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Abstract
Influenza viruses continue to pose a major global public health problem.
There is a need to better understand the pathogenicity and transmission
of pandemic influenza viruses so that we may develop improved meth-
ods for their prevention and control. Reconstruction of the 1918 virus
and studies elucidating the exceptional virulence and transmissibility of
the virus are providing exciting new insights into this devastating pan-
demic strain. The primary approach has been to reconstruct and analyze
recombinant viruses, in which genes of the 1918 virus are replaced with
genes of contemporary influenza viruses of lesser virulence. This review
highlights the current status of the field and discusses the molecular de-
terminants of the 1918 pandemic virus that may have contributed to
its virulence and spread. Identifying the exact genes responsible for the
high virulence of the 1918 virus will be an important step toward un-
derstanding virulent influenza strains and will allow the world to better
prepare for and respond to future influenza pandemics.
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HA: hemagglutinin

NA: neuraminidase

Genetic
reassortment:
exchange of viral gene
segments when at least
two different viral
genomes coinfect the
same host cell
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INTRODUCTION

In humans, influenza is a highly contagious res-
piratory disease caused by an RNA virus of the
Orthomyxoviridae family. Influenza A viruses are
classified into subtypes on the basis of the anti-
genicity of their surface glycoproteins, hemag-
glutinin (HA) and neuraminidase (NA). 16 HA
and 9 NA subtypes are known to exist (22), and
among them H1, H2, and H3 subtypes have
caused pandemics. Influenza A viruses of the
H1N1 subtype, descendants of the 1918 pan-
demic strain, circulated in humans from 1918
to 1956. After their disappearance in 1957,
H1N1 viruses reappeared in the human pop-
ulation in 1977 and continue to cocirculate
along with H3N2 subtype viruses (descendants
of the 1968 pandemic strain) and influenza
B viruses.

Influenza virus infection begins in the nasal
and tracheal airways and can spread throughout
the upper and lower respiratory tract. Clinical
symptoms of an acute human influenza virus
infection range from mild to severe and

typically include fever, cough, headache,
and malaise. For most people, the course of
influenza infection is self-limiting, without
requiring any medical treatment. However,
human influenza viruses continue to cause
substantial morbidity and mortality worldwide
on an annual or near-annual basis and are
responsible for approximately 250,000 to
500,000 deaths each year. Each year in the
United States alone, on average, 5–20% of
the population is infected, causing 200,000
hospitalizations and approximately 36,000
deaths from complications of influenza virus
infection. The majority of these deaths occur
in the elderly population aged >65 years (100,
101). During pandemic years, novel influenza
strains have the capacity to cause severe disease
and death on a global scale. It is estimated that
the Spanish influenza pandemic of 1918 was re-
sponsible for approximately 500,000 deaths in
the United States alone (20–50 million deaths
worldwide)—a number vastly higher than the
approximate combined total of 100,000 for
the Asian influenza pandemic of 1957 and
the Hong Kong influenza pandemic of 1968
(40). The influenza pandemic in 1918 was so
exceptional in its lethality that, as a result, the
average life expectancy in the United States was
lowered by more than 10 years (30). For a host
of reasons it is difficult to precisely determine
the exact number of deaths caused by the pan-
demic. First and foremost, influenza was not a
reportable disease in 1918–1919; the first hu-
man influenza virus strain would not be isolated
for another 12 years. A confounding factor was
that the etiologic agent was widely held at the
time to be a bacterium called Pfeiffer’s bacillus
(a gram-negative bacterium now recognized
as Haemophilus influenzae). It was not until the
1930s when retrospective serological investi-
gations were performed among people living
in those periods that the 1918 agent was linked
to an influenza H1 subtype virus (6, 85). Many
questions about the origin of the 1918 virus, its
unusual epidemiologic features, and the basis
of its virulence remain unanswered. Although
genetic reassortment events led to new viruses
that caused the two subsequent influenza
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pandemics of 1957 and 1968 (116), it remains
uncertain whether the 1918 virus was the result
of adaptation of an avian virus to humans or
whether it was a product of reassortment (28,
99). Identification of viral sequence data of
pre-1918 human influenza samples is needed to
better understand the origin of this pandemic
virus.

Influenza A viruses also have a major im-
pact on the health of domestic poultry, in which
some highly pathogenic avian influenza (HPAI)
strains are responsible for systemic disease with
high mortality rates (see sidebar, What Makes a
Virus HPAI?) (1, 95). The HPAI viruses are re-
stricted to subtypes H5 and H7, although not all
H5 and H7 viruses are highly pathogenic (96).
Prior to 1997, transmission of HPAI viruses
to humans was not considered a major health
risk. However, during that year, HPAI viruses
of the H5N1 subtype spread in poultry flocks
in Hong Kong and jumped the species barrier
to severely infect humans, killing 6 of the 18
documented cases (14, 18, 94). This was the
first documented influenza outbreak caused by
a wholly avian virus directly transmitting to hu-
mans from infected poultry and causing death.
Since 2003, influenza A viruses of the H5N1
subtype have caused devastating outbreaks in
poultry in Asia, Africa, and Europe, resulting
in over 400 laboratory-confirmed human infec-
tions with an overall case fatality rate of approx-
imately 60% (3). Although H5N1 viruses con-
tinue to evolve and diversify (2), they have yet to
acquire the ability to transmit efficiently among
humans. Although it has been over 40 years
since the last influenza pandemic, there is an
ever-present threat that a pandemic will result
from the emergence of a new influenza strain
to which humans have little immunity. The
factors allowing an influenza virus to acquire
pandemic capability are poorly understood, and
the approach of trying to determine these fac-
tors by studying contemporary avian influenza
(H5 or H7) subtype strains is a daunting task.
Conversely, identifying the role of individual
viral gene products and mapping the molecu-
lar determinants that influence virulence and

WHAT MAKES A VIRUS HPAI?

