ON THE CONVERGENCE RATE OF
SEMI-GALERKIN APPROXIMATIONS FOR THE
EQUATIONS OF VISCOUS FLUIDS IN THE
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Abstract

We study the convergence rate of spectral semi-Galerkin approxima-
tions for the equations of motion of a nonhomogeneous viscous fluid in
the presence of diffusion in a bounded domain. We find error estimates
that are optimal in the H'-norm as well as improved estimates in the
L?-norm.

Resumo

Estudamos a taxa de convergéncia das aproximagcoes de semi-Galerkin
espectrais para as equacoes do movimento de um fluido viscoso, nao ho-
mogéneo na presenca de difusio num dominio limitado. Encontramos
estimativas de erro que sao otimais na norma H' como também estima-
tivas melhores na norma 2.

1. Introduction

In this paper we will be working with the equations of motion of nonhomoge-
neous viscous incompressible fluids in the presence of diffusion. These equations
are considered in a bounded domain w C IR, with boundary T, in a time in-

terval [0,7]. To describe them let u(z,t) € IR?,p(x,t) € IR and p(z,t) € IR
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denote, respectively, the unknown velocity, the density and the pressure of the

fluid at a point = € w, at time ¢ € [0,T]. Then, the governing equations are

0
pa—? + p(u.V)u — pAu — A[(u.V)Vp+ (Vp.V)ul| = =Vp+ pf
divu=0 (1.1)
dp
a—l—u.v,o—)\Ap—O

together with the following boundary and initial conditions

u = 0 on I' x (0,7),

u(z,0) = wup(x) in w,
dp
= 0 on I'x (0,7) (1.2)

p(z,0) = po(x) in w.

Here f(z,t) is the density by unit of mass of the external force acting on
the fluid. The positive constants, g and A are the usual Newtonian viscosity
and the diffusion coefficient, respectively. The symbols V, A and div denote
the gradient, Laplacian and divergence operators; n = n(z) is the unit outward

normal to I'. Also,

" Ju - 0
. = Ty . = P ) 1.
(u.V)u ;u P (u.V)Vp ;u axin (1.3)
& dp 0
(Vp.Vu = 9. 0z, (1.4)

For the derivation and physical discussion of equations (1.1) see Frank-Kame-
nestskii [9], Antoncev, Kazhikov and Monakhov [3], Prouse [16]. We observe
that this model includes as a particular case the classical Navier-Stokes system,
which has been much studied (see, for instance, the classical books by La-
dyzhenkaya [14] and Temam [23] and the references there in). It also includes
the reduced model of the nonhomogeneous Navier-Stokes equations, which has
been less studied than the previous case (see for instance Simon [22], Kim [13],
Ladyzhenkaya and Solonnikov [15], Salvi [20] Boldrini and Rojas-Medar [6]).
Concerning the generalized model of fluids considered in this paper Kazhikov

and Smagulov [12] established the local existence of weak and strong solutions
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for (1.1) - (1.2) under certain assumptions by using the semi-Galerkin method,
Salvi [19] also via that method proved the weak solution in a non-cylindrical
domain.

Also, Beirao da Veiga [4], Secchi [21], established the local existence of strong
solutions for a model that contain terms of order A? by using linearization and
fixed point argument. A more practical semi-Galerkin method was used by
Damazio and Rojas-Medar [7].

In this work we are interested in establishing error estimates and convergence
rates of the spectral semi-Galerkin approximations in several norms. By spectral
semi-Galerkin approximations we mean that we make use of finite dimensional
approximations for the velocity and infinite dimensional approximations for the
density.

Before we describe our results, let us briefly comment related results.

Rautmann in [17] gave a systematic development of error estimates for spec-
tral Galerkin approximations of the classical Navier-Stokes equations. Boldrini
and Rojas-Medar gave analogous error estimates for a model of nonhomoge-
neous asymmetric fluids [5].

