing the
order of constraint correction and the randomness present in the correction heuristic, which increases the number of
solutions explored in the search space.
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Algorithm 2 CRP(Const, Par)
1: 𝑆 = 𝑃𝑎𝑟.𝑆
2: 𝑎 = |𝑆|
3: 𝑅 = 𝑃𝑎𝑟.𝑅
4: 𝑃 = 𝑃𝑎𝑟.𝑃
5: 𝑏 = |𝑃𝑎𝑟.𝑃 |
6: HPC = 𝑃𝑎𝑟.HPC
7: for 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 1, ..., |𝐶𝑜𝑛𝑠𝑡| do
8: if 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is violated then
9: 𝑆 = CH(𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑆, 𝑃 𝑎𝑟)

10: end if
11: end for
12: for 𝑖 = 1, ..., 𝑏 do
13: 𝑗 = FirstPosition (

𝑟𝑖, 𝑝𝑖
)

14: for 𝑦 = (𝑗 + 1), ..., 𝑎 do
15: 𝑠𝑦 = 𝑠𝑦−1
16: end for
17: 𝑠𝑗 = 𝑟𝑖
18: end for

4. Correction heuristic
The constraints violations correction heuristic of the problem was implemented with different algorithms for each

constraint. The logic of the correction heuristic is presented in the algorithm 3. A characteristic of the problem is that,
since the system is JIT, the cars to be produced are already sold, so they cannot be postponed for a long time due
to customer demand, with a limit on the positions that each car can be postponed (except those in set 𝑅), this limit is
included in 𝐿𝑖𝑚𝑖𝑡 from the user input. The analysis of each constraint is performed on all cars in the sequence 𝑆, which
contains 𝑎 cars (line 2), and according to line 5 of the pseudocode, the cars that are not part of the set of unfeasible
cars are checked, that is, that cannot be allocated without causing constraint violations. At the end of the process, these
cars are highlighted to the user so that there can be negotiation about the conditions of their production. Thus, when
identifying a car 𝑠𝑥 that causes a violations of this constraint, the possible positions subsequent to its original position
are checked to relocate it within this limit, as per line 6 to line 10. If there are no feasible positions within this range, as
per line 11, this car is considered infeasible and is disregarded in the correction of the other restrictions. Otherwise, to
contribute to new solutions and avoid the Pareto Front search focusing on local searches, a random position is chosen
among the set of possible positions to relocate the car 𝑠𝑥 in line 14, and thus all other cars between the previous and
future positions of this car are brought forward.
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Algorithm 3 CH(Constraint, S, Par)
1: 𝐿𝑖𝑚𝑖𝑡 = 𝑃𝑎𝑟.𝐿𝑖𝑚𝑖𝑡
2: 𝑎 = |𝑆|
3: Unf= ∅
4: for 𝑥 = 1, ..., 𝑎 do
5: if 𝑠𝑥 ∉ Unf car is causing violation of 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 then
6: for 𝑃𝑜𝑠_𝑎𝑓𝑡𝑒𝑟 = 𝑥 + 1, ..., 𝑥 + 𝐿𝑖𝑚𝑖𝑡 do
7: if 𝑃𝑜𝑠_𝑎𝑓𝑡𝑒𝑟 car is a feasible position for 𝑠𝑥 car then
8: 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑃𝑜𝑠_𝑎𝑓𝑡𝑒𝑟
9: end if

10: end for
11: if 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 == ∅ then
12: 𝑈𝑛𝑓 = 𝑠𝑥
13: else
14: 𝑒 = randomly chosen element of 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒
15: 𝑐𝑎𝑟 = 𝑠𝑥
16: for 𝑦 = 𝑥, ..., 𝑒 − 1 do
17: 𝑠𝑦 = 𝑠𝑦+1
18: end for
19: 𝑠𝑒 = 𝑐𝑎𝑟
20: end if
21: end if
22: end for

4.1. Gap constraint violation correction
The specific algorithm for the Gap constraint of the correction heuristic consists of checking, for each set of

constraints𝐺𝑖, whether there is any violation. If there is, the algorithm selects the first car𝑤 that is causing the constraint
violation at element 𝑖 and checks the set of previously unanalyzed positions before and after 𝐺𝐶𝑖 consecutive cars with
options not included in 𝐺𝑖. Following the logic of the heuristic, a position 𝑗 called from this set is chosen to insert car
𝑤. If there are no possible positions, the car is considered infeasible. Then, the algorithm checks the other cars and
options of the sets 𝐺. Figure 3 presents the process in the form of a flowchart.
4.2. Consecutive cars constraint violation correction