The intravenous pathogenicity index (IVPI) is a method de-
scribed by the World Organization for Animal Health (OIE) to
determine the classification of avian influenza viruses as being
of high or low pathogenicity in domestic poultry (70). Chickens
(4 to 8 weeks of age) are experimentally inoculated with live virus
and observed daily for clinical signs of illness. Viruses are highly
pathogenic (HPAI) if they cause lethality in six to eight of eight
infected chickens within 10 days postinfection. Viruses that can
replicate in cell culture in the absence of trypsin, or that con-
tain multiple basic amino acids at the HA cleavage site, are also
considered highly pathogenic. This classification of HPAI is in-
dependent of pathogenicity observed in mammalian models (such
as mice or ferrets). Thus, mammalian models must be utilized to
elucidate the pathogenicity and transmissibility of these viruses.
To date, only selected viruses within the H5 and H7 subtypes
have been classified as HPAI.

HPAI: highly
pathogenic avian
influenza

Archaevirology: the
systematic study of
past viruses by the
recovery and
examination of
remaining material
evidence

transmission of a previous pandemic (1918)
strain are feasible approaches toward under-
standing pandemic traits.

RECONSTRUCTION OF THE 1918
PANDEMIC INFLUENZA VIRUS

Although scientists have been keen to unlock
the mysteries of the virus responsible for the
1918 pandemic, the virulent H1N1 strain could
not be studied until recently, as the virus was not
isolated at the time of the pandemic. Research
interest in the virulence of the 1918 virus has
been further prompted by the emergence of a
novel, potentially pandemic strain containing
the HA derived from a HPAI virus. The main
questions are why was the 1918 virus so viru-
lent, and can the molecular secrets associated
with the high virulence and transmission of this
H1N1 subtype virus help guide our response to
future influenza pandemics?

The reconstruction of the 1918 virus first
required sequence analysis of the viral genome
using archaevirology. Sequencing of the eight
viral gene segments was laborious, taking nine
years to complete (7, 76–79, 98, 99). Scientists
collected viral cDNA fragments of the 1918
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RT-PCR: reverse
transcription
polymerase chain
reaction

Reverse genetics: a
system to generate
infectious virus
entirely from cloned
cDNAs

Plasmid: circular,
double-stranded unit
of DNA expressing
influenza genes used to
transfect 293T cells

NS: nonstructural

virus by reverse transcription polymerase
chain reaction (RT-PCR) from formalin-fixed,
paraffin-embedded autopsy tissues taken from
victims at the time or, in one case, isolated from
a frozen lung sample of a 1918 victim from
Brevig Mission, Alaska (76). The coding se-
quences of the 1918 viral RNA segments did
not reveal obvious genetic features that had
previously been associated with virulence (98,
99). Therefore, it was crucial to study in-
tact replicating virus in suitable animal models
to better understand the genetic determinants
responsible for 1918 virus pathogenicity and
transmissibility. With the advent of reverse ge-
netics technology for influenza viruses in 1999,
infectious virus could be rescued entirely from

100 nm

Figure 1
Negative-stained transmission electron micrograph of reconstructed 1918
virions. The prominent surface projections on the virions are composed of
either HA or NA glycoproteins. Virus samples were collected from
supernatants of 1918-infected Madin-Darby canine kidney (MDCK) cell
cultures 18 h after infection. The solid mass in lower center contains MDCK
cell debris that did not spin down (centrifugation) during the procedure.
Prepared by T. Tumpey and C. Goldsmith, CDC.

plasmid-cloned influenza gene segments with-
out helper virus (21). This technology made it
possible to produce influenza viruses with spe-
cific sequences. With the 1918 virus gene se-
quences completed, cDNAs were constructed
by PCR using commercially synthesized over-
lapping deoxyoligonucleotides corresponding
to the published sequence of the 1918 influenza
virus and subcloned into plasmids for virus
rescue (7). In 2005, following completion of
the 1918 virus coding region sequence, a re-
constructed influenza virus containing all eight
gene segments from the H1N1 pandemic virus
was generated for the first time at the Cen-
ters for Disease Control and Prevention (103).
A negative-stained transmission electron mi-
crograph of the recreated 1918 influenza virus
showed virions with typical influenza virus mor-
phology (Figure 1).

NS1 PROTEIN IS NOT A CRUCIAL
VIRULENCE FACTOR OF THE
1918 VIRUS

The initial sequencing of the nonstructural
(NS) gene of the 1918 influenza virus in 2000
made it possible to study the role of this in-
dividual 1918 virus protein encoded in the ge-
netic background of a commonly used influenza
virus (7). NS1 protein, the product of a spliced
mRNA from the influenza NS gene, functions
as an antagonist to block type 1 interferon
(IFN)-mediated host antiviral response follow-
ing infection (25, 115). Viral infection is gen-
erally associated with double-stranded RNA
(dsRNA) production. By virtue of its dsRNA
binding properties, NS1 protein has been pro-
posed to be an important determinant of in-
fluenza virus virulence because of its ability to
sequester dsRNA generated during virus repli-
cation (24, 57, 97, 114). This in turn blocks
the activation of 2′-5′ oligo (A) synthetase (64),
which is believed to be an activator of RNaseL,
an endonuclease that degrades cellular and vi-
ral RNA (20, 66, 125). NS1 has evolved ad-
ditional ways to evade the antiviral effects on
the host cell, including blocking activation of
IFN-inducible protein kinase R (PKR) activity
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during virus infection (9, 35). In the absence of
NS1, PKR (a serine-threonine protein kinase)
inhibits eukaryotic translation initiation factor
2 (eIF-2α) (56), thereby inhibiting viral and
cellular protein synthesis and virus replication.
The retinoic acid-inducible gene I (RIG-I) is
required for the induction of interferon-beta
(IFNβ) in response to influenza virus infection,
and NS1 suppresses production of IFN by tar-
geting and inactivating the RIG-I-dependent
signaling pathway (120). Deletion of NS1 re-
sults in heightened expression of cellular genes,
including RIG-I (71), involved in the antiviral
response.

