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Abstract

Purpose: This study develops a machine learning framework to predict which con-
sumer goods categories in Brazil will experience accelerated transitions to shared
manufacturing models, addressing the critical gap between infrastructure develop-
ment timelines and market dynamics.

Design/methodology/approach: Using five years of product launch data from the
Brazilian consumer goods industry, this study uses a three-phase methodology: (1)
classification of manufacturing intensity and trend analysis, (2) development of an
XGBoost classification model to predict acceleration events at the category level,
and (3) generation of category-specific 24-month forecasts using compound annual
growth rates (CAGR) statistical projections.

Findings: Analysis reveals divergent patterns at the category level rather than uni-
versal directional shifts. While mature categories (Beauty, Personal Care) show de-
clining co-manufacturing reliance over 2019-2024, growth categories (Beverages-
Alcoholic +4.1 ppt, Food-Chilled +3.0 ppt) show accelerating adoption. The clas-
sification model achieves 81% Area Under ROC Curve (AUC-ROC) in identifying
acceleration periods, while CAGR-based statistical projections generate category-
specific 24-month forecasts.

Originality/value: This research introduces outsourcing dynamics at the category
level as a new unit of analysis, shifting from firm level to market level prediction.
Unlike prior firm-centric and descriptive approaches, the framework identifies accel-
eration patterns and temporal momentum dynamics consistent with collective adop-

tion processes, enabling proactive capacity planning.
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1 Introduction

Brazil’s consumer goods manufacturing sector faces increasing tension between long in-
vestment lead times and rapidly evolving market demand. According to the FGV IBRE
Utilizacao da Capacidade Instalada (NUCI) index, industrial capacity utilization reached
83.40% in July 2024, the highest level since May 2011, indicating that industrial facil-
ities are operating close to their effective capacity limits (FGV IBRE, 2025). However,
this aggregate measure hides significant variation across product categories. Some still
have idle capacity, while others, particularly in food, are operating close to full utilization
(CNI, 2022).

In Brazil, establishing or expanding manufacturing operations involves multiple se-
quential licensing and construction stages that can extend over several years before pro-
duction begins, reflecting the country’s complex regulatory environment and infrastruc-
ture requirements (MMA, 2018; CNI, 2022). During the same period, product portfolios
change significantly: analysis of proprietary product launch database data reveals that
product launch patterns show high quarterly volatility, with more than 13,800 new stock
keeping units (SKUs) introduced annually across major categories (2019-2024 average).
This mismatch between slow infrastructure cycles and dynamic product lifecycles cre-
ates planning inefficiencies that cannot be addressed through descriptive statistics alone.
Manufacturing value added represents approximately 11 to 13% of GDP in Brazil (World
Bank, 2025; IBGE, 2025), making efficient capacity allocation strategically important for
industrial policy.

Traditional decision frameworks such as Transaction Cost Economics (TCE) (Williamson,
1985) and the Resource-Based View (RBV) (Barney, 1991) explain why individual firms
outsource manufacturing, but they provide no predictive mechanism for when entire prod-
uct categories undergo coordinated shifts toward third-party production. Existing machine
learning research in manufacturing remains focused on operational quality control and
process optimization (Tercan and Meisen, 2022; Wuensche and Upadhyay, 2023) rather
than forecasting structural outsourcing trends at the market level.

To address this gap, the present study develops a predictive framework for outsource-
ing adoption at the category level in Brazil. By combining five years of product launch
data (proprietary database, 2019-2024) with machine learning models (XGBoost, Ran-
dom Forest, Ensemble), the study identifies indicators of outsourcing acceleration and

quantifies their predictive performance. This research defines outsourcing acceleration as



periods when the rate of increase in a category’s co-manufacturing ratio exceeds its his-
torical 75th percentile. In this study, the terms “outsourcing” and “‘co-manufacturing”
are used interchangeably to refer to third-party production arrangements, where “co-
manufacturing” specifically denotes collaborative production where third parties man-
ufacture products, and “outsourcing” represents the broader concept that encompasses

co-manufacturing along with other forms of third-party production.

1.1 Research Context

Brazil’s consumer goods sector exhibits divergent co-manufacturing trajectories across
categories. Analysis of proprietary database data (2019-2024) reveals that 33% of prod-
uct launches involve third-party manufacturing, with significant variation across cate-
gories (ranging from 21% to 47%). However, these categories do not follow uniform
trends: some show declining co-manufacturing reliance (Beauty -5.2 ppt, Personal Care
-2.7 ppt), while others show accelerating adoption (Beverages-Alcoholic +4.1 ppt, Food-
Chilled +3.0 ppt), and others remain stable (Beverages-Non-Alcoholic -0.3 ppt). This
heterogeneity suggests that category factors, rather than economic trends, drive outsourc-

ing patterns.

1.2 Research Gap

The literature on collaborative manufacturing provides extensive analysis at the firm level
but lacks predictive frameworks at the market level. Three research gaps follow. First,
existing studies analyze decisions at the firm level without modeling adoption patterns
at the category level that may exhibit threshold or network dynamics (Katz and Shapiro,
1985). Second, co-manufacturing literature remains descriptive, documenting trends ret-
rospectively (Gereffi et al., 2005; Druck and Franco, 2016), with little forecasting. Third,
forecasting frameworks are largely derived from advanced economic contexts (Sturgeon,
2002), with limited application to emerging markets despite contributions (Ernst and Kim,
2002).

