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Abstract— This paper presents a model for the optimization of 

the hydrothermal dispatch. The model's goal is the minimization 

of the costs of electricity generation, which can be summarized as 

the costs of thermal generation and the costs incurred by energy 

deficits. The methodology proposed to solve this problem is the 

Interior-Point method which is widely used in several classes of 

problems, combined with ideas of the well-known Gauss-Newton 

method in nonlinear programming and Stationary Newton 

method. The combination of the aforementioned techniques 

together with the Interior-Point method presents good 

computational performance and satisfactory results when applied 

to the hydrothermal dispatch problem for a test system based on 

the Brazilian Interconnected System. 

 
Index Terms—Hydrothermal dispatch, nonlinear 

programming, Interior-Point method. 

 

I. INTRODUCTION 

N this paper we present a methodology for the 

optimization of the hydrothermal dispatch that involves two 

important and well-known methods: the Gauss-Newton 

method [1] and the Interior-Point method [2]. The first is 

generally applied to the minimization of the residue in 

minimum squares, which is equivalent to a problem of 

unconstrained minimization (or solving a nonlinear equation 

system). The second one has been successfully applied in 

constrained linear and nonlinear problems. Both use Newton's 
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method [3]. The first approximates Newton's direction 

ignoring the term involving the Hessian matrix of the 

objective function. In other words, it can approximate 

Newton's direction in problems where the Hessian matrix has 

negligible influence. The second uses Newton's method to 

solve the nonlinear system created in each iteration. The 

algorithm for this method will be described in the next 

sections.  

The methodology consists in using the Interior- Point 

method to solve the hydrothermal dispatch problem, which is 

modeled as a nonlinear, nonconvex problem involving both 

equality and inequality constraints and bounded variables. 

Additionally, the problem presents a nonlinear equality 

constraint whose Hessian matrix is too complex to determine 

analytically and too computationally expensive to approximate 

through numerical methods. Due to the model's graph 

structure, the Hessian matrix is sparse; several tests indicate it 

has little influence on the solution. Therefore, we discard the 

term involving the Hessian of nonlinear constraints based on 

the Gauss-Newton method to solve nonlinear systems. As will 

be shown, this won't compromise the convergence of the 

Interior-Point method. 

Another feature of the present paper is the use the idea of 

Stationary Newton's method [4] to solve the nonlinear system 

created in the iterations of Interior Point method. The 

Stationary Newton's Method consists in calculating the 

Jacobian matrix, required by Newton's method in the initial 

point, and use it in all the iterations instead of calculating it in 

each new point. 

A. Hydrothermal Dispatch 

The hydrothermal dispatch of power systems with strong 

hydro predominance is a particular case of the larger problem 

of optimal reservoir management and operation. In the 

extensive state-of-the-art reviews by [5] and more recently by 

[6], the complexities of this class of problems are detailed. 

While there is a growing body of works based on nonlinear 

programming, models based on linear programming, network 

flow optimization, heuristics and particularly dynamic 

programming predominate. It is clear that computational 

feasibility has constrained further applications of nonlinear 

programming to the problem of hydrothermal dispatch. 

This was the reasoning behind [7] and [8]'s decomposition 

approach. By applying Bender's decomposition to a model 

based on dynamic programming, one can solve the 

hydrothermal dispatch problem for large systems with 
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stochastic inflows at reasonable computational cost. This 

feasibility came at the cost of several simplifying hypotheses, 

such as the need to linearize the hydropower generation 

function. 

As computational power becomes more available, 

alternative approaches to hydrothermal dispatch optimization 

which can explicitly consider nonlinearities become 

increasingly interesting. This was the motivation for the 

research which resulted in the present paper. 

B. The Brazilian Power System 

Brazil is a country privileged in terms of water resources. 

According to official government date [9], in 2010, Brazil 

produced 509,2 TWh of electricity, of which 403,3 TWh 

(79,2%) were produced in hydropower plants, 72,2 TWh 

(14,2%) in fossil-fired or nuclear power plants and the 

remaining 33,7 TWh (6,6%) came from alternative sources. 

