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1. Consider 1 ≤ p < ∞ and the function || · ||
p
: C[0, 1] −→ R given by ||f ||

p
=

(∫ 1

0

|f(t)|pdt

) 1
p

, for all

f ∈ C[0, 1]. Show that || · ||
p
is a norm in C[0, 1].

2. Show that
(
C[0, 1], || · ||

p

)
is not complete.

3. For f ∈ C(R), consider the set A(f) = {x ∈ R |f(x) 6= 0} and define the support of f (denoted by supp(f))
as supp(f) = A(f). Let C

c
(R) be the space of all continuous real valued functions on R whose support is

a compact subset of R. Show that is a normed linear space with the sup-norm and that it is not complete.

4. Let C0(R) be the space of all continuous real valued functions on R which vanish at infinity, i e if f ∈ C0(R)
then for all ε > 0 there exists a compact set K

ε
⊂ R such that |f(x)| < ε, for all x ∈ Kc

ε
. Show that C

0
(R)

is a Banach space with the sup-norm. Also, show that C
c
(R) is dense in C

0
(R).

5. Let C1[0, 1] be the space of all continuous real valued functions on [0, 1] which are continuously differentiable
on (0, 1) and whose derivatives can be continuously extended to [0,1]. For f ∈ C1[0, 1], define ||f ||∗ =
max
x∈[0,1]

{|f(x)|, |f ′(x)|}. Show that
(
C1[0, 1], || · ||∗

)
is a Banach space. State and prove an analogous result

for Ck[0, 1].

6. For f ∈ C1[0, 1], define ||f ||
1
=

(∫ 1

0

(|f(x)|2 + |f ′(x)|2)dx

) 1
2

. Show that || · ||
1
defines a norm on C1[0, 1].

The expression |f |
1
=

(∫ 1

0

|f ′(x)|2dx

) 1
2

defines a norm on C1[0, 1]?

7. Let V = {f ∈ C1[0, 1]|f(0) = 0}. Show that | · |1 defines a norm on V .

8. Let V be a Banach space with norm || · ||
V
and X = C([0, 1];V ) the space of all continuous functions from

[0, 1] into V . For f ∈ X, define ||f ||
X
= max

x∈[0,1]
||f(x)||

V
. Show that || · ||

X
is well defined and it is a norm on

X. Also, show that (X, || · ||
X
) is a Banach space.

9. Let C1[0, 1] be endowed with the norm || · ||∗ and f ∈ C[0, 1] be endowed with the usual sup-norm. Show
that T : C1[0, 1] −→ C[0, 1] given by T (f) = f ′, is a continuous linear transformation and ||T || = 1.

10. Let C[0, 1] be endowed with its usual norm. For f ∈ C[0, 1], define T (f(t)) =
∫ t

0

f(s) ds, t ∈ [0, 1]. For

every n ∈ N, evaluate ||Tn||.



11. Let T : Cc(R) −→ R given by T (f(t)) =
∫ ∞
−∞

f(t) dt. Show that T is well defined and that it is a linear

functional on Cc(R). Is T continuous?

12. Let {t
i
}n

i=1
be given points in the closed interval [0, 1] and let {α

i
}n

i=1
be given real numbers. For f ∈ C[0, 1]

define T (f) =
n∑
i=1

αif(ti). Show that T is a continuous linear functional on C[0, 1] and evaluate ||T ||.

13. Let M
n×n

(C) be the linear space of the n × n complex matrices and let || · ||
p,n

denote the matrix norm
induced by the vector norm || · ||

p
on Cn, for 1 ≤ p ≤ ∞. If A = (a

ij
) ∈ M

n×n
(C) show that ||A||

1,n
=

max
1≤j≤n

{
n∑
i=1

|aij |

}
. State and prove an analogous result for ||A||∞,n .

14. Show that, for any matrixA ∈M
n×n

(C), it holds ||A||
2,n
≤ ||A||

E
≤
√
n||A||

2,n
, where ||A||

E
=


n∑

i,j=1

|a
ij
|2


1
2

.

15. Let 1 ≤ p < q ≤ ∞. Show that `p ⊂ `q, and that, for all x ∈ `p, ||x||
q
≤ ||x||

p
.

16. Let V be a Banach space and let {T
n
} be a sequence of continuous linear operators on V . Define

S
n
=

n∑
k=1

T
k
. If {S

n
} is a convergent sequence in B(V ), we say that the series

∞∑
k=1

T
k
is convergent and the

limit of the sequence {S
n
} is called the sum of the series. If

∞∑
k=1

||T
k
|| < ∞, we say that the series

∞∑
k=1

T
k

is absolutely convergent. Show that any absolutely convergent series is convergent.