1.3 Research Questions

This study addresses the critical gap in predictive intelligence at the market level for
collaborative manufacturing through one overarching question and two operational sub-
questions:

Primary Research Question: Which consumer goods categories in Brazil will expe-

rience accelerated transitions to co-manufacturing models, and how can machine learn-



ing predict these shifts at the category level to guide infrastructure investment?

Operational Sub-Questions:

RQ1: How do current third-party manufacturing adoption patterns vary across Brazil-
ian consumer goods categories, and what manufacturing intensity thresholds trigger out-
sourcing transitions?

RQ2: Which features (e.g., temporal lags, launch activity, market concentration, and
seasonality) have the highest predictive power for co-manufacturing acceleration at the

category level?

1.4 Contributions

This research makes four contributions:

First, theoretical: This research introduces outsourcing dynamics at the category
level as a unit of analysis, demonstrating that transitions at the market level operate
through mechanisms distinct from decisions at the firm level. The framework identi-
fies threshold effects and network externalities that create coordinated category shifts,
extending TCE and RBV theories beyond their traditional firm-centric scope.

Second, methodological: The study develops a machine learning framework combin-
ing manufacturing intensity classification, time series feature engineering, and a gradient-
boosting model (XGBoost) calibrated for emerging-market data constraints.

Third, empirical: Analysis of 83,243 product launches reveals heterogeneous cate-
gory patterns.

Fourth, practical: The framework enables category specific capacity planning. Re-
sults inform infrastructure investment prioritization and regulatory policy design, with
potential for significant efficiency gains through better alignment between infrastructure

development and forecasted demand patterns at the category level.

2 Literature Review

2.1 Theoretical Foundations of Manufacturing Outsourcing

Manufacturing outsourcing decisions are traditionally explained through Transaction Cost
Economics (Williamson, 1985) and the Resource-Based View (Barney, 1991; Prahalad
and Hamel, 1990). These frameworks at the firm level explain why individual firms out-
source based on asset specificity, transaction costs, and core competencies, but they lack
mechanisms for predicting when entire categories undergo coordinated transitions toward

co-manufacturing (Mclvor, 2009; Holcomb and Hitt, 2007). The binary make-or-buy



logic and company centered scope of TCE and RBV cannot capture market dynamics that

create transition patterns at the category level.

2.2 Co-Manufacturing in Emerging Markets

The evolution of co-manufacturing in emerging markets follows different paths from de-
veloped economies, with contract manufacturers progressively developing capabilities
from simple assembly to full-package production (Gereffi et al., 2005, pp. 92-98). In
Latin America, multinational brands sought local partners to navigate regulatory com-
plexity and reduce logistics costs (Durdan Lima and Zaclicever, 2013). Infrastructure con-
straints and institutional gaps shape the development of co-manufacturing, with Brazilian
companies navigating these challenges through relationship oriented contracts and repu-
tation (Khanna and Palepu, 2010; Neves et al., 2014, pp. 41-44).

2.3 Manufacturing Forecasting: Methodological Gap

Machine learning applications in manufacturing have expanded substantially, but the lit-
erature concentrates on operational use cases (predictive quality, predictive maintenance,
shop floor monitoring, and process control) rather than strategic forecasting at the market
level (Aggogeri et al., 2021; Plathottam et al., 2023; Farahani et al., 2023a,b; Tercan and
Meisen, 2022; Chen et al., 2023). While ensemble and hybrid approaches show promise
for demand forecasting (Sina et al., 2023; Ma et al., 2023; Siddiqui et al., 2021; Li, Wang
and Chan), prior studies focus on predictions at the product level or firm level and do
not develop market wide forecasting at the category level of manufacturing-organization

shifts, leaving a critical gap for planning.

2.4 Research Framework Development

This study introduces outsourcing dynamics at the category level as a framework extend-
ing theories at the firm level to capture market transitions exhibiting temporal patterns
consistent with collective adoption processes (Katz and Shapiro, 1985; Bikhchandani
et al., 2021). Category characteristics, market maturity, and Brazil regulatory hetero-
geneity shape co-manufacturing evolution (Baldwin and Clark, 2000; Christensen and
Raynor, 2003; CNI, 2022). The framework synthesizes these elements, using observable
indicators (launch patterns, concentration metrics, and temporal trends) as benchmarks
for underlying constructs to predict acceleration periods at the market level invisible to

firm/company focused analysis.



3 Methodology

3.1 Research Design and Data

This study uses a predictive design combining data analysis with machine learning to
develop predictions for infrastructure planning. The research follows a three-phase ap-
proach: (1) manufacturing intensity classification and trend analysis, (2) predictive model
development using machine learning, and (3) category specific forecast generation with
prediction intervals.

Figure 1 illustrates the research process flow across three phases. The methodology
progresses from data collection and outsourcing detection to exploratory trend analysis, in
complementary prediction tasks: ML classification for timing and statistical projections

for magnitude.
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Figure 1: Research Process Flow: Three Steps Methodology Combining ML Classifica-
tion and Statistical Projections

The study analyzes product launch data from the Brazilian consumer goods industry

spanning January 2019 to December 2024, covering 83,243 unique product introductions

across 12 major categories. The launch database is sourced from a proprietary product

launch database for Brazil (2019-2024). Coverage is estimated at Approximately 85% of

branded product launches in formal retail. Records were deduplicated and normalized as

detailed in supplementary material.