In this paper we consider the convergence rate of spectral semi-Galerkin
approximations for the solutions of a more general fluid model (1.1)-(1.2). We
show optimal rate of convergence in the H'-norm (see Theorem 3.6). Differently
to the case of the classical Navier-Stokes equations, for which optimal L2-error
estimates can be obtained (see Rojas-Medar and Boldrini [18]), in this case we
are only able to obtain improved L%-error estimates as compared to the trivial
ones derived directly from the H'-estimate (see Theorem 4.1).

The paper is organized as follows: in Section 2 we state some preliminary
results that will be useful in the rest of the paper; we describe the approximation
method and state the existence theorem that form the theoretical basis for the
problem. In Section 3 we derive a H'-error estimate for the velocity and a
L -error estimate for the density. In Section 4 we derive an improved L*-error
estimate for the velocity.

Finally, we would like to say that, as is usual in this context, to simplify



108 P. DAMAZIO M. MEDAR

the notation in the expressions we will denote by ¢ a generic finite positive
constant depending only on w and on other fixed parameters of the problem
(like the initial data) that may have different values in different expressions. To

emphasize the fact that the constants are different we may use ¢y, ¢3, and so on.

2. Preliminaries

Let w C IR",n = 2 or 3, be a bounded domain with boundary I' of class C''.

We will consider the usual Sobolev spaces

WD) = {f € L*(D)/]|0" fllLap) < +o0, [v] < m},

m=0,1,2,...,1<¢<+4o00,D=wor (0,7) xw,0 <T < 400, with the usual
norm. When ¢ = 2, we denote H™(D) = W™2*(D) and HJ'(D) = closure of
Ce(D) in H™(D). If B is a Banach space, we denote by L?(0,7T; B) the Banach
space of the B-valued functions defined on interval (0,7") that are L% integrable

in the sense of Bochner. We define

Ci () = (v € C()/div v = 0},
H = closure of (5% (w) in L*(w),
V = closure of C§,(w) in H'(w).

It is possible to show that V = {v € Hj(w)| div v = 0}. We recall the Helmholtz
decomposition of vector fields: L*(w) = H & G, where G = {¢|¢ = Vp,p €
H'(w)}, with H and G orthogonal with respect to the L*-inner product.
Throughout the paper P will denote the orthogonal projection from L?(w)
onto H. Then, the operator A : D(A) — H given by A = —PA with D(A) =
H?*(w) NV is called the Stokes operator. It is well know that A is a positive

definite self-adjoint operator characterized by
(Aw,v) = (Vw,Vv) Ywe D(A),veV.

From now on, we denote the inner product in H (i.e., the L*-inner product) by
(,). The general LP-norm will be denote by || - ||zr; to simplify the notation, in

the case p = 2 we denote the L*norm by || - ||.
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We observe that for the regularity properties of the Stokes operator it is
usually assumed that w is of class C* to use Cattabriga’s results [23]; instead
of that, we use the stronger result of Amrouche and Girault [2], which implies,
in particular, that when Au € L?(w) then u € H*(w) and ||u||g2 and ||Aul| are
equivalent norms when w is of class C'"!'. This will be enough for all the results
in this paper.

We will denote respectively by ¢ and Ax(k € IN) the eigenfunctions and
eigenvalues of the Stokes operator defined on V N H%(w). It is well know that
{¢k }r=1 form an orthogonal complete system in the spaces H,V and V N H?*(w)
with their usual inner products (u,v), (Vu, Vv) and (Au, Av), respectively.

We denote by Vi = span [p1,...,¢x] and by Py the orthogonal projection
from L*(w) onto Vj.

The following results can be found in Rautmann’s paper [17].

