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Abstract

In this paper, we deal with the motion of the incompressible quantum fluids of Navier-Stokes type in a
d-dimensional torus Td, with d ≤ 3. In applications, such kind of fluids are used to describe superfluids,
quantum semiconductors and quantum trajectories of Bohmian mechanics. By using the concept of effective
velocity the equations of the motion are deduced and we obtain results on the existence and uniqueness of
solutions of the problem (by using semi-spectral nonlinear Galerkin method and weak compactness results);
besides that, results on continuity of velocity-solution and density-solution are shown in adequate spaces.

1. Introduction

In his work [15], Louis de Broglie proposed that the wave-particle duality would be a general property
of microscopic objects. Broglie suggested that microscopic particles, besides of the material behaviour, do
behave like particles (with definite position and momentum at any moment); he also showed that the particles
have intrinsic characteristics of wave phenomena. This would imply a new type of wave in coexistence with
the material point, the wave would act as a kind of pilot wave guiding the particle.

David Bohm [4], [5] rediscovered the de Broglie’s hypothesis and developed a new physical theory. In
his quantum mechanics formulation, Bohm represents the probability distribution n of a single particle as a
classical fluid (in the sense of a set of particles) that moves on both classic effect of an external field and a
quantum field which is known as potential Bohm and described by the equation

Vqu = − ε2

4m

[
∆n

n
− 1

2

(
∇n
n

)2
]

= − ε2

2m

∆
√
n√
n
,
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with the equations of motion,

nt + div (n∇S/m) = 0,

St +
(∇S)2

2m
+ Vqu + V = 0.

Based on the work of Bohm, Harvey ([22]) introduced the fluid quantum theory by using the following
system of equations:

ρt + div(nv) = 0,

mvt +m(v · ∇)v = −∇(Vqu + V ),

where v = ∇S/m (where m is the mass of the particle, and S is the phase function of the equation of the
particle wave associated).

The theory of quantum fluid was initially devised to describe trajectories of particles in quantum me-
chanics of Bohm [23], [20], currently also being used to describe superfluids [16] and quantum semiconductor
[7]. In [1], it was shown a connection between Quantum Euler model

nt + div(nw) = ν∆n

(nw)t + div(nw ⊗w) +∇p(n)− 2ε20n∇
(

∆
√
n√
n

)
− nf = ν∆(nw)

(introduced by [17]) and the Quantum Navier-Stokes model

nt + div(nu) = 0

(nu)t + div(nu⊗ u) +∇p(n)− 2ε2n∇
(

∆
√
n√
n

)
− nf = 2νdiv(nD(u))

(this last one introduced by [24]). By using the effective velocity w = u + ν∇log n (which was firstly used
in [6]), Jüngel [1] proved the existence of global weak solution for the Navier-Stokes quantum baratropic
compressible fluid, with constant viscosity and smaller than the Plank constant, considering the region as
the d-dimentional torus Td, with d ≤ 3. Subsequently, the results obtained in [1] were extended to the case
of the viscosity being equal to Planck cosntant and the viscosity greater than Plank constant (in [12] and
[9], respectively). In [11], Brenner model suggests the following modified Navier-Stokes model

nt + div(nw) = 0, (nu)t + div(nu⊗w) +∇p = divS,

which interprets u and w as the volume velocity and mass velocity respectively and it holds the following
relationship u = w + ν∇ log n (for ν > 0 constant). In [2], Jüngel suggests the following modified Quantum
Navier-Stokes problem

nt + div(nu) = ν∆n, (1)

(nu)t + div(nu⊗ u) +∇p = nf + ν∆(nu) + 2ε2n∇
(

∆
√
n√
n

)
. (2)
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Now, in total analogy to the classical physics, we add the hypothesis div u = 0 and consider the following
identities:

div(nu⊗ u) = (u · ∇n)u + (nu · ∇)u

ν∆(nu) = ν(∇n · ∇)u + νn∆u + ν(∇n · ∇)u

div(nu) = u · ∇n

in order to obtain the Navier-Stokes problem for incompressible Quantum fluids:

nt + u.∇n = ν∆n x ∈ Td (d ≤ 3), t > 0,

(nu)t + (nu.∇)u + (u.∇n)u +∇p = νn∆u + ν(∇n.∇)u + ν(u.∇)∇n+ nf + 2ε2n∇
(

∆
√
n√
n

)
n(., 0) = n0, u(., 0) = u0 em Td (d ≤ 3)

div u = 0 x ∈ Td (d ≤ 3),

where u is the vector of volume velocity and n is the density, Td is the d-dimentional torus, with (d ≤ 3).
The function p is the fluid pressure and f describes the external forces from, for instance, an electric field.
The physical parameters ν, ε > 0 are the viscosity coefficient and Plank constant respectively, the term
−∆
√
n/
√
n represents the quantum potential, introduced by David Bohm in [4], [5], the quantum potential

intended to induce quantum behavior to the fluid; hence, when −∆
√
n/
√
n = 0 we have the classical fluid

behavior.
By using the following identities

nt = ν∆n− u · ∇n,

2ε2n∇
(

∆
√
n√
n

)
= ε2∇∆n− ε2 1

n
∆n∇n− ε2 1

n
(∇n · ∇)∇n+ ε2

1

n2
(∇n · ∇n)∇n

we otain a striking fact: the equation obtained is similar to the equations of motion of viscous incom-
pressible fluids with diffusion phenomena ([19], [10]) and, therefore, we have the Navier-Stokes problem for
incompressible quantum fluids:

nt + u.∇n = ν∆n, x ∈ Td (d ≤ 3), t > 0,

nut + (nu.∇)u− νn∆u− ν(u.∇)∇n− ν(∇n.∇)u + ε2
1

n
(∇n.∇)∇n− ε2 1

n2
(∇n.∇n)∇n

+ε2
1

n
∆n∇n+∇p = nf − νu∆n+ ε2∇∆n x ∈ Td (d ≤ 3), t > 0,

n(., 0) = n0, u(., 0) = u0 em Td (d ≤ 3)

div u = 0 x ∈ Td (d ≤ 3).