The unit of analysis is the category month observation, yielding 864 observations

(12 categories x 72 months). This temporal granularity balances statistical power with



practical relevance for infrastructure planning cycles. The study defines categories us-

ing the standard industry classification adapted for Brazilian market structure: (1) Food—
Ambient, (2) Food—Chilled, (3) Beverages—Alcoholic, (4) Beverages—Non-Alcoholic, (5) Beauty,
(6) Personal Care, (7) Home Care, (8) Pet Care, (9) Health & Wellness, (10) Snacks & Con-
fectionery, (11) Dairy, and (12) Bakery. These 12 canonical categories aggregate 37
dataset categories based on infrastructure requirements, regulatory treatment, and supply

chain characteristics (see supplementary material for complete mapping and aggregation
rationale).

Table 1 summarizes the dataset structure. The sample includes 83,243 product launches
from 1,247 unique companies across 12 product categories over 72 months (January 2019
to December 2024). Private label products account for 15.7% of launches and are classi-
fied as outsourced based on industry structure. The unit of analysis is the category month,

at 864 observations for modeling.

Table 1: Dataset Summary Statistics

Characteristic Value
Sample Period January 2019 - December 2024
Total Product Launches 83,243
Unique Companies 1,247
Product Categories 12
Observations (Category Months) 864
Manufacturing Classification

Private Label Products 13,071 (15.7%)

Clear Outsourcing (Name Mismatch) 14,650 (17.6%)

In-House Production 55,522 (66.7%)
Geographic Coverage

Formal Retail Coverage Approximately 85%

Primary Regions All Brazilian states

3.1.1 Outsourcing Detection Methodology

The study uses multiple steps to identify co-manufactured products:

1. Private label classification: Products marked as “Private Label” or “Marca Pri-
vada” (15.7% of launches) are classified as outsourced. This represents an upper

bound assumption, as some retailers may operate captive manufacturing facilities



for specific categories (e.g., retailer owned bakeries for fresh bread, vertical inte-
gration in dairy by cooperative retailers). However, this classification is justified
by three industry characteristics: (1) major Brazilian retailers (Carrefour, GPA/Pao
de Acticar, Walmart Brasil) lack broad manufacturing infrastructure and publicly
disclose co-manufacturing partnerships for store brands, (2) capital intensity and
regulatory complexity make retailer owned production economically unfavorable
for most categories, and (3) manual validation of 500 randomly sampled private
label products confirmed 89% had identifiable third-party manufacturers, with the
remaining 11% showing no evidence of retailer owned production. Robustness
checks show stable category rankings under +20% reclassification scenarios (Sec-
tion 4.4), indicating that even if a meaningful portion of private label products were
misclassified, the relative category patterns and forecasts remain substantively sta-
ble. Note that “Produto com Marca” (Product with Brand) indicates branded prod-
ucts and is not considered private label.

2. Name normalization: Manufacturer and company names are standardized by re-
moving legal suffixes (“LTDA”, “S.A.”, “Inc.”), accents, and punctuation, then ex-

tracting core business name tokens.

3. Fuzzy string matching: RapidFuzz library (Python library) detects name varia-
tions (e.g., “BRF” vs “BRF — Brasil Foods™) using similarity thresholds: > 90%
similarity indicates in-house production, < 70% indicates outsourcing. Thresholds

validated on labeled subset (supplementary material).

4. Parent-subsidiary mapping: Known corporate group relationships (JBS-Seara,
Lactalis-Itambé, BRF-Sadia) are identified through fuzzy containment detection

and treated as in-house production.

5. Tiebreaker rules: Medium-confidence cases (70-85% similarity) use token over-

lap analysis for final classification.

This methodology results an overall outsourcing rate of 33%, with private label ac-

counting for 15.7% and manufacturer-company mismatches accounting for 17.6%.

3.2 Variable Construction
3.2.1 Dependent Variables

The study constructs four dependent variables capturing different dimensions of co-manufacturing
adoption at the category level: the primary outsourcing ratio, its growth rate, a binary ac-

celeration indicator, and a categorical transition stage variable.
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Outsourcing ratio (OR): The primary dependent variable quantifies co-manufacturing

adoption at the category level, defined as:

ORcyt _ Nco—manufactured,c,t (1 )

Ntotal,c,t

where ¢ denotes category, ¢ denotes time period (month), Nco—manufactured 1S the count
of product launches manufactured by third parties and N, is total launches in category
month. This metric ranges from O (full vertical integration) to 1 (complete outsourcing).
To address volatility in monthly launch counts, the analysis applies three-month moving
averages: OR.; = %Z?:o OR.; ;.

Growth rate (AOR): Measures month-over-month change in the outsourcing ratio:
AORc,t = ORc,t - ORc,tfl (2)

This first difference transformation captures the velocity of transitions at the category
level. Positive values indicate increasing co-manufacturing reliance, while negative values
suggest reversion to vertical integration.

Acceleration indicator (Accel): A binary classification variable identifying periods

of rapid outsourcing growth, defined as:
Accel.y = 1(AOR.; > Pr5(AOR,.)) 3)

The variable equals 1 when growth exceeds the historical 75th percentile for that cate-
gory. This category specific threshold accounts for heterogeneous baseline volatility and
identifies statistically unusual adoption increases.

Transition stage: A categorical variable classifying categories into low (OR < 0.25),
medium (0.25 < OR < 0.40), or high (OR > 0.40) outsourcing regimes. These thresh-
olds segment the adoption distribution into approximately equal terciles, enabling analysis

of non-linear dynamics across adoption phases.

3.2.2 Independent Variables

The predictive models incorporate 18 predictor variables organized into two feature cat-
egories: temporal patterns and market structure features. Table 2 summarizes the feature
categories and their theoretical foundations.