Lemma 2.1. [fv €V, then there holds

1
[lo = Peol* < -—IVoll”
k+1

Also, if v e VN H*(w), we have

1 1
Vo = VPP < ——|lAv|?  and  [jv — Pl < —||Av]|*
/\k+1 /\k+1

With the above notation, we rewrite (1.1)-(1.2) as

P(pus 4+ pu.Vu — A[(u.V)Vp + (Vp.Vul — pf) + pAu =0

% +uVp—AAp=0 (2.1)
9
u(0) = ua, p(0) = po, | =0.
nir

(2.1) is equivalent to the weak form
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(pue,v) + (pu.Vu,v) — A((u.V)Vp,v) = A((Vp.V)u,v)
+u(Au,v) = (pf,v) YvoeV

dp

Y +u.Vp—AAp =10 for 0<t<T (2.2)

J
u(0) = uo, p(0) = po, a—g =0

The spectral semi-Galerkin approximations for (u,p) are defined for each

k € IN as the solution (u*, p*) € C*([0,T],Vi) x C(@ x [0,T)) of

(pFuk, v) + (pFuk Vuk, v) + (Au*, v) )
— MEV)VpE, ) — M(VpEV )k, v) = (o5 f,v) Yo eV
86—'0: +ub Vp*F —XApF =0 V(z,t) € w x (0,T) (2.3)
aa—p; =0, Vzerl
uk(z,0) = Puuo, p"(0,2) = po(z), Vz € w. J

Before giving the Theorem of existence, we introduce the notation:

p = plopolz)de
(2.4)
HY = {oceH* 22=0 onTand [ o(z)dx =0} k>0

and consider the assumption 0 < o < po(z) < 3 on the initial data.
By using these approximations, Kazhikov and Smagulov [12] proved exis-
tence of a weak solution for the above problem assuming that
2p
B—a

In [4], H. Beirdao da Veiga, proved existence and uniqueness of local and

A >

(2.5)

global solution of the problem (1.1)-(1.2) (with A*term) without assumption
(2.5) (Theorem A, pp. 345 in [4]). Damazio and Rojas-Medar also proved

analogous results of [4] by using a more practical semi-Galerkin method [7].
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By using the approximation (2.3), it can be proved that u*, p* converge in
an appropriate sense to a solution (u,p) of (2.2) (or (1.1)-(1.2)) as k — oo.
These conditions are given in the following Theorem, proved by Damazio and
Rojas-Medar [7], on the existence and uniqueness of local strong solutions for

problem (1.1)-(1.2).

Theorem 2.2. Assume ug € VN H?*(w),po—p € HY, f€ L*0,T; H (w)) and
fi € L*(0,T; L*(w)). Then there exists Ty €]0,T] such that problem (1.1)-(1.2)
is uniquely solvable in [0,T}] X w.

Moreover the approzimations u®, p* satisfy the estimates

a<ph < B,
IVt ]| < Fi(2),
1At]| < Fa(t),
1
a2+ [ 1157ublPds < Fa(2),

[0 < i) 20

VP ()| < F5(1),

t
1A + [ 116" 6)l3ds < Fo(o)

£
LISt Fds < Fo(o)

Analogous estimates are verified by the solution (u,p).
The functions on the right-hand side depend on their argument t, and in ad-
dition on T and the fixed datum of problem. On the interval in question these

functions are continuous in the variable t.

We notice that H. Beirao da Veiga proved in [4] the regularity of the solution
of problem (1.1)-(1.2) (with A*-terms) by linearization and fixed point argument,
besides, he assumed that uy € V (naturally, the estimates given in [4] are

weaker). Instead of that, we need estimates as in (2.6).
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3. An optimal H'-error estimates for the velocity

In this section we will prove some local in time optimal error estimates for
the velocity in the H'-norm. The optimality here means that the approximate
solutions approach the solution of (2.2) at the best possible rate as measured by
powers of the inverse of first discarded eigenvalue (Agz4+1) when one consideres
approximations in the subspace V.