(3)

This intimate relationship between quantum fluids and classical fluids confirms the theories of David
Bohm in the sense that we have uniqueness of particle’s trajectory (which solely depends on the initial
datum).

4



Remark 1.1 We can see from the above deduction that the choice of region of the motion of the fluid (in
this case, the torus Td) is made in a such way that the boundary of the region is empty. The main reason for
that is to avoid the classical question in quantum mechanics of defining precisely the notion of ”boundary
of a region”.

In this article, we are assuming the existence of constants m,M > 0, such that

0 < m ≤ n0 ≤M em Td. (4)

To our knowledge, there are no results on the existence and uniqueness of (multidimensional) strong
solution; the results we obtain in this article confirm that David Bohm’s theory is mathematically self-
consistent. The paper is organized as follow: in section 2 we give the framework for this kind of problems
and present the variational formulation and our main teorem. Section 3 is devoted to a priori estimates for
the aprroximated solutions (and for the exact solution). The procedure of passing to the limit is treated in
section 4 e the question of uniqueness of solution is proved in section 5.

2. Functional spaces and semi-Galerkin Formulation

In this article, we denote by (., .) the inner product space L2. Now we introduce the functional spaces of
the usual Navier-Stokes equations:

H =
{

u : u ∈ L2(Td), div u = 0
}

V =
{

u : u ∈ H1(Td), div u = 0
}

The usual norms |u|H1 e |∇u|L2 = |∇u| are equivalent in V, and |u|H2 and |Au| are equivalent in
H2(Td) ∩ V (see [18], [13]); we also have that usual norms |n|H2 and |∆n| are equivalent in H2(Td) and
|n|H3 and |∇∆n| are equivalent in H3(Td) (see [3]).

The Stokes operator A : D(A)→ H is defined by A = P (−∆), with domain D(A) = H2(Td) ∩V where
P : L2(Td) → H is the operator of orthogonal projection. We denote by Vk the finite dimensional space
spanned by the first k eingenfunctions of the Stokes operator, or, Vk = [ϕ1, ..., ϕk] and Pk the orthogonal
projection of L2(Td) over Vk.

In an entirely analogous way to the case of the Navier-Stokes equations (see [25]), it is posible to show
that the above formulation is equivalent to the following weak form:

(nut, v) + ((nu · ∇)u, v) + ν(nAu, v)− ν((u · ∇)∇n, v)− ν((∇n · ∇)u, v)

+ε2(
1

n
(∇n · ∇)∇n, v)− ε2( 1

n2
(∇n · ∇n)∇n, v) + ε2(

1

n
∆n∇n, v)

= (nf , v)− ν(u∆n, v) + ε2(∇∆n, v) ∀ v ∈ V
∂n

∂t
+ u · ∇n− λ∆n = 0 for 0 < t < T

u(0) = u0, n(0) = n0,


(5)

We define (uk, nk) ∈ C1([0, T k];H2(Td) ∩ V ) × C2(Td × [0, T k]), for each k ∈ IN , as the spectral semi-
Galerkin approximation of the solution (u, n) by:
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(nkukt , v) + ((nkuk · ∇)uk, v) + ν(nkAuk, v)− ν((uk · ∇)∇nk, v)− ν((∇nk · ∇)uk, v)

+ε2(
1

nk
(∇nk · ∇)∇nk, v)− ε2( 1

(nk)2
(∇nk · ∇nk)∇nk, v) + ε2(

1

nk
∆nk∇nk, v)

= (nkf , v)− ν(uk∆nk, v) + ε2(∇∆nk, v) ∀ v ∈ Vk

nkt + uk · ∇nk − ν∆nk = 0 ∀ (x, t) ∈ Td × (0, T k)

uk(x, 0) = Pku0, n
k(0, x) = n0(x), ∀ x ∈ Td.


(6)

Remark 2.1 Here, by “semi-Galerkin spectral approximations” we mean finite-dimensional approximations
for the velocity u and infinite-dimensional approximations for the density n. For sake of simplicity, we have
chosen Pku0 as the initial condition for the velocity in the approximated problem (6); of course, we could
choose another initial condition vk(0) which converges strong (in the required norms) to u0. The results that
we have obtained for the spectral basis (of Stokes operator) remain valid for any other orthonormal basis of
L2(Td) and H1

0 (Td); the main reason for having chosen such a basis is due to the fact that it is possible to
obtain better error estimates in the approximation process (which will be shown in a next paper).

We remember that, for all k ∈ IN the above system (of ODEs) admits an unique solution (uk, nk) defined
on [0, T k], with 0 < T k ≤ T (as Carathéodory theorem, see for example, [8]). However, the estimates that
we obtain (which will be independent of the level of approximation k) allow us to take T k = T ∗, for all
k ≥ 1.

