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1. Introduction

Let Ω be a bounded polygonal domain in R2 with a sufficiently smooth boundary.

We consider the following incompressible transient Stokes equations
ut −∆u+∇p = f, in Ω× (0, T ],
div u = 0 in Ω× (0, T ],
u = 0 on ∂Ω× (0, T ],
u = u0 on Ω× {0},

(1.1)

where u = (u1(x, t), u2(x, t))
T is the velocity, p = p(x, t) the pressure, f = f(x, t)

the prescribed body force, u0 the initial velocity, and T > 0 a finite time.

A posteriori error estimators have been well studied and used to derive adaptive

mesh refinement for solving the time-dependent equations [1, 2, 3, 4]. From the

theoretical point of view, some novel analytical techniques need to be introduced to

obtain the optimal error estimates. While from the practical use point of view, one

needs to reduce the computational time in order to obtain a satisfactory accuracy in

the numerical simulations. Although the theory of a posteriori error estimates of the

finite element method for elliptic problems is well-developed [5, 27], the theory for

time-dependent problems is less developed. Only a few results have been published

till now, such as [12, 18, 23, 28, 29] and the reference therein. In recent works [11,

20, 21], Makridakis and his co-workers have introduced the elliptic reconstruction to

treat the linear parabolic equation in both semi-discrete and fully discrete schemes.

By using the energy techniques and dual arguments, they have obtained optimal a

posteriori error estimates. The advantages of introducing an elliptic reconstruction

lie in (i) Compared with [12, 13, 14], no-refinement assumption about the mesh can

be relaxed; (ii) The well-developed theoretical results of a posteriori error estimates

for elliptic problem can be used to obtain the optimal order posteriori error estimates

for the parabolic problems; (iii) The process of analysis becomes quite clear and

straightforward. Based on these superiorities, the elliptic reconstruction technique

has been further developed for both Galerkin method [16] and mixed finite element

method [22].

For a posteriori error estimates of the finite element method for the unsteady

Stokes problem, Nicaise and Soualem have proposed the semi-discrete time/space
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and completely discrete space-time schemes with the upper and lower bounds for the

spatial estimator in [24, 25], respectively based on Crouzeix-Raviart’s spaces. A fully

discretized scheme was analyzed with the errors of velocity in L2(L2) and L∞(L2)

norms in [6, 8]. Using an appropriate Stokes reconstruction, Karakatsani and Makri-

dakis have provided residual-based error estimates in L2(H1), L∞(H1) and L∞(L2)

norms for the velocity based on Crouzeix-Raviart’s elements and divergence-free

condition in [19]. By establishing the equivalence between errors and residual and

using a suitable decomposition of the residual into spatial and temporal contribu-

tions, Verfürth [30] has obtained a posteriori error bounds for velocity in L2(H1)

and L∞(L2) norms. In this article, we shall construct an appropriate Stokes re-

construction depending on the residuals and derive a posteriori error estimates in

L∞(L2), L∞(H1) and L2(L2) norms with optimal order of convergence for the ve-

locity and pressure. Compared with well-known results, the novel ingredients of this

work lie in:

(1) The analytical techniques are different. Here, a Stokes reconstruction is

constructed to solve the time-dependent Stokes problem. In this way, the analysis

is quite straightforward and the heart of the matter is succinct, in contrast with the

involved approaches mentioned above. Although the Stokes reconstruction technique

was adopted in [19], our operator is quite different from that ones, not only in

expressions but also in properties (Please see Definitions 3.1 and 4.1 for details).

(2) A general analysis of a posteriori error estimates of the finite element method

for the time-dependent Stokes problem is established, rather than restricting on some

special finite element spaces. (divergence-free space is used in [19])

(3) A posteriori error estimates of pressure in L2(L2) and L∞(L2) norms are also

provided based on the continuous inf-sup condition and dual arguments.

This article is organized as follows. In Section 2, we formulate the finite element

method and recall some basic lemmas. In Section 3, we present a posteriori error

estimates of the finite element method for space semi-discrete formulation. In Section

4, we derive a posteriori error estimates for the velocity and pressure in fully discrete

formulation. Finally, some numerical experiments are provided in Section 5 to verify

the performances of established error estimators.
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2. Preliminaries

In this section, we formulate the finite element method for the transient Stokes

equations (1.1) and recall some basic results.

For the mathematical setting of problem (1.1), we denote

X = H1
0 (Ω)

2, Y = L2(Ω)2, D(A) = H2(Ω)2 ∩X,

M = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
qdx = 0}.

In this work, standard Sobolev spaces are used. The spaces L2(Ω)m (m = 1, 2, 4) are

endowed with the standard L2-scalar product (·, ·) and L2-norm ∥ · ∥0. The spaces

H1
0 (Ω) and X are equipped with the norm ∥ · ∥21 and seminorm | · |1, respectively.

Throughout this paper, the letter C > 0 denotes a generic constant, independent on

mesh parameter and time step, and may be different at different occurrences.

Furthermore, we assume that the data u0 and f satisfy the assumption:

(A1): The initial velocity u0 ∈ D(A) with div u0 = 0 and f, ft, ftt ∈ L2(0, T ;Y ) are

assumed to satisfy

∥u0∥2 + (

∫ T

0
(∥f∥20 + ∥ft∥20 + ∥ftt∥20)dt)

1
2 ≤ C.

The continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M are, re-

spectively, defined by

a(u, v) = (∇u,∇v), d(v, q) = −(∇q, v) = (q,divv).

Obviously, the bilinear a(·, ·) is continuous and coercive on X × X. Also the

bilinear d(·, ·) is continuous on X×M and satisfies the well-known inf-sup condition

[15, 26]: There exists a constant β > 0, for all q ∈ M such that

β∥q∥0 ≤ sup
0̸=v∈X

|d(v, q)|
∥∇v∥0

. (2.1)
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With above notations, the variational formulation of problem (1.1) reads as: For

∀ t ∈ (0, T ], find (u, p) ∈ (X,M), such that for all (v, q) ∈ X ×M{
(ut, v) + a(u, v)− d(v, p) = (f, v),

d(u, q) = 0.
(2.2)

2.1. Finite element approximation

Let h > 0 be a real positive parameter. The finite element subspace Xh ×Mh of

X×M is characterized by Th = Th(Ω), a partitioning of Ω into triangles K, assumed

to be uniformly shape-regular as h → 0, see [10] for details.

We give some examples of the spaces Xh and Mh such that the discrete formula

of inf-sup condition (2.1) is satisfied. Let Ω be a convex, polygonal domain in plane

and Th, a partitioning of Ω into triangles K, assumed to be uniformly regular as

h → 0. For any nonnegative integer l, we denote by Pl(K) the space of polynomials

of degree less than or equal to l on element K.

Example 1. Girault, Raviart [15]

Xh = {vh ∈ C0(Ω)2 ∩X; vh ∈ P2(K)2, ∀ K ∈ Th},

Mh = {qh ∈ M ; qh ∈ P0(K), ∀K ∈ Th}.