Similar to the previous algorithm, the constraint violation correction of the "Consecutive cars" constraint also
checks each set 𝐶𝑖. When searching for the possible positions to relocate the selected car for removal, the algorithm
checks those that have at most 𝐶𝐶𝑖 consecutive cars with option(s) 𝐶𝑖 immediately before or after, since when inserting
car 𝑤 in this position there will be 1 more occurrence of these options. The logic can be analyzed in the Figure 4.
4.3. Neighbor cars constraint violation correction

To correct violations in the "Neighbor cars" constraint, unlike the previous ones, instead of selecting the first car
in the sequence that causes a violation, the following procedure is followed: in the first violation, either the car that has
options from the set 𝑁𝑖 or the car with options belonging to 𝑁𝐶𝑖 is randomly selected. Thus, when reallocating the
selected car, the positions that do not have cars with options from the forbidden (opposite) set programmed immediately
before or after are mapped. Then, as in the other correction algorithms, a position is chosen randomly among these.
The procedure is shown in Figure 5.
4.4. Quantity constraint violation correction

Similar to the previous algorithm, when correcting violations of the Quantity constraint, the car to be removed is
randomly chosen among those that are part of the first violation of the restriction. Then, the procedure is repeated as
previously presented, as shown in Figure 6.
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Figure 3: Gap constraint correction (Constraint=1 in Algorithm 3)
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Figure 4: Consecutive cars constraint correction (Constraint=2 in Algorithm 3)

4.5. Forbiddance constraint violation correction
The correction of violations of the Forbiddance constraint is the one that differs the most from the others, due to

the nature of the constraint. First, a function counts the number of occurrences of cars that have options from the set 𝐹𝑖
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Figure 5: Neighbor cars constraint correction (Constraint=3 in Algorithm 3)
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Figure 6: Quantity constraint correction (Constraint=4 in Algorithm 3)

and the number of cars that have options belonging to 𝐹𝐶𝑖. If the second quantity is greater than the first, the cars with
options from the set 𝐹𝑖 are chosen for removal, and vice-versa, to ensure that the smallest possible number of cars will
be removed from that turn, contributing to objective functions and a better result of this solution. Then, the possible
positions for insertion of each removed car are raised and chosen randomly. The logic of this correction is shown in
Figure 7.
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Figure 7: Forbiddance constraint correction (Constraint=5 in Algorithm 3)

5. Implementation
The proposed solution was implemented in VBA and linked to a Workbook developed in Excel, a tool chosen due

to its wide application in the company where the study was conducted and its usability by planners. As a result, the
tool, in one click, automatically resequences the cars and returns to the planner the sequences, among those in the
Pareto Front, that have the best values of each objective function, as shown in Figure 8.

Figure 8: Final tool to car resequencing problem

To evaluate the performance of the final tool, computational tests were performed. Tests were performed based on
real scenarios by an experienced professional in the field, and a comparison was made between the sequence generated
by manual and automatic resequencing. The data consisted of sequences from 3 different production lines: the assembly
sequence of line 1, with an average of 1300 cars, line 2, with 700 cars, and line 3, with 60 cars. The tests began with
line 3, then line 2, and finally line 1, given the volume of cars present in the assembly sequence. The tests were run
with 20 instances, totaling 60 test cases.
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5.1. Execution time
The results of the computational time (performed with K = 100), in minutes, calculated on all test instances are

summarized at Table 1:

Instance Cars Postponed Line 1 (s) Line 2 (s) Line 3 (s)
1 3 123 73 8
2 3 126 75 7
3 3 121 75 10
4 3 124 72 7
5 3 128 73 9
6 4 128 70 9
7 4 126 70 10
8 4 122 72 8
9 4 123 72 9
10 4 127 71 8
11 5 124 69 8
12 5 124 73 9
13 5 128 71 8
14 5 126 72 8
15 5 122 75 9
16 6 120 73 9
17 6 128 70 10
18 6 126 73 10
19 6 128 74 9
20 6 120 74 8
21 7 125 76 11
22 7 123 69 10
23 7 121 70 11
24 7 121 71 11
25 7 120 72 10
26 8 121 74 9
27 8 121 74 9
28 8 127 73 11
29 8 126 69 11
30 8 121 69 10
31 9 122 76 11
32 9 127 69 10
33 9 122 76 9
34 9 124 71 10
35 9 120 74 10
36 10 131 71 10
37 10 123 74 10
38 10 124 70 11
39 10 132 76 11
40 10 121 74 10
41 11 124 70 11
42 11 129 69 10
43 11 132 74 11
44 11 131 71 10
45 11 120 71 10
46 12 123 74 11
47 12 122 74 11
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Instance Nº of cars postponed Line 1 (sec) Line 2 (sec) Line 3 (sec)
48 12 134 75 10
49 12 125 75 11
50 12 123 72 10
51 13 129 71 11
52 13 124 74 12
53 13 133 75 11
54 13 127 74 12
55 13 129 73 11
56 14 131 75 11
57 14 129 71 11
58 14 129 71 12
59 14 122 71 12
60 14 125 75 11

