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Abstract

We study the approximation by means of an iterative method towards strong (and more regular) solutions
for incompressible Navier—Stokes equations with mass diffusion. In addition, some convergence rates for
the error between the approximation and the exact solution will be given, for weak, strong and more regular
norms.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We use an iterative process in order to approximate solutions for a nonhomogeneous Navier—
Stokes model with mass diffusion. The argument is:

(a) to obtain a priori estimations for the scheme sequence (p”, u", p") (independent on n),
(b) to show that (p", u", p") is a Cauchy-sequence in an appropriate Banach space, and
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(c) to pass to the limit, proving that the limit (p, u, p) is the solution of the problem and obtain-
ing some convergence rates.

1.1. The model

We consider the motion of a viscous fluid consisting in two components, for instance, satu-
rated salt water and water. Some physical discussions and derivation of equations can be seen
in Frank and Kamenetskii [3], Kazhikhov and Smagulov [7], Antoncev, Kazhikhov and Mon-
akhov [1]. Let us give here a brief sketch.

Let the motion takes place in £2 C R? a bounded regular domain, and in a time interval [0, T].
Let p; and p; be the two characteristics densities (constants) of the two components, v and
v their velocities and e(z, X), d(z, X) the mass and volume concentration of the first fluid (1 — e,
1 — d for the second one). Then, if we define the mean density p (¢, x) = dp; + (1 — d) p2, and the
mean-volume and mean-mass velocities u = dv(l + (1 — d)V(Z), w=evl) + (1 - e)v(z), then
the equations of motion in Q7 = §2 x (0, T) are given by

{p(w, +wW-VW) — uAw — (u+ p)Vdivw+ VP =pf in Or,
divu=0, p;+div(pw)=0 in O,

where P is the pressure and p, u’ are viscosity constants such that > 0 and 3’ +2u > 0.
Here, w; denotes the time derivative of w, V and A are the 3D gradient and Laplacian operators.
Finally, div is the divergence operator.

On the other hand, Fick’s diffusion law (see [3]) gives w =u — Ap_IVp, being A > 0 the
mass diffusion coefficient. Eliminating w in the preceding equations (see [7]), one arrives at the
problem: To find (p, u, p) such that

p( +u-Vu) — pAu—i((u-V)Vp+ (Vp-Viu) 4+ Vp

1 1 .
- A2;<(vp -V)Vp — ;|Vp|2V,0 + V,oAp) =pfin Or,

divu=0in Q7, u|z, =0, u(0)=ugin 2,

a
pr—AAp+u-Vp=0in Qr, 8_p

nly,

(D

=0, p0)=poin 2,

where X7 = 0§2 x (0,T). Here p is a potential function (p = P + Au - Vp — A2Ap +
AQu + p')Alog p). Data of problem (1) are: initial data (pg, ug), external forces f, viscosity
and mass diffusion coefficients w, A > 0.

Taking into account the equalities

(u-V)Vp=u;0;0;0=0(;djp) —ou;jdjpo=Vu-Vp)—VuVp,
(Vo -Viu=29;pdju; = (Vu)'Vp
(where (Vu)! is the transposed matrix of Vu) and

1 1 1
diV(;V,O ® V,o) = ; ((V,o -V)Vp — ;|V,o|2V,0 + V,oA,o)

(where ® denotes the tensorial product), the problem (1) admits the following re-formulation
(with a new potential function g = p — Au - Vp):
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p(u;+ (u- V)u) — pAu+ Vg

1
—A((Vw)' = Vu)Vp — A diV<—Vp ® vp> = pofin Or,
0

divu=0in Qr, ulx, =0, u(0)=upin £2, &
0
pi—Ap+u-Vp=0in Qr, ﬁ =0, p(0)=ppin 2.
Xr

In this paper, we will always assume the hypothesis: there exist some constants m, M > 0,
such that

O<m<po<M inS2. 3

An interesting open problem is to extend the results of this paper to the case m = 0, i.e., assuming
only 0 < po < M in £2.

1.2. Known results

Concerning a reduced model in £2 C R3 (where the A2-terms of (1) are vanished), Kazhikhov
and Smagulov [7] prove, using a semi-Galerkin method, the global existence of weak solutions
and local strong solutions under hypothesis (3) and the following assumption about the viscosity
and diffusion coefficients: A < 2u/(M —m). Also via this method, Salvi [9] proves the global (in
time) existence of weak solutions in cylindrical and noncylindrical domains in R” (n arbitrary)
and with m = 0 in (3). On the other hand, Secchi in [12] studies the case 2 = R3, proving local
existence and uniqueness of strong solutions, using a fixed point argument.

For the full model (1) considered in this paper (including A> terms), Beirdo da Veiga [2]
and Secchi [11], established the local existence of strong solutions by using linearization and
fixed point argument. Indeed, in [2] Beirdo da Veiga prove the global existence for a linearized
version of the full model and using a fixed point argument the local existence of the nonlinear
full model (1). No global results are available in general. In [11], A/ small enough is imposed,
in order to show the existence and uniqueness of global solution in the 2-dimensional case.
Moreover, it is showed the convergence, as A — 0, towards a weak solution of the Navier—Stokes
problem with variable density. In the 3-dimensional case, global existence and convergence (as
A — 0) towards Navier—Stokes with variable density is proven in [5], imposing only positive
initial density (oo = 0).