Temporal Features (13): Time-series patterns capture momentum, trends, and cycli-
cal dynamics in outsourcing adoption:

* Outsourcing lag variables (OR.;_j, for k € {1,3,6,12} months) capture recent

adoption history at multiple temporal scales, reflecting path dependence from learn-
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Table 2: Feature Categories and Definitions

Category (quan- Feature Definition
tity)
Outsourcing lag features ORatt—1,t—3,t—6,t— 12 months
Launch lag features Launch count at ¢ — 1, £ — 3 months
Trend slope 6-month linear regression coefficient
Rolling mean (6m) 6-month mean outsourcing ratio
Rolling SD (6m) 6-month standard deviation
Rolling mean (12m) 12-month mean outsourcing ratio
Temporal (13) Rolling SD (12m) 12-month standard deviation
Quarter Temporal quarter (1-4)
Q4 indicator Binary flag for fourth quarter
Launch count Total product launches in category-
month
Market/Structure (5)Number of companies Active companies in category
Number of manufacturers Active manufacturers in category
Market concentration Herfindahl-Hirschman index
1/(Neompanies + 1)
Average intensity Mean outsourcing ratio in category

ing effects and switching costs (Williamson, 1985).

* Launch lag variables (launch counts at t — 1 and ¢ — 3 months) capture recent prod-
uct introduction activity patterns that may signal demand dynamics at the category
level.

* Trend slope computes 6-month linear regression coefficients of outsourcing ratios
to identify acceleration or stabilization patterns.

* Rolling statistics (mean and standard deviation over 6-month and 12-month win-
dows) quantify medium term trend stability and volatility in outsourcing adoption.
The 6-month window captures quarterly dynamics, while the 12-month window
reflects annual patterns.

 Seasonality indicators (quarter variable and Q4 binary flag) capture retail calendar
effects, particularly the Q4 launch surge driven by holiday product introductions.

Market/Structure Features (5): Category activity metrics and market structure char-

acteristics shape co-manufacturing adoption patterns:

* Launch count measures total product launches in the category-month, reflecting
overall market activity and innovation intensity.

* Number of companies and number of manufacturers count active brand owners and

production facilities, capturing the size and complexity of the category ecosystem.
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* Market concentration uses a simplified Herfindahl-Hirschman index (1/(Neompanies+
1)) to measure category consolidation. Higher values indicate concentrated markets
where leading firms may coordinate adoption decisions.

* Average intensity computes the mean outsourcing ratio within the category, reflect-

ing the baseline propensity toward co-manufacturing arrangements.

3.3 Analytical Approach
3.3.1 Phase 1: Exploratory Trend Analysis

To characterize how outsourcing evolves across categories and validate that different
categories follow different patterns, the study applies STL decomposition (Cleveland
and Cleveland, 1990) to each category’s time series. STL separates the outsourcing ra-
tio into three additive components: trend (7}), seasonal (S;), and residual (R;), where
OR.+ = T, + Sct + Rct. The method uses locally weighted polynomial regression
to extract non-linear trends that are robust to outliers, separating long-term directional
movements from cyclical patterns and irregular fluctuations.

This decomposition has two purposes. First, it provides visual evidence that cate-
gories follow distinct adoption paths, confirming the need for separate forecasts for each
category (Figure 3). Second, it reveals seasonal patterns in outsourcing adoption, partic-
ularly Q4 acceleration that corresponds to holiday launch cycles, which informs feature

engineering for the predictive models.

3.3.2 Phase 2: Machine Learning Pipeline

The predictive modeling follows best practices for time series machine learning:
Data Splitting: The methodology implements time-based splitting to prevent data
leakage:

* Training set: January 2019 to December 2022 (432 observations)
* Validation set: January 2023 to June 2023 (72 observations)
e Test set: July 2023 to December 2024 (216 observations)

Model Development: The study develops multivariate machine learning models (XG-
Boost, Random Forest, Ensemble) to leverage nonlinear feature interactions and ensemble
predictions.

XGBoost Classification. Extreme Gradient Boosting (Chen and Guestrin, 2016) im-
plements gradient boosted decision trees optimized for performance and regularization.

The algorithm builds an additive ensemble of trees sequentially, with each tree fitted to

12



the gradient of the loss function. The implementation uses parallel tree construction, reg-
ularization techniques (L1 and L2), and efficient handling of missing values to achieve
strong predictive performance on structured data.

Hyperparameters selected through grid search include: learning rate 0.1 (controls
overfitting), maximum depth 6 (permits six-way interactions), 200 boosting iterations
(balances convergence and cost), and subsample ratio 0.8 (improves generalization). These
settings enable XGBoost to capture nonlinear relationships between temporal patterns and
market structure features for binary acceleration prediction.

XGBoost is selected as the primary model for this study due to its superior predic-
tive performance across all metrics. Comparative evaluation across algorithms (Table 4)
shows XGBoost achieves the highest AUC-ROC (0.82) compared to Random Forest
(0.81) and Ensemble (0.82), with superior precision (0.55) and recall (0.60).

Category Forecasts with Statistical Intervals. Long-term forecasts (24 months) are
generated using historical compound annual growth rates (CAGR) extrapolated from
2019-2024 trends. Prediction intervals are constructed using historical volatility: for
each category, year-over-year growth rate standard deviations are calculated and scaled
by the square root of the forecast horizon (3 years), yielding 95% confidence intervals
via +1.960v/h. This approach provides category uncertainty quantification while avoid-
ing overfitting to recent patterns. The XGBoost classification model complements these
forecasts by identifying timing of acceleration events.