Our main objective in this paper is to show that the approximations (uk, nk) converge in a suitable way
for the solution (u, n) of problem (5), as k →∞. We present our main result:

Teorema 2.1. Let u0 ∈ D(A), n0 ∈ H3(Td), 0 < α ≤ n0 ≤ β, f ∈ L2(0, T ;H1(Td)) and ft ∈
L2(0, T ;L2(Td)). Then, for any T > 0, there exist T ∗ ∈ ]0, T ], n ∈ L∞(0, T ∗;H3(Td))∩L2(0, T ∗;H4(Td))∩
C([0, T ∗];H2(Td)) and u ∈ L∞(0, T ∗;D(A)) ∩ L2(0, T ∗;W 1,∞(Td)) ∩ C([0, T ∗]; V) such that (u, n) is the
unique solution of the problem (3) in [0, T ∗]× Td.

Furthermore, the approximations uk, nk satisfy the following estimates:

α ≤ nk ≤ β; |∇uk(t)| ≤ F1(t); |Auk(t)| ≤ F2(t);

|ukt (t)|2 +

∫ t

0
|∇ukt (s)|2ds ≤ F3(t);

∫ t

0
|∇uk(s)|2∞ds ≤ F4(t);

∫ t

0
|∇nk(t)|2∞ ≤ F5(t);

|∇∆nk(t)|2 +

∫ t

0
|nk(s)|2H4ds ≤ F6(t),

|∇nkt (t)|2 +

∫ t

0
|nkt (s)|2H2

ds ≤ F7(t),



(7)
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Analogous estimates are verified by the solution (u, n).
The functions on the right hand side of the above estimates depend on the argument t, T ∗ and the initial

data of the problem. In the interval in question such functions are continuous in time.

The proof of the main theorem will be done in many stages in the following sections.

3. A Priori Estimates

Consider the second equation (6); by the maximum principle for the solution of parabolic equations, we
have that for all k ∈ IN , it is valid α ≤ nk ≤ β.

Next, we mention an essential result on differential inequalities which we will use later on to ensure the
existence of an interval [0, T ∗], where all the approximated solutions of the initial problem are defined. (see
[14])

Lema 3.1. Let g ∈W 1,1(0, T ) e h ∈ L1(0, T ) satisfying

dg

dt
≤ F (g) + h in [0, T ], g(0) ≤ g0

where F : IR → IR is bounded function in bounded sets. Then for any ε > 0, there exists Tε > 0 which is
independent of g such that

g(t) ≤ g0 + ε ∀t ≤ Tε.

Lema 3.2. In the conditions of Theorem 2.1, the solution (uk, nk) of the approximated problem (6) satisfies:

uk ∈ L∞(0, T ∗; H) ∩ L2(0, T ∗; V), (8)

uk ∈ L∞(0, T ∗; V) ∩ L2(0, T ∗;D(A)), (9)

ukt ∈ L2(0, T ∗; H), (10)

nk ∈ L∞(0, T ∗;H2(Td)) ∩ L2(0, T ∗;H3(Td)), (11)

uniformly in k.

Proof.:
Making v = uk the first equation (6) we:

1

2

d

dt
|(nk)

1
2 uk|2 + να|∇uk|2 ≤ 1

2
(nktu

k,uk)− (nkuk · ∇uk,uk) + ν((∇nk · ∇)uk,uk)

+ν((uk · ∇)∇nk,uk)− ε2( 1

nk
(∇nk · ∇)∇nk,uk) + ε2(

1

(nk)2
(∇nk · ∇nk)∇nk,uk)

−ε2( 1

nk
∆nk∇nk,uk) + (nkf ,uk)− ν(uk∆nk,uk) + ε2(∇∆nk,uk)

The next step is to estimate the terms on the right hand side of the above equality. We note that, as is
usually done to obtain a priori estimates, we will proceed by using Hölder’s inequality, Young’s interpolation
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inequality (for classical Sobolev immersions), the Gronwall lemma, etc.. Thus, we obtain the following
differential inequality:

1

2

d

dt
|(nk)

1
2 uk|2 +

να

2
|∇uk|2 ≤ C|∇uk|4 + C|∇uk|6 + 3δ|Auk|2

+C|(nk)
1
2 uk|2 + C|∆nk|2 + C|∆nk|4 + C|∆nk|6 + C|∆nk|8 + C|f |2.

(12)

Now, making v = ukt in the first equation (6), we obtain, after an integration by parts in Td:

να

2

d

dt
|∇uk|2 + |(nk)1/2ukt |2 ≤ |(nkf ,ukt )|+ |((nkuk · ∇)uk,ukt )|+ ν|((∇nk · ∇)uk,ukt )|

+ν|((uk · ∇)∇nk,ukt )|+ ε2|( 1

nk
(∇nk · ∇)∇nk,ukt )|+ ε2|( 1

(nk)2
(∇nk · ∇nk)∇nk,ukt )|

+ε2|( 1

nk
∆nk∇nk,ukt )|+ ν|(uk∆nk,ukt )|+ ε2|(∇∆nk,ukt )|.

Estimating the terms of the right of the above expression, we obtain the following differential inequality:

να

2

d

dt
|∇uk|2 +

α

2
|ukt |2 ≤ C|f |2 + C|∇uk|4 + C|∇uk|6 + C|∆nk|6

+ 2δ|Auk|2 + C|∆nk|8 + 3γ|∇∆nk|2.
(13)

where γ e δ are arbitrary positive constants (to be chosen later).
Consider now the second equation (6); applying the operator ∆ and taking the L2(Td) inner product

with ∆nk we obtain:

1

2

d

dt
|∆nk|2 + (ν − 2γ)|∇∆nk|2 ≤ δ|Auk|2 + C|∇uk|4

+ C|∇uk|6 + C|∆nk|8.
(14)

Summing up the inequalities (12), (13) and (14), it follows that (after choosing γ =
λ

10
):

1

2

d

dt

{
|(nk)

1
2 uk|2 + να|∇uk|2 + |∆nk|2

}
+
να

2
|∇uk|2 +

α

2
|ukt |2

+
ν

2
|∇∆nk|2 ≤ 6δ|Auk|2 + C|∆nk|2 + C|∆nk|4 + C|∆nk|6 + C|∆nk|8

+C|∇uk|4 + C|∇uk|6 + C|(nk)
1
2 uk|2 + C|f |2.