1.3. Space functions and equivalent norms

We introduce standard spaces of the Navier—Stokes framework:

H={uwuel*2)* divu=0, u-n=00n 3},
V={wueH" (2)* divu=0, u=00nas2},

Ly(2)= {p: peL*(), /p(x) = 0}.
2

The norms |[ul|51 and ||[Vu||;2 are equivalent in V, and |lul| ;2 and ||Au||;> are equivalent in
H?(£2) NV [8,13]. On the other hand, the norms || p|| ;1 and ||V p||,2 are equivalentin H'(£2) N
L2(£2).

0
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On the other hand, for the density, let us consider the affine space (k =2, 3)

k k dp
Hy(82) =1p € H (£2): a—n:00n8.(2, pX)= [ po(X)¢.
2 2
Obviously, Hy, (2) = po + Hy, ((£2), where pg = (1/182]) [ po(x) dx and

Hllf/’o(g):{pGHk(Q)l g—ﬁ:O()naQ’ /p(x):O}
2

Therefore, HII\‘,’O(.Q) (k=2 or k =3) is a closed subspace of H1’§,(.Q). Consequently, thanks

to the H> and H? regularity of the Poisson—Neumann problem, norms || o|| g2 and ||Apl|2 are
equivalent in H,%, (£2) and ||p|l 3 and ||V Ap||;2 are equivalent in H,%, (£2) [2].

1.4. Exact solution and the iterative scheme

Assuming ug € V, pg € HZ (£2) satisfying (3) and f € L2(0, T; L*(£2)*), we are going to
consider the (unique) strong solution (p,u, p) of (1) defined in some (maybe small) time in-
terval (0, T) [1,2]: that is, p € L%(0, T; H3.(£2)) N C([0, T]; H3(£2)), pr € L*(0, T; H'(2)),
ue L2(0,T; H2(2)>)NC([0,T1; V), u, € L2(0, T; H), p € L2(0, T; H'(£2) N L3(R2)), veri-
fying PDE equations a.e. in Q7, boundary and initial conditions for p, u in the sense of spaces
H]%,(.Q) and V, respectively. It is easy to deduce that (p, u, p) is the strong solution of (1) if and
only if (p, u, g) is the strong solution of (2).

Now, we introduce the iterative scheme that we will consider in this work, which solution
(p",u", q") will be convergent towards the strong solution (p, u, g) of (2):

Initialization: Let u®(¢) =y for each 7 € [0, T].
Step n > 1: First, given u"~ ! to find o™ such that
a n
or +u" LVt — AAp" =0, ,o"|t_0 =po and 8'0 =0. 4)
= n s,

Afterwards, given u"~! and p", to find (u", ¢") such that
P! + (p"u" V)" — pAw" + Vg — A (V") — Vu")Vp"
1
:Azdiv<—an” ®Vp"> + p"f, (5)
P

divu” =0, u”|ET =0, u"|_,=nuo.

With this iterative scheme, we have reduced the nonlinear coupled system (2) into a sequence of
linear decoupled problems (4) and (5). Existence, regularity and uniqueness of p" solution of (4)
and (u", ¢") solution of (5), can be easily obtained. For instance, in problem (5) one can made an
argument similar to that given in the proof of Theorem 2.1 in [2], for an evolutive Stokes system
modified by p” in the time derivative term. Another possibility (see for instance [10]) is to use
a Galerkin method, obtaining a sequence of finite-dimensional in space problems which can be
rewritten as a Cauchy problem for an ordinary differential system. Then, local in time existence
of Galerkin solutions is obtained from standard theory of Cauchy problems, and these solutions
can be prolonged globally in time thanks to some a priori estimates. Finally, by a limit process,

existence of global in time solution of (5) is deduced.
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1.5. Main results of this paper

We will denote by (f, g) the inner product in L?(£2), by | f|» the L?(£2)-norm and by [flp
the LP($2)-norm (1 < p < 400). Moreover, || f|x will denote the H*(£2)-norm (k > 0). In
particular, |- |» = | - |lo. Any other norm in a space X (§2) defined in £2 will be denoted by || f|| x-
Finally, for a Cartesian product X x Y, we will denote ||(x, y)||xxy = max{||x|x, |ylly}.

Our goal in this paper is double: to prove that (p",u”, g") is a Cauchy sequence in a suitable
Banach space which converges towards the strong solution (o, u, g) of problem (2), and to give
some estimates of the convergence rates.

More precisely, we will prove the following four main results, corresponding with the conver-
gence rates with respect to the weak norms, strong norms and more regular norms, see (19) for
definition of bound G (n). In all the cases, the following “smallness conditions” on data must be
imposed:

Considering C1, Cp, C3, C4 > 0 the constants furnished in Lemma 3.1 (see below in Sec-
tion 3), we assume that there exist K, Ky > 0 such that

Ci
x|Apo|%exp<FK%T) < Ko, (©6)

T
<M|Vuo|§ + C2/ 13+ Ca(AK5T + ,\3/2K§T1/2)> exp(C3 (K +2*K3)T) < K1 (7)
0

Notice that hypotheses (6)—(7) are either smallness restrictions on the data (f, ug, pp) (taking K
and K, small enough), or smallness conditions on the final time 7 (taking any K, > Al Apol?
and K| > u|Vug|?). For the simplify model without 22 terms (C4 = 0), it is easy to verify that
(6)—(7) do not imply smallness constraints on py.