Example 2. Bercovier, Pironneau [7]. We consider the triangulation Th/2 obtained

by dividing each triangle of Th in four triangles (by joining the mid-sides). We set

Xh = {vh ∈ C0(Ω)2 ∩X; vh ∈ P1(K)2, ∀ K ∈ Th/2},

Mh = {qh ∈ C0(Ω) ∩M ; qh ∈ P1(K), ∀K ∈ Th}.

Example 3. Mini-element. We introduce b̂ ∈ H1
0 (K) taking the value 1 at the

barycenter of K and such that 0 ≤ b̂ ≤ 1, which is called a “bubble function”.

Then, we define the spaces by

P b
1,h = {ϕh ∈ C0(Ω), ϕh|K ∈ P1(K)⊕ span{b̂}, ∀K ∈ Th},

and

Xh = (P b
1,h)

2 ∩X, Mh = {qh ∈ M ; qh ∈ P1(K), ∀K ∈ Th}.
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In order to obtain the convergence analysis of the optimal order, we introduce

the following definition about Stokes projection.

Definition 2.1. (Stokes projection) For ∀ (v, q) ∈ X ×M , the projection oper-

ators (Rh, Qh) ∈ Xh ×Mh is defined by

a(Rh, vh)− d(vh, Qh) + d(Rh, qh) = a(v, vh)− d(vh, q) + d(v, qh) (2.3)

for all (vh, qh) ∈ Xh×Mh. Furthermore, for ∀ (v, q) ∈ D(A)×(H1(Ω)∩M), operators

(Rh, Qh) satisfy (see [15, 17]):

∥Rh − v∥0 + h(∥∇(Rh − v)∥0 + ∥Qh − q∥0) ≤ Ch2(∥Av∥0 + ∥q∥1). (2.4)

Now, we present the space semidiscrete finite element scheme for problem (1.1):

Find (uh, ph) ∈ Xh ×Mh, such that for all t ∈ (0, T ]

{
(uht, vh) + a(uh, vh)− d(ph, vh) = (f, vh) ∀ vh ∈ Xh,

d(uh, qh) = 0 ∀ qh ∈ Mh.
(2.5)

Remark 2.1. From the continuous and coercivity of a(·, ·) on Xh × Xh with b(·, ·)

satisfying the discrete inf-sup condition on Xh ×Mh, it follows that problem (2.5)

admits a unique solution (uh, ph) ∈ Xh ×Mh (see [15, 26]).

We end this section by introducing two important lemmas, which are frequently

used in the following analysis (see [9, 10]).

Lemma 2.1. Assume that there exist two L2-projection operators Ih : X → Xh

and Inh : X → Xn
h (Xn

h will be defined in Section 4) defined by

(ϕ− I�h ϕ,wh) = 0 ∀ wh ∈ Xh or Xn
h , ϕ ∈ X, (I�h takes Ih or Inh ).

Furthermore, if ϕ ∈ D(A), the following properties hold

hi∥ϕ− I�h ϕ∥0,K ≤ Ch2−i
K ∥ϕ∥2,ωK (i = 0, 1), ∥ϕ− I�h ϕ∥0,E ≤ Ch

1/2
E ∥ϕ∥1,ωK ,

where ωK = ∪K′∩K ̸=∅K
′ and ωE = ∪E∩K ̸=∅K for ∀ K,K ′ ∈ Th.

Lemma 2.2. Let g(t), h(t), y(t) be three locally integrable nonnegative functions
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on time interval [0,∞) such that for any fixed time t0 ≥ 0 and all t ≥ t0

y(t) +G(t) ≤ C +

∫ t

t0

h(s)ds+

∫ t

t0

g(s)y(s)ds,

where G(t) is a nonnegative function on [0,∞), C ≥ 0 is a constant. Then,

y(t) +G(t) ≤ (C +

∫ t

t0

h(s)ds) exp(

∫ t

t0

g(s)ds).

3. A posteriori error estimates for semidiscrete formulation

In this section, we present a posteriori error estimates of the space semi-discrete

formulation for problem (1.1) and develop the computable upper and lower bounds

for numerical solution (uh, ph) in various of norms.

Denote eu = uh−u and ep = ph−p. From (2.2) and (2.5), it follows that eu and

ep satisfy the following error equations

{
(eut, v) + a(eu, v)− d(ep, v) = r1(v),

d(eu, q) = r2(q),
(3.1)

where the residuals r1 and r2 are respectively defined by

r1(v) = (uht, v) + (∇uh,∇v)− (∇ · v, ph)− (f, v) and r2(q) = (∇ · uh, q). (3.2)

Furthermore, from equations (2.5), one finds

r1(vh) = 0, ∀ vh ∈ Xh and r2(qh) = 0 ∀ qh ∈ Mh.

We split the errors eu and ep into two parts

eu = uh − u = (ũ− u)− (ũ− uh) , ξu − ηu,

ep = ph − p = (p̃− p)− (p̃− ph) , ξp − ηp.

Then, (3.1) can be rewritten as

{
(ξut, v) + a(ξu, v)− d(ξp, v) = r1(v) + (ηut, v) + a(ηu, v)− d(ηp, v),

(∇ · ξu, q) = r2(q) + (∇ · ηu, q).
(3.3)
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Now, we present the Stokes reconstruction ũ ∈ X and p̃ ∈ M of uh(t) and ph(t)

for all t ∈ (0, T ].

Definition 3.1. (Stokes reconstruction) For given uh and ph, define the Stokes

reconstruction ũ(t) and p̃(t) by{
(∇(ũ− uh),∇v)− (p̃− ph,∇ · v) = −r1(v),

(∇ · (ũ− uh), q) = −r2(q).
(3.4)

For given uh, ph, r1, r2, it is easy to show that system (3.4) admits a unique

solution (ũ, p̃) ∈ X ×M for ∀ t ∈ (0, T ].

By (3.4), equations (3.3) can be rewritten as{
(ξut, v) + a(ξu, v)− d(ξp, v) = (ηut, v),

(∇ · ξu, q) = 0.
(3.5)

Lemma 3.1. Assume that ũ is the solution of Stokes reconstruction (3.4). Then,

for ∀ q ∈ M, ũ satisfies

∇ · ũ = 0.

Proof. From the second equation of (3.5), it follows that

0 = (∇ · ξu, q) = (∇ · (ũ− u), q).

By the incompressible condition divu = 0, we obtain the desired result.

Lemma 3.2. Assume that Ω is a bounded polygonal domain with a sufficiently

smooth boundary ∂Ω. Suppose that ξu and ξp are solutions of (3.5). Then, for

∀ (v, q) ∈ X ×M , there exists a constant C such that

∥ξu(t)∥20 +
∫ t

0
∥∇ξu(s)∥20ds ≤ 3

(
∥ξu(0)∥20 +

∫ t

0
∥ηut(s)∥20ds

)
, (3.6)

(
∥∇ξu(t)∥20 +

∫ t

0
∥ξut(s)∥20ds

)1/2
≤ ∥∇ξu(0)∥0 + (

∫ t

0
∥ηut(s)∥20ds)1/2. (3.7)

Moreover,

∥ξp(t)∥0 ≤ C
(
∥∇ξu(0)∥0 + ∥ξut(0)∥0 + ∥ηut∥0 + (

∫ t

0
∥ηutt(s)∥20ds)

1
2 + (

∫ t

0
∥ηut(s)∥20ds)

1
2

)
.(3.8)
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Proof. Firstly, we choose v = ξu and q = ξp in (3.5), and add the resulting

equations to obtain that

1

2

d

dt
∥ξu∥20 + ∥∇ξu∥20 = (ηut, ξu).

