UNIVERSIDADE FEDERAL DO PARANÁ

Gabarito da 2a. Avaliação de CM044 - Cálculo IV

- 1. Sejam $f(z) = e^{2z}$, para $z \in \mathbb{C}$ e γ o segmento de reta com ponto inicial em $z_0 = 1$ e ponto final em $z_1 = i$. Calcule $\int_{\gamma} f(z) dz$ das seguintes formas:
 - (a) usando uma parametrização do caminho; (10 pontos)
 - (b) determinando uma primitiva de f. (10 pontos)

Solução: (a) Tem-se que a equção vetorial do segmento com extremos (inicial e final) em z_0 e z_1 é $\gamma(t)=z_0+t(z_1-z_0)$, com $t\in[0,1]$, ou seja, $\gamma(t)=1+t(i-1)$, com $t\in[0,1]$; logo, $\gamma'(t)=i-1$, para todo t. Daí, segue que:

$$\int_{\gamma} f(z) dz = \int_{0}^{1} f(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{1} e^{2(1+t(i-1))} \cdot (i-1) dt = (i-1) \int_{0}^{1} e^{2(1+t(i-1))} dt$$
$$= (i-1) \frac{1}{2(i-1)} e^{2(1+t(i-1))} \Big|_{0}^{1} = \frac{e^{2i} - e^{2}}{2}.$$

(b) Dado que $f(z)=e^{2z}$ é analítica (no plano complexo), já que é uma composição de funções analíticas, tem-se que a integral não depende do caminho γ mas apenas dos pontos inicial e final. Uma primitiva de f é a função $\frac{e^{2z}}{2}$ e portanto,

$$\int_{\gamma} f(z) \, dz = \int_{1}^{i} f(z) \, dz = \frac{e^{2z}}{2} \Big|_{1}^{i} = \frac{e^{2i} - e^{2}}{2}.$$

2. Calcule $\int_{\gamma} \operatorname{tg}\left(\frac{z}{2}\right) dz$ onde γ é a curva $|z-2\pi|=2$, orientada no sentido horário. (20 pontos)

Solução: Dado que $\operatorname{tg}(\frac{z}{2}) = \frac{\operatorname{sen}(\frac{z}{2})}{\operatorname{cos}(\frac{z}{2})}$, então $\operatorname{tg}(\frac{z}{2})$ não está definida nos pontos onde $\operatorname{cos}(\frac{z}{2}) = 0$, ou seja, nos pontos $\frac{z}{2} = \frac{\pi}{2} + n\pi$, com $n \in \mathbb{Z}$, ou ainda, nos pontos $z = \pi(1+2n)$, com $n \in \mathbb{Z}$.

Além disso, a curva γ em questão é uma circunferência com centro em 2π e de raio 2, e nenhum dos pontos onde $\operatorname{tg}(\frac{z}{2})$ não está definida, está sobre a curva γ ou no interior da região limitada por γ . [Note que a distância dos pontos $z_0 = \pi$ e $z_1 = 3\pi$ ao centro da circunferência é igual a π , e portanto, maior que o raio da mesma.]

Desta forma, $\operatorname{tg}(\frac{z}{2})$ é analítica sobre a curva γ e no interior da região limitada por γ , pois é um quociente de funções analíticas; pelo Teorema da Integral de *Cauchy* conclui-se que

$$\int_{\gamma} \operatorname{tg}(\frac{z}{2}) \, dz = 0.$$

3. Calcule $\int_{\gamma} \frac{z^4 - \cos z}{(z^2 + 1)^2} dz$ onde γ é a curva |z + 1 + i| = 2, orientada no sentido anti-horário.