Theorem 1.1. Under constraints (6)—(7) and regularity hypotheses on data of Theorem 3.2 (see
Section 3), one has existence (and uniqueness) of the strong solution (p,w) of problem (2), which
is obtained as the limit of the sequence (p",w"). Moreover, the following error estimates (in weak
norms) hold for all t € [0, T]:

[(" = pow" =) 1,12 < G, ®)

t

f(|| (0" = p 0" =0) @32 + [ (o7 = ) ©[]2) d7 <G, ©)
0

Theorem 1.2. Under hypotheses of Theorem 1.1, the following error estimates (in strong norms)
hold forallt € [0, T]:

t

[(p" = pou" = 0) )32, +f [ (o1 = prowf =) 31,12 < G, (10)
0

t

/||(p"—p,u”—u,q”—q)llisxmxm<G<”)~ (an

0
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Theorem 1.3. Under hypotheses of Theorem 3.3 (see Section 3), one has that the strong solution
(p,u, q) given in Theorem 1.2 is more regular, concretely

(p.u,q) € L°(H®> x H* x H')nL*(H* x H? x H?),
(prou) € L°(H' x L) N L*(H* x H"),  py € L*(L?).
Moreover, the following error estimates for density hold for all t € [0, T']:

t
1o = p) o2 +/ 16 = p) @32 dt < Gl — 1), (12)
0
t
6" = 2Ol + [ 16" = £)(O) 7 < G = 1. (13)
0

Theorem 1.4. Under hypotheses of Theorem 3.4 (see Section 3), one has that the solution
(p,u, q) given in Theorem 1.3 is more regular, concretely

(,0, o(Hu, U(t)q) € L°°(H4 x H3 x H2) ﬁL2(H5 x H* x H3),
(pr. o (u) e L®(H* x H')NL*(H? x H?),
(pir, /o (Ouy) € L*(H' x L?),

where o (t) = min{¢, 1} (the regularity for velocity and pressure will be valid only for strictly
positive times). Moreover, the following error estimates hold for all t € [0, T]:

t

o] —u) ]2 +/a(r>|| (W —u) ()% dr < Gn — 1), (14)
0

o (" —w.q" —q)O)| 32, 1 < G — 1), (15)

t

/o<r>||(u"—u,q"—q)<r>||i,3xH2dr<G(n—1>. (16)

0

Notice that convergence rates in weak norms given in Theorem 1.1 are the same as those in
strong norms given in Theorem 1.2 (even under the same hypotheses). But, convergence rates
for regular norms given in Theorems 1.3 and 1.4 change from G(n) to G(n — 1) (and more
hypotheses on data are necessary).

2. Some estimates of Gronwall’s type
The following well known Gronwall’s lemma will be frequently used:
Lemma 2.1 (Gronwall). Let a, b, c,d be positive L'(0, T) functions satisfying the differential

inequality: a’(t) + b(t) <c()a®) +d(t) a.e. t € (0, T). Then, foranyt € (0, T):

t t t

a(t) +fb(s) ds < <a(0) +/d(s) ds) exp(/c(s) ds).

0 0 0
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Now, we present a more specific estimate of Gronwall’s type, which will be used in the sequel,
in order to obtain either scheme estimates or error estimates.

Lemma 2.2 (Gronwall with recurrence). Let (ay), (b,) be two sequences of positive LY, 7T)
Sfunctions such that a, (0) < A € R and satisfying

ay (1) + by (1) < cp(D)an (1) +dy(Dan—1(t) ae.t€(0,T), a7

where (c,), (d,) are two sequences of positive functions, bounded in LY, T) and L2(O, T),
respectively. Then, there exist two constants D > 0 and E > 0 independent on n (depending on
bounds of \cnll 10,7y and ldn | 120, 7)) such that for any t € (0, T) and for any n = 1, one has:

t

D" 1/2
a”(t)+/b"(~‘)d5 < E<ACD’/2+ ||ao||L°°(0,t)[( ) } )
0

n!

Proof. Applying Gronwall’s lemma to (17) (recalling that a, (0) < A) one has the estimate:

t t 1

an(l‘)"‘/bn(s)ng <A+/dn(5)an—l(s)ds> eXP(f"n)

0 0 0

! 1/2
< C<A+ [/ |an1(s)|2dsj| ) (18)
0

Therefore, if we define a, (t) = |a, (t)|2, one has
1

an (1) < D(A2 + / an1<s>ds>

0

hence, by means of an induction argument (applying Fubini’s theorem),

5 ()< DA% 1+ Dt % D" tﬂN d
an(t) < < +Dt+---+ (n_l)!>+ / =D aop(s)ds
0

(Dn)"

-1
—ag(s)ds < DA%’ + ”aOH%w(OJ)T

!
o\
gDAzeDt+D"/&
(n—1)
0

Finally, returning to (18) and applying previous estimates for ayzl_1 (s), one has

t

! 1/2
Ds)"1
/b"(s)dS<C<A(1+eD’/2)+||ao||Loo<o,,>[ g } )

(n— 1!
0 0

hence we can finish the proof of this lemma. O
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Remark 2.3. In this paper, we will use the previous lemma in two situations, in order to obtain
either scheme estimates, using in particular that a,, () + f (; b, (s)ds < C, or error estimates where
A =0 and then, foreachn > 1,

t

an(t) —i—/bn(s)ds < Gn):=C[(D1)"/n!]