(15)

Furthermore, making v = Auk in the first equation of (6) we get:

να|Auk|2 ≤ |(nkf , Auk)|+ |(nkukt , Auk)|+ |((nkuk · ∇)uk, Auk)|+ ν|((∇nk · ∇)uk, Auk)|

+ν|((uk · ∇)∇nk, Auk)|+ ε2|( 1

nk
(∇nk · ∇)∇nk, Auk)|+ ε2|( 1

(nk)2
(∇nk · ∇nk)∇nk, Auk)|

+ε2|( 1

nk
∆nk∇nk, Auk)|+ ν|(uk∆nk, Auk)|+ ε2|(∇∆nk, Auk)|.

Then, we estimate the terms on the right hand side in the above expression and obtain the following
inequality:

να

4
|Auk|2 ≤ β2

2να
|ukt |2 + C|∇uk|4 + C|∇uk|6

+C|∆nk|6 + C|∆n|8 + 4η|∇∆n|2 + C|f |2.
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By multiplying the above inequality
αµ

2β2
and adding it to (15) we obtain:

1

2

d

dt
(|(nk)

1
2 uk|2 + να|∇uk|2 + |∆nk|2) +

να

2
|∇uk|2 +

α

4
|ukt |2

+(
ν

2
− 4η

α2ν

2β2
)|∇∆nk|2 + (

α3ν2

8β2
− 6δ)|Auk|2 ≤ C|∇uk|4 + C|∇uk|6

+C|∆nk|2 + C|∆nk|4 + C|∆nk|6 + C|∆nk|8 + C|(nk)
1
2 uk|2 + C|f |2.

Finally, we choose η =
β2

8α2
and δ =

αν2

96β2
; thus we obtain:

1

2

d

dt
(|(nk)

1
2 uk|2 + να|∇uk|2 + |∆nk|2) +

να

2
|∇uk|2 +

α

4
|ukt |2 +

α3ν2

16β2
|Auk|2

+
ν

4
|∇∆nk|2 ≤ C{|f |2 + |∇uk|4 + |∇uk|6 + |(nk)

1
2 uk|2 (16)

+|∆nk|2 + |∆nk|4 + |∆nk|6 + |∆nk|8}.

Defining

G(t) = |(nk(t))
1
2 uk(t)|2 + να|∇uk(t)|2 + |∆nk(t)|2,

we can see from the above inequality that:

d

dt
G(t) ≤ C|f |2 + CG(t) + CG2(t) + CG3(t) + CG4(t)

Thus, we get the following system:{
G′(t) ≤ C|f |2 + CG(t) + CG2(t) + CG3(t) + CG4(t)

G(0) = |n
1
2◦ u◦|+ να|∇u◦|2 + |∆n◦|2.

Using the Lemma 3.1 for differential inequalities, we have:

G(t) ≤ ϕ(t),

for all t in the maximal interval of existence of ϕ, where{
ϕ′(t) = C|f |2 + Cϕ+ Cϕ2 + Cϕ3 + Cϕ4

ϕ(0) = G(0).
(17)

Therefore there exists T ∗, with 0 < T ∗ ≤ T such that for some constant M > 0, we:

G(t) ≤M, ∀ t ∈ [0, T ∗].

Coming back to the expression (16) and integrating it from 0 to t, with t ∈ [0, T ∗], we obtain:

|(nk)
1
2 (t)uk(t)|2 + να|∇uk(t)|2 + |∆nk(t)|2 + να

∫ t

0
|∇uk(s)|2 +

α

2

∫ t

0
|ukt (s)|2ds

9



+
α3ν2

16β2

∫ t

0

|Auk(s)|2ds+
ν

2

∫ t

0
|∇∆nk(s)|2ds

≤ |n
1
2◦ u◦|2 + να|∇u◦|2 + |∆n◦|2 + C

∫ t

0
|f(s)|2ds

+C

∫ t

0
{|(nk(s))

1
2 uk(s)|2 + |∇uk(s)|4 + |∇uk(s)|6

+|∆nk|2 + |∆nk(s)|4 + |∆nk|6 + |∆nk(s)|8}ds

≤ |n
1
2◦ u◦|+ µ|∇u◦|2 + |∆n◦|2 + C|f |2

L2(0,T∗;L2(Td))
+ CT ∗. �

Lema 3.3. In the conditions of Theorem 2.1, the density-solution nk of the approximated problem (6)
satisfies:

nkt ∈ L∞(0, T ∗;L2(Td)) ∩ L2(0, T ∗;H1(Td)) (18)

uniformly in k.

Proof. Again using the second equation (6) we see that:

|nkt | ≤ |uk · ∇nk|+ λ|∆nk|.

Thus,
|nkt |L∞(0,T∗,L2(Td))

≤ C|nk|
L∞(0,T∗;H2(Td))

· (1 + |uk|
L∞(0,T∗;V )

) ≤ C

This tells us that
nkt ∈ L∞(0, T ∗;L2(Td)),

uniformly k.
Now, applying the operator ∇ in the second equation (6) we obtain:

∇nkt = λ∇∆nk −∇(uk · ∇nk).