The concept that a strong IFN-antagonist
1918 NS1 protein may have contributed to
the exceptional virulence of the pandemic virus
prompted initial studies on the function of this
gene (7, 26). The approach to studying the con-
tribution of a strain-specific NS gene to virus
pathogenesis has been to generate single-gene
reassortant viruses through reverse genetics.
On the basis of reported nucleotide sequences, a
virus was reconstructed containing the NS gene
of the 1918 virus in the genetic background
of a common laboratory strain, A/WSN/33
(WSN;H1N1) virus. However, the introduc-
tion of the 1918 NS1 gene or the entire 1918
NS segment into the WSN virus background
(1918 NS:WSN) resulted in a virus that was
attenuated in mice (7). In more recent studies

Reassortant virus:
virus that possesses
gene segments from
multiple strains,
derived by classical
reassortment or
through reverse
genetics

the genetic background influenza gene set from
WSN virus was replaced with the genetic back-
ground of a nonlethal seasonal influenza H1N1
virus. This required generating a new set of res-
cue plasmids, in this case from A/Texas/36/91
(Tx/91:H1N1) virus, which has been charac-
terized in humans under experimental settings
(37) and is nonpathogenic in mice (106). Over-
all, the 1918 virus virulence observed in mice
correlated with the ability of 1918 recombinant
viruses to replicate efficiently in mouse lungs
and human airway cells (Table 1). Studies with
7:1 recombinant viruses, in which the NS gene
of the 1918 virus was replaced with the NS
genes from Tx/91, revealed that the lethal out-
come in mice did not differ significantly from
mice inoculated with the parental 1918 virus.
Moreover, in the reciprocal experimental ap-
proach, a 1918 1:7 recombinant virus was gen-
erated in which the Tx/91 NS virus gene was in-
dividually replaced by the 1918 NS virus gene.
The 1918 NS1:Tx/91 virus did not confer a
more virulent virus in mice or increase the repli-
cation efficiency of the parental Tx/91 virus in
human airway cells (74). These data further sug-
gested that the NS1 protein is not a crucial vir-
ulence factor of the 1918 virus or, alternatively,
that the mouse is not an ideal model to study
human NS1 virulence.

While the 1918 human NS1 may be inca-
pable of inhibiting the murine IFN in mouse

Table 1 Role of individual virus genes in the high pathogenicity phenotype of 1918 virus in mice

1918 (7:1) Recombinant virusesa 1918 (1:7) Recombinant viruses

Gene segment Replicationb Virulence Replication Virulence
PB2 Same as 1918 High Same as Tx/91 Low
PB1 Significantly reduced Intermediate Moderately elevated Low
PA Same as 1918 High Same as Tx/91 Low
HA Significantly reduced Low Significantly elevated High
NA Significantly reduced Intermediate Moderately elevated Low
NP Same as 1918 High Same as Tx/91 Low
M Same as 1918 High Same as Tx/91 Low
NS Same as 1918 High Same as Tx/91 Low

aSummarized from Reference 74.
bVirus replication in mouse lungs.
Abbreviations: HA, hemagglutinin; M, matrix; NA, neuraminidase; NP, nucleoprotein; NS, nonstructural; PA, polymerase
acidic protein; PB1/2, polymerase basic protein 1/2.
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cells, it may be a virulence factor in alterna-
tive models. Evidence to support this comes
from microarray analysis on human lung ep-
ithelial cells infected with 1918 NS1:WSN
virus (26). This virus was more effective at
blocking the expression of IFN-regulated genes
than the parental WSN virus was. Moreover,
in a 2006 study by Salomon et al. (81) address-
ing the NS gene of H5N1 virus, a single-gene
reassortant virus that combined the NS gene
of the nonlethal A/chicken/Vietnam/C58/04
virus with the remaining seven genes from
the highly virulent A/Vietnam/1203/04 virus
(isolated from a fatal case) attenuated the vir-
ulence observed with the parental VN/1203
virus in ferrets, but not in mice. For the
H7 subtype virus, Munster and colleagues
(67) generated a reassortant virus that pos-
sessed the NS gene from the highly virulent
H7N7 virus A/Netherlands/219/03, with re-
maining genes derived from the low virulent
A/Netherlands/33/03 virus, and found that it
did not result in increased pathogenicity in
mice. The data suggest that the mouse model
might not be suitable for experiments of this
kind and that other species should be consid-
ered for studying the influenza virus NS gene.
Moreover, standard inbred mouse strains lack a
functional IFN-regulated Mx1 gene, and there-
fore their susceptibility to influenza virus infec-
tions may not be typical of mammals.

HEMAGGLUTININ AND
NEURAMINIDASE ARE
REQUIRED FOR OPTIMAL VIRUS
REPLICATION AND VIRULENCE
OF THE 1918 PANDEMIC STRAIN

Most of the initial research emphasis on the
1918 virus was placed on the HA and NA glyco-
proteins because they are the major viral surface
antigens of influenza A viruses and in general
are important virulence factors in mammals and
poultry. Early studies employing the mouse-
adapted WSN influenza virus as a background
virus showed that the HA and NA genes of
the 1918 virus maintained the virulence of the
parental WSN virus (104, 105). In contrast,

the control virus possessing the HA and NA
genes from a seasonal H1N1 (New Caledonia
HA/NA:WSN) virus on the same WSN genetic
background was not lethal to mice at any virus
dose tested. These results were striking because
the 1918 HA and 1918 NA genes were de-
rived directly from a human virus without prior
mouse adaptation. Typically, strains of influenza
A viruses become lethal in mice only after they
are adapted to growth in these animals. Sub-
sequent studies using the genetic background
of Tx/91 virus possessing the 1918 HA and
NA genes (1918 HA/NA:Tx/91) or 1918 HA
only (1918 HA:Tx/91) confirmed the initial re-
sults by demonstrating that these recombinant
viruses replicated efficiently in the mouse lung
and were lethal for this species (106). Similarly
Kobasa and colleagues (48) demonstrated that
the HA gene of 1918 virus enhanced the viru-
lence of both H1N1 and H3N2 subtype viruses
in mice.

The 1918 HA gene is also essential for max-
imum virus replication in human airway cells
and for eliciting a heightened host inflamma-
tory response (74, 106). The 1918 HA recom-
binant viruses induced a heavy inflammatory
infiltrate into the lung marked by a predomi-
nance of neutrophils and an increase of alveolar
macrophages and cytokines shortly before the
death of these mice. A variety of inflammatory
mediators, including complement factors (39)
and chemokines (16, 86), can cause neutrophil
migration. A greater expression of chemokines
that activate and exert chemotactic effects on
neutrophils, observed in 1918 HA/NA:Tx/91–
infected mouse lungs, correlated well with the
increased neutrophil influx into the lung (106).
The notion that neutrophils drive the increased
lung pathology and contribute to mortality
following 1918 HA/NA:Tx/91 virus infection
was addressed in neutrophil depletion stud-
ies. However, depletion of neutrophils after the
initiation of lung inflammation had no effect
on the overall disease outcome (106). On the
contrary, neutrophil-depleted mice had signif-
icant weight loss, increased virus replication,
and increased mortality following lethal chal-
lenge with the 1918 HA/NA recombinant virus.
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These data suggest that while neutrophils may
be contributing to the overall pathogenesis,
they still play a crucial role in controlling virus
growth and promoting clearance of this highly
virulent virus.