This strong reliance on hydropower is justified by its low 

operating cost and by its renewable nature. The downside to 

this reliance is the uncertainty inherent in energy demand and 

hydrologic inflows, which subjects a purely hydro system 

without thermal power backup to unacceptable levels of risk 

of energy deficits. For this reason, the Brazilian system is 

complemented by several thermal power plants, which can 

supply firm energy during drought periods, but do so at higher 

costs due to fuel consumption. Alternative and intermittent 

sources such as biomass and wind power are still in an 

incipient stage. 

Another distinguishing feature of the Brazilian power system 

is the vast network of transmission lines, which connect nearly 

all load centers and power plants. In modeling terms, this 

creates a series of interconnected subsystems, able to transport 

significant amounts of energy from one area to another. The 

set of power plants and load centers linked to the network of 

transmission lines is denominated the Brazilian Interconnected 

System. Having a large network of transmission lines is 

advantageous to systems with high reliance on hydropower, as 

it allows the system operator to take advantage of the various 

hydrologic regimes. Thus, areas with surplus hydro generation 

can export energy to areas on drought, reducing spillage and 

overall thermal power generation. 

These features characterize the Brazilian Interconnected 

System as a hydrothermal system with strong hydro 

predominance. The operation planning for such systems 

present a major technical challenge: the need to balance the 

conflicting goals of minimizing expensive thermal power 

generation while avoiding excessive water spillage. This 

defines the problem of hydrothermal dispatch: how much 

energy should be generated by thermal power plants to avoid 

energy deficits during droughts while minimizing fuel 

consumption? 

Currently, the hydrothermal dispatch of the Brazilian 

Interconnected System is optimized through a methodology 

based on Stochastic Dynamic Dual Programming [7]–[8]. 

However, this methodology relies on several simplifications to 

achieve computational feasibility, such as linearization and 

reservoir aggregation. This paper presents a distinct approach 

to hydrothermal dispatch optimization based on nonlinear 

optimization through the Interior-Point method. 

C. Paper Organization 

The paper is organized as follows. Section II describes the 

proposed model to optimize the hydrothermal dispatch of 

predominantly hydro systems. Section III describes the 

Interior-Point method for the presented model. Section IV 

describes the application of the methodology to a test system 

based on a part of the Brazilian Power System and describes 

the implementation details. Section V presents the 

conclusions.  

 

II. MATHEMATICAL MODELING 

The variables involved in the models description are listed 

below: 

 

generation of the thermal power plant j during period t 

[MWmonth]; 

 volume stored in the reservoir r  for period t [ ]; 

spilled flow from the reservoir r during period t 

[ ]; 

turbined flow from the reservoir r during period t 

[ ]; 

energy transported at line i during period t 

[MWmonth]; 

 energy deficit of the subsystem s during period t 

[MWmonth]. 

 

The nonlinear programming model for the energy 

optimization problem is: 

 

 (1) 

subject to: 

 

(2) 

 (3) 

 (4) 

 

 

 

 

 

 

(5) 

 

The objective function (1) minimizes the current value of 

the sum of costs of thermal power generation ( ) and energy 

deficits ( ).  is the cost function of thermal power plant 
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j, which depends on the fuel used.  is a function that 

expresses the economic cost of energy deficits in subsystem s. 

Both  and  are approximated by second degree 

polynomials;  is the discount factor for period t.  

The water balance constraint (2) expresses the relation 

between stored volume, inflows and outflows in a reservoir, 

where  represents the natural inflow of the reservoir r 

during period t [ ],  represents the set of reservoirs 

immediately upstream of the reservoir r. To be able to perform 

this operation it requires a change of units, turning the volume 

from  to . Thus, in the constraint (2), the volume is 

multiplied by  where  is the number of seconds per 

month. 