We start by working in a similar way as Heywood [10] for the case of the

classical Navier-Stokes. For that, we define

Definition 3.1. Let (u, p) be the strong solution of problem (2.2) given by the
Theorem 2.2 and (u*, p*) the approximate solution of problem (2.2). We define
i) vk = Pou
i) 0% = vk — ¥
iii) BF = u —o*
iv) 7 = p — p*

In what follows we denote by € > 0 a positive constant independent of &
that may depend on the functions F; given in the Theorem 2.2.

For these variables the following is true:

Lemma 3.2.

c

t
105(OI1* + [[7* ()11 + Co/ (VO ()P + VA (s)[[)ds < 57—+ —
0 Aigt Akt

Proof. We observe that v* = P,u satisfies
Pi(pus + pu.NVu— pf) — AP ((w.V)Vp + (Vp.V)u) + pAvF =0.  (3.1)
Subtracting (3.1) from (2.3) we obtain
Py[r*(us +w.NVu— f) + p"EF + p"0* Vu + p* E¥ Vu
+pFuF NV OF + pFuF N ER 4 Pe(p0F) + pAG*
—AB(0F.V)Vp + (EF.V)Vp + (u.V)Vr* (3.2)
(VA V)u + (Vph. V)0 + (Vp".V)EF] = 0.
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By taking the inner product in L%*(w) of the above identity with 6%, we get

(P0F,0) + pl | VO*|* = (" (ws + w.Vu = f),0%)

—(p"EF,0F) — (p*0F Nu, 0F) — (pFEF.Vu, 0%) — (p"ut.VOF o) (3.3)
—(p"uF VEF %) + M(0F.V)Vp, 0F) + A(EF.V)Vp, 0%) + M(u". V)V 7F, 0%)
FA(VTE V), 0F) + M(VpFE.V)0F, 0%) + A(Vp*.V)EF, 0%) = 0.

We observe that

kek 01: — 1/201: 2 kek gk

(p"0;,0%) th”( pF) 208 — ( )

1

St 0n)| = \§A<Apk9k,e’“>—<u V0", 0)
< MIAPE|I0%]] 2o 0% || + C[AuF |1V || o] 6% |2 ||6%]]
< C|6%]]? + 2¢]|VO*||?

The other terms in (3.3) are estimated using Hélder and Young inequalities

and Sobolev imbedding theorem. For instance,

A((Vp* V) EF, %)

B dp* aE

B /\Z/@:L’] 8.1:]

= |— k

B /\2/ 8:6] (8@ )EZ
@pkaﬁk

= )\E/ Ox QGfEk )\Z/ax]&v}

< MIAGH [ |02 | B¥| + AV "1 V0¥ 11 E¥]]
< e N AP IEF| + eIV p 7 ITEF|I + 22 [V 2.

The next step is considering the equation of 7*; we have

7Tf + Hk.V,o + Ek.V,o +uF V- MATF = 0. (3.4)
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By taking the inner product in L?*(w) of the above identity with 7%, we

obtain

di ke
712 4+ M| VaE||? = —(0%.Vp, n* EX N p,m*

< e[| AplP(IEF(1? +110]12) + 28] V]2

k|2 k|2
/uk.VWkﬂk:/uk.V%: —/div uk|7;—| = 0.

Now, identity (3.3), inequality (3.5) and the above estimates imply the following

since

differential inequality:

1d

5 2 U1 11" 208 [2) + [V OM 2 + A9 2

IN

SN+ 16411201 + Nl + 176513
el o | Al 4+ LI A2 4 22V
PR ] + eall PNV e + 170 ]

el B PV A 1041 4 Do AW 411651 | Al
PN + VT e+ NVl

e |7 [Jue 4+ w.Vu — f]|74 + 10e|| V0| > + 26|V r"||?
VA LB + [l

By taking ¢ = %,u, § = L), the above differential inequality yields the

T4

integral inequality

ST O + S )OI + & [ 1908l ds
15 [ 19t(s)] s
< Sl O + S O) 6 O)IF + ¢ [ 1155(s)]ds
te [N+ IV 5) e + IFa(s)l 1 =)
ve [NEHS)IPds + [ 11mt(s)]Pds,