Taking the L2-norm in the above equation and estimating the terms right and integrating from 0 to t
we get: ∫ t

0
|∇nkt (s)|2ds ≤ C

∫ t

0
|nk(s)|2

H3
ds+ C

∫ t

0
|Auk(s)|2ds ≤ C.

and therefore, we can conclude that
nkt ∈ L2(0, T ∗;H1(Td))

uniformly k. �

Lema 3.4. In the conditions of Theorem 2.1, the solution (uk, nk) of the approximated problem (6) satisfies:

ukt ∈ L∞(0, T ∗; H) ∩ L2(0, T ∗; V) (19)

nkt ∈ L∞(0, T ∗;H1(Td)) ∩ L2(0, T ∗;H2(Td)) (20)

uk ∈ L∞(0, T ∗;D(A)) (21)

nk ∈ L∞(0, T ∗;H3(Td)) ∩ L2(0, T ∗;H4(Td)), (22)

uniformly k.
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Proof. Using the first equation (6) and remembering that we are working with the basic spectral we see
that

νnkAuk = Pk{−nkukt − (nkuk · ∇)uk + ν[(uk · ∇)∇nk + (∇nk · ∇)uk − uk∆nk]

+nkf − ε2[ 1

nk
(∇nk · ∇)∇nk − 1

(nk)2
(∇nk · ∇nk)∇nk +

1

nk
∆nk∇nk +∇∆nk]}. (23)

Taking the L2-norm in the above equation and estimating the terms on the right hand side, we obtain
the following inequality:

|Auk|2 ≤ C + C|f |2 + C|ukt |2 + C|∇∆nk|2 ≤ C + C|ukt |2 + C|∇∆nk|2. (24)

Since f ∈ L2(0, T ∗;H1(Td)) and ft ∈ L2(0, T ∗;L2(Td)), we can conclude, from Aubin-Lion’s lemma, that
f ∈ C([0, T ∗];L2(Td)).

Calculating the derivative with respect to t of the second equation of the system (6) we have:

nktt − ν∆nkt = −ukt · ∇nk − uk · ∇nkt ,

Applying the operator ∇ in the above equation, we are left with the expression:

∇nktt − ν∇∆nkt = −∇ukt · ∇nk − ukt · ∇2nk −∇uk · ∇nkt − uk · ∇2nkt .

Taking the inner product of L2(Td) the terms of the above equation with the term ∇nkt obtain, after
integration by parts, the following differential inequality:

1

2

d

dt
|∇nkt |2 + ν|∆nkt |2 ≤ |(∇ukt · ∇nk,∇nkt )|

+|(ukt · ∇2nk,∇nkt )|+ |(∇uk · ∇nkt ,∇nkt )|+ |(uk · ∇2nkt ,∇nkt )|.

Estimating the terms the right hand side of the above equation, we obtain the following differential
inequality:

1

2

d

dt
|∇nkt |2 + ν|∆nkt |2 ≤ 2γ|∇ukt |2 + 2δ|∆nkt |2

+C(|Auk|2 + |∇∆nk|2)|∇nkt |2.
(25)

Now, calculating the derivative of equation (23) concerning to t and taking the ukt inner product (and
remembering that 0 < α ≤ nk ≤ β), we obtain the following differential inequality:
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1

2

d

dt
|(nk)

1
2 ukt |2 + να|∇ukt |2 ≤ −1

2
(nktu

k
t ,u

k
t )− (nkt (u

k · ∇)uk,ukt )

−(nk(ukt · ∇)uk,ukt )− (nk(uk · ∇)ukt ,u
k
t ) + (nkt f ,u

k
t ) + (nkft,u

k
t )

+ν{((∇nkt · ∇)uk,ukt ) + ((∇nk · ∇)ukt ,u
k
t ) + ((ukt · ∇)∇nk,ukt )}

−ν{(nktAuk, ukt ) + (ukt∆n
k,ukt ) + (uk∆nkt ,u

k
t )}

+ν((uk · ∇)∇nkt ,ukt ) + ε2(
1

(nk)2
nkt (∇nk · ∇)∇nk,ukt )

−ε2{( 1

nk
(∇nkt · ∇)∇nk,ukt )− (

1

nk
(∇nk · ∇)∇nkt ,ukt ) + (∇∆nkt ,u

k
t )}

−ε2{( 2nkt
(nk)3

(∇nk · ∇nk)∇nk,ukt ) + (
1

(nk)2
(∇nkt · ∇nk)∇nk,ukt )}

+ε2{( 1

(nk)2
(∇nk · ∇nkt )∇nk,ukt ) + (

1

(nk)2
(∇nk · ∇nk)∇nkt ,ukt )}

+ε2{( nkt
(nk)2

∆nk∇nk,ukt )− (
1

nk
∆nkt∇nk,ukt )− (

1

nk
∆nk∇nkt ,ukt )}.

Estimating the terms in the right hand side of the above inequality, it allows us to reach the following
differential inequality (making use of the fact that ∇uk and ∆nk are uniformly bounded):

1

2

d

dt
|(nk)

1
2 ukt |2 + να|∇ukt |2 ≤ C(|f |2

H1
|nkt |2 + |ft|2)

+C(|nkt |2H1
+ |Auk|2 + |∇∆nk|2 + 1)|ukt |2

+C(|Auk|2 + |∇∆nk|2)|∇nkt |2 + 12γ|∇ukt |2 + 7δ|∆nkt |2.