Prediction Tasks: The framework addresses two complementary prediction needs
through distinct methodologies, as illustrated in Figure 2. The first task uses machine
learning to identify acceleration timing, while the second uses statistical extrapolation to

quantify magnitude.
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Figure 2: Complementary Prediction Tasks: ML Classification for Timing and Statistical
Projections for Magnitude

Task 1: Acceleration Event Classification. The XGBoost classification model predicts
whether a category will experience acceleration events (defined as growth rates exceeding
the historical 75th percentile) in the subsequent month. This ML approach leverages the
18 features in Table 2 to identify early signals of structural transitions, informing capacity
planning timing decisions (Table 4).

Task 2: Category-Specific Magnitude Forecasting. Long-term outsourcing ratio pro-
jections are generated using CAGR-based extrapolation rather than machine learning re-
gression. This statistical approach calculates historical compound annual growth rates

(2019-2024) and projects 24 months forward, with prediction intervals constructed from
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historical volatility (+1.965v/h where h = 3 years). This method provides actionable
magnitude estimates for infrastructure investment sizing while avoiding overfitting to re-

cent patterns (Table 5).

3.3.3 Phase 3: Validation Strategy

Model validation uses multiple strategies to ensure robustness:

Time Series Cross-Validation: Five fold expanding window approach on the com-
bined training and validation set, generating splits that preserve temporal ordering. Each
fold incrementally adds data to the training set while testing on subsequent periods, pro-
viding robust performance estimates across different time horizons.

Final Evaluation: Models are evaluated on a test set (July 2023 to December 2024)

using classification metrics:

* Area Under ROC Curve (AUC-ROC): Primary metric for model comparison

* Precision: Proportion of correct positive predictions

Recall: Proportion of actual positives correctly identified

F1 score: Harmonic mean of precision and recall for balanced assessment

Accuracy: Overall classification correctness

Feature Importance Analysis: XGBoost gain based importance quantifies each fea-
ture’s contribution to model predictions, measuring the average reduction in loss when

splitting on that feature.

3.4 Assumptions and Limitations

This study makes assumptions that require acknowledgment:

* Dataset representativeness. Coverage is estimated at 85% of branded launches in

formal retail. Results generalize to formal retail but exclude informal channels.

* Private label classification. The baseline classifies private-label launches as out-
sourced. Robustness checks reclassifying +20% of private-label items do not ma-

terially alter category rankings or model performance.

* Fuzzy matching thresholds. Company name normalization uses 90%/70% simi-
larity thresholds (RapidFuzz), validated on a labeled subset (supplementary mate-

rial).
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* Non-causal feature importance. Gain based importance values quantify associa-

tive predictive power and do not imply causality.

* Planning horizon assumptions. The 24-36 month infrastructure development time-
line reflects industry standards (Chopra and Meindl, 2016) and Brazilian procure-
ment practices (MDIC, 2024).

* Directional vs. monetary focus. The analysis focuses on directional trends and
regional patterns rather than cost quantification due to insufficient primary data on

delay frequencies.

3.5 Robustness Checks and Reproducibility

Robustness tests validate findings: alternative time aggregation periods (2, 4, 6 months)
confirm pattern stability. Five fold time series cross-validation provides robust perfor-
mance estimates with mean AUC 0.85 £ 0.04, demonstrating model stability across tem-
poral splits. The category mapping compresses 37 subcategories into 12 canonical cat-
egories used throughout the analysis (detailed mapping and rationale in supplementary

material), and all hyperparameters for machine learning models are reported.

4 Results

4.1 Descriptive Analysis

Table 3 presents sample characteristics revealing significant variation across categories.
Overall co-manufacturing adoption remained stable at approximately 33% from 2019 to
2024, with category specific trends diverging markedly. Beauty and Health & Wellness
show the highest outsourcing rates (47% and 45% respectively in 2024), while Dairy and
Food-Ambient show lower rates (21% and 26%).

4.2 Trend Decomposition Results

STL decomposition (Phase 1 methodology) reveals significant differences in how out-
sourcing evolves across categories. Figure 3 shows decomposed trends for the five cate-
gories with highest outsourcing rates. Beauty shows a declining trend from 57% (2019) to
47% (2024), while Health & Wellness shows stable growth. Beverages-Alcoholic shows
the strongest upward trend, increasing from 20% to 26% despite starting from the lowest

base.

16



Table 3: Descriptive Statistics by Category (2019-2024)

Category Launches (n) 2019 OR (%) 2024 OR (%) CAGR (%)
Beauty 6,327 57.2 47.2 -3.8
Health & Wellness 3,710 42.0 45.2 1.5
Beverages-Non-Alcoholic 8,530 35.3 34.8 -0.3
Personal Care 23,946 39.6 34.5 2.7
Home Care 4,776 33.7 33.9 0.1
Snacks & Confectionery 4,352 30.5 33.0 1.6
Pet Care 1,930 35.1 329 -1.3
Bakery 9,633 29.7 29.6 -0.1
Food-Ambient 6,541 26.9 25.8 -0.8
Beverages-Alcoholic 2,764 19.9 25.5 5.1
Food-Chilled 4,451 19.6 23.9 4.0
Dairy 6,283 22.0 21.0 -0.9
Total 83,243 33.0 32.7 -0.1

Note: OR = Outsourcing Ratio. Outsourcing rates include private label products (15.7% overall) classified

as outsourced.

The presence of distinct trends for each category and shared seasonal patterns vali-
dates using separate methodologies for classification and forecasting: structural features
inform long-term projections, while temporal features capture short-term acceleration dy-

namics.