Integrating above equation with respect to time from 0 to t and using Cauchy

inequality, we obtain

∥ξu(t)∥20 +
∫ t

0
∥∇ξu(s)∥20ds ≤ ∥ξu(0)∥20 + 2

∫ t

0
∥ηut(s)∥0∥ξu(s)∥0ds

≤ ∥ξu(0)∥20 +
∫ t

0
∥ηut(s)∥20ds+

∫ t

0
∥ξu(s)∥20ds.

We finish the proof of (3.6) by using Lemma 2.2.

By differentiating (3.5) with respect to time, choosing v = ξut, q = ξpt and

following the proof of (3.6), we have

∥ξut(t)∥20 +
∫ t

0
∥∇ξut(s)∥20ds ≤ 3

(
∥ξut(0)∥20 +

∫ t

0
∥ηutt(s)∥20ds

)
. (3.9)

Secondly, differentiating the second equation in (3.5) with respect to time, taking

v = ξut, q = ξp, we obtain by adding the resulting equations that

∥ξut∥20 +
1

2

d

dt
∥∇ξu∥20 = (ηut, ξut).

Integrating above equation with respect to time from 0 to t, and applying Cauchy

inequality, one finds

∥∇ξu(t)∥20 +
∫ t

0
∥ξut(s)∥20ds ≤ ∥∇ξu(0)∥20 +

∫ t

0
∥ηut∥20ds.

Together with inequality a2 + b2 ≤ (a+ b)2 (a, b ≥ 0), we complete the proof (3.7).
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Finally, by (2.1) and the first equation of (3.5), we arrive at

∥ξp∥0 ≤ β−1 sup
0̸=v∈X

|d(ξp, q)|
∥∇v∥0

≤ β−1 sup
0̸=v∈X

|(ξut, v)|+ |(∇ξu,∇v)|+ |(ηut, v)|
∥∇v∥0

≤ C(∥ξut∥0 + ∥∇ξu∥0 + ∥ηut∥0). (3.10)

The desired result (3.8) follows from (3.7) and (3.9) with (3.10).

3.1. Duality estimates

In this subsection, we like to derive a posteriori error estimates for the transient

Stokes equations in spatial semidiscrete scheme (2.5).

Consider the following dual problem: For a fixed time t∗ ∈ (0, T ], find (Φ,Ψ) ∈

X ×M such that

Φt +∆Φ−∇Ψ = 0 in Ω× (0, t∗],

∇ · Φ = 0 in Ω× (0, t∗],

Φ = 0 on ∂Ω× (0, t∗],

Φ(t∗) = ξu(t
∗) in Ω,

(3.11)

where ξu = ũ − u. Multiplying the first equation of (3.11) by Φ and the second

equation by Ψ, integrating with respect to time from 0 to t∗, one finds

∥ξu(t∗)∥20 = ∥Φ(0)∥20 +
∫ t∗

0
∥∇Φ(s)∥20ds. (3.12)

Meanwhile, multiplying the first equation of (3.11) by ξu and the second equation

by ξp, then integrating over Ω× (0, t∗] and using Green’s formula, we deduce that

∥ξu(t∗)∥20 = (Φ(0), ξu(0)) +

∫ t∗

0

(
(Φ, ξut) + (∇Φ,∇ξu)− (∇ · ξu,Ψ)

)
dt (3.13)

and ∫ t∗

0
(∇ · Φ, ξp)dt = 0. (3.14)
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Adding (3.13) and (3.14), regrouping these terms and using (3.5) with v = Φ, q = Ψ

and the estimate (ηut,Φ) ≤ ∥ηut∥0∥Φ∥0, one derives

∥ξu(t∗)∥20 = (Φ(0), ξu(0)) +

∫ t∗

0
(ηut,Φ)dt

≤ ∥Φ(0)∥0∥ξu(0)∥0 + (

∫ t∗

0
∥ηut∥20ds)

1
2 (

∫ t∗

0
∥Φ(s)∥20ds)

1
2 . (3.15)

By (3.12) and the fact that ∥Φ∥0 ≤ ∥∇Φ∥0 (for ∀ Φ ∈ X) in (3.15), we obtain that

∥ξu(t∗)∥0 ≤ ∥ξu(0)∥0 + (

∫ t∗

0
∥ηut∥20ds)

1
2 . (3.16)

which verifies our result (3.6).

For the L2(L2) estimates about ξp, we consider the following adjoint problem



Φt +∆Φ−∇Ψ = 0 in Ω× (0, t∗],

−∇ · Φ = ξp in Ω× (0, t∗],

Φ = 0 on ∂Ω× (0, t∗],

Φ(t∗) = 0 in Ω,

(3.17)

where ξp = p̃ − p. Assume that Φ ∈ L2(0, T ;H1
0 (Ω)

2) and Φt ∈ L2(0, T ;L2(Ω)2).

We can obtain that Φ is bounded, i.e., there exists a constant C such that

max
t∈(0,T ]

∥Φ(t)∥0 ≤ C. (3.18)

Multiplying the first equation of (3.17) by ξu and the second equation by ξp respec-

tively, we obtain

d

dt
(Φ, ξu)− (Φ, ξut)− (∇Φ,∇ξu) + (Ψ,∇ · ξu) = 0 (3.19)

and

∥ξp∥20 = −(∇ · Φ, ξp). (3.20)
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Adding equations (3.19) and (3.20), regrouping these terms and using (3.5) with

v = Φ, q = Ψ, we derive that

∥ξp∥20 = (ηut,Φ)−
d

dt
(Φ, ξu). (3.21)

Integrating (3.21) with respect to time from 0 to t∗ (t∗ ≤ T ), and using stability

result (3.18), one finds

∫ t∗

0
∥ξp(s)∥20ds ≤ C

(
∥ξu(0)∥0 +

∫ t∗

0
∥ηut(s)∥0ds

)
.

3.2. A posteriori error estimates for the Stokes reconstruction

In this subsection, we discuss a posteriori error estimates for the unsteady Stokes

problem. To achieve this aim, we need some a posteriori estimates about ηu, ηut,∇ηu

and ηp related to the Stokes reconstruction (3.4).