0

12, (19)

Here and in the sequel, we will denote by C different constants, always independent on n.
3. Scheme estimates

In this section, the task is to prove some estimates (uniformly respect to n) for the sequence
n n n

(p", 0", p").
The following classical “interpolation and Sobolev” inequality will be used:

£l < IFP1A1 2 < clriy s

In particular, | f - glo < | flslgle < CILFI I £1117*lgl. Moreover, we will use the following

more specific interpolation inequality [4]:
1/2 1/2
floo < CIAILZI£1,:

In particular, | f - gl < | fleolgl2 < CI f1I;

1/2

1/2 1/2

Il £1,""Igllo. From previous inequalities, one has
V()] <[V el + 17 Vel < CIFI 1AL gl (20)

The “maximum pnnmple for the p"-problem (4) jointly with the hypothesis (3) imply [2]
O0<m<p(x,1) < in Q7. 21

1/2

Lemma 3.1. There exist some positive constants 3, C1, Ca2, C3, C4 (depending on m, M, i, §2
but independent on n and ) such that, for any n > 1,

)‘%Mpnﬁ + %Z}VAP"E + %|szn|§ < %(/L|Vu”*1 x| a0"; (22)
p v s 4 p(|aw 4 Ve ) < Calf

+Ca((u V)" + 22 (A" [) ) vu

+Ca(r (M 20" ) + 22 (1] 20" [) 22|V Ap" ). (23)

Proof. Multiplying the density equation (4) by —Ap}', and taking gradient of (4) multiplied by
—AV Ap", integrating by parts in £2 (all boundary terms vanish, thanks to the Neumann boundary
condition for p™) and using (20),

d 2 22 2 1 2
)‘E|Apn|2 + ?WAPHE + §|thn|2
_ 2

< C|V(“n ! 'Vpn)‘z

Cey petpé 2
<clu T le" 00" 5 < e 0" | + vl L M 1
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Then, recalling equivalent norms |Ap™|> ~ || p"|l2 and [VAp" |2 ~ || p"||3, the first inequality
(22) of this lemma holds.

To prove the second inequality (23), one rewrites (5) as the following evolutionary Stokes
problem

pu} —pAu" —Vg" =F, divu" =0, u'|x =0, u”(0) =uy, (24)

where
F=—(p"u""" V)u" + A((Vu")" — Vu")Vp" + 22 diV(p—InV,o” ® vp"> +p"t.
Taking u” as tests function in (24),
u%|Vu"|§+m|u?|§<C|F|%. (25)
We bound |F|3 using inequality (20) and some equivalent norms:
P < O3+ (@ 9)u' [} + 53] (vu") = V)V [})
v. (%w ® vpn) 2
< (i3 + fu " [ o |, + 220V [t ] o)
+Cx (V" [§ + Vo'V ")

+cat

2

< CIB +&|Au" 2 + Co (Va3 + 24 ap"[3)|[Vu* 2
+Cx (|85 + | 20" [V 20" ,)-

In order to estimate the H2($2)-norm for the velocity u” and the H 1(£2)-norm for the pres-
sure ¢", we use that (u”, ¢") is the solution of a stationary Stokes equations (considering in (24)
the term pu} on the right-hand side). Then, the classical H 2 x H! regularity results of the Stokes
problem [8,13] and previous bounds for |F|§, yield:

|aw" 2+ |[Vg" 2 < Clul ]2 + CIf3 + ] Au” 2
+ G|V 5 24 Ap" ) [V
+ O (|ap" S+ A0 [2 |V a0 ]). 26)

Choosing ¢ small enough and making an appropriate “balance” between (25) and (26) in order
to eliminate the term |u} I% at the right-hand side, one can arrive to the second inequality (23) of
this lemma. O

As a consequence of the previous lemma, by means of a standard induction argument jointly
with Gronwall’s lemma, we arrive at the following.

Theorem 3.2. Assume ug € V, pg € HI%, (82) satisfying (3) and f L2(QT)3, such that the small-
ness hypotheses (6)—(7) hold, then, the following inequalities hold, for any n > 1 and for all
te0,7),
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t
22 1
NINAOL +/<7|mp"<r)|§ + 5|th"(r>|§> dt < Ko, 27)
0
t
|V @) +/<§|u?<r>|§ +B(au" ()] + |Vq”(r)|§)> dt < K. (28)
0

In particular, taking into account equivalent norms in V, H> NV, HI%, and HI%,, it suffices to
prove (27) and (28), the following estimates hold:

(p",u") in L®°(H?* x H') N L*(H? x H?), (29)
(pruw)) inL*(H'x L?), ¢" inL*(H"). (30)

Now, we are going to obtain more regular scheme estimates. In fact, we will do weak and
strong estimates of time derivatives functions (p;, u}, ¢;'). Differentiating (4) and (5) with re-
spect to ¢, the problems satisfied by p;' and (u}, ¢;*) are

_ _ an
n+ B(V,Vp) + B(a, Vi) = AAn, i 0, n(0)=p;(0),
p(Vi + B(@, Vv) 4+ B(V, Vu)) — nAv + Vg,

—A[C(Vu, Vi) + C(Vv, Vp)] 31)

. 1 1
- kzdlv[—?nv,o QVp+ ;(vn QVp+Vp® vn)}

= —nv—nB(@, Vu) + nf + pf;,
divv=0, v|z=0, v(0)=ul(0),

where we have denoted:

u=u", a=u""", p=p", 9=q",

, n=np;,

and B(f,Vg) = (f -V)g and C(Vf,Vg) = ((Vf) — Vf)Vg. Now, we will obtain scheme
estimates with one order more of regularity than in Theorem 3.2, when data are more regular
(but without additional restrictive hypothesis).