17. Let V be a Banach space. If T ∈ B(V ) is such that ||T || < 1, show that the series I +
∞∑
k=1

T k is convergent

and that its sum is (I − T )−1.

18. (a) Let V be a Banach space and let T ∈ B(V ). Show that the series I +
∞∑
k=1

T k

k!
is convergent. The sum

is denoted exp(T ).

(b) If T, S ∈ B(V ) are such that TS = ST , show that exp(T + S) = exp(T ) exp(S).

(c) Deduce that exp(T ) is invertible for any T ∈ B(V ).

(d) Let A =

[
α −β
β α

]
, where α and β are real numbers. Show that, for any t ∈ R,

exp(tA) = eαt
[

cos βt −sin βt
sin βt cos βt

]
.

19. Let V be a Banach space. Show that G, the set of invertible linear operators in B(V ) is an open subset of
B(V ) (endowed with its usual norm topology).



20. Define T, S : `2 −→ `2 by T (x) = (0, x1 , x2 , · · · ) and S(x) = (x2 , x3 , · · · ), for all x = (x1 , x2 , · · · ) ∈ `2.
Show that T and S define continuous linear operators on `2 and that ST = I while TS 6= I (Thus, T and
S, which are called the right and left shift operators respectively, are not invertible.)

21. Let P be the space of all polynomials in one variable with real coefficients. For p(x) =
n∑
i=1

a
i
x ∈ P, define

||p||1 =

n∑
i=1

|ai | and ||p||∞ = max
1≤i≤n

|ai |. Show that || · ||1 and || · ||∞ define norms on P and that they are not

equivalent.

22. Let V be a normed linear space and letW be a finite dimensional subspace of V . Show that, for all v ∈ V ,
there exists w ∈W such that ||v +W || = ||v + w||.

23. Let V and W be normed linear spaces and let U ⊂ V be an open subset. Let J : U −→W be a mapping.
We say that J is (Fréchet) differentiable at u ∈ U if there exists T ∈ B(V,W ) such that

lim
h→0

||J(u+ h)− J(u)− T (h)||
||h||

= 0

(Equivalently, J(u+ h)− J(u)− T (h) = ε(h), with lim
h→0

||ε(h)||
||h||

= 0.)

(a) If such a T exists, show that it is unique. (We say that T is the (Fréchet) derivative of J at u ∈ U
and write T = J ′(u).)
(b) If J is differentiable at u ∈ U , show that J is continuous at u ∈ U .

24. Let V and W be normed linear spaces and let U ⊂ V be an open subset. Let J : U −→W be a mapping.

We say that J is Gâteau differentiable at u ∈ U along a vector w ∈ V if lim
t→0

J(u+ tw)− J(u)
t

exists. (We

call the limit the Gâteau derivative of J at u along w.) Show that if J is Fréchet differentiable at u ∈ U
then J is Gâteau differentiable at u along any vector w ∈ V and the corresponding Gâteau derivative is
given by J ′(u)w.

25. Let V and W be normed linear spaces and T ∈ B(V,W ) and w
0
∈ W be given. Define J : V −→ W by

J(u) = T (u) + w
0
. Show that J is differentiable at every u ∈ V and J ′(u) = T .

26. (a) Let V be a real normed linear space and let J : V −→ R be a given mapping. A subset K ⊂ V is said
to be convex ir, for every u and v ∈ K and for all t ∈ [0, 1] we have that tu + (1 − t)v ∈ K. Let K ⊂ V
be a closed convex set. Assume that J attains its minimum over K at u ∈ K. If J is differentiable at u,
show that J ′(u)(v − u) ≥ 0, for all v ∈ K.
(b) Let K = V . If J attains its minimum at u ∈ V and if J is differentiable at u, show that J ′(u) = 0.

27. Let V be a real normed linear space. A mapping J : V −→ R is said to be convex if, for every u, v ∈ V
and for every t ∈ [0, 1], we have J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v).
(a) If J : V −→ R is convex and differentiable at every point, show that J(v)− J(u) ≥ J ′(u)(v − u), for
every u, v ∈ V .
(b) Let J : V −→ R be convex and differentiable at every point of V . Let K ⊂ V be a closed convex set.
Let u ∈ K be such that J ′(u)(v − u) ≥ 0, for every v ∈ K. Show that J(u) = min

v∈K
J(v).

(c) If J : V −→ R is convex and differentiable at every point of V and if u ∈ V is such that J ′(u) = 0,
show that J attains its minimum (over all of V ) at u.