Among all eight gene segments tested indi-
vidually, the HA was the only single 1918 virus
gene able to confer a virulent phenotype when
rescued on the genetic background of Tx/91
H1N1 virus (74). It is interesting to speculate
on the role of the 1918 HA glycoprotein and its
ability to enhance virus replication and disease
of a seasonal influenza virus. The HA molecule
of influenza A viruses is an integral membrane
glycoprotein with multiple functions. The post-
translational cleavage at a conserved arginine
residue of HA0 to generate the subunits HA1
and HA2 is necessary for virus infectivity as it
activates the membrane fusion potential of the
HA (88). The HA homotrimer is responsible
for viral binding to sialic acid (SA)-containing
receptors on host cells and mediating the sub-
sequent fusion of virus and host membranes
(via HA2 fusion) in the endosome after the
virus has been taken up by endocytosis. Thus,
the HA protein mediates fusion and uncoat-
ing because of low-pH-induced conformational
changes; acidification converts the HA into a
fusogenic conformation, thereby exposing the
hydrophobic N terminus of the HA2 subunit
(73). Genetic analysis of mouse-adapted vari-
ants showed a number of HA mutations, in-
cluding loss of a glycosylation site and substitu-
tion in HA2, which increases the pH of fusion
(34, 89). If the 1918 virus possesses an HA with
an altered (elevated) pH of fusion, this could
increase the rate of uncoating and thus more
rapidly establish infections, resulting in higher
yields of virus (46). Future studies are needed to
clarify the fusion activity of the 1918 HA gly-
coprotein and determine if its high virulence is
associated with its ability to fuse membranes
at higher pH, as demonstrated for some in-
fluenza strains with increased virulence. Such
studies may reveal whether the fusion activity
of HA can be modulated by other viral genes
and whether the pH threshold for membrane
fusion is linked to receptor specificity.

Sialic acid (SA): the
essential terminal
sugar on the receptor
for influenza type A
viruses

SC18: A/South
Carolina/1/1918

Glycan topology:
characteristic
structural features of
glycans that affect
receptor binding to
ligands

Receptor specificity for the influenza virus
is controlled by the glycoprotein HA and
is important for host restriction of human
and avian viruses. In general, avian influenza
virus HAs preferentially recognize α2,3-linked
SA receptors (92), which are abundant in
the gastrointestinal tract of poultry and wild
birds (61, 62, 111). Conversely, human in-
fluenza viruses preferentially recognize α2,6-
linked SA receptors, which predominate in
the upper respiratory tract of humans and
some mammals, such as ferrets (17, 23, 29, 80,
118). It appears that the 1918 influenza pan-
demic was caused by viruses with two recep-
tor binding variants: A/South Carolina/1/1918
(SC18) and A/Brevig Mission/1/1918, like
A/London/1/1918, possess the human α2,6 SA
receptor preference, whereas natural variants
A/New York/1/1918 and A/London/1/1919
possess a mixed α2,6/α2,3 SA specificity (29).
The 1918 reassortant viruses described above
all possessed the SC18 HA. A confounding fea-
ture of the SC18 HA is its ability to attach
and replicate efficiently in the murine respi-
ratory tract (103), which contains a paucity of
α2,6-linked SA receptors (36, 38). As alluded to
above, human influenza viruses with α2,6 SA
receptor preference generally require adapta-
tion by sequential passage in the mouse respira-
tory tract before viruses can replicate efficiently
and induce disease in mice. Finding the answer
to how a non-mouse-adapted SC18 virus repli-
cates and kills mice may shed light on the role
of the 1918 HA in virulence.

The paradigm of avian viruses binding α2,3
linkages, and human-adapted viruses binding
cells bearing glycans with α2,6 linkages, may
be an oversimplification. Chandrasekaran et al.
(11) showed that the presence of α2,3 or α2,6
linkage alone is not sufficient, but that the crit-
ical considerations are glycan topology in ad-
dition to glycan composition. Thus, the recog-
nition of a specific structural topology or some
unidentified receptor linkage, and not the SA
linkage itself, may allow a virus possessing the
SC18 HA to bind glycans in the respiratory
tract of mice and to replicate efficiently (44).
The binding of the HA protein may be a
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PB1: polymerase
basic protein 1

determinant for virulence by targeting specific
host cells. The SC18 HA binds specifically to
goblet cells in ferret as well as human respira-
tory tissue(s) (90). Enhanced cell tropism, pro-
vided by the HA, could allow viruses to bind a
subset of cells in the upper respiratory tract that
are critical for pathogenesis.

The NA protein of influenza A virus func-
tions as a sialidase and cleaves SA from host
cells, thus promoting viral spread (72). In-
fluenza viruses possessing low NA enzymatic
activity or blocking the receptor-destroying ac-
tivity of the NA result in viral aggregation at
the cell surface (72, 73). A functional cooper-
ative must exist between HA and NA surface
proteins for optimal receptor binding and virus
release (65). Thus, an evolutionary balance be-
tween the HA and NA results in a cooperative
between the avidity of HA and the strength
of NA (112, 113). A pandemic virus possess-
ing an efficient NA could promote enhanced
replication and contribute to virulence. There-
fore, single gene reassortants were generated
and a critical role for the NA in the high viru-
lence of the 1918 pandemic influenza virus was
identified (74). In contrast to the lethal out-
come in mice infected with the eight-gene 1918
virus, mice infected with the 7:1 recombinant
virus containing the Tx/91 NA were attenu-
ated. Moreover, the reduced disease and weight
loss of the Tx/91 NA:1918–infected mice corre-
lated with the lower levels of virus replication in
mouse lungs and human airway epithelial cells.
Further proof that the NA gene contributes to
the high virulence of the 1918 pandemic virus
was provided by generating reciprocal recom-
binant (1:7) viruses. A Tx/91 recombinant virus
expressing the 1918 NA increased the repli-
cation efficiency of the parental Tx/91 virus
in primary normal human bronchial epithelial
(NHBE) cells and mouse lungs (74).