Theorem 3.3. Assume hypotheses of Theorem 3.2. If ug € H*(2) NV and py € Hﬁ, (£2), then
the following estimations hold:

pf in L¥(H")Y N L*(H?), ol in L*(L?), (32)

o' in L°(H¥) N L*(HY). (33)
Moreover, if f € L*(0, T; L?) with £(0) € L>(2) and f; € L*>(0, T; L%/), then:

u' s bounded in L (L*) N L*(H"). (34)
In addition, if f € L>°(0, T; L*) N L*(0, T; H'), one has

(u",q") isbounded in L™ (H* x H') N L*(H* x H?). (35)
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Proof. An outline of the proof is the following: (32) is obtained doing weak estimates of p}'
problem and (33) is deduced from (32) and regularity results for the Poisson problem associated
to p”. Afterwards, (34) is obtained doing weak estimates of (u}, g;') problem and (35) is deduced
from (34) and the Stokes problem associated to (u”, g").

Multiplying Eq. (31); respectively by n; and —AAn, we get

d _ _
kallnllf +221013 + I 13 < C(| B, Vo) |5 + |B@, V) |2)

2 Y _2
< ellnllz + Celluliflinly + liell2llollz v,

where again (20) and Young’s inequality have been applied. Taking into account estimates of
Theorem 3.2, one has

d _
A=l 223 + 5 < C(LollsIVIG + i) (36)
For the regularity of p”, we will use the Poisson problem
a n
AP =—p! —u" Vo' in 2, P o (37)
on |50

Using H?3-regularity of (37), we have
- - 1/2 1/2
lo" Iy < c(ler ], + o=t -wom ) < (el + Ja=" e 1 e 157)
1 —12
<sle"ls+cdlofl + =M 0e" )
hence, using estimates of Theorem 3.2,
le"ls<c(of],+1), ie. llols <C(lnlli+1). (38)

In particular, || pl|3]V]13 < C(IVIIZ + IIVII3117117). Applying this inequality in (36), one has
d _ _
)»Ellnll% + 221113 + I 15 < COVIG + 1913113 + Inl13).- (39)

In order to bound ||7(0)||?, we take H'-norm in (4) evaluated at r = 0:

I = o], < c(luoll2llolls + llpolls)-

Therefore, hypotheses ug € H> and pg € H> imply ||n(0)||% < C. Applying Gronwall’s lemma
to (39), since ||\7||% is bounded in L' (0, T'), we deduce (32).

Using that (p!") is bounded in L>°(H') in (38), we get that p" is bounded in L>°(H?). On the
other hand, from H*-regularity of (37),

lo" |y < c(lofy+u"="-vom ) < e (el + w5 10" ]5)-

Using the bounds u'~! e L2(H?), p" € L®(H?) and o € L*(H?), we get that p" is bounded
in L2(H*), hence (33) is completed.

To improve estimates for the velocity (and pressure), we multiply Eq. (31)> by v, using the
equality

1d
/pvt~V+/pB(ﬁ,VV)-v—k/(V,o~V)V~v:EE ,o|v|2
Q 2 Q Q
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(obtained thanks to (4) multiplied by |V|2 /2), and we arrive at

1d
2ar ,o|v| —l—/,oB(v Vu) - V+pL/|VV| +/nB(u Vu) - v
Q Q 2
—A/C(Vu,Vn)~V—A/C(VV,V,0)~V+A/(V,0~V)v~v
Q Q

1 1
+k2/|:_?an®Vp~|—;(Vﬂ®vp+vp®vn):| 'V

—/nv-v~|—/nf-v+/pﬁ-v

ko) 2 2

We estimate the previous terms:

f PBF, V) - v < | ploolVI2| Vul3|vle < eIVIIF + Cellull1[ull2[I¥]13,
22
/nB(u Vu) - v < [nlslils|Vul3|vle < el VI3 + Celll ully [lull2linllf,
22
/C(Vu V) - v < [Vula|Valslvle < e(IVIT + 0113) + CellullTlinllf,

2
A/C(Vv,Vp)-V—A/(Vp-V)V-V
2 Q

S CIVpleo|VY2|v]2

<s||v||%+cg||p||z||p||3||v||%/pf[ V< elVIT 4 Celfi g s
2

4/3
nIvIZ < InlsIvislvla < 8||V||1+Cs||77|| / ||V||(2),

4/3 4/3 2/3
nf-v < nlalflalvls < ellvI? + Cellnlly g1y 1vie

R D

4/3
< elvIF + Cellfly” (I3 + 1vI13).-

1
A2 ;Wp @V : Vv Clinlhllpl3Iviy < ellvli? + Cellpli3nl3,

2
1
A2/ ;(Vn ®@Vp+Vp®Vn):Vv<elvii+ Cellollalipllzlinlli.
2

Thus we obtain, choosing small enough ¢ and using estimates of Theorem 3.2, the following
inequality holds:

Ay (1) + b (1) < cp(D)an(t) + dn (D)an—1 (1) + ex (1), (40)
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where, we have defined
2
an®) = |/ov]y b =IVIT.  du(®)=Clulr€ L],
4/3 4/3 3/2
ca®) =C(lplls + Il + 161y e L} (in fact € L;7),
4/3
en(®) = ellnll3 + C(1+ [ull2 + llplls + Ifllg*) 713 + CIE 12 5.