thanks to the estimates given in the Theorem 2.2.
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Now, using the Lemma 2.1 and the fact that |[p*(¢))"/20%(¢)||> > o||0%(1)]|?,

we obtain

t t
I I + allO I+ 1 [ 119656125 + X [ (|97 (s) s
cl c i 9 L 9
<t [ IVuds)|Pds + e [ 7)1
Afgt Akt Jo 0
c rt
+5/0 all0*(s)IP[L+ [Vt ()|~ + [[Vu(s)][f]ds.
Applying the Gronwall’s inequality, we obtain

i 1
IO + all @ IF + [ 196" (s)12ds + X [ (197 (s)]12ds

i 1
< |5t 455 [ IVw@IRas] exp {e [ 141961~ +[1Vu(s) Elds
’\k+1 k+1 g 0
= 1 1
= C[Aiﬂ + Ak“]

for all ¢ € [0, T], thanks to the estimates given in the Theorem 2.2. This proves
the stated result.

———

O

¢
Remark 3.3. The term / ||EF(s)||*ds could be estimated with optimal rate
0

T
if/ ||Aus(s)||*ds < e. In fact, in this case, we have
0

t c t C
EEs)|Pds < 55— [ IlAuds)|ds <
JUEEGPds < 5 [Tl Au(s)Pds < 55—,

thanks to the estimates given in the Lemma 2.1, and the rest of the analysis

in the

could be done as before, given as a final result an estimate of order —

E+1
Lemma 3.2.

However, as it was pointed out by Heywood and Rannacher [11], even in
the classical case of the Navier-Stokes equations (constant p) a condition like
/T||Aut(3)||2d3 < ¢ (which implies that /T||ut(3)||%[2ds < ¢) would require that
tﬁe initial condition satisfies a nonlocal ((:)ompatibﬂity condition (see Corollary
2.1 and condition (1.5) in [11]) which cannot be expected unless the initial

condition is very special.
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In the next section we improved the above estimate (see Theorem 4.1).
Now, the above Lemma implies immediately the following L?-error estimate for

velocity and density.

Theorem 3.4. Suppose the assumptions of the Theorem 2.2 hold. Then, the

approzimations u*, p* satisfy

he(t) = w1+ llot) O < 25—+ 1]

/\k+1 /\k+1

for any t € [0,T].

Proof. We have u — u* = E* 4+ 0*. Then, by using the Lemmas 2.1 and 3.1,

we get

[[u(t) — (D] < B2 + ||05(1)]]* < bﬂl AHJ

Now, we proceed to obtain higher order estimates.

Lemma 3.5.

plIVOE O + AV (@) + C/Ot[||7rf(5)l|2 + 1105 (s)|"]ds <@

1 + 1 ]
)‘i+1 Akt '

Proof. Taking the inner product in L?(w) of the identity (3.2) with v = 0%, we

obtain

d
L 08 1) 0 =~ + 0.5 )80
—(pPEF,0F) — (p*0F N u, 0F) — (p*E*.Vu, 0F) — (pFu* V0, 0F)
—(p"uE NV ER07) + A(07.V)Vp, 0F) + M(E5.V)Vp, 0;) (3.6)
(W V)VTE 0F) A(VAE V), 0F) + A(VpF. V)0, 0F)
+A(Vp V) EF 65).
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The terms on the right hand side are estimated by using Holder and Young
inequalities and Sobolev imbedding theorem.
On the other hand, multiplying the equality (3.4) by 7F and integrating over

w, we have for any § > 0,

Ad
IE I + 5 IVH = (6.9 p, 7k) + (BE.9p, 7k) + (ub. V%, 7k

< esl|VollL 10°1* + sl VpllZo | B¥1* + esl| Au®|[*[[ V]2 + 38|V |”.