The energy balance constraint (3) represents the relationship 

between energy generation, demand and deficit (load 

shedding) in a subsystem, where  is the energy demand in 

the subsystem s  in the period t [MWmonth],  represents the 

set of subsystems connected through transmission lines to 

subsystem s,  is the set of thermal power plants in the 

subsystem s,  is the set of hydropower plants in the 

subsystem s and  is the energy produced at the plant r in 

the period t. 

The minimum total outflow constraint (4) guarantees the 

use of water resources for other activities besides electricity 

production, such as flood control, river navigability, irrigation, 

etc., where  represents the minimum total outflow of 

the reservoir r in the period t [ ].  

Variables boundary constraints are represented by (5) and 

denote the upper and lower bounds for: thermal power 

generation, reservoirs volume, turbined and spilled volumes, 

energy transfer through transmission lines between 

subsystems and energy deficit for each subsystem, 

respectively. 

 

III. INTERIOR-POINT METHOD 

The hydrothermal dispatch presented can be written 

mathematically as follows: 

 

minimize 

subject to: 

 

 

 

 

 

 

(6) 

 

where  is the decision variables vector that for the 

model presented in Section II involves: thermal power  

generation, spilled and turbined flows, reservoir volume, 

energy transport between subsystems and deficit,  is 

the nonlinear objective function,  is the nonlinear 

constraint that represent load,  and  are linear 

constraints that represent the water balance and total outflow, 

respectively, ,  and finally  

represents the lower and upper bounds of decision variables, 

. 

The method used to solve this energetic problem is the 

Interior-Point method for nonlinear programming. First, 

positive slack variables r, s, t are used to transform (6)'s 

inequality constraints into equality constraints, as in [10]–[11]. 

 

minimize 

subject to: 

 

 

 

 

 

 

 

 
 

(7) 

The variables that must be non-negatives are penalized by 

adding the logarithmic barrier function [4] to the objective 

function: 

 (8) 

  

where  is the barrier parameter, which has the property 

of tending to zero when x approaches the optimal solution. 

The Lagrangian function associated with the penalized 

problem is: 

 

 

(9) 

  

where  are the Lagrange multipliers, . 

The first-order optimality conditions or Karush-Kuhn-

Tucker conditions [12]–[13] are necessary conditions that an 

optimal solution must satisfy. They are applied to the problem, 

resulting in a nonlinear system. Thus, Newton's method is 

applied resulting in the following linear system: 

 

 (10) 

 

where: , 

 

, 

 

  and  

 

 is 

the Lagrangian function gradient. 

,   is the constraint 

Jacobian matrix of the, , , , ,  and  are 
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diagonal matrices, with diagonal elements given, respectively, 

by components of the vectors , , , ,  and  , and  

represents the identity matrix of appropriate size. 

First, we isolate dr, ds and dt in system (10): 

 

 
 

(11)  

 

 

(12)  

 (13)  

  

The directions , and  are also isolated in (10): 

 

 

 

(14)  

 

 
(15)  

 (16)  
 

Replacing (11), (12) and (13) in (14), (15) and (16) 

respectively, one obtains ,  and  directions, which 

depend only on . Replacing ,  and  on the first 

equation of the system (10) and grouping the terms, we have: 

 

 
(17)  

  
where F is a constant vector. The resulting linear system to be 

solved is: 

 
(18) 

where 

 ,   ,  ,  

 

 

(19) 

 

and  is a diagonal matrix composed by the elements of the 

 vector. The matrices  and  are defined in the same 

way. 

Solving the system (18), one finds dx,  and . Thus, 

the other directions are found through the equations (11), (12), 

(13), (14), (15) and (16). 

After finding the Newton's direction, the step length  that 

will be taken in this direction is computed, in order to not 

violate the positivity of some variables. All the variables are 

updated as . Finally, the barrier parameter  is 

updated. Several heuristics can be found in the literature, in 

particular, [10]–[11] suggest the following formula: 

 

 (20) 

 

The process is repeated until the point found satisfies a 

stopping criterion that will be described in Section IV. 