A unique phenotype identified for the 1918
virus is its ability to form visible plaques on
Madin-Darby canine kidney (MDCK) cells in
the absence of the protease trypsin (103). The
proteolytic cleavage of the HA molecule is
a prerequisite for multicycle replication, and
the ability of an influenza virus to replicate

in the absence of trypsin has been thought
to be an important determinant of influenza
virus pathogenicity in mammals (32, 33). In
contrast to the contemporary human Tx/91
and N.Cal/99 H1N1 viruses, which require an
exogenous protease source for their multicy-
cle replication and plaque formation, the 1918
virus and a recombinant influenza virus bearing
only the 1918 NA segments (1918 NA:Tx/91)
formed visible plaques without the addition of
trypsin. This finding suggested that the 1918
NA activity facilitates HA cleavage. The 1918
HA and NA gene sequences do not point to any
obvious genetic features that have previously
been associated with the ability to replicate in
the absence of trypsin; i.e., the 1918 virus pos-
sesses neither a series of basic amino acids at the
HA cleavage site (as seen in highly pathogenic
avian H5 or H7 influenza viruses) nor mutations
(N146R or N146Y) in the NA that lead to the
loss of a glycosylation site at position 130 like
those that allow the WSN virus NA to sequester
plasminogen (51, 98). Moreover, the systemic
infection in WSN-infected mice, attributed to
structural components of the NA protein (33),
has not been observed with the 1918 virus in
mice (103, 108). Scientists are currently consid-
ering other mechanisms of NA-mediated HA
cleavability that may be relevant to the replica-
tion and virulence of the 1918 virus.

THE VIRAL PB1 GENE
CONTRIBUTES TO OPTIMAL
VIRULENCE OF THE 1918
PANDEMIC STRAIN

The influenza RNA polymerase complex is
a heterotrimer consisting of polymerase basic
protein 1 (PB1), polymerase basic protein 2
(PB2), and polymerase acidic protein (PA) (72).
The PB1 subunit is a key component of the
viral RNA polymerase complex and catalyzes
the sequential addition of nucleotides during
RNA chain elongation. PB1 contains multiple
active sites critical for the polymerization of
RNA chains and also for association with PA
and PB2 to form the polymerase heterotrimer
(10, 31, 75). Both the 1957 and 1968 pandemic
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strains are thought to have originated as reas-
sortants, in which a novel avian HA replaced
the prevailing human-adapted HA surface pro-
tein (116). Both pandemic viruses also acquired
a novel polymerase subunit PB1 gene of wild
waterfowl origin (45), suggesting that the ac-
quisition of an avian PB1 gene may be a critical
step in generating a pandemic virus through re-
assortment. The selective advantage for an in-
fluenza virus possessing an avian PB1 gene over
a human PB1 gene is not entirely clear; how-
ever, the acquisition of an avian influenza PB1
gene by reassortment might provide increased
transcriptional activity of the RNA-dependent
RNA polymerase and result in increased virus
replication efficiency of a new pandemic strain
(69). As described below, the PB1 virus gene of
the 1918 virus was essential for maximal repli-
cation and virulence of the pandemic virus.

In October 2005, the sequencing of the
1918 polymerase virus genes (PB1, PB2, and
PA) completed the entire genetic sequence
of the pandemic virus. Analysis of the 1918
polymerase protein sequences revealed strik-
ing similarities to the polymerase protein se-
quences found in the avian influenza consen-
sus sequences. The 1918 PB1 protein differs
from the conserved avian influenza consensus
sequence by only seven amino acid residues
(99). Following completion of the virus cod-
ing region sequence, an influenza virus contain-
ing all eight gene segments from the 1918 pan-
demic virus was rescued in 2005 (103). In vitro,
the reconstructed 1918 virus replicated with ex-
traordinary efficiency compared with contem-
porary seasonal influenza strains or recombi-
nant viruses possessing seasonal Tx/91 virus
genes. This difference was demonstrated by
studying the apical virus release in a number of
relevant cell lines including primary bronchial
epithelial cells and Detroit 562 cells, derived
from a human pharyngeal epithelium. In vivo,
the reconstructed 1918 virus was lethal at high
doses in ferrets, mice, and macaques (42, 47,
103, 108). At the high virus inoculum of 106

PFU, mice displayed a sudden onset of severe
illness and succumbed to infection as early as
3 days following an intranasal inoculation. This

NP: nucleoprotein

was consistent with the rapid course of dis-
ease in some of its human victims who died
in 1918 as a result of an overwhelming vi-
ral pneumonia (50). Virus titers in lungs of
1918 virus–inoculated mice were nearly 40,000-
fold higher than those of mice infected with
the contemporary Tx/91 virus (103). These
studies also revealed that the virulence of the
1918 virus was largely determined by the HA
and, to a lesser extent, by the polymerase gene
complex.

Until recently, it was not known which
of the three polymerase genes contributed to
the exceptional virulence of the 1918 virus or
whether other virus genes also contributed to
its virulence. In 2007, the 1918 1:7 recom-
binant viruses were generated in which the
polymerase genes from Tx/91 were individu-
ally replaced by the 1918 polymerase genes.
The increased replication efficiency of the 1918
PB1:Tx/91 (1:7) virus could be visually ob-
served as a distinctly larger plaque size pheno-
type compared with the small plaque phenotype
of the 1918 PA:Tx/91 and 1918 PB2:Tx/91 (1:7)
reassortants. Moreover, the 1918 PB1:Tx/91
virus produced eightfold-greater virus release
in apical supernatants as early as 12 h after
infection, compared with virus production by
the other polymerase reassortants and the wild-
type Tx/91 virus. In contrast, infection with
1:7 reassortants, in which the 1918 nucleopro-
tein (NP), matrix (M), NS, or polymerase sub-
units PB2 and PA were individually substituted
into the background of the Tx/91 virus, did not
result in increased virus replication compared
with the parental Tx/91 virus (Table 1). In the
reciprocal experiments, mice infected with the
7:1 reassortant virus containing the Tx/91 PB1
gene had higher survival rates and lower lung
titers than mice infected with the eight-gene
1918 virus (74) (Table 1). These data further il-
lustrated the importance of the 1918 PB1 genes
for optimal virus replication of this pandemic
strain. Antiviral therapies directed at inhibiting
the polymerase complex formation [such as re-
cently developed competitive inhibitors of the
PB1 protein (27)] should be further developed
because new and better antiviral therapies are
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Cytokine storm:
hypercytokinemia, or
the excessive release of
proinflammatory
cytokines which has
been proposed to be
detrimental to the host

needed to deal with future pandemic and epi-
demic strains.