By hypothesis and estimates obtained above, we have e, (¢) is bounded in L. Moreover, ay =

IV pOu?[12 and a, (0) = [|/p" (O)u} (0)[13 = [/ p°u?||3. Then, multiplying (5) evaluated at t =0
by uf (0),

|\/7 ||0 C (o} lwoll2 + uoll3 + luoll3 1l oll2lleolls + lloll2lleoll3 + ||f(0)|| 0)-

Therefore, hypotheses ug € H?, pg € H* and f(0) € L? imply a,(0) < A. Thus we can apply the
Gronwall’s lemma with recurrence and one obtains (34). To find estimates in L>°(H2 x H') for
(u", ¢") we use the H> x H' regularity of Stokes problem verified by (u”, ¢"), getting (as in
(26))

B 15+ g 17) < CQeIG + (o= Y+ o ) " 1)

+C (o + 1o 15 + " 0" 5) € L,

hence u” is bounded in L®(H?) and ¢" in L*(H").

We have that u} is bounded in L2(H') and the rest of the second member F of Stokes prob-
lem verified by (u”, ¢") is bounded in L?(H'), therefore using H> x H?-regularity of Stokes
problem, we deduce

u" isboundedin L*(H?) and ¢" inL*(H?),
and the proof of (35) is completed. O

Finally, we will obtain scheme estimates with one order more of regularity than in Theo-
rem 3.3. Velocity and pressure estimates will be only verified for strictly positive times.

Theorem 3.4. Assume hypotheses of Theorem 3.3. If po € H*($2), then the following estimates
hold:

ol in L°(H)NL*(H?),  p inL*(H'), 41
p" in L®°(H*)NL*(H). (42)

Moreover, if f; € L2(0, T; L2) and f € L*°(0, T, Hl) N L2(0, T; H2), then the following esti-
mates hold:

Vou! in L°°( ) N L2(H2), \/o(t)(qt", u;lt) in LZ(Hl X L2), (43)
Vo) (u',q") in L°(H® x H*) N L*(H* x H?) (44)
(recall that o (t) = min{1, }).

Proof. The main idea of the proof is the following: (41) is obtained doing strong estimates in
the pj'-problem and (42) is deduced from (41) and regularity results for the Poisson problem
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associated to p". Afterwards, (43) are obtained doing strong estimates in the (u}, g;')-problem
and (44) is deduced from (43) and the Stokes problem associated to (u”, g").

To prove (41) we need strong estimates on 7 (recall that n = p;'). We use the same arguments
as in the proof of Lemma 3.1, but now for the n-problem (31);. Using the fact that

/ IVB@, Vo) < C(IIV¥-Vold + |7 V)Vo|J) < CIFIZIol2loll3,
2

f IVB@, Vp)|> < C(IVa- vl + | @- v)Va|2) < Clal @l i3,
22

we get (using scheme estimates of Theorem 3.3)
d o _
e T + EIIHII% + Iz < c(allh il linll3 + lel2llelsvIT)
< C(Inl3 + I917)- (45)
In order to bound || (0) ||%, we take H2-norm in (4) evaluated at r = 0:

[n©]5 = |0 O], < C(luoll2llolla + llpolla)-

Therefore, Gronwall’s lemma implies (41). Now, (42) can be easily deduced from H 4 and H?
regularity of problem (37).
In order to obtain strong estimates for (v;, g;), one rewrites (31), as

oV — uAv+ Vg =G, divv =0, vy =0, v(0) =u;(0), (46)
where
G =—pB(u, Vv) — pB(v, Vu) — nB(u, Vu)
+1(C(Vu, Vi) + C(Vv, Vp)) — v+ nf + pf;
1
+22 le|:——77V,O ®Vp+ —(Vn ®Vp+Vp® Vn)]
Now, one multiplies (46) by v; and one integrates on §2,
mIIVz||%+ IIVVIIQ IGI3. “47)
Bounding ||G||O:
o, 13 < ClIE I3, InvIi3 < CIvIiZinll2linlis, €15 < Clinll Inl2lIE13,
|loBa, VV)||0 CIIVvIgIal [l loB(¥. Vu)HO ClIvIT Il a2,
|nB@, Vw3 < Clnl2a |Vl < Cllall Iall: full Tl lin13,

|C(Vu, Vi) ||0 < Clulliull2lnli3, |C(Vv, Vo) ||0 <CIvilel2liels
2

1 1
diV[—FWp ®Vp + ;(Vn ®Vp+Vp® Vn)}

C(lplSnlislinlz + 1031003 + Iel3lelslnllinlz + lelallolisinl3).
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Therefore, applying L° estimates obtained above to previous bounds,
d _
IVelg + - IVIT < C (VI + IS + lnll3 + 191 + 16 113)- (48)
Applying H? regularity to the stationary problem related to (46),