Lemma 3.3. Assume that Ω is a bounded polygonal domain with sufficiently

smooth boundary. Suppose that ũ and p̃ are solutions of (3.4), under the assumption

of (A1). Then, there exists a constant C, independent of mesh parameter h, such

that

∥ηu∥0 ≤ C
(
(
∑
E∈Eh

h3E∥[∇uh − ph · I]∥20)1/2 + (
∑
K∈Th

h2K∥∇ · uh∥20,K)1/2

+(
∑
K∈Th

h4K∥uht −∆uh +∇ph − f∥20,K)1/2
)
, (3.22)

∥ηp(t)∥0 + ∥∇ηu∥0 ≤ C
(
(
∑
E∈Eh

hE∥[∇uh − ph · I]∥20)1/2 + (
∑
K∈Th

∥∇ · uh∥20,K)1/2

+(
∑
K∈Th

h2K∥uht −∆uh +∇ph − f∥20,K)1/2
)
. (3.23)

where I is a 2-dimension unit matrix.

Proof. Firstly, we discuss the estimate of ηu in L2-norm based on the Aubin-

Nitsche duality arguments. Consider Φ ∈ D(A), Ψ ∈ H1(Ω) ∩M as the solutions
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of the elliptic problem {
−∆Φ+∇Ψ = g in Ω,

∇ · Φ = 0 in Ω.
(3.24)

Assume that the following elliptic regularity result holds

∥Φ∥2 + ∥Ψ∥1 ≤ C∥g∥0. (3.25)

Multiplying the first equation of (3.24) by ηu = ũ− uh and the second equation

by ηp = p̃− ph respectively, adding and regrouping them, using (2.3), we have

(ηu, g)

= (∇Φ,∇ũ)− (Ψ,∇ · ũ)− (∇ · Φ, p̃)− (∇Φ,∇uh) + (Ψ,∇ · uh) + (∇ · Φ, ph)

= (∇Φ,∇ũ)− (Ψ,∇ · ũ)− (∇ · Φ, p̃)− (∇Rh,∇uh) + (Qh,∇ · uh) + (∇ ·Rh, ph)

= (∇(Φ−Rh),∇ũ)− (Ψ−Qh,∇ · ũ)− (∇ · (Φ−Rh), p̃)

+(∇Rh,∇(ũ− uh))− (Qh,∇ · (ũ− uh))− (∇ ·Rh, p̃− ph). (3.26)

From the definition of (3.4), we know that

(∇Rh,∇(ũ− uh))− (∇ ·Rh, p̃− ph) = −r1(Rh),

and

−(Qh,∇ · (ũ− uh)) = r2(Qh).

According to the expressions in (3.2) about r1(v) and r2(q) with v = Rh, q = Qh,

and using (2.5), equation (3.26) can be rewritten as

(ηu, g) = (∇(Φ−Rh),∇ũ)− (Ψ−Qh,∇ · ũ)− (∇ · (Φ−Rh), p̃).

Applying (2.3) again and noting (3.4), we deduce that

(ηu, g)

= (∇(Φ−Rh),∇ũ)− (Ψ−Qh,∇ · ũ)− (∇ · (Φ−Rh), p̃)

= (∇(Φ−Rh),∇(ũ− uh))− (Ψ−Qh,∇ · (ũ− uh))− (∇ · (Φ−Rh), (p̃− ph))

= r2(Ψ−Qh)− r1(Φ−Rh). (3.27)
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Integrating by parts and using (2.4), one finds

(ηu, g) = (uht −∆uh +∇ph − f,Φ−Rh)

+
∑
E∈Eh

∫
E
[∇uh − ph · I] · (Φ−Rh)ds+ (∇ · uh,Ψ−Qh)

≤
∑
K∈Th

∥uht −∆uh +∇ph − f∥0,K∥Φ−Rh∥0,K

+
∑
E∈Eh

∥[∇uh − ph · I]∥0,E∥Φ−Rh∥0,E +
∑
K∈Th

∥∇ · uh∥0,K∥Ψ−Qh∥0,K

≤ C
(
(
∑
K∈Th

h4K∥uht −∆uh +∇ph − f∥20,K)
1
2 + (

∑
E∈Eh

h3E∥[∇uh − ph · I]∥20,E)
1
2

+(
∑
K∈Th

h2K∥∇ · uh∥20,K)
1
2

)
· (∥Φ∥2 + ∥Ψ∥1). (3.28)

By elliptic regularity (3.25) in (3.28), we deduce that

(ηu, g)

∥g∥0
≤ C

(
(
∑
K∈Th

h4K∥uht −∆uh +∇ph − f∥20,K)
1
2

+(
∑
E∈Eh

h3E∥[∇uh − ph · I]∥20,E)
1
2 + (

∑
K∈Th

h2K∥∇ · uh∥20,K)
1
2

)
.(3.29)

Taking the supremum over g, we obtain the desired result (3.22).

By differentiating (3.27) with respect to time one or two times and following the

proofs of (3.22), we can obtain the following estimates.

∥ηut∥0 ≤ C
(
(
∑
E∈Eh

h3E∥[∇uht − pht · I]∥20)1/2 + (
∑
K∈Th

h2K∥∇ · uht∥20,K)1/2

+(
∑
K∈Th

h4K∥uhtt −∆uht +∇pht − ft∥20,K)1/2
)
, (3.30)

∥ηutt∥0 ≤ C
(
(
∑
E∈Eh

h3E∥[∇uhtt − phtt · I]∥20)1/2 + (
∑
K∈Th

h2K∥∇ · uhtt∥20,K)1/2

+(
∑
K∈Th

h4K∥uhttt −∆uhtt +∇phtt − ftt∥20,K)1/2
)
. (3.31)
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For the estimate of (3.23), choosing v = ηu, q = ηp in (3.4), and using the fact

that r1(Ihηu) = 0, thanks to Green’s formula and Lemma 3.2, we obtain that

∥∇ηu∥20 = (∇ · ηu, ηp)− r1(ηu) = −r1(ηu)− r2(ηp) = −r1(ηu − Ihηu)− r2(ηp)

= (uht −∆uh +∇ph − f, ηu − Ihηu)

+
∑
E∈Eh

∫
E
[∇uh − ph · I] · (ηu − Ihηu)ds+ (∇ · uh, ηp)

≤ C
(
(
∑
K∈Th

h2K∥uht −∆uh +∇ph − f∥20,K)
1
2 ∥∇ηu∥0

+(
∑
E∈Eh

hE∥[∇uh − ph · I]∥20,E)
1
2 ∥∇ηu∥0 + (

∑
K∈Th

∥∇ · uh∥20,K)
1
2 ∥ηp∥0

)
.

Combining with Cauchy inequality, one finds

∥∇ηu∥20 ≤ C1

(
(
∑
K∈Th

h2K∥uht −∆uh +∇ph − f∥20,K) + (
∑
E∈Eh

hE∥[∇uh − ph · I]∥20,E)
)

+C2(
∑
K∈Th

∥∇ · uh∥20,K)
1
2 ∥ηp∥0. (3.32)

Finally, thanks to the inf-sup condition (2.1) and the Stokes reconstruction (3.4),

using the fact r1(Ihv) = 0 again, we conclude that

∥ηp∥0 ≤ β−1 sup
0̸=v∈X

|(∇ · v, ηp)|
∥∇v∥0

β−1 sup
0 ̸=v∈X

≤ |(∇ηu,∇v)|+ |r1(v)|
∥∇v∥0

≤ β−1 sup
0̸=v∈X

|(∇ηu,∇v)|+ |r1(v − Ihv)|
∥∇v∥0

≤ C
(
∥∇ηu∥0 + (

∑
K∈Th

h2K∥uht −∆uh +∇ph − f∥20,K)
1
2

+(
∑
E∈Eh

hE∥[∇uh − ph · I]∥20,E)
1
2

)
. (3.33)

Combining (3.32) with (3.33), we finish the proof of (3.23).