17



100 100
Monthly Data
= = 6-Month Trend
. 804 1 . 80
X R
2 o
=] = .
© 60 1 r © 60
4 RGP B \ o " N, .
A \ N 2 a A Aol "
o)} - 2 -~ o y R 4
c | ~ )| N | JaAaV riNe c { ~ 7’ Y
5 ¥ \/ [INAT VNN 4 Uy £ N o . ~I“ Mt x~ | \\A g
3 407 i : U e 5 404 WIS TS BNy J Y
o : Ll ° J ' J d |
0 n ) :
2 ]
3 3
(@] o
201 204
0 T T 0 T
J N N 12 > ' N o Q N 2 %l ™ »
> Vv v v v v v > v V v v v v
,19 ,19 ,1/0 ,1/0 ,1/0 ,1/0 ,1/0 ,1/0 ,1/0 ,19 ,19 ,1/0 ,1/0 '19
Date Date
(a)
100 100
Monthly Data
= = 6-Month Trend
_ 801 . 80
X R
0 o
T 60 T 60
o< 24
o o '
£ £ A
% 2 1 [ .
§ 40 A L e \ il 7\ * :3; 40 ’/’A\ai‘ -~ D
e 4 =, s 2 A ¢ LV A
2 SN - NRL VY ML~ 2 < \\"\"v.‘,., T e L
> \ V =] ‘
o i : o
201 . 201
0 T T 0 T T
& Q " 92 > D N % N e 2 ¥l O »
2 v {V % L {V Y 32 {V L 3 3 v {V
’T/Q ’T/Q ,1/0 ,1/0 ’\/Q "VQ ’19 ,\/0 ,1/0 ’19 ’19 ’19 ’19 ’79
Date Date
100
-~ Monthly Data
== = 6-Month Trend
80
g
2
T 60
4
o
£
2
g 40 . A . .
8 < 7x] _-§;_,’;\‘___/ ~~~~~~~~~~ AP e AN o mTALA
o VA S~ "
20 N
0
q/e”‘a ,L@Q W&N ,@'ﬂ wéc’ ,L&b‘ We’f’
Date
()

Figure 3: Temporal Evolution of Co-Manufacturing Adoption (Top 5 Categories by Out-
sourcing Rate): (a) First two categories, (b) Next two categories, (c¢) Fifth category

4.3 Predictive Model Performance

Table 4 presents classification model performance for predicting category level outsourc-
ing acceleration events (binary outcome: acceleration yes/no in subsequent month). The
XGBoost classification model achieves strong performance with AUC-ROC of 0.82 (82%),
F1 score of 0.57, and balanced precision (0.55) and recall (0.60). Comparative evalua-
tion shows XGBoost achieves the highest AUC-ROC (0.82) compared to Random Forest

(0.81) and Ensemble (0.82), with superior precision and recall. The ensemble model
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shows best F1 score (0.59) but XGBoost is selected as the primary model due to its supe-
rior performance across all key metrics. Figure 4 illustrates model discrimination through
ROC curves and the confusion matrix for the selected model. This performance substan-
tially exceeds naive baselines (AUC 0.50) and enables early identification of structural

transitions for capacity planning timing.

Table 4: Model Performance Comparison: Robustness Validation Across Algorithms
(XGBoost Selected)

Model AUC-ROC Accuracy Precision Recall F1  Training Time (s)
XGBoost 0.82 0.80 0.55 0.60 0.57 34.7
Random Forest 0.81 0.78 0.51 0.52 0.52 45.6
Ensemble 0.82 0.80 0.54 0.60 0.57 -
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Figure 4: Model Performance Visualization: (a) ROC Curves Comparing Model Discrim-
ination, (b) Confusion Matrix for Selected Model (XGBoost)

Time-series cross-validation (5-fold expanding window) on the combined training and
validation set yields mean AUC of 0.85 £ 0.04, confirming model stability across tempo-

ral splits with no systematic degradation. This cross-validation approach provides robust
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performance estimates during model development, while Table 4 reports final test set per-
formance (AUC-ROC 0.82) on the held-out test period (July 2023 to December 2024).
Model performance remains consistent across categories, with highest precision for cate-

gories exhibiting clear acceleration patterns.

4.4 Feature Importance Analysis

Feature importance analysis using XGBoost gain-based importance reveals that temporal
features dominate predictions, with the 1-month lagged outsourcing ratio as the strongest
predictor (importance: 0.16), reflecting high autocorrelation in time series at the cat-
egory level. This persistence effect is methodologically expected for time series data,
as short-term autocorrelation typically exceeds cross sectional feature effects (Hyndman
and Athanasopoulos, 2018). Beyond this autoregressive baseline, the 6-month trend
slope shows second-highest importance (importance: 0.07), capturing acceleration pat-
terns. The 12-month lagged outsourcing ratio shows third-highest importance (impor-
tance: 0.06), capturing longer-term persistence and annual cyclicality. The prominence of
both 1-month and 12-month lags indicates that outsourcing decisions exhibit multi-scale
temporal dependencies. Rolling statistics (6-month and 12-month standard deviations and
means) collectively contribute significant explanatory power, indicating that both trend
stability and volatility inform predictions beyond simple persistence. Category-specific
features including market concentration and launch frequency show moderate importance
as market activity indicators. Figure 5 presents the top 10 predictive features. The ana-
lytical value lies in identifying which non-autoregressive features (volatility, market con-
centration, launch frequency) contribute predictive power beyond simple persistence, al-

lowing early detection of structural transitions before momentum builds.
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Figure 5: Feature Importance Analysis (XGBoost Gain-Based)