The increased virulence associated with the
1918 PB1 might be due to the PB1-F2 pro-
tein generated by an alternative reading frame.
Recently, a novel protein encoded by an alter-
native reading frame in the PB1 gene segment
has been serendipitously identified following
a broad search for antigenic influenza A viral
peptides encoded by alternative reading frames
(13). The PB1-F2 protein has intrigued scien-
tists ever since its initial discovery by Chen and
colleagues in 2001. It can be found in various
lengths in all known influenza A subtypes but
is generally a 87-amino-acid peptide generated
from a +1 reading frame by virtue of ribosomal
scanning (124). Of note, all the contemporary
H1N1 viruses have truncated PB1-F2 proteins
consisting of 57 amino acids. This is relevant
with respect to the 1918 PB1 (7:1 and 1:7) re-
combinant virus results described above. The
PB1-F2 protein is truncated in Tx/91 virus and
all contemporary human H1N1 viruses but is
full length in the 1918 virus, and therefore the
replacement of the 1918 PB1 gene may be con-
ferring the increased virulence associated with
this virus gene. Although the PB1-F2 protein
is not critical for viral replication in vitro (13),
it induces apoptosis by localizing to the inner
and outer membranes of mitochondria. There,
the PB1-F2 protein can permeabilize planar
lipid membranes by oligomerizing and punch-
ing holes into the mitochondria (12). The PB1-
F2 protein specifically targets and destroys alve-
olar macrophages, inducing apoptosis in this
cell type and to a lesser extent in epithelial cells
that support virus replication (12, 49). Theoret-
ically, PB1-F2-mediated killing of professional
antigen-presenting cells could impede antigen
presentation to the adaptive T cell response,
thus allowing for the increased pathogenicity
of the virus.

Work by Zamarin and colleagues (122, 123)
demonstrates the ability of PB1-F2 to affect
the outcome of influenza A virus infection in
mice. Knocking out the PB1-F2 protein had
no effect on viral replication in tissue cul-
ture but diminished virus pathogenicity and

mortality in mice. Subsequent studies by
Conenello and colleagues (15) revealed the im-
portance of amino acid position 66 in PB1-
F2 in the virulence of a H5N1 virus and the
1918 pandemic virus. A recombinant H5N1
virus possessing an asparagine-to-serine change
at amino acid position 66 (N66S) in the PB1
gene of the H5N1 virus A/Hong Kong/156/97,
with all other genes derived from WSN virus,
was significantly more virulent compared with
a virus without this amino acid change. This
amino acid change, N66S, was also found in
the PB1-F2 segment of the 1918 virus. In the
reverse experiment, mutation of S66N into
the reconstructed 1918 virus resulted in re-
duced pathogenicity and decreased mortality
and morbidity compared with the parental 1918
virus. For both the H5N1 and the 1918 PB1-
F2 mutations studied, mice infected with the
viruses containing a serine at position 66 had
higher lung virus titers and cytokines com-
pared with mice infected with their respective
S66N mutants (15), further suggesting the im-
portance of this amino acid in the pathogenesis
of some influenza strains.

PB1-F2 has been hypothesized to cause
apoptosis of immune cells, which results in a
decrease in the adaptive immune response. A re-
markable and underappreciated feature of lethal
H5N1 virus infection has been the destruc-
tive effects on the mammalian immune sys-
tem, which may be a factor contributing to the
overall pathogenesis (107). This is counterintu-
itive and contrary to the proposed mechanism
that an exaggerated immune response (cytokine
storm) significantly contributes to the patho-
genesis of lethal influenza virus infections. The
high rate of mortality among young, healthy in-
dividuals between 15 and 34 years of age in 1918
(30, 87), a notable divergence from the burden
of excess mortality among elderly adults, has
raised the question of whether this was the re-
sult of a too vigorous (or overexuberant) im-
mune response among this age group. How-
ever, the hypothesis that severe lung disease
is based on induction of a cytokine storm has
been difficult to prove and model in vivo, and
it is clear that highly virulent H5N1 viruses
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cause a decrease in peripheral blood and tissue
lymphocytes.

In mice, H5N1 viruses typically fall into two
main groups: a highly pathogenic phenotype
with systemic replication and death (A/Hong
Kong/483/97-like), and a low pathogenic
phenotype with efficient respiratory viral
replication without systemic spread or lethal
infection (A/Hong Kong/486/97-like) (43,
107). Intranasal infection of mice with HK/483
virus resulted in a significant decrease in the to-
tal number of circulating leukocytes evident as
early as day 2 postinfection. Differential blood
counts demonstrated an up to 80% drop in
lymphocytes by day 4 postinfection. In contrast,
nonlethal HK/486-infected mice displayed
only a transient drop of lymphocytes during the
infectious period. There was evidence of apo-
ptosis in the primary and secondary lymphoid
organs of HK/483-infected mice, suggesting a
mechanism for lymphocyte destruction (107).
Thus, the lethal H5N1 viruses appear to possess
the capacity to limit the induction of immune
responses by targeting lymphocytes and de-
stroying these cells. A common feature among
the H5N1-infected patients with a severe or
fatal outcome was a low peripheral leukocyte
count, or leukopenia (19, 102, 121). In contrast,
patients who did not display leukopenia upon
hospital admission were more likely to recover.