Using Lemmas 3.2 and 3.3, we finally obtain the main theorem of this section.

Theorem 3.4. Let Ω be a bounded polygonal domain with a sufficiently smooth
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boundary. Assume that (u, p) and (uh, ph) are the solutions of (2.2) and (2.5),

respectively. Then, under the assumption of (A1), for all t ∈ (0, T ], there exists a

constant C such that

∥uh − u∥20 ≤ C
(
∥uh(0)− u0∥20 + ∥ηu(0)∥20 + ∥ηu∥20 +

∫ t

0
∥ηut(s)∥20ds

)
,

∥∇(uh − u)∥20 ≤ C
(
∥∇(uh(0)− u0)∥20 + ∥∇ηu(0)∥20 + ∥∇ηu∥20 +

∫ t

0
∥ηut(s)∥20ds

)
,

∥ph − p∥0 ≤ C
(
∥∇(uh(0)− u0)∥0 + ∥∇ηu(0)∥0 + ∥uht(0)− ut(0)∥0 + ∥ηut(0)∥0

+∥ηut∥0 + ∥ηp∥0 + (

∫ t

0
∥ηut(s)∥20ds)1/2 + (

∫ t

0
∥ηutt(s)∥20ds)1/2

)
,

where the estimates of ηu, ηut, ηutt and ηp are given by (3.22), (3.30), (3.31) and

(3.23), respectively.

4. A posteriori estimates for fully discrete scheme

In this section, we consider a posteriori error estimates of fully discrete approx-

imation for transient Stokes equations (1.1) based on backward Euler method.

Set 0 = t0 < t1 < · · · < tN = T, In = (tn−1, tn] and denote kn = tn − tn−1. For

∀ n ∈ [0, N ], let Tn be a refinement of macrotriangulation which is a triangulation of

the domain Ω that satisfies the same conformity and shape regularity assumptions

made on its refinements (see [9] for details). Denote

hn(x) = diam(K), where K ∈ Tn and x ∈ K.

Given two compatible triangulations Tn−1 and Tn, namely, they are refinements of

the same macrotriangulation, set T̂n be the finest common coarsening of Tn and

Tn−1, whose mesh size is given by ĥn = max(hn, hn−1), for more information about

the triangulations, please see Appendix A of [20].

Denote

∂tϕ
n :=

1

kn
(ϕn − ϕn−1), fn = f(tn).
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We consider Xn
h and Mn

h defined over the triangulations Tn as the finite element

subspaces of X and M , respectively.

Given U0 = I0hu0, find {(Un, Pn)} with (Un, Pn) ∈ Xn
h × Mn

h , for ∀ (v, q) ∈

Xn
h ×Mn

h . For n = 0{
(∇U0,∇v)− (∇ · v, P 0) = (f0, v),

(∇ · U0, q) = 0,
(4.1)

and for n ∈ [1 : N ]{
1
kn
(Un − Un−1, v) + (∇Un,∇v)− (∇ · v, Pn) = (fn, v),

(∇ · Un, q) = 0.
(4.2)

Using a sequence of discrete values {Un}, n = 0, 1, 2, . . . , N , for ∀ t ∈ (0, T ] we

define a continuous piecewise linear function U(t) by

U(t) = (1− t− tn−1

kn
)Un−1 +

t− tn−1

kn
Un, tn−1 < t ≤ tn, n = 1, 2, . . . , N. (4.3)

Similarly, we define P (t) from the set of values {Pn}, n = 0, 1, 2, . . . , N , as

P (t) = (1− t− tn−1

kn
)Pn−1 +

t− tn−1

kn
Pn, tn−1 < t ≤ tn, n = 1, 2, . . . , N. (4.4)

Note that the time derivative of U restricted to In is

Ut|In = ∂tU
n for ∀ t ∈ In. (4.5)

To motivate the use of the Stokes reconstruction, we denote eu(t) = U(t)− u(t)

and ep(t) = P (t)− p(t). Then, for ∀ (v, q) ∈ Xn
h ×Mn

h , the pair (eu, ep) satisfies
(eut, v) + (∇eu,∇v)− (∇ · v, ep) = (∇(U − Un),∇v)− (∇ · v, P − Pn)

+(fn − f, v) + 1
kn
(InhU

n−1 − Un−1, v) + 1
kn
(Un − InhU

n−1, v)

+(∇Un,∇v)− (∇ · v, Pn)− (fn, v),

(∇ · eu, q) = (∇ · (U − Un), q) + (∇ · Un, q).

(4.6)

Define the residuals rn1 and rn2 for n = 1, 2, . . . , N by

rn1 (v) =
1

kn
(Un − InhU

n−1, v) + (∇Un,∇v)− (∇ · v, Pn)− (fn, v), (4.7)

17



and

rn2 (q) = (∇ · Un, q). (4.8)

Now, we present the Stokes reconstruction at time level t = tn in fully discrete

scheme for problem (1.1).

Definition 4.1. (Stokes reconstruction) For given Un and Pn, n = 0, 1, . . . , N,

and ∀ (v, q) ∈ X ×M , find ũn ∈ X and p̃n ∈ M satisfying

{
(∇(ũn − Un),∇v)− (∇ · v, p̃n − Pn) = −rn1 (v),

(∇ · (ũn − Un), q) = −rn2 (q).
(4.9)

According to (4.7) and (4.8), thanks to (4.2) and Lemma 2.1, there is

rn1 (vh) = 0 for ∀ vh ∈ Xn
h , and r2(qh) = 0 for ∀ qh ∈ Mn

h .

Note that (ũn, p̃n) are the Stokes reconstruction of (Un, Pn) at t = tn. Using

a sequence of discrete values {ũn} (n = 0, 1, . . . , N), for ∀ t ∈ [0, T ] we define a

continuous function of time as the continuous piecewise linear interpolation ũ(t):

ũ(t) = (1− t− tn−1

kn
)ũn−1 +

t− tn−1

kn
ũn, tn−1 < t ≤ tn, n = 1, 2, . . . , N. (4.10)

Similarly, we define p̃(t) from the set of values {p̃n}, (n = 0, 1, 2, . . . , N) as

p̃(t) = (1− t− tn−1

kn
)p̃n−1 +

t− tn−1

kn
p̃n, tn−1 < t ≤ tn, n = 1, 2, . . . , N. (4.11)

Furthermore, for any t ∈ [0, T ], (v, q) ∈ X ×M , the functions ũ and p̃ satisfy:

{
(∇(ũ− U),∇v)− (∇ · v, p̃− P ) = −r1(v),

(∇ · (ũ− U), q) = −r2(q),
(4.12)

where r1 and r2 are piecewise linear interpolations of {rn1 }Nn=1 and {rn2 }Nn=1, respec-

tively. We split the errors of eu and ep into two parts

eu = (ũ− u)− (ũ− U) , ξu − ηu, (4.13)

ep = (p̃− p)− (p̃− P ) , ξp − ηp. (4.14)
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Thanks to (4.7)-(4.9), for ∀ (v, q) ∈ X ×M , equations (4.6) can be rewritten as


(ξut, v) + (∇ξu,∇v)− (∇ · v, ξp) = (ηut, v) + (∇(ũ− ũn),∇v)

−(∇ · v, p̃− p̃n) + (fn − f, v) + 1
kn
(InhU

n−1 − Un−1, v),

(∇ · ξu, q) = (∇ · (ũ− ũn), q).