Adding the above inequality to that one given by (25), and choosing γ e δ conveniently, we obtain:

1

2

d

dt
(|(nk)

1
2 ukt |2 + |∇nkt |2) +

να

2
|∇ukt |2 +

λ

2
|∆nkt |2 ≤ C(|f |2

H1
|nkt |2 + |ft|2)

+C(|nkt |2H1
+ |Auk|2 + |∇∆nk|2 + 1)(|(nk)

1
2 ukt |2 + |∇nkt |2).

= Cϕ(t) + Cψ(t)(|(nk)
1
2 ukt |2 + |∇nkt |2),

with ϕ, ψ ∈ L1(0, T ∗).
Multiplying the above inequality by 2, integrating it from 0 to t, using the Generalized Gronwall’s lemma

(see [21]) and the fact 0 < α ≤ nk ≤ β we obtain:

α|ukt (t)|2 + |∇nkt (t)|2 + να

∫ t

0
|∇ukt (s)|2ds+ ν

∫ t

0
|∆nkt (s)|2ds

≤ C
(
|n

1
2◦ ukt (0)|2 + |∇nkt (0)|2 +

∫ t

0
ϕ(s)ds

)
· exp (C

∫ t

0
ψ(s)ds) < +∞.

12



Now, we need to show that |ukt (0)| and |∇nkt (0)| are uniformly bounded (in k). In fact, using the first
equation (6) with the multiplier v = ukt we:

|(nk)
1
2 ukt |2 = (−(nkuk · ∇)uk − νnkAuk + ν(uk · ∇)∇nk + ν((∇nk · ∇)uk

−ε2 1

nk
(∇nk · ∇)∇nk + ε2

1

(nk)2
(∇nk · ∇nk)∇nk − ε2( 1

nk
∆nk∇nk) + (nkf ,ukt )

−νuk∆nk + ε2∇∆nk = (Φk,ukt ).

Using the fact |(nk)
1
2 ukt |2 ≥ α|ukt |2 we

α|ukt |2 ≤ |(Φk,ukt )| =⇒ |ukt |2 ≤
1

α
|(Φk,ukt )| ≤ C|Φk|2 +

1

2
|ukt |2 =⇒ |ukt |2 ≤ C|Φk|2.

In particular, for t = 0 we:
|ukt (0)|2 ≤ C|Φk(0)|2 ≤ C

and therefore, |ukt (0)| is uniformly bounded (in k). Furthermore,

|∇nkt (0)| ≤ |∇uk(0) · ∇nk(0)|+ |uk(0) · ∇2nk(0)|+ ν|∇∆nk(0)|

≤ C(|Au◦||∆n◦|+ |∇∆n◦|) ≤ C,

and so, |∇nkt (0)| is also uniformly bounded (in k). We conclude that

ukt ∈ L∞(0, T ∗; H) ∩ L2(0, T ∗; V)
nkt ∈ L∞(0, T ∗;H1(Td)) ∩ L2(0, T ∗;H2(Td))

uniformly in k. As the second problem equation (6) is typically a problem parabolic, the fact that nkt ∈
L∞(0, T ∗;H1(Td)) implies:

nk ∈ L∞(0, T ∗;H3(Td))

uniformly in k and due to (24) we can conclude that:

uk ∈ L∞(0, T ∗;D(A)),

uniformly in k. Furthermore,

ν|∆2nk| = |∆nkt + ∆uk · ∇nk + u ·∆∇nk|

≤ C(|∆nkt |+ |∆uk||∇nk|∞ + |uk|∞ |∇∆nk|)

≤ C(|∆nkt |+ |Auk||nk|
H3 ),

and therefore

ν

∫ t

0
|∆2nk|2ds ≤ C

∫ t

0
(|∆nkt |2 + |Auk|2|nk|2

H3
)ds ≤ C.

We conclude that
nk ∈ L2(0, T ∗;H4(Td)) �

13



Lema 3.5. In the conditions of Theorem 2.1, the velocity-solution uk of the approximated problem (6)
satisfies:

uk ∈ L2(0, T ∗;W 1,∞(Td)) (26)

uniformly in k.

Proof. We can see from the first equation (6) that:

νnkAuk = −Pk[nkukt + (nkuk · ∇)uk − nkf − ν(uk · ∇)∇nk + uk∆nk

−ν(∇nk · ∇)uk)]− ε2Pk[
1

nk
(∇nk · ∇)∇nk −∇∆nk (27)

− 1

(nk)2
(∇nk · ∇nk)∇nk +

1

nk
∆nk∇nk].

Estimating the above equation in terms of L6-norm and integrating it from 0 to t we get:∫ t

0
|uk(s)|2

W2,6
ds ≤ C.

Then, we use the Sobolev immersion of W 2,6(Td) ⊂W 1,∞(Td) for:∫ t

0
|∇uk(s)|2∞ds ≤ C.