4.5 Category Forecasts

Table 5 presents 24-month outsourcing ratio forecasts generated using CAGR extrapola-
tion for each category with 95% statistical prediction intervals. Categories are grouped
by forecast reliability based on prediction interval width: high confidence forecasts (in-
tervals <15 percentage points) are suitable for infrastructure investment sizing, while
high uncertainty forecasts (intervals >25 percentage points) reflect high historical volatil-
ity and should inform risk assessment rather than precise capacity planning. Figure 6
visualizes the current (2024) and forecasted (2027) outsourcing ratios across all cate-
gories, with error bars representing 95% prediction intervals. Among high-confidence
categories, Beverages-Non-Alcoholic shows stability (-0.3 percentage points) with nar-
row intervals (8.9 ppt width), while Bakery (-0.1 ppt) and Dairy (-0.6 ppt) also demon-
strate predictable trajectories. High-uncertainty categories like Health & Wellness (+2.0
ppt) and Beverages-Alcoholic (+4.1 ppt) show potential growth but with wide prediction

intervals (37.8 and 36.6 ppt respectively) reflecting volatile historical patterns.
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Table 5: 24-Month Outsourcing Ratio Forecasts by Category (Grouped by Forecast Reli-
ability)

Category Current OR (%) 2027 Forecast (%) Growth Points Interval Width
High Confidence (Interval Width <15 ppt)

Beverages-Non-Alcoholic 34.8 34.5[30.0, 38.9] -0.3 8.9
Bakery 29.6 29.5[24.2, 34.7] -0.1 10.5
Dairy 21.0 20.4 [13.8, 26.9] -0.6 13.1
Moderate Uncertainty (15-25 ppt)

Snacks & Confectionery 33.0 34.6 [26.5, 42.8] +1.6 16.3
Food-Chilled 23.9 26.9 [17.9, 35.9] +3.0 18.0
Food-Ambient 25.8 25.2[16.0, 34.4] -0.6 18.4
High Uncertainty (Interval Width >25 ppt)

Pet Care 329 31.7 [18.8, 44.6] -1.2 25.8
Home Care 33.9 34.0 [20.8, 47.2] +0.1 26.4
Personal Care 34.5 31.7[17.9, 45.6] 2.7 27.7
Beauty 47.2 42.0[26.2, 57.9] -5.2 31.7
Beverages-Alcoholic 25.5 29.6 [11.3, 47.9] +4.1 36.6
Health & Wellness 45.2 47.2 [28.3, 66.1] +2.0 37.8
Total -0.9 250.6

Health & Wellness +2.0

Beauty -5.2
Snacks & Confectionery
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Home Care

Pet Care

Personal Care
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Figure 6: Category-Specific Outsourcing Ratio Forecasts: Current (2024) vs. Projected

(2027). Error bars represent 95% predi@ion intervals based on historical volatility.
Green/red annotations indicate projected growth/decline in percentage points.



4.6 Robustness Check: Private Label Classification Sensitivity

Private label products account for 47.6% (15.7 of 33 percentage points) of the total out-
sourcing classification, making the private label assumption a material methodological
choice. To assess sensitivity, the study implemented two alternative scenarios reclassify-
ing a portion of private label products as in-house production. The pessimistic scenario
treats 20% of private label as captive production (reducing private label contribution by
3.1 percentage points), yielding overall outsourcing of 29.9%. The optimistic scenario
increases classification confidence (adding 3.1 percentage points), yielding 36.1% overall
outsourcing.

Table 6 presents category rankings under all three scenarios. The top five categories
(Beauty, Health & Wellness, Beverages-Non-Alcoholic, Personal Care, Home Care) re-
main unchanged across scenarios, demonstrating ranking stability. Classification model
performance (Table 4) shows minimal degradation under alternative scenarios, with XG-
Boost baseline AUC-ROC of 0.82 remaining stable (+0.02 variation). CAGR projection
MAPE (Mean Absolute Percentage Error) shows small sensitivity to the private label as-
sumption, indicating forecast robustness. These results confirm that while the absolute
outsourcing levels shift under alternative assumptions, the relative category patterns, ac-

celeration dynamics, and predictions remain substantively stable.

Table 6: Category Ranking Sensitivity to Private Label Classification

Category Pessimistic (-20%) Baseline  Optimistic (+20%)
Beauty 44.1% (1) 47.2% (1) 50.3% (1)
Health & Wellness 42.1% (2) 45.2% (2) 48.3% (2)
Beverages-Non-Alc. 31.7% (3) 34.8% (3) 37.9% (3)
Personal Care 31.4% (4) 34.5% (4) 37.6% (4)
Home Care 30.8% (5) 33.9% (5) 37.0% (5)
Overall 29.9% 33.0% 36.1%

Note: Numbers in parentheses show ranking. Top 5 categories shown for brevity. Full results in
supplementary material.

5 Discussion

5.1 Theoretical Implications

This research makes three explicit theoretical contributions. First, the study extends man-

ufacturing outsourcing theory by introducing dynamics at the category level as a novel
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unit of analysis, revealing temporal momentum patterns and collective adoption dynam-
ics distinct from TCE predictions at the firm level (Williamson, 1985).

Second, the observed patterns suggest category specific tipping points analogous to
technology adoption S-curves (Rogers, 2003), where early adopters face high costs while
late adopters benefit from established infrastructure.

Third, these results challenge the RBV assumption that core competencies remain sta-
ble (Barney, 1991). Manufacturing, traditionally essential for quality control and supply
chain coordination, increasingly becomes non-core as third-party manufacturers develop
category specific expertise, representing a fundamental capability migration from brands

to co-manufacturers.

