
The Telegraph Equation

Model an infinitesmal piece of telegraph wire as an electrical circuit which consists

of resistor of resistance Rdx and a coil of inductance Ldx. If i(x, t) is the current through

the wire, the voltage across the resistor is iRdx while that across the coil is itLdx. Denoting

by u(x, t) the voltage at position x and time t, we have that the change in voltage between

the ends of the piece of wire is

du = −iRdx − itLdx

Suppose further that current can escape from the wire to ground, either through a resistor

of conductance Gdx or through a capacitor of capacitance Cdx. The amount that escapes

C dx 1/(G dx)

L dx R dxx x+dx

through the resistor is uGdx. Because the charge on the capacitor is q = uCdx, the amount

that escapes from the capacitor is utCdx. In total

di = −uGdx − utCdx

Dividing by dx and taking the limit dx ↘ 0 we get the differential equations

ux + Ri + Lit = 0 (K1)

Cut + Gu + ix = 0 (K2)

Solving ∂
∂t

(K2) for

ixt = −Cutt − Gut

and substituting the result into ∂
∂x

(K1) gives

uxx + Rix + L(−Cutt − Gut) = 0 =⇒ uxx + R(−Cut − Gu) + L(−Cutt − Gut) = 0
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Renaming some constants we get the telegraph equation

utt + (α + β)ut + αβu = c2uxx

where

c2 = 1

LC
α = G

C
β = R

L

The Solution

We now solve the boundary value problem

utt + (α + β)ut + αβu = c2uxx(1)

u(0, t) = 0(2)

u(`, t) = 0(3)

u(x, 0) = δ(x − a)(4)

ut(x, 0) = 0(5)

for all t > 0, 0 < x < `. This models a telegraph wire of length ` having the voltage at

both ends x = 0 and x = ` clamped at zero. The initial conditions, (4) and (5), represent an

idealized signal consisting of a spike at x = a that is stationary at time zero.

The method of solution is separation of variables. So, we first try u(x, t) = X(x)T (t).

(1) =⇒ XT ′′ + (α + β)XT ′ + αβXT = c2X ′′T

=⇒ 1

c2

{

T ′′

T
+ (α + β)T ′

T
+ αβ

}

= X′′

X
= σ, const

Imposing boundary conditions (2,3)

X(0) = X(`) = 0 X ′′ − σX = 0 =⇒ X(x) = const sin
(

nπx
`

)

, σ = −
(

nπ
`

)2

The equation for T is

T ′′ + (α + β)T ′ + (αβ − σc2)T = 0

which has general solution

T = conster1t + conster2t with ri = 1

2

(

−α − β ±
√

(α + β)2 − 4αβ + 4σc2

)
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Call

4ω2

n = 4
(

nπ
`

)2
c2 − (α − β)2 d = (α + β)/2

Then ri = −d ± iωn and general solution to the T equation can be written

T (t) = Ane−dt cos(ωnt − φn)

with the amplitude An and phase φn arbitrary. So, for all An and φn,

u(x, t) =

∞
∑

n=1

Ane−dt cos(ωnt − φn) sin
(

nπx
`

)

satisfies the pde (1) and boundary conditions (2,3). It remains to choose the amplitudes and

phases to satisfy the initial conditions (4,5).

(5) =⇒ ut(x, 0) =

∞
∑

n=1

An

[

−de−dt cos(ωnt − φn) − ωne−dt sin(ωnt − φn)
]

sin
(

nπx
`

)

∣

∣

∣

t=0

=

∞
∑

n=1

An [−d cos(φn) + ωn sin(φn)] sin
(

nπx
`

)

= 0

=⇒ φn = arctan
(

d
ωn

)

(4) =⇒ u(x, 0) =
∞
∑

n=1

An cos(φn) sin
(

nπx
`

)

= δ(x − a)

=⇒ An cos φn = 2

`

∫ `

0

δ(x − a) sin
(

nπx
`

)

= 2

`
sin

(

nπa
`

)

The final solution is

u(x, t) =

∞
∑

n=1

Ane−dt cos(ωnt − φn) sin
(

nπx
`

)

where d = (α + β)/2 ωn =

√

(

nπc
`

)2
− 1

4
(α − β)2

φn = arctan
(

d
ωn

)

An = 2

` cos φn

sin
(

nπa
`

)

Interpretation of the Solution

To interpret this result, rewrite it as

u(x, t) =

∞
∑

n=1

1

2
Ane−dt

[

sin(nπx
`

− ωnt + φn) + sin(nπx
`

+ ωnt − φn)
]
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Suppose that we carefully tune the wire so that α = β. Then

d = α ωn = nπc
`

and

u(x, t) =

∞
∑

n=1

1

2
Ane−αt

[

sin(nπx
`

− nπc
`

t + φn) + sin(nπx
`

+ nπc
`

t − φn)
]

= e−αtf(x − ct) + e−αtg(x + ct)

where

f(z) =

∞
∑

n=1

1

2
An sin(nπ

`
z + φn)

g(z) =

∞
∑

n=1

1

2
An sin(nπ

`
z − φn)

Thus, assuming α = β > 0, u(x, t) is the sum of two signals, one moving to the right and the

other moving to the left. They move without changing shape, but their amplitudes decrease

with time, due to the factors e−αt. If α 6= β, different frequency components of u(x, t) move

with different speeds, because ωn depends on n, and the signals distort as they propagate.

This phenomenon is called dispersion.
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