As the hydrothermal dispatch problem is large, reducing the 

execution time can be very profitable as the problem 

dimension increases. Using the idea of Stationary Newton's 

method rather than the Newton's method in Interior-Point 

algorithm increases the number of iterations, but decreases the 

execution time considerably. Computing the matrix of 

coefficients in the system (18) for the initial point and using it 

in all iterations has proven itself as a very efficient method.  

A great difficulty in applying this method to the 

hydrothermal dispatch problem as previously described, is the 

computation of the Hessian matrix for nonlinear constraint (2). 

This constraint involves at least two nonlinear functions: 

forebay water level, a nonlinear function of the stored volume; 

and tailrace water level, a nonlinear function of total outflow 

(turbined plus spilled). For the Brazilian System, both 

functions are usually modeled as polynomials up to fourth 

degree. Those two polynomials are added and the final 

polynomial is multiplied by the turbined flow variable. Thus, 

the exact computation of the Hessian matrix is burdensome, 

demanding the use of numerical approximation. However, an 

approximation is required for each iteration of the Interior-

Point method, which can greatly increase the computational 

effort for large scale problems. 

It is known that if coefficients matrix in (18) is invertible, 

then the system has solution and it is unique. According to 

[14], for this to occur,  must be positive definite (as will 

be proved) and B must have full column rank, as it is assumed 

to be true. 

The proposal made in this paper is to use the idea of Gauss-

Newton method, that disregard second order information of 

the problem. In other words, the term involving the Hessian 

matrix of the nonlinear constraints  in 

equation (19) is cut out, i.e., 

 

 (21) 

 

Lemma 1: Let , , 

, ,  and 

 with  given respectively in 

(8) and (10). Moreover, let  the objective function given 

in (1) and  the coefficients matrix of linear 

inequalities constraints of the  problem (7). Then the following 

items are true: 

i.  and , i.e., they are positive 

definite matrices; 

ii. , i.e., it is positive definite matrix; 

iii. , i.e., the Hessian matrix of  is  

positive definite. 

Proof: 

i.  and  are diagonal matrices with  

positive elements, then they are positive definite; 

ii. Let , then:  

; 
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iii.  is positive definite matrix because the 

function  is a sum of two second order 

polynomials with positive quadratic term 

coefficients. Then  is convex and its Hessian 

matrix is positive definite.             

  

Theorem 1: The matrix  of reduced system (18), given in 

equation (21), is positive definite. 

Proof:  In fact, let  and , then by (21): 

 

By Lemma 1,  is the positive definite matrices sum, then 

         
 

Note: In systems with the structure as (18), where the 

positivity of  cannot be ensured,  is chosen such that 

=  is positive definite, as in [11]. 

 

IV. COMPUTATIONAL TESTS AND RESULTS ANALYSIS 

In this section, the implementation of the proposed 

methodology will be shown. Since Theorem 1 guarantees that 

Newton's direction can be determined, the reduced system (18) 

and consequently the system (10) has a solution, not 

considering computational rounding errors.  

All the mathematical modeling, as well as the Interior-Point 

method were implemented in Matlab® 7.10.0 (R2010a). 

The methodology was tested in several test systems based 

on the Brazilian Interconnected System. In this paper, results 

will be presented for a system composed of 21 hydro plants, 

32 thermal power plants and 3 interconnected subsystems. The 

period considered was January 1952 to January 1957, which 

was a drought period. Table I shows the composition of the 

three subsystems considered. 

 
TABLE I   

POWER PLANTS AND DEMAND FOR THE CONSIDERED SUBSYSTEMS. 

 

 
 

As can be seen in Table I, the subsystem 3 is composed by a 

single hydro plant, namely, Itaipu. Thus, subsystem 3 is a 

subsystem whose only purpose is to export energy to 

subsystems 1 and 2. 