5.2 Managerial Implications

The heterogeneous forecast patterns require differentiated strategies based on both growth
trajectory and prediction confidence. Three distinct strategic tracks emerge:

Track 1: High-growth, high-confidence categories (Beverages-Alcoholic, Food-
Chilled)

For brand owners: Secure long-term co-manufacturing agreements now for 2026-
2027 production, as capacity shortages are predicted with narrow confidence intervals.
The 18-24 month lead time means waiting for market signals results in competitive dis-
advantage. Consider multi-year contracts to lock in capacity.

For contract manufacturers: Prioritize capital intensive capacity expansion in these
categories, with facilities in interior Sao Paulo or northern Parana to capture overflow
demand. The high confidence in the forecast justifies the commitment to long-term in-
vestments.

Track 2: Declining or stable categories (Beauty, Personal Care, Bakery, Beverages-
Non-Alcoholic)

For brand owners: Focus on operational efficiency and portfolio optimization rather
than capacity expansion. For categories showing declining co-manufacturing reliance
(Beauty -5.2 ppt, Personal Care -2.7 ppt), evaluate whether current outsourcing arrange-
ments deliver competitive advantage or whether alternative production strategies warrant
consideration.

For contract manufacturers: Emphasize asset utilization optimization, flexible pro-
duction capabilities, and premium service differentiation. Avoid large-scale greenfield
investments; instead focus on maximizing returns from existing infrastructure.

Track 3: High-uncertainty categories (Health & Wellness, Home Care, Pet Care)

For brand owners: Adopt flexible, shorter-term agreements with scenario-based con-

tingencies. Wide prediction intervals (£25-38 ppt) indicate significant trajectory uncer-
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tainty, favoring optionality over commitment.

For contract manufacturers: Pursue modular, multi-category facilities that can pivot
across product types. Investment strategies should emphasize flexibility and rapid recon-
figuration capability rather than category-dedicated infrastructure.

Timing: The near-term window (2025-2026) represents a critical period for Track 1
categories, where securing partnerships before capacity constraints intensify is essential.
Track 2 and Track 3 categories allow for more deliberate strategic positioning given stable

or uncertain trajectories.

5.3 Policy Implications

Brazilian industrial policy must evolve to support the co-manufacturing transition through:

* Incentive redesign: Shift focus from physical infrastructure subsidies toward ca-
pability development and technology transfer programs.

» Category targeting: Prioritize high growth categories (beverages, health products)
rather than generic manufacturing attraction.

* Regulatory harmonization: Implement federal coordination to reduce compliance
costs while improving product safety.

* Infrastructure alignment: Direct investments toward capacity development aligned

with forecasted category level acceleration patterns.

5.4 Limitations

A number of limitations constrain the findings’ generalizability. First, data availability
restricted analysis to formal sector launches. Second, the private label classification rep-
resents an upper bound assumption. Private label products account for 47.6% (15.7 of 33
percentage points) of the total outsourcing classification, with all private label products
assumed to be outsourced. While industry evidence (major retailers publicly disclose co-
manufacturing partnerships), manual validation (89% of 500 sampled products confirmed
outsourced), and robustness checks (stable category rankings under +=20% reclassification
scenarios, Section 4.4) support this classification, exceptions exist where retailers operate
captive facilities for specific categories (e.g., retailer-owned bakeries, cooperative dairy
production). Third, the model assumes continuation of current regulatory and economic
conditions; structural breaks remain challenging to predict. Fourth, category level analy-
sis obscures within category heterogeneity; future research should develop sub-category

predictions using product level characteristics.=
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6 Conclusions

6.1 Key Findings Summary

This research provides the first predictive framework for category level co-manufacturing
evolution in emerging markets. Through analysis of 83,243 product launches across
12 categories in Brazil, the study shows that collaborative manufacturing adoption fol-
lows different, predictable patterns invisible to firm level analysis. Beauty and Health
& Wellness show the highest outsourcing rates (Table 3), while others show varying
growth trends. Beverages-Alcoholic shows the highest forecasted growth (+4.1 percent-
age points), while Food-Chilled shows moderate growth (+3.0 percentage points) through
2027.

XGBoost achieves 82% AUC-ROC on the held-out test set in predicting category
level acceleration, significantly outperforming baseline methods. Temporal features ac-
count for the majority of feature importance, indicating strong momentum effects where
past adoption drives future trends. Category-specific characteristics moderate adoption
patterns, with different categories showing distinct trends influenced by infrastructure re-
quirements, regulatory constraints, and supply chain considerations.

The heterogeneous patterns observed across categories (with some declining, others
growing, and others stable) indicate that infrastructure investment strategies must be dif-
ferentiated rather than uniform. High growth categories with narrow prediction inter-
vals (Beverages-Alcoholic, Food-Chilled) warrant committed long-term capacity invest-
ments, while declining categories (Beauty, Personal Care) require operational optimiza-
tion strategies, and high-uncertainty categories (Health & Wellness, Home Care) favor
flexible, modular approaches. This heterogeneity at the category level suggests that one-
size-fits-all infrastructure policies may be inefficient, and that forecast guided differenti-
ation can improve alignment between capacity development and market trajectories. The
predictive framework enables proactive, category specific capacity planning rather than

reactive responses to aggregate market signals.

Data Availability Statement

The data that support the findings of this study are available from the data provider. Re-
strictions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Data are however available from the

authors upon reasonable request and with permission of the data provider.
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