The above inequality and equality (3.6) together with the obtained estimates
(after choosing suitable ¢ > 0 and § > 0 and recalling that ||(p*)'/20F|> >
all0F]?), imply

ud A d
all0F [P+ 7|2+ 5 |[VOF|)P + S| [Vab]]? < el [EF||? + cf| 0%

2 dt 2dt
| [EF|]P + o[ VO8I + o1(t) + el [VE*|Pea(t) + o [V |Pes(1),

where

1(1) = 1o [Loo [ Aul* + (1L 1AM 1P]] + 1V 0" [T + [[Apl[T0 + 15
2(t) = [1p*Foe [[Au|* + |1 [Foe [[AW®| 2 + [V oM L0 + 120 [Ls5
pa(t) = [[Vullfo + [[Vr|fe + [[Au]]? + [V 2 + [ Aul[* + || f] 75

Integrating the above inequality from 0 to ¢, we obtain
t t
2a [ 1165(5)|2ds +2 [ llwk(s)1%ds + ul VO* )] + XV ()]
t 1 1
< [NE ) Fds +c [ 110%(s)|Pds + ¢ [ ||EH(s)]*ds
0 0 0
1 1 t
to [LIV0 () Per(s)ds + [ IVEHS)Peals)ds +c [ [V (s)]Fpals)ds,

since [|VO5(0)]|* = ||[V7*(0)]|* = 0.

Therefore, by using the estimates given in the Theorem 2.2 and Lemma 2.1,

we obtain
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’”‘”Wk(i)”Q“”Wk(i)”Q”O‘/Ot||9f(s)|l2ds+2/0t||7rf(3)||2d5
[/Ot || Vus(s)][Pds + /Ot wa(s)ds + Fg(t)T]

[1+ E()T] + C/Ot(ﬂm(S) +a(s) [l VO (D)2 + MV (1) ] ds.

<

C
2
)‘k—f-l
C

_|_

Akt

Now, we observe that the estimates given in Theorem 2.2, imply for all

te0,T],

[IvuFas < [Toaois<e s [loi) + galslds <.

consequently applying Gronwall’s inequality we get the desired result.

O
Analogously as in the proof of Theorem 3.4 we obtain the following optimal

H?' estimate for the velocity.

Theorem 3.6. Suppose the assumptions of the Theorem 2.2 hold. Then, the

approzimations u® satisfy

; _
I9u(t) = Vb + [ () = (o)) s <
0 k+1
for all t € [0,T].
O
Corollary 3.7.
; _
[ l1art(s)|ds <
0 /\k+1
for all t €[0,T].
Proof. In fact, the equality (3.4) implies
MTF = 7F + 05 Vp + EF Vp + u*. Vit (3.7)

Consequently

MIATEE < e(llmf ] + [[ApI PV + IV EH) + [JAu™]*[[Va*]]?).
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Now, by integration in time from 0 to ¢, and using the lemmas 2.1 and 3.2,

we obtained the desired result.

Corollary 3.8.
c

1
[ Aus) — Aut(s)12ds <
0 k41

for all t € [0,T].

Proof. We start by considering the two following equations:

Au = Plpus+pu-Vu—pf —Au-V)Vp—AVp-V)u]
Auk = PEpRul + pFub - Vb — pF [ — M(ub - V)V pE — MN(VpF - V)uF

and making their difference; then we take the norm of such terms. Let us see,
for instance, how we can estimate one of those terms:
1PpuSu — PEotabS b2 < el|(P = PE)ouSull? + el PHp(u — u) Va2
el [PH(p — PtV ull? + el PPtV (¥ 4 0)
c
< IV {puVu)|[* + | |(EF + 05) V|
Moo
+el [T VPP 4 |[uV(ER 4 6°)]?
c
< E[HAPHQHAMV + [ Aul]] + €| [V E* + VOF|| Aul?