(4.15)

Note that

ũ− ũn = − tn − t

kn
(ũn − ũn−1) = −(tn − t)∂tũ

n (4.16)

and

p̃− p̃n = − tn − t

kn
(p̃n − p̃n−1) = −(tn − t)∂tp̃

n. (4.17)

By (4.16), the second equation in (4.15) can be transformed into

(∇ · ξu, q) = (∇ · (ũ− ũn), q) = − tn − t

kn

(
∇ · (ũn − ũn−1), q

)
. (4.18)

From the definition of the Stokes reconstruction (4.9), it follows that

(∇ · ũn, q) = (∇ · Un, q)− rn2 (q) for n = 0, 1, . . . , N. (4.19)

Combining (4.8) and (4.19), one finds

(∇ · ũn, q) = 0 for n = 0, 1, . . . , N. (4.20)

With the help of (4.20), equation (4.18) can be simplified as

(∇ · ξu, q) = 0. (4.21)

From the first equation of (4.9), it can be deduced that

(∇ũn,∇v)− (∇ · v, p̃n) = (∇Un,∇v)− (∇ · v, Pn)− rn1 (v). (4.22)

As a consequence, we arrive at

(∇(ũn − ũn−1),∇v)− (∇ · v, (p̃n − p̃n−1))

= (∇(Un − Un−1),∇v)− (∇ · v, Pn − Pn−1)− (rn1 (v)− rn−1
1 (v)). (4.23)
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Substituting (4.23) into the first equation of (4.15) and combining with (4.21), we

obtain that
(ξut, v) + (∇ξu,∇v)− (∇ · v, ξp) = (ηut, v) +

1
kn
(InhU

n−1 − Un−1, v) + (fn − f, v)

− tn−t
kn

(
(rn1 (v)− rn−1

1 (v))− (∇(Un − Un−1),∇v) + (∇ · v, Pn − Pn−1)
)
,

(∇ · ξu, q) = 0.

(4.24)

Now, we present the estimates of errors between the Stokes reconstruction (ũ, p̃)

and the exact solution (u, p) in various norms. In order to simply the expressions,

we introduce some notations. Set

E m
1 =

m∑
n=1

∫ tn

tn−1

∥fn − f∥20ds, E m
2 =

m∑
n=1

kn∥k−1
n hn(I − Inh )U

n−1∥20,

E m
3 =

m∑
n=1

∫ tn

tn−1

∥ηut(s)∥20ds, E m
4 =

m∑
n=1

k3n

(
∥ĥn∂trn1 ∥20 + ∥∇∂tU

n∥20 + ∥∂tPn∥20
)
,

E m
5 = ∥h1(I1h − I)(

1

k1
U0)∥0 +

m∑
n=2

kn∥ĥn∂t(Inh − I)(
1

kn
Un−1)∥0 + ∥hm(Imh − I)(

1

km
Um−1)∥0,

E m
6 =

m∑
n=1

k3n(∥∂trn1 ∥20 + ∥∆∂tU
n∥20 + ∥∇∂tP

n∥20) E m
7 =

m∑
n=1

∫ tn

tn−1

∥ηutt(s)∥20ds.

Theorem 4.1. Let Ω be a bounded convex polygonal domain, Assume that (u, p)

and (ũ, p̃) are the solutions of (2.2) and (4.9), respectively. Under the assumption

of (A1), for m ∈ [1, N ], there exists a constant C such that

∥u(tm)− ũ(tm)∥20 +
∫ tm

0
∥∇(u− ũ)∥20ds ≤ ∥eu(0)∥20 + ∥ηu(0)∥20 + 3

4∑
i=1

E n
i , (4.25)

(
∥∇(u− ũ)∥20 +

∫ tj

0
∥ut − ũt∥20ds

) 1
2 ≤

(
E n
1 + E n

3 + E n
6

)1/2
+ CE n

5 , (4.26)

∥p− p̃∥0 ≤ ∥eut(0)∥0 + ∥ηut(0)∥0 + ∥ηut∥0 + ∥hnk−1
n (I − Inh )U

n−1∥0 + CE n
5 + ∥f − fn∥0

+
(
E n
1 + E n

3 + E n
6 + E n

7

)1/2
+ kn

(
∥hn∂trn1 ∥0 + ∥∇∂tU

n∥0 + ∥∂tPn∥0
)
.(4.27)
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Proof. Choosing v = ξu in the first equations of (4.24) and q = ξp in the second

equation, adding the resulting equations and using Lemma 2.1, we obtain that

1

2

d

dt
∥ξu∥20 + ∥∇ξu∥20 = (ηut, ξu) + (fn − f, ξu) +

1

kn
(InhU

n−1 − Un−1, ξu)

−(tn − t)
(
∂tr

n
1 (ξu)− (∇∂tU

n,∇ξu) + (∇ · ξu, ∂tPn)
)

= (ηut, ξu) + (fn − f, ξn) +
1

kn
(InhU

n−1 − Un−1, ξu − Inh ξu)

−(tn − t)
(
∂tr

n
1 (ξu)− (∇∂tU

n,∇ξu) + (∇ · ξu, ∂tPn)
)

, Tn
1 + Tn

2 + Tn
3 + Tn

4 . (4.28)

Now, we estimate the right-hand side terms of (4.28) separately. For Tn
1 and Tn

2 ,

with Cauchy inequality, it is easy to see that

|(ηut, ξu)|+ |(fn − f, ξn)| ≤ ∥ηut∥0∥ξu∥0 + ∥fn − f∥0∥ξu∥0

≤ 3

2

(
∥ηut∥20 + ∥fn − f∥20

)
+

1

6
∥∇ξu∥20.

For Tn
3 , by Cauchy inequality and Lemma 2.1, we find that

|Tn
3 | ≤ k−1

n ∥InhUn−1 − Un−1∥0∥ξu − Inh ξu∥0

≤ 3

2
∥k−1

n hn(I − Inh )U
n−1∥20 +

1

6
∥∇ξu∥20.