Table 1: Computational times

Therefore, the average execution time can be presented as:
• Line 1 (1300 cars): average of 2 minutes per instance;
• Line 2 (700 cars): average of 1 minute and 10 seconds per instance;
• Line 3 (60 cars): average of 9 seconds per instance.

Compared to the manual process, which took approximately 10 minutes per adjustment, considering the average
time of the most frequent cases (line 1, with 5 to 10 cars to be changed), the solution created achieved an average
reduction of 90% in resequencing time.
5.2. Objective Function Performance

Given the multi-objective nature of the CRP problem, the values of each objective function were recorded in all
instances in the manual and automatic rescheduling using the developed tool. The following results were observed
with the use of the tool compared to the manual process:

i) Number of high-priority constraints violations: average reduction of 23%;
ii) Number of low-priority constraints violations: average reduction of 40%;

iii) Total number of cars postponed: average reduction of 25%;
iv) Cost of the rescheduling: average reduction of 38%;
v) Sum of positions by all postponed cars: average reduction of 47%;

vi) Maximum number of positions that a car was postponed: average reduction of 33%.
5.3. Comparison with Manual Solutions

A comparative analysis was performed between the solutions found by manual rescheduling, performed by
experienced planners, and the automatic one by the created tool, solving the same test cases. The results showed
that:
• The solutions generated by the automatic tool outperformed or remained equal to the manual solutions in all six

objectives;
• Manually generated solutions often failed to reach the Pareto Front, resulting in more constraint violations,

postponements and, therefore, costs.
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5.4. Financial Impact
To measure the financial impact of the implementation, the annual cost was used through the value of the employ-

ees’ hours used to calculate the benefits of improvement projects, by company standard. Before the implementation of
the tool, planners took about 10 minutes per adjustment. Considering an average of 3 sequence adjustments per week
on the 3 lines, a total of 9 resequencings per week, over a year with 50 productive weeks, totaled 4,500 minutes per
year. Considering a cost of R$220.00/h, there was an annual resequencing cost of R$16,500.00 before implementation.

With the tool developed in the study, adjustments take an average of 1 minute, reducing the annual time to 450
minutes (a 90% reduction in time) and thus, the cost to R$3,300.00 limited to the Pareto Front analysis time of 2
minutes per adjustment (80% reduction in cost).

6. Conclusions
This study addressed the Car Resequencing Problem in a way that was unprecedented in the literature, seeking to

optimize different real-world objectives and reconciling aspects of non-violation of CSP constraints with the leveling
of the LSP workforce through different constraints. For this purpose, a multi-start metaheuristic was proposed, and
two heuristics were developed, one for generating new solutions and the other for correcting constraint violations, for
resequencing cars that must be postponed due to missing parts, unavailability of machines, etc.

The algorithms were applied in VBA through a tool developed in Excel, given the usability of the tool in the
production scheduling areas of different companies. One click is all it takes for the developed tool to search for the
Pareto Front and show the user the best options to aid decision-making, outperforming the manual alternatives in all
objectives.

The implementation of the study through the tool achieved significant improvements in the different problem
objectives, as well as in the resequencing time and reliability of the information. The tool developed automated the
sequence change process, making the process faster and more reliable, through a robust method, involving multi-
start metaheuristics and CRP heuristics, through a user-friendly software with wide application, Excel. Thus, all
computational results showed improvements in different aspects, such as resequencing time, indicators, quality of
the Pareto Front to support decision making, and cost. The user-friendly interface of the implementation, when carried
out in Excel, facilitated adoption and acceptance by the company’s planners, who were able to make adjustments
efficiently while evaluating the Pareto Front at the time of decision-making. The perceived financial benefits further
highlight the relevance of the solution. A limitation of the study is the network integration with supplier sequencing to
further increase the reliability of resequencing.

For future research, alternative metaheuristic approaches and advanced software, in addition to Excel, as applica-
tions, are suggested to further optimize implementation performance.
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