Additional 1918 PB1-F2 protein studies
by McAuley and colleagues (63) incorporated
secondary bacterial infections into the mouse
model. The premise of this work is that tar-
geted elimination of alveolar macrophages by
PB1-F2 protein may facilitate an opportunistic
bacterial infection. The results show that in-
serting the 1918 PB1-F2 gene into the genetic
background of the A/PR/8/34 virus created a
recombinant virus that was more deadly than
the parental PR/8 strain, with secondary bacte-
rial infection, suggesting that the 1918 PB1-F2
gene exacerbated any resulting secondary bac-
terial pneumonia. The PB1-F2 protein could be
looked at as a marker for virulence and incor-
porated as part of our general surveillance and
testing for potentially pandemic viruses, as is
currently done with PB2 position 627 (83, 84).

A better understanding of the contribution of
polymerase proteins in virulence will aid in de-
signing drugs that target the key intersubunit
binding sites of the polymerase complex and
that diminish the high replication efficiency of
pandemic virus strains. In addition, the design
of small-molecule drugs that target PB1-F2 and
prevent the detrimental effects of this protein
should be considered.

1918 VIRUS TRANSMISSION
In humans, influenza viruses are expelled
in respiratory secretions when an individual
coughs or sneezes. Individuals become infected
either through direct inhalation of large or
small droplets containing viruses or by indirect
contact with fomites on contaminated surfaces
(4, 8, 52). A key property of seasonal and
pandemic influenza virus strains is their ability
to spread with high efficiency through low-titer
aerosol transmission. Avian influenza viruses,
which spread primarily by fecal-oral transmis-
sion among birds, lack the ability for sustained
transmission in humans (117). For contempo-
rary H5N1 viruses, other than the occasional
family clusters that have provided evidence for
limited person-to-person transmission (41),
the majority of human infections have been
the result of exposure to H5N1 virus–infected
poultry. Increasing persistence and genetic
diversity of H5N1 viruses in poultry (2) with
concomitant human infection since 2003 have
been driving the central question: What are
the genetic changes necessary for an avian
influenza virus to adapt to humans and acquire
efficient and sustained transmission? Even with
sequencing data of countless influenza virus
genomes, no clear molecular signatures tell us
how influenza viruses spread efficiently in the
human population.

Despite classical experimentation by
Andrewes and Glover as far back as 1941 (5)
which determined that human influenza virus
may transmit from infected ferret to uninfected
ferret, the molecular basis of influenza virus
transmission is not well understood. The
molecular basis can be broken down into
two fields of study: the complex virus-host
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interactions and viral factors that influence
virus transmission. The latter factors have
been the subject of recent transmission studies
using a combination of reverse genetics and
animal models. Initial transmission studies
with the reconstructed 1918 virus in mice
suggested that this species is a poor model to
mimic the transmission pattern of influenza
viruses among humans (54). However, both
ferrets and guinea pigs are naturally susceptible
to infection with influenza A viruses, and
both animals have shown value in modeling
influenza virus transmission (53–55, 58, 119).
Moreover, the disease in ferrets resembles
that seen in humans infected with influenza
A viruses, and their upper respiratory tract
epithelia possess a distribution of influenza
virus receptors (predominant α2,6-linked SA
receptors) that corresponds to what has been
observed in human airway cells (111, 118).

It has been postulated that the lack of sus-
tained human-to-human transmission of avian
influenza H5N1 viruses is due to their α2,3 SA
receptor binding preference (60, 82, 110). In
fact, the three influenza pandemic viruses of the
last century, occurring in 1918 (H1N1), 1957
(H2N2), and 1968 (H3N2), each possessed an
HA with a human α2,6 SA binding preference
and is thought to have originated from an avian
virus possessing an α2,3 SA binding preference
(17, 92). In general, the introduction of only
two amino acid mutations into the HA of the

three human HA subtypes causes a switch
from the avian α2,3 SA to the human α2,6
SA receptor binding preference. H2 and H3
subtypes make the switch between an α2,3 and
α2,6 SA binding preference with two changes
at amino acid positions 226 and 228 (Q226L
and G228S) of the HA (17, 68), whereas two
different mutations (E190D, G225D) in the
H1 HA of the 1918 pandemic virus results in
a receptor switch (29). When the known HA
mutations were inserted into contemporary
H5N1 viruses, it was found that mutations that
caused a shift from the avian-type to human-
type receptor binding specificity for the H1/H3
subtype do not cause an equivalent shift in
specificity for the H5 subtype (92). These
results indicate that a different combination
of mutations in HA is required for the current
H5N1 virus to completely shift from avian-like
to human-like receptor binding preference.

It is currently unknown which additional
mutations in the H5 HA would cause a shift
to the human-type specificity; it becomes an
overwhelming task to identify random muta-
tions that may be required for this avian subtype
virus to transmit efficiently among humans.
However, the alternative approach of making
mutations in the 1918 virus and carrying out
transmission studies in ferrets has proved suc-
cessful in identifying viral factors that influence
virus transmission (Table 2). The ability of the
1918 pandemic virus to transmit through the

Table 2 Summary of the roles of individual virus genes in the transmission of 1918 virus in ferrets

Gene segments from 1918 virusa,b Sneezing observed Transmissionc

All Yes Yes
None: rescued avian A/Duck/New York/15024/96 No No
All: except two amino acid changes (D190E/D225G) in HA (AV18) No No
HA, NA No No
HA, NA, PB1 Occasional No
HA, NA, PA No No
HA, NA, PB2 Yes Yes

aRemaining gene segments derived from avian A/Duck/New York/15024/96 H1N1 virus.
bSummarized from References 108 and 109.
cTransmission through the air via respiratory droplets of A/Duck/New York/15024/96 H1N1–1918 recombinant viruses. Three ferrets were inoculated
with 106 PFU of the indicated virus and placed in separate cages. Naı̈ve ferrets were placed in cages adjoined to those of the inoculated ferrets, and viral
shedding in the upper respiratory tract was assessed on alternating days for inoculated and naive ferrets.
Abbreviations: HA, hemagglutinin; NA, neuraminidase; PA, polymerase acidic protein; PB1/2, polymerase basic protein 1/2.
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air via respiratory droplets (108) is of partic-
ular interest, as efficient transmission via this
route is a critical property of pandemic in-
fluenza strains. In 2007, a key finding showed
that the binding preference for α2,6-linked SA
receptors was an essential property of the 1918
pandemic strain, as generation of a mutant 1918
virus with an α2,3 binding HA (AV18) resulted
in loss of transmissibility in the ferret model
(108). No sneezing was noted among the AV18-
inoculated ferrets through the course of the ex-
periment, a finding consistent with the lack of
significant sneezing among other viruses that
do not spread to naı̈ve ferrets (Table 2). How-
ever, using a series of human 1918–avian H1N1
influenza reassortant viruses, recent studies in
the field demonstrated that the 1918 HA gene
was necessary but not sufficient to allow trans-
mission between ferrets if the 1918 recombi-
nant virus possessed an avian polymerase sub-
unit PB2. Strikingly, the 1918 PB2 protein was
both necessary and sufficient for airborne trans-
mission of a virus expressing the 1918 HA (109)
(Table 2).