(20 pontos)

Solução: Nota-se inicialmente, que $(z^2+1)^2=[(z-i)(z+i)]^2=(z-i)^2(z-(-i))^2$. Também, a curva γ em questão é a circunferência de centro em -1-i e raio 2 e o ponto $z_0=-i$ está no interior da região limitada por γ . Sendo assim, podemos escrever

$$\frac{z^4 - \cos z}{(z^2 + 1)^2} = \frac{z^4 - \cos z}{[(z - i)(z + i)]^2} = \frac{f(z)}{(z - (-i))^2},$$

onde $f(z) = \frac{z^4 - \cos z}{(z - i)^2}$ é analítica sobre γ e na região limitada por γ . Daí, segue que:

$$f'(z) = \frac{(4z^3 + \sin z)(z - i)^2 - 2(z^4 - \cos z)(z - i)}{(z - i)^4} = \frac{(4z^3 + \sin z)(z - i) - 2(z^4 - \cos z)}{(z - i)^3}$$
$$\Rightarrow f'(-i) = \frac{(-2i)(-4i - \sin i) - 2(1 - \cos i)}{8i}$$

$$= \frac{(-i)(-4i - \sin i) - (1 - \cos i)}{4i} = \frac{-5 + \cos i + i \sin i}{4i}.$$

Logo, podemos aplicar a Fórmula Integral de Cauchy para Derivadas (com n=1) para obter:

$$\int_{\gamma} \frac{z^4 - \cos z}{(z^2 + 1)^2} dz = 2\pi i \cdot f'(-i) = 2\pi i \cdot \frac{-5 + \cos i + i \operatorname{sen} i}{4i} = \frac{\pi}{2} (-5 + \cos i + i \operatorname{sen} i).$$

- 4. (a) Mostre que a série $\sum_{n=0}^{+\infty} \frac{(3+i)^n}{2^{2n}}$ é convergente, sem calcular sua soma; (10 pontos)
 - (b) Calcule sua soma. (10 pontos)

Solução: (a) Notamos que

$$\frac{(3+i)^n}{2^{2n}} = \left(\frac{3+i}{2^2}\right)^n \text{ e que } \left|\frac{3+i}{2^2}\right| = \frac{\sqrt{10}}{4} < 1;$$

portanto, trata-se de uma série geométrica de razão $r=\frac{3+i}{4}$, com r<1. Logo, a série geométrica é convergente.

(b) Tem-se que:

$$\sum_{n=0}^{+\infty} \frac{(3+i)^n}{2^{2n}} = \sum_{n=0}^{+\infty} \left(\frac{3+i}{4}\right)^n = \frac{1}{1-\frac{3+i}{4}} = \frac{4}{4-3-i} = \frac{4}{1-i}.$$

5. Calcule a série de $Mac\ Laurin$ de $f(z)=\frac{e^z}{1-z}$ e determine o raio de convergência da mesma. (20 pontos)

Solução: Sabe-se que

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots, \quad \text{para } |z| < +\infty \text{ e}$$

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n = 1 + z + z^2 + z^3 + \cdots, \quad \text{para } |z| < 1.$$

Daí, segue que

$$f(z) = e^{z} \cdot \frac{1}{1-z} = \left(1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots\right) \cdot \left(1 + z + z^{2} + z^{3} + \cdots\right)$$
$$= 1 + (1+1)z + (1+1+\frac{1}{2!})z^{2} + (1+1+\frac{1}{2!} + \frac{1}{3!})z^{3} + \cdots = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{k!}\right)z^{n},$$

para |z| < 1, ou seja, o raio de convergência da série é igual a 1.

6. Dada a função $f(z) = \frac{z}{z+1}$, determine sua série de *Taylor* com centro em $z_0 = 1$ e o raio de convergência de tal série. (20 pontos)

Solução: Tem-se que

$$\frac{z}{z+1} = \frac{z+1-1}{z+1} = 1 - \frac{1}{z+1} = 1 - \frac{1}{2+(z-1)}$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{1 - (-\frac{z-1}{2})} = 1 - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^n} (z-1)^n$$

$$= 1 + \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{2^{n+1}} (z-1)^n = \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^{n+1}} (z-1)^n.$$

Para $n \ge 1$, tem-se que $a_n = \frac{(-1)^{n+1}}{2^{n+1}}$ e assim, o raio de convergência da série pode ser assim calculado:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{1}{2^{n+1}}}{\frac{1}{2^{n+2}}} = \lim_{n \to \infty} \frac{2^{n+2}}{2^{n+1}} = \lim_{n \to \infty} 2 = 2.$$