+el[Vaf| 2| Aul|* + e [Au®|]P] [V EF 4 V0|2

c

> /\k+1 >
which implies that:
k b ke k c
/ [|PpuNVu — Ppp*u*Vu||*ds < ——.
0 /\k+1
After such estimates we conclude that
i c
/ | Au(s) — Aub||?ds < —<—.
0 /\k+1

4. Improved L’-error bounds

The L?-estimates in Theorem 3.4 are not optimal; in fact it is expected to obtain

a rate of convergence of order 1/A}, instead of only 1/A;11. We were not able
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to do that, but in this section we will improved the L2-estimates in Theorem
4.1 by using a bootstrap argument.

The question about the possibility of obtaining this optimal rate of conver-
gence in the L*norm was raised by Rautmann in [17], in the context of the
classical (constant density) Navier-Stokes equations. This was answered in a

positive way in that context by Rojas-Medar and Boldrini [18].

Theorem 4.1.
()= OI+ () O+ [ (¥ u(s) = V()] +IV ()~ T (5) s

c

3/2
Akt

<

for any t € [0,T].

Proof. We observe that the optimal rate is not obtained in the Theorem 3.4

because of the following term:
t
| [ (o EE,6%)ds].
0

Now, by using the Lemma 3.5, we can estimate it as follows; by integration

by parts with respect to ¢, and recalling that #*(0) = 0, we have

[t 0as| = | = [k 00s = [[6" B 08)ds + (o) B4 0), 040
< [Tk % 04)1ds + [ 16 B4 6)lds + I(p(0) B¥(1), 0%(1)

1 t
§/0 IIfof|IL4||E’“I|L4IIH’“IIdSJr/0 10" 1z [ E[[11671]ds + [l |z [ E*[1]16%]]

t 1/2
([ 10tas)
0

< 4
— 3/2
¥

Cc

<
= \3/2 "
Akt

C
Akt
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By using the Theorem 4.1, we can improve the convergence rate for density.

In fact, we get

Theorem 4.2.
t c
IV (o= P+ [ llorls) = pl(s)lds < IR
k41

for any t € [0,T].

Proof. From (3.7) we can see that:

c
3/2
k41

d
SV 4 ellm])® < IV A + el Au®| [V a2,

and integrating in time from 0 to ¢ we get:
t c t
IV + e [ llnt s < =+ c [ 1Ad| )V s

k+1

since |[V7¥(0)|| = 0. Now, by using the Gronwall’s lemma we obtain:

t c t
IVRHOIR + e [ HImklIPds < - expe [ 11 4u|[%ds
0 )‘k+1 0

Corollary 4.3.

c
3/2
k+1

t
[ liar|ds <
0

for allt €[0,T].

Proof. It easily follows by using the above result on equation (3.7).

Proposition 4.4.

t
ImE@IP + 2 [ 19rk(s)lPds < -
0

k+1

and
|ATE ()| < ——,
M1
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for allt € [0,T].

Proof. Differentiating (3.4) with respect to ¢ and taking the inner product in

L*(w) with 7}, we obtain:

1d
2 dt

—I_(EL{C : V,O,ﬂ'f) + (Ek ’ th,ﬂ'f) + (uf ' Vﬂ-faﬂ-f)‘

— [l + Mgl = (07 - Vo, m5) + (0% - Vor, 7))

By using Holder and Young inequalities, we estimate the right hand side of the

above equality and then we get:

d
I + AV < elloz]]* + —I|V,07r||2 + —IIWfll2
k+1

Integrating from 0 to ¢ and observing that

17O} < MlAGp =) O] + 1w = uB)O)IVAllo + [l [] 1V (0 = P (O]
< ||V (u = uh)(0)]] < ][ VOH(0)]] <

Aepr
we obtain the result. The second estimate follows easily from the previous

estimate and from (3.4).

Remark 4.3. The authors in [8] obtained analogous results to those presented

in this work for a general model with A\*-terms inclued.
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