Alignment of the avian virus and 1918
virus PB2 proteins shows a number of amino
acid differences that include amino acid po-
sition 627. The residue 627 contributes to
host range and to the temperature sensitivity
of avian viral replication in mammalian cells
(59, 93). All three twentieth-century influenza
pandemics were caused by viruses containing
human-adapted PB2 genes, and in general ly-
sine is present at position 627 among the human
influenza viruses that do transmit efficiently,
whereas a glutamic acid is found in the posi-
tion among the avian influenza isolates. Trans-
mission of the 1918 virus was abolished when a
glutamic acid, the avian consensus residue, was
introduced at position 627 (109). Moreover, us-
ing the guinea pig to model human influenza
transmission, Steel et al. (91) identified not only
the 627 residue in the PB2, but also the 701
residue as important for efficient transmission.
These findings demonstrate that the adaptation
of the PB2 protein is critical for the develop-
ment of pandemic influenza strains from avian
influenza viruses.

Respiratory droplets:
droplets or droplet
nuclei of
indeterminate particle
size expelled during
coughing or sneezing

Identification of the PB2 protein as a critical
determinant of respiratory droplet transmission
in the ferret suggests a number of interesting
hypotheses concerning the mechanism. Studies
have shown that the H5N1 PB2 protein con-
tributes to increased replication at lower tem-
peratures encountered in the nasal passages of
mice (36). In the ferret transmission studies, in-
fluenza viruses that transmitted efficiently were
able to replicate efficiently at the lower tem-
perature (33◦C) found in the environment of
the mammalian airway cells. The K627 to E
mutation resulted in a substantial impairment
in plaque formation at the lower temperature.
Thus, it is reasonable to speculate that the 627E
mutant virus is not replicating efficiently in the
airway cells putatively involved in shedding the
virus into the air. In addition, the 1918 HA pro-
tein, which is a determinant for direct contact
transmission, binds specifically to goblet cells
in ferret as well as human respiratory tissue(s)
(90). Enhanced cell tropism, provided by the
HA, could allow viruses to bind a subset of cells
in the upper respiratory tract that are critical
for transmission. An adapted PB2 may then be
further required to optimize replication (at the
lower temperature) following entry into these
cells, thus promoting transmission. Further ex-
amination of the tissue distribution of the 1918
reassortants, as well as virus-host interactions,
is needed to fully understand the mechanisms
of enhanced transmission.

CONCLUSION

The recent events in Asia, Africa, and Europe
have led to intensive planning and preparation
for a potential influenza pandemic. Identifica-
tion of the molecular secrets associated with
the high virulence and transmissibility of the
1918 pandemic virus will offer many further
avenues of investigation important for our pre-
paredness for the next pandemic. The research
detailed within this review demonstrates the
great strides that have been made toward under-
standing the exceptional virulence of this pan-
demic virus as it relates to the phenotype of con-
temporary avian influenza strains that possess
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pandemic potential. In the few short years since
the reconstruction of the 1918 pandemic virus, a
number of biological properties associated with
this unusually virulent influenza virus have been
found. The high replication efficiency of the re-
constructed 1918 virus observed in mouse and
human airway cells appears to be the result of
molecular determinants in the HA, NA, and
PB1 virus genes. The role of PB1 may reflect
the polymerase activity of the PB1 protein it-
self or the proapoptotic viral protein, PB1-F2,
generated by an alternative reading frame in
the PB1 gene segment. While the role of the

PB1 gene is likely to be a crucial component
of 1918 virus virulence, PB2 appears to con-
tribute to the transmissibility of this virus by
allowing increased replication at lower temper-
atures in the airways of mammals. Although a
number of selected 1918 virus genes were criti-
cal, it is most certainly the coordinated expres-
sion of all 1918 virus genes that confers the
unique highly virulent, transmissible pheno-
type observed with this pandemic virus. Overall,
such studies should provide further insight and
a basis for the rational design of intervention
strategies that target specific virus proteins.

SUMMARY POINTS

1. Sequence analysis of the 1918 H1N1 viral genome and the plasmid-based reverse genetics
system has allowed researchers an unprecedented opportunity to study the composition
of the virus responsible for the influenza pandemic of 1918.

2. Among the eight 1918 gene segments studied, the HA, NA, and PB1 genes contributed
significantly to the efficient replication and enhanced virulence of the pandemic strain.

3. The surface glycoproteins and PB2 segments of the 1918 virus are sufficient to confer
virus transmissibility of an avian H1N1 virus.

FUTURE ISSUES

1. The contribution of the 1918 polymerase subunit PB1 gene to virulence is particularly
significant in the context of the 1957 and 1968 pandemic viruses, each of which acquired
a novel PB1 gene from the avian influenza gene pool. How does the PB1 gene provide for
enhanced virus replication and virulence of the 1918 pandemic strain? A better knowledge
of the structure-function relationships of PB1 and its interactions with host components
such as host transcription machinery is needed for a better understanding of the overall
mechanism(s).

2. A better knowledge of the mechanisms of influenza virus transmission from the standpoint
of the host will help researchers to better understand the virus-host interactions and
specific airway cells conferring transmission.

3. Further characterization of the avian polymerase subunit PB2 in efficient transmission
of more relevant avian influenza strains such as H5 and H7 subtype viruses is needed.
Multiple subtypes of H5 and H7 avian influenza viruses circulating in domestic poultry
have infected more than 500 individuals in the past decade and currently represent the
greatest threat to public health.
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