Therefore, we have
uk ∈ L2(0, T ∗;W 1,∞(Td)),

uniformly in k. �

4. Passing to the limit

All the previous uniform bounds involve the following convergences (passing to subsequences, if neces-
sary):

(1) uk ⇀ u weakly - ∗ in L∞(0, T ∗; V) and L∞(0, T ∗;D(A)); ;

(2) uk ⇀ u weakly in L2(0, T ∗;D(A)); and L2(0, T ∗;W 1,∞(Td));
(3) ukt ⇀ ut weakly - ∗ in L∞(0, T ∗; H); and weak in L2(0, T ∗; V);

(4) nk ⇀ n weakly - ∗ in L∞(0, T ∗;H3(Td)); and weakly in L2(0, T ∗;H4(Td));
(5) uk −→ u strongly in L2(0, T ∗; V);

(6) nk −→ n strongly in Lq((0, T ∗)× Td), ∀q ≥ 1 and strongly in L2(0, T ∗;H2(Td));
(7) nkt ⇀ nt weakly - ∗ in L∞(0, T ∗;H1(Td)), weakly in L2(0, T ∗;H2(Td)), L2(0, T ∗;H1(Td))

and L2((0, T ∗)× Td)).
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We observed that by using Aubin-Lions’s lemma we obtain the convergences (5) (for uk) and (6) (for nk

in Lq((0, T )× Td)).
Now, passing to the limit is a standard procedure (see [13]) and it left to the reader. For that, we choose

v = φm =
m∑
i=1

cim(t)ϕi(x), (28)

where ϕi(x) is i-th eigenfunction of the Stokes operator; then, we consider k > m and pass to the limit (as
k →∞) in the equation:

∫ T ∗

0
(nkukt + (nkuk · ∇)uk + νnk∆uk − ν(∇nk · ∇)uk − ν(uk · ∇)∇nk +

ε2

nk
(∇nk · ∇)∇nk

− ε2

(nk)2
(∇nk · ∇nk)∇nk +

ε2

nk
∆nk∇nk − nkf − νuk∆nk + ε2∇∆nk, φm)dt = 0,

(29)

Thus, we obtain:∫ T ∗

0
(nut + (nu · ∇)u + νn∆u− ν(∇n · ∇)u− ν(u · ∇)∇n+

ε2

n
(∇n · ∇)∇n

− ε
2

n2
(∇n · ∇n)∇n+

ε2

n
∆n∇n− nf − νu∆n+ ε2∇∆n, φm)dt = 0,

(30)

for all φm given by (28).
Moreover, it is easy to show that;∣∣∣∣nut + (nu · ∇)u + νn∆u− ν(∇n · ∇)u− ν(u · ∇)∇n+

ε2

n
(∇n · ∇)∇n

− ε
2

n2
(∇n · ∇n)∇n+

ε2

n
∆n∇n− nf − νu∆n+ ε2∇∆n

∣∣∣∣
L2(0,T ∗;L2)

≤ C.

But this means that

Lu = nut + (nu · ∇)u− νn∆u− ν(∇n · ∇)u− ν(u · ∇)∇n+
ε2

n
(∇n · ∇)∇n

− ε
2

n2
(∇n · ∇n)∇n+

ε2

n
∆n∇n− nf − νu∆n+ ε2∇∆n ∈ L2(0, T ∗;L2(Td)).

Due to the fact the functions φm are dense in L2(0, T ∗; H) we have that (30) is also valid for all φ ∈
L2(0, T ∗; H), and so, Lu ∈ L2(0, T ∗; H)⊥. Therefore, by De Rham’s Lemma, there exist some function
p ∈ L2(0, T ∗;H1(Td)) such that

nut + (nu · ∇)u− νn∆u− ν(∇n · ∇)u− ν(u · ∇)∇n+
ε2

n
(∇n · ∇)∇n

− ε
2

n2
(∇n · ∇n)∇n+

ε2

n
∆n∇n− νu∆n+ ε2∇∆n− nf = ∇p.

(31)

Using Du Bois Raymond’s lemma, it can be shown that
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nt + u · ∇n− λ∆n = 0

q.t.p. in Q
T∗ .

Furthermore, we have:

|nt| ≤ |u · ∇n|+ λ|∆n| ≤ C|∇u||∇2n|+ λ|∆n|,

implying

|nt|
L∞(0,T∗;L2(Td))

≤ C.

Therefore,

nt + u · ∇n− λ∆n = 0 in L∞(0, T ∗;L2(D(A))).

Remark 4.1 We can see from equations (21), (19) and (22), (20) that u ∈ L∞((0, T ∗);D(A)), ut ∈
L2(0, T ∗; V), n ∈ L∞(0, T ∗;H3(Td)) and nt ∈ L2(0, T ∗;H2(Td)); since D(A)

c
↪→ V and H3(Td) c

↪→ H2(Td),
the Aubin-Lion’s lemma claims that there exist ũ ∈ C([0, T ∗]; V) and ñ ∈ C([0, T ∗];H2(Td)) such that
ũ(t) = u(t) and ñ = n(t), a.e. in [0, T ∗]; this means that we can consider that the solution (u, n) assumes
the initial datum continuously.

5. Uniqueness of Solution

Let (u, n) e (u1, n1) two solutions of the initial problem (5); define z = n− n1 e w = u− u1.
Using the second equation (5), we get:

(zt + u · ∇z + w · ∇n1 − ν∆z, ψ) = 0,

for all ψ ∈ L2(Q
T∗ ).

In particular, making ψ = z we obtain:

1

2

d

dt
|z|2 = ν(∆z, z)− (w · ∇n1, z)

since (u · ∇z, z) = 0. The two terms on the right hand side in the above expression can be estimated as:

|(∆z, z)| ≤ C|z|2 + δ|∆z|2;

|(w · ∇n1, z)| ≤ |w||∇n1|∞ |z| ≤ C|w|2 + C|z|2.

So,

1

2

d

dt
|z|2 ≤ C|w|2 + C|z|2 + δ|∆z|2 (32)

Moreover, making ψ = −∆z we obtain:
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−(zt,∆z) + ν(∆z,∆z)− (u · ∇z,∆z)− (w · ∇n1,∆z) = 0.