VI3 + llge 1T < C>IGIG + 11 lI3)- (49)

Thus, we obtain, by an adequate combination between (49) and (48) (eliminating ||V,||(2) at the
right-hand side),

d _
vl + Envn% + VI3 + llge i < CUIVIT + IEI + 103 + 1913 + 1£13). (50)

It is well known [6] that, there is no control about v(0) = u,(0) in the H'-norm (only if initial
data verify an overdeterminated global problem, which is not possible to verify in practice). Then,
it will be necessary to consider only positive times, introducing for instance the cut-off function
int =0, o (t) =min{l, ¢}. Then, multiplying (50) by o (¢), (43) can be deduced from Lemma 2.2.
Finally, (43) and the regularity of Stokes problem verified by (u”, p"), imply (44). O

4. Error estimates

We use the notations u%) = u"*+s —u", "% = ¢g"+s — ¢" and p™*) = p"*+S — p”. Then,
the problems satisfied by these differences are:

pt(n,s) _ )»A,O(n’s) — (u(n—l,s) . v)pn-i-s + (un—l . V)p(n,s), (51)
3p(n,S)
|, =0 = g
Xr

and

p”u;n’s) _ ;/,Au(’”) + Vq("’s)
— _p(n,S)u;zH + p("’s)f
_ (p(n,s)un—l+s .v)un+s _ (pnu(n—l,s) .v)un+s _ (pnun—l _V)u(n,s)
+A(C(Vu™, Vo) + C(Vu' T, V"))

2 3. 1 -9 n+s n+s
+ Acdiv| [ — V"™ @ Vp'™

0
1
+ )»2 diV|:—n (Vp(n,s) ® Vpn-H + Vp” ® Vp(n,s)):| (53)
0
divu®™® =0, (54)
u) |ET =0, us) ‘z:O —0. (55)

4.1. Proof of Theorem 1.1

It suffices to prove rate estimates (8) and (9) for (0%, u®¥), i.e.,
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(o w2 < GO, ~
t
[0 @ P + 1o @ 22) e < G, 0
0

because in particular these estimates imply that (p”,u") is a Cauchy sequence in L®°(H' x

L% N L%(H? x HY). Therefore, the whole sequences (p"*,u") — (p,u) in L®H!' x L) N

L2(H? x H"), hence with a limit argument in the iterative scheme (4)—(5) and taking into account

estimates of Theorem 3.2, we can arrive at the unique strong solution (o, u, p) of problem (1).

Moreover, taking limit as s — 400 in (56) and (57), since estimates (56)—(57) are uniform with

respect to s, one has that the error (0" — p, u” — u) verifies rate estimates (8) and (9).
Consequently, we are going to prove (56) and (57).

Multiplying Eq. (51) by —AAp™*) and by p,("’s), we obtain (using L?° scheme estimates of
Theorem 3.2)
d ) A2 2 1 w2
)‘Eivfo(n’s)\z + ?|Ap(”)|z + §|/’t(n e
<C(|( ) [ 9) )
_ 2 _ - 2
<l Il =5l + =M o= e ™)

<C(le s fu 0 g4 o= o0 1),

Multiplying the velocity equation (53) by u*), integrating in £2, and using the equality (which
is deduced using Eq. (4)),

1d

(pnugn,s) + (pnun—l . V)u(n,s) _ )»(Vpn . v)u(n,s)’ u(n,s)) — o

e
we have
GV
< Clp™ 3y [y +165)
+ (|0 el v o L T v )
+ 2 (|C(Va, Vo) [g s+ |C(Vurt Vo) ¢ )
+CR (" IV " @ V4 [V [V ).

Then, using L{® scheme estimates of Theorem 3.2,

AN SO
<C(fur g+ g o7
F (™ + Jure ] o a0 )
+C2([ " [ lo" 15 a1+ = | Ju = o0 )
+ (o 3+ [0 [ o™ ) [0 [
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< C(lu [+ 1815 + 1+ o [+ [0 ) [
+C a0 g+ ot a0

Adding the previous inequalities, we obtain

d , , 22 1
L B R e N T N i

U O g, )|V 2+ [V 2),

where

Yns (1) = C([| 0" | + [u"™],).
s (@) = C(J0 =, + | o 4+ 1613 + 1+ [ 0" |5 + [0 [, + [ 0" ]5)-

From L,2 estimates of (p”,u") given in Theorem 3.2 (see (29)—(30)), (¥, ) is bounded in
L?(0, T) and (¢n.s) 1s bounded in L'(0, T) (since ||f||(2) € LY(0, T)). Therefore, Lemma 2.2 im-
plies (recalling that [u*)(0)| =0 and |V %) (0)| = 0 and applying again estimates (29)—(30)
given in Theorem 3.2)

t

2
e R [ e I e
0

172 nl/2
[ 044(0.5)|2 ©.5) ZH (Dr)" (Drt)
gEH| N A Lo n! SC T ’

hence the estimates (56)—(57) hold, and the proof is finished.
4.2. Proof of Theorem 1.2

Again, it suffices to prove (10)—(11) changing the error (p” — p,u"” — u,q" — q) by

(p"%) a3 g5)) Multiplying the density error equation (51) by —)»Apl("’s) and taking gra-

dient of (51) multiplied by VAp"s) (arguing as in Lemma 3.1),
d N2 22 NI | (n,5) 12
)‘E|Ap(n’”|2 + 7|VAP(”’A)|2 + §|thn 1
< C(|V(u(n—l,s) . Vpn+s)|2 + |V(un_l . Vp(n,s))|2>
<o Il 5= 17+ Ju=" o=, |02 13)

<o =0 4 a1 o 02).