For Tn
4 , using the fact that rn1 (vh) = 0 for ∀ vh ∈ Xh, we have (rn1 − rn−1

1 )(vh) = 0

for all vh ∈ Xn ∩Xn−1. Let Înh be the L2-projection relative to the finest common

coarsening T̂n of Tn and Tn−1, for ∀ t ∈ (tn−1, tn]. we deduce that

|Tn
4 | ≤ (tn − t)

(
∂tr

n
1 (ξu − Înh ξu)− (∇∂tU

n,∇ξu) + (∇ · ξu, ∂tPn)
)

≤ 3

2
k2n

(
∥ĥn∂trn1 ∥20 + ∥∇∂tU

n∥20 + ∥∂tPn∥20
)
+

1

6
∥∇ξu∥20,

Combining above inequalities with (4.28), integrating with respect with time from

0 to tm with m ∈ [1 : N ], we complete the proof of (4.25).
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Differentiating (4.24) with respect to time with v = ξut, q = ξpt. Following the

proofs of (4.25) and using (4.7) and Taylor expansion, we deduce that

∥ξut(tm)∥20 +
∫ tm

0
∥∇ξut(s)∥20ds

≤ C
[
∥eut(0)∥20 + ∥ηut(0)∥20 +

m∑
n=1

∫ tn

tn−1

∥ηutt(s)∥20ds

+

m∑
n=1

kn

(
∥ĥnUn−1

t ∥20 + ∥fn − fn−1∥20 + ∥fn
t − ft∥20

)]
. (4.29)

Next, we provide the proof of (4.26). Choosing v = ξut in the first equation

of (4.24) and differentiating the second equation with respect to time and taking

q = ξp, we add the resulting equations to yield

∥ξut∥20 +
1

2

d

dt
∥∇ξu∥20 = (ηut, ξut) + (fn − f, ξut) +

1

kn
(InhU

n−1 − Un−1, ξut)

−(tn − t)
(
∂tr

n
1 (ξut)− (∇∂tU

n,∇ξut) + (∇ · ξut, ∂tPn)
)

= (ηut, ξut) + (fn − f, ξut) +
1

kn
(InhU

n−1 − Un−1, ξut − Inh ξut)

−(tn − t)
(
∂tr

n
1 (ξut)− (∇∂tU

n,∇ξut) + (∇ · ξut, ∂tPn)
)

, Tn
1 + Tn

2 + Tn
3 + Tn

4 . (4.30)

Integrating (4.30) with respect to time from 0 to tm for any m ∈ [1 : N ], one gets

∥∇ξu(tm)∥20 + 2

∫ tm

0
∥ξut∥20ds

= ∥∇ξu(0)∥20 + 2

m∑
n=1

∫ tn

tn−1

(Tn
1 + Tn

2 + Tn
3 + Tn

4 )ds. (4.31)

Set

F 2(tj) = max
0≤tj≤tm

(
∥∇ξu(tm)∥20 +

∫ tj

0
∥ξut∥20ds

)
, where j ∈ [0 : m]. (4.32)
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In terms of the Cauchy inequality and Green’s formula, we obtain that

Tn
1 + Tn

2 + Tn
4

≤
[
∥ηut∥0 + ∥fn − f∥0 + (tn − t)

(
∥∂trn1 ∥0 + ∥∆∂tU

n∥0 + ∥∇∂tP
n∥0

)]
∥ξut∥0.

Applying Young inequality, one finds

2

m∑
n=1

∫ tn

tn−1

(Tn
1 + Tn

2 + Tn
4 )ds

≤ 2
[( m∑

n=1

∫ tn

tn−1

∥ηut∥20ds
)1/2

+
( m∑

n=1

∫ tn

tn−1

∥fn − f∥20ds
)1/2

+
( m∑

n=1

k3n(∥∂trn1 ∥20 + ∥∆∂tU
n∥20 + ∥∇∂tP

n∥20)
)1/2]

· (
∫ tm

0
∥ξut∥20ds)1/2.

For the term Tn
3 , by integration for ξut from tn−1 to tn and summation by parts,

there is

m∑
n=1

∫ tn

tn−1

1

kn
(InhU

n−1 − Un−1, ξut)ds =

m∑
n=1

1

kn
(InhU

n−1 − Un−1, ξnu − ξn−1
u )

=
(
(Imh − I)(

1

km
Um−1), ξmu

)
+

m∑
n=2

kn

(
∂t(I

n
h − I)(

1

kn
Un−1), ξn−1

u

)
−

(
(I1h − I)(

1

k1
U0), ξ0u

)
.

By Lemma 2.1 and (4.32), one deduces that

m∑
n=1

∫ tn

tn−1

1

kn
(InhU

n−1 − Un−1, ξut)ds

=
(
(Imh − I)(

1

km
Um−1), ξmu − Imh ξmu

)
−

(
(I1h − I)(

1

k1
U0), ξ0u − I1hξ

0
u

)

+

m∑
n=2

kn

(
∂t(I

n
h − I)(

1

kn
Un−1), ξn−1

u − Înh ξ
n−1
u

)

≤ C
(
∥h1(I1h − I)(

1

k1
U0)∥0∥∇ξ0u∥0 + ∥hm(Imh − I)(

1

km
Um−1)∥0∥∇ξmu ∥0

+
m∑

n=2

kn∥ĥn∂t(Inh − I)(
1

kn
Un−1)∥0∥∇ξn−1

u ∥0
)
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≤ C
[
∥h1(I1h − I)(

1

k1
U0)∥0 + ∥hm(Imh − I)(

1

km
Um−1)∥0

+

m∑
n=2

kn∥ĥn∂t(Inh − I)(
1

kn
Un−1)∥0

]
· F (ti).

Combining above inequalities with (4.31), (4.32) with replacing tm by ti, we complete

the rest of proof (4.26).

Finally, thanks to the inf-sup condition (2.1) and using (4.24), we yield that

∥ξp∥0 ≤ β−1 sup
0̸=v∈X

|(∇ · v, ξp)|
∥∇v∥0

≤ β−1 sup
0̸=v∈X

1

∥∇v∥0

[
|(ξut, v)|+ |(∇ξu,∇v)|+ |(ηut, v)|+ | 1

kn
(InhU

n−1 − Un−1, v)|

+|(fn − f, v)|+ (tn − t)
(
|∂trn1 (v)|+ |(∇∂tU

n,∇v)|+ |(∇ · v, ∂tPn)|
)]

≤ C
[
∥ξut∥0 + ∥∇ξu∥0 + ∥ηut∥0 + ∥hnk−1

n (I − Inh )U
n−1∥0 + ∥f − fn∥0

+kn

(
∥hn∂trn1 ∥0 + ∥∇∂tU

n∥0 + ∥∂tPn∥0
)]

. (4.33)

Combining the results (4.25), (4.26), (4.29) with (4.33), we finish the proof.

Since (4.12) is quite similar in form to (3.4), we can prove the error estimates

similar to Lemma 3.3 following the proof of Lemma 3.3.