And this implies
1

2

d

dt
|∇z|2 + ν|∆z|2 = (u · ∇z,∆z) + (w · ∇n1,∆z)

≤ |u|∞|∇z||∆z|+ |w||∇n1|∞|∆z|

≤ 2µ|∆z|2 + C|Au|2|∇z|2 + C|n1|2
H3
|w|2

After choosing µ =
ν

4
and taking into account the bounds for |Au| and |n1|

H3 , the above inequality takes

the following form:

1

2

d

dt
|∇z|2 +

ν

2
|∆z|2 ≤ C|z|2

H1
+ C|w|2. (33)

Next, we consider the first equation (5) applied to (u, n) and (u1, n1).
Making the difference between them and taking the L2-inner product with v = w we obtain:

(nwt,w) + ν(n1Aw,w) = −(zu1
t ,w)− ((zu · ∇)u,w)− ν(zAu,w)

−((n1w · ∇)u,w)− ((n1u1 · ∇)w,w) + ν((u · ∇)∇z,w) + ν((w · ∇)∇n1,w)

+ν((∇z · ∇)u,w) + ν((∇n1 · ∇)w,w) + (zf ,w)− ν(w∆n,w)− ν(u1∆z,w)

−ε2{(− z

nn1
(∇n · ∇)∇n+

1

n1
(∇z · ∇)∇n−∇∆z +

1

n1
(∇n1 · ∇)∇z

+
z(n1 + n)

(nn1)2
(∇n · ∇n)∇n− 1

(n1)2
(∇z · ∇n)∇n− 1

(n1)2
(∇n1 · ∇z)∇n

− 1

(n1)2
(∇n1 · ∇n1)∇z − z

nn1
∆n∇n+

1

n1
∆z∇n+

1

n1
∆n1∇z,w)}.

We note that the first term on the right hand side in the above equation can be rewriten as

(nwt,w) =
1

2

d

dt
(nw,w) +

1

2
((u · ∇n)w,w)− ν

2
(∆nw,w);

and then, such equation becomes:

1

2

d

dt
(nw,w) + να|∇w|2 ≤ −1

2
((u · ∇n)w,w) +

ν

2
(∆nw,w)− ν(zAu,w)

+(zf ,w)− (zu1
t ,w)− ((zu · ∇)u,w)− ((n1w · ∇)u,w)− ((n1u1 · ∇)w,w)− ν(w∆n,w)

+ν{((u · ∇)∇z,w) + ((w · ∇)∇n1,w) + ((∇z · ∇)u,w) + ((∇n1 · ∇)w,w)} − (u1∆z,w)

−ε2{(− z

nn1
(∇n · ∇)∇n+

1

n1
(∇z · ∇)∇n−∇∆z +

1

n1
(∇n1 · ∇)∇z

+
z(n1 + n)

(nn1)2
(∇n · ∇n)∇n− 1

(n1)2
(∇z · ∇n)∇n− 1

(n1)2
(∇n1 · ∇z)∇n
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− 1

(n1)2
(∇n1 · ∇n1)∇z − z

nn1
∆n∇n+

1

n1
∆z∇n+

1

n1
∆n1∇z,w)}.

The terms on the right hand side in the above equation are estimated in a standard way, by using
Hölder’s inequality, Sobolev’s inequality and Young’s inequality in a convenient way. Then, we get the
following inequality:

1

2

d

dt
(nw,w) + (να− µ)|∇w|2 ≤ Cµ,δ{|Au||n|

H3 + |∇n|2 + |u1
t |2

+|Au|2|∇u|2 + |Au|2 + |Au1|2 + |n1|2
H3
}|w|2

+Cµ{|f |2 + |∆n|4 + |∆n|6 + |n|2
H3

+ |n1|2
H3

+|∆n1|4 + |∆n1|2|∆n|2}|z|2
H1

+ δ|∆z|2,

and using the estimates obtained in Section 1, we obtain:

1

2

d

dt
(nw,w) + (να− µ)|∇w|2 ≤ C|w|2 + C|z|2

H1
+ δ|∆z|2 (34)

Summing up the inequalities (32), (33) and (34) we get:

1

2

d

dt
{(nw,w) + |z|2 + |z|2

H1
}+ (να− µ)|∇w|2 + (

ν

2
− 5δ)|∆z|2

≤ C|w|2 + C|z|2 + C|z|2
H1
.

By choosing µ and δ conveniently, it follows that:

1

2

d

dt
{(nw,w) + |z|2

H1
}+

να

2
|∇w|2 +

ν

4
|∆z|2

≤ C|w|2 + C|z|2
H1

+ C|z|2,

Since |w|2 ≤ 1

α
(nw,w), we have:

d

dt
{(nw,w) + |z|2 + |z|2

H1
} ≤ C((nw,w) + |z|2 + |z|2

H1
),

and integrating the 0 the t, with t ∈ [0, T ∗]:

(nw,w) + |z|2 + |z|2
H1
≤ (n◦w(0),w(0)) + |z(0)|2 + |z(0)|2

H1

+C

∫ t

0
((n(s)w(s),w(s)) + |z(s)|2 + |z(s)|2

H1
)ds.

Now, by using Gronwall’s lemma we obtain:

(nw,w) + |z|2 + |z|2
H1
≤ [(n◦w(0),w(0)) + |z(0)|2 + |z(0)|2

H1
] · eC

∫ T∗
0 ds

≤ C[(n◦w(0),w(0)) + |z(0)|2 + |z(0)|2
H1

].
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Since w(0) = 0, |z(0)|2
H1

= 0 we conclude that (nw,w) = 0 e |z|2 = 0 and because n > 0 we get w = 0
and z = 0 a.e..
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