Multiplying the velocity equation (53) by uE"’S) and balancing with the H? x H' regularity of

Stokes problem satisfied by (u>*), p(%)) (arguing again as in Lemma 3.1), we have
m 2 d 2 2 2
2 ’ugn,s) ’2 + R~ ‘V“(”’S) ‘2 + ﬂ(‘A“(M) |2 + ‘Vq(n’s) ’2)

<[ w9 (o ) )
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+ C|(pnun—1 . V)u("’s)li + CA2(|C(Vu"+S, V,O(”’S))E + |C(Vu("’s), Vpn)|§>

1\ @)
diV|:<—) vanrs ®Vpn+s]
P

1
div|:_n(vp(n,s) ® Vanrs 1V ® Vp(n,s))j|
o

2
+ca +C|p™3
2

2
+cat

2

Estimating the right-hand side of the above inequality (using L°°(0, T) estimates for (p", u")
given in Theorem 3.2) and adding with the inequality for the density, we have

d 1 , 22
E(M|Vu(n,s)|§ —i—)»}Ap("*S)‘;) + E’th(’“)’; + 7|VA'0(11,‘V)|§
23 4 (| o+ 94 )

<m@[Va O 4y (0] Ap™ O[3 + 3 ()| Tu 5, (58)

where

n@) =C ([0 O, +[ 0" 0]5).
@ =C(Ju oo+ v ],

+ @, + [ o+ [u O, + 1+ [ @+ [ @),
30 =C (", + 0" D5+ [ 0]5)-

From estimates of Theorem 3.2 (see (29)—(30)), sequences 7 and 13 are bounded in L2(0,T)
and 1 is bounded in L'(0, T'). Therefore, applying Lemma 2.2 we obtain the rates estimates
(10)=(11) for (p™9) u5) g9y,

4.3. Proof of Theorem 1.3

Once more, it suffices to prove (12)—(13) for p(’”). Differentiating the density error equation
(51) with respect to ¢, multiplying by —A Ap,(""v), we have (using estimates of Theorem 3.3)

k%|vpt(n,s)|2 +A2|Apt(n,s)|2
<C(|@nt V") [y [ V) )
<C(om | I G + a2 a0 o |
_ _ 2 _ _ 2
o 1 L T Pl B T Y e W i )
<C(Juf g+ a2 a2 o™ 15+ o).

Therefore, using estimates of Theorem 3.3 and error estimates of Theorem 1.2, the Gronwal-
I’s lemma implies (12). Finally, (13) is deduced from the H> and H* regularity of Poisson—
Neumann problem satisfied by p*).
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4.4. Proof of Theorem 1.4

It suffices to prove (14)—(16) for (u®*) 4. Differentiating the velocity error equation
(53) with respect to 7, taking u"** as test function and using the equality

(,0 ut(;z s)+( ny—1 V)u;"’s) (Vp V) (n Y)’ (n, Y)) 2dt|\/7 (n Y)|2’

we have
G N vl
et i+ o = o o
() o v [

+ |( " 1) ~Vu("’5)|2/5 +A2(|C(Vu("’s), VP"M?J/S + |C(V“n+s’ Vp(n’S))t|§/5)
2

1\ ™9 , 1 ‘ , ,
+ )»4 ((;) Vpl’l+.3 ® Vpn+s + F(V’O(YM) ® Vpn+5 +Vo"® Vp(n,s)))

112

+ o™ |G 2 + [0 [ I s

Estimating in a similar manner as in Theorem 3.4 and using estimates of Theorem 3.4, we arrive

at
GV v
<CIVA" LG+ 1) + Clof™ [+ Clu” 3
+ Ao [ 5+ o 7+ =+ 165 + 1)
v R |3+ )+ Caue ] [vu

Notice that estimates will be only for positive times, because of the term [u},"™ ||O, which appears

from the nonlinear term pu;. Therefore, the cut-off function o () must be introduced. Multiply-
ing by o () = min{1, ¢}, recalling that m|u(" S)2 < /" u(n Y)|2 M|u,(n’s)|2 and o’(¢) < 1, we
get

d :
o O]+ o Oulve

2 2
<Clo® |V 1+ o' OV 1+ (1 + If12) + bat) + ca (1),
where [|bn 10,4 < G(n) and |cnllp1oy < G(n — 1) thanks to Theorems 1.2, 1.3, 3.2-3.4.
Then, using Gronwall’s lemma, taking into account that o (0) = 0, we obtain (14).
Now, from the HZ x H'! regularity of Stokes problem satisfied by ™9, p(9)y (see (53)),
we obtain (bounding as in proof of Theorem 1.2)
2 2
c(Ju™ O]+ ¢ O])
2
<Co)([u" g
s 2 ‘ 2 ‘ 2
+ )| Vu TG+ )] AV @)]5 + 13() |[Vu (1)),

Thus, by using estimates (10), (12) and (14) we obtain (15) for ("), ¢9).
Finally, estimates (16) can be proved with analogous arguments, using now the H3 x H?
regularity of Stokes problem satisfied by (u*, @),
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