Using required estimates of ηu and ηp in Theorem 4.1, we obtain the final theorem

of this section. We introduce some notations for the purpose. Let

E m
8 =

∑
E∈Eh

hE∥[∇Um − Pm · I]∥20,E +
∑
K∈Th

∥∇ · Um∥20,K +
∑
K∈Th

h2K∥rm1 ∥20,K ,

E 0
9 =

∑
E∈Eh

h3E∥[∇U0 − P 0 · I]∥20,E +
∑
K∈Th

h2K∥∇ · U0∥20,K +
∑
K∈Th

h4K∥r01∥20,K ,

E m
10 =

∑
E∈Eh

h3E∥[∇Um − Pm · I]∥20,E +
∑
K∈Th

h2K∥∇ · Um∥20,K +
∑
K∈Th

h4K∥rm1 ∥20,K ,

E m
11 =

∑
E∈Eh

h3E∥∂t[∇Um − Pm · I]∥20,E +
∑
K∈Th

h2K∥∂t∇ · Um∥20,K +
∑
K∈Th

h4K∥∂trm1 ∥20,K .
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Theorem 4.2. Let Ω be a bound polygonal domain with a sufficiently smooth

boundary ∂Ω. Assume that (u, p) and (U,P ) are the solutions of (2.2) and (4.2),

respectively. Under the assumptions of (A1), there exists a constant C, for m ∈

[1, N ] such that

∥∇(U − u)∥0 ≤ CE m
5 +

(
2E m

1 + E m
6 + E m

8 +
m∑

n=1

knE m
11

)1/2
,

∥U − u∥20 ≤ ∥eu(0)∥20 + 3
(
E m
1 + E m

2 + E m
4 +

m∑
n=1

knE m
11

)
+ E m

8 + E 0
9 + E m

10 ,

∫ tm

0
∥∇(U − u)∥20ds ≤ ∥u− U∥20 +

m∑
n=1

knE m
8 .

∫ tm

0
∥P − p∥0ds ≤

(
E m
1 + E m

2 + E m
6 + E 0

9 +

m∑
n=1

knE m
11 + k−1

n E m
4

)1/2
+ CE m

5 .

∥P − p∥0 ≤ ∥eut(0)∥0 + CE m
5 + 2

(
E m
1 + E m

6 + E 0
9 + E m

11 +

m∑
n=1

knE m
11

)1/2
+ ∥f − fn∥0

+∥hn
1

kn
(I − Inh )U

n−1∥0 + kn

(
∥ĥn∂trn1 ∥0 + ∥∇∂tU

n∥0 + ∥∂tPn∥0 + ∥fn
t − ft∥0

)
.

Remark 4.1. Following the duality arguments given in Subsection 3.1, we can easily

establish a posteriori error estimates for the completely discrete scheme (4.2). Since

the techniques of the proof follow from a combination of the arguments give in

Subsection 3.1 and Theorem 4.1, we skip the related analysis for simplification.

5. Numerical examples

In this section, we provide some numerical results to verify the performance of

the established posteriori error estimators. For adaptive computations, the errors

∥eu∥1 = ∥u − uh∥1, ∥ep∥0 = ∥p − ph∥0, the error estimator η and the number

of triangles (NT ) in Th are output of the adaptive algorithm. The experimental

convergence rates are given by

αew =
2 ∗ log[∥ew(i)∥0/∥ew(j)∥0]

log[NT (i)/NT (j)]
, ew takes eu, ep or η.
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The effectiveness index is defined as a rate of a posteriori error bound and an

approximate norm of the actual error, here we use ∥eu∥1/η. For a good estimator,

this quantity should be a constant, independent of the mesh size and the time step.

Although our theoretical findings do not include a proof of efficiency, numerical

experiments provide evidences of the efficiency of the estimators. In all numerical

tests, we take the final time T = 1. For simplicity, we do not perform time adaptive

and take the time step kn equal to 10−1, and all the constants C involved in error

indicators equal to 1. Our algorithm can be described as follows:

Algorithm. Let T0 is a regular triangulation.

(i). Compute on the shape-regular partition T0 with t0 = 0.

(ii). Use the time step ∆t and U0 to compute ∥eu∥1, ∥ep∥0 and η on T0.

(iii). Begin the time loop with obtained Tn−1, T̂n, Un−1 and Pn−1

(1) Let the time tn = min(tn−1 +∆t, T ),

(2) Use T̂n, Un−1 and Pn−1 to compute Un and ηn,

(3) Adapt mesh T̂n to obtain Tn, use Un−1 and Pn−1 to obtain Un and Pn,

(4) For the next iteration, denote T̂n+1=Tn,

(iv) End the time loop and finish the computation.

5.1. An analytical solution

For this test, our aim is to verify the theoretical analysis which has been estab-

lished in the previous section by setting the body force f is given by the following

exact solution

u1 = π sin2(πx) sin(2πy) cos(t),

u2 = −π sin(2πx) sin(πy)2 cos(t),

p = 10 cos(πx) cos(πy) cos(t).

with Ω = [0, 1]2. We adopt the MINI element to seek the exact solution and back-

ward Euler scheme is used for time discretization. Table 1 presents the errors of

velocity and pressure and convergence of order with different numbers of triangles

(NT ) at time T = 1. As expect, we can see that as NT becomes larger, the errors
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become smaller and smaller. The effectiveness index approaches 0.14, which is a

constant independent of NT and time steps kn.

Table 1: Results obtained using space-time algorithm based on MINI element.
NT ∥eu∥1 ∥ep∥0 η ∥eu∥1/η αeu αep αη

4466 0.0449492 0.0376184 0.480231 0.0936
17053 0.0240032 0.0167303 0.175162 0.1370 0.9365 1.2095 1.5055
22530 0.0212163 0.0137918 0.146534 0.1448 0.8862 1.3869 1.2814
38098 0.0173495 0.011226 0.107594 0.1612 0.7660 0.7837 1.1760

5.2. Lid-driven cavity problem

Lid-driven cavity problem is a popular benchmark problem for testing numerical

schemes. In this test, the fluid is enclosed in a square domain Ω = (0, 1) × (0, 1),

with u = (1, 0) on the upper side and u = 0 on the other three sides.

We start form the initial mesh with h = 0.2, see Fig.1 (a), the corresponding the

profiles of both velocity and pressure are presented in Fig.1(b)-(d). Note that the

successive iteration of the adaptive strategies creates more triangles in the two upper

corners of the cavity as time increases, see Figs.2-3 (a). The profiles of velocity and

pressure level lines are also presented at different time with adaptive computations,

see Figs.2-3 (b)-(d). As expected, the oscillations of pressure at values obtained

are absented. Finally, in order to show the prominent features of our adaptive

algorithm, we describe the velocity and pressure contours obtained in adaptive mesh

and uniform mesh with nearly the same number of triangles, see Figures 3 and 4.

From these figures, we can see that the solution using a posteriori error analysis

gives a more accurate approximation to the exact solution in critical regions.
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(a) (b) (c) (d)

Figure 1: The mesh and the profiles of both pressure and velocity at t=0.001 with NT=50.

(a) (b) (c) (d)

Figure 2: Adaptive mesh and the profiles of both pressure and velocity at t=0.5 with NT=804.

(a) (b) (c) (d)

Figure 3: Adaptive mesh and the profiles of both pressure and velocity at t=1 with NT=8173.

(a) (b) (c) (d)

Figure 4: Uniform mesh and the profiles of both pressure and velocity at t=1 with NT=8192.
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