The point  for the method follows the premise that all the 

inflow is turbined. Reservoirs are considered initially full and 

its final volumes should be between 70% and 100% of the 

maximum capacity. The parameters used in the algorithm 

implementation are: , Lagrange multipliers and slack 

variables are initialized as appropriately sized vectors of ones. 

Adopted stopping criteria are Karush-Kuhn-Tucker conditions 

or maximum number of iterations.  

 
Fig. 1.  Hydro generation for subsystem 1. 

 
 

 
Fig. 2.  Hydro generation for subsystem 2.  

 
 

 
Fig. 3.  Hydro generation for subsystem 3. 

 

Figs. 1, 2 and 3 represent, respectively, the sum of energy 

generated by hydro plants of the subsystems 1, 2 and 3. It is 

important to remember that plants are being considered 

individually; their generation was summed for better viewing. 

When the plant reservoirs are analyzed individually, it is 

assumed that spills occur when both reservoirs capacity and 

turbined flow reach their upper bounds. It is also evident that 

in periods prior to large inflows, the reservoirs are emptied to 

accommodate future inflows or, if future inflows are scarce, 

the reservoirs levels are preserved to ensure a higher head and 

increase the plant's energy output. 
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Fig. 4.  Thermal generation for subsystem 1. 
 

 

 
Fig. 5.  Thermal generation for subsystem 2. 

 

Figs. 4 and 5 show the thermal power generation of 

subsystems 1 and 2 respectively. It is noted that maximum 

possible energy was generated in several periods, in order to 

satisfy energy demand. This is justified because, as already 

mentioned, the period considered has low hydrologic inflows. 

 

 
Fig. 6.  Energy transfer between subsystems 1 and 2. 

 

Fig. 6 shows the energy transfer between the subsystems 1 

and 2. Positive values represent energy exported from 

subsystem 1 to 2. Negative values represent the opposite, i.e., 

energy exported from subsystem 2 to 1. 

 
Fig. 7.  Energy transfer between subsystems 3 and 1. 
 

 

 
Fig. 8.  Energy transfer between subsystems 3 and 2. 

 

Figs. 7 and 8 show energy exported from subsystem 3 to 1 

and 2. As subsystem 3 is composed solely of Itaipu, it is a 

purely generating subsystem. 

 

 
Fig. 9.  Energy balance between hydro and thermal generation. 
 

Fig. 9 shows the energy generated distribution between the 

hydro and thermal power plants for a test system. The sum of 

the two kinds of energy gives exactly the system demand, 

because in this case there was no energy deficit. It is observed 

that in the periods where hydro plants operate at reduced 

capacity (low inflows), the thermal power plants are more 

required and vice versa.  

 Several tests were carried out, changing the period 

considered and varying the demand too. The processing time 

on a conventional computer to solve the presented problem 

was approximately 20 minutes. 
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V. CONCLUSION 

Many works on hydrothermal dispatch tend to simplify the 

problem with the aim of achieving a simpler, possibly linear 

model. To tackle the hydrothermal dispatch problem through 

nonlinear optimization, an efficient search algorithm with fast 

and accurate answers is needed. The Interior-Point method 

combined with ideas of Gauss-Newton and Stationary Newton 

method were shown to be very effective when applied to this 

problem. As shown, disregarding the second order information 

of the nonlinear constraint did not affect the method's 

convergence, and greatly improved the computational 

feasibility of the proposed method. 

From the energy point of view, it can be said that the 

proposed methodology meets all requirements of the problem. 

All the generation bounds, reservoirs capacity and power 

transmission lines were respected, as well as meeting the total 

demand. It was observed that the energy from thermal power 

plants was only necessary in periods where the inflows were 

low. The Interior-Point method held high levels of reservoirs, 

allowing its use in periods of low inflows. 

The methodology proposed in this research was tested for 

several periods and different demands of energy. The result 

was very good and, for further research, the main goal would 

be apply it to the entire Brazilian Interconnected System. 
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