

MÉDIA ARITMÉTICA – MÉDIA PONDERADA – MODA – MEDIANA

Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma certa concentração. Pode-se, portanto, estudar os valores numéricos que determinam a distribuição dos dados, procurando o ponto onde está a maior concentração de valores individuais. De um modo geral, um conjunto de dados pode ocupar uma posição específica dentro de uma distribuição. Essas medidas que "posicionam" o dado (ou o grupo de dados) dentro de uma distribuição, são chamadas de **medidas de tendência central.** \rightarrow Essas medidas são: **média** (aritmética, ponderada etc); **mediana** e **moda**.

Essas medidas mostram a informação sobre todos os dados e sua distribuição, de maneira "resumida". Elas dão o valor do "ponto" em torno do qual os dados se distribuem!

Média Aritmética: M ou x

É a soma de todos os valores, dividida pelo número total desses valores

Em um conjunto com vários dados $(x_1, x_2, x_3, x_4...)$, a $\overline{\mathbf{x}} = (x_1 + x_2 + x_3 + x_4 +...) / n$ ou $\sum \mathbf{x} / \mathbf{n}$

Onde "n" é o número total de dados. \rightarrow Ex.: 10; 2; 9; 6; 8 \rightarrow M = (10 + 2 = 9 + 6 + 8) / 5 = 7.

Significado: correspoi $\overline{\mathbf{x}}$ a um "ponto de equilíbrio" (valor em torno do qual os dados se distribuem).

Só se deve arredondar a média quando ela representar variáveis quantitativas discretas, como por exemplo idade, número de filhos etc., as quais não podem ser expressas com números fracionados.

Mediana: Md

É o valor que ocupa *a posição central dos dados*, após estes serem "organizados" em ordem crescente ou decrescente (ROL). A mediana divide a amostra "exatamente no meio", no caso da amostra possuir um número "ímpar" de dados.

Ex: 71; 82; 57; 68; 78; 75; 64; 61; 85 (n = 9)

ROL: 57; 61; 64; 68; 71; 75; 78; 82; 85. → A mediana é 71.

Obs.: metade dos dados são menores ou iguais à mediana (71) e a outra metade, maior.

Se o número total de dados for **ímpar**, a mediana será a média aritmética dos pontos centrais, ou seja, pega-se os 2 valores que estão nas posições centrais e divide-os por 2.

Pode-se usar a seguinte fórmula para encontrar a **posição** da mediana: Md = (n+1)/2

Ex: 71; 82; 57; 68; 69; 78; 75; 64; 61; 85 \rightarrow n° de dados: 10 (par).

ROL: 57; 61; 64; 68; 69; 71; 75; 78; 82; 85

Mediana \rightarrow (n+1)/2 \rightarrow (10+1)/2 = 11/2 \rightarrow 5,5

Ou seja, a mediana está entre a **posição 5 e 6** \rightarrow Assim, soma-se o número da posição 5, que é 69, com o número da posição 6, que é 71, e divide-se esta soma por 2 \rightarrow (69 + 71) \div 2 = 70 \rightarrow **Mediana = 70**

Ex: 71; 82; 57; 68; 86; 69; 78; 75; 64; 61; 85 \rightarrow n° de dados: 11 (ímpar).

ROL: 57; 61; 64; 68; 69; 71; 75; 78; 82; 85; 86 \rightarrow no de dados: 11 (impar)

Mediana \rightarrow (n+1)/2 \rightarrow (11+1/2) = 12/2 = $\underline{6} \rightarrow$ Ou seja, a mediana está na posição 6, que é ocupada pelo número $\underline{71} \rightarrow$ Mediana = $\overline{71}$

Moda: Mo

É o valor que ocorre com mais freqüência entre todos os dados, após estes serem organizados em ordem crescente ou decrescente (ROL).

Ex.: 5; 4; 3; 6; 6; 3; 1; 6; 2

ROL: 1; 2; 3; 3; 4; 5; **6**; **6**; **6** \rightarrow Moda = 6

Se existir apenas uma moda em uma amostra, significa que há apenas um grupo de indivíduos com aquelas variações, ou seja, a amostra é <u>homogênea</u>. Mas se houver mais modas, há grupos diferentes dentro daquela amostra. Diz-se, então, que a amostra é <u>heterogênea</u>.

A moda é a única medida de tendência central que pode ser obtida mesmo se a variável for "qualitativa".

Obs.: em geral a mediana pode dar melhor idéia da tendência central dos dados quando existem valores muito discrepantes.

Ex.: 0; 9; 8; 10 \rightarrow Média = 6,75 \rightarrow Mediana = 8,5 \rightarrow Moda= não existe.

A mediana, neste caso, representa melhor a amostra.

MEDIDAS DE TENDÊNCIA CENTRAL EM TABELAS DE DISTRIBUIÇÃO DE FREQÜÊNCIA COM INTERVALOS DE CLASSES

1) Média: M ou \overline{x}

Para obter a média de dados que estão expressos em freqüência distribuídas em classes, deve-se seguir os seguintes passos: 1º - obter o "ponto médio" de cada classe (é a média aritmética dos valores mínimo e máximo da cada classe);

2º - multiplicar o ponto médio de cada classe pela respectiva freqüência absoluta;

3º - somar o produto de cada multiplicação;

4° - dividir esse resultado pelo "n" (número total de dados).

Exemplo:

<u>-</u>				
Classes	Ponto médio	Freqüência Absoluta		
41 45	43	7		
45 49	47	3		
49 53	51	4		
53 57	55	1		
57 61	59	5		
Total		20		

 $\mathbf{M} = (43 \times 7) + (47 \times 3) + (51 \times 4) + (55 \times 1) + (59 \times 5) / 20$

M = 301 + 141 + 204 + 55 + 295 / 20 → M = 49,8 (média) → não arredondar a média quando isto não for necessário. Deve-se arredondar quando ela representar variáveis quantitativas discretas, como idade, número de filhos etc., que não podem ser expressas com números fracionados.

2) Mediana: Md

Da mesma forma que já foi colocado acima, a mediana é a classe que divide os dados no meio. Assim, em uma tabela de distribuição de frequências em intervalos de classes, a mediana é encontrada do mesmo modo.

• Se a tabela tiver um número **ímpar de classes**, basta olhar a quantidade de classes e determinar aquela que divide a amostra ao meio.

Ex: <u>na tabela acima</u> há **5 classes** → a mediana é a classe que divide as 5 ao meio, ou seja, a 3ª classe **49 l--- 53**

• **Porém**, se a tabela tiver um número **par de classes**, deve-se encontrar a posição da mediana da mesma maneira que se faz em dados que não estão dispostos em classes.

Classes	Ponto médio	Freqüência Absoluta
41 45	43	7
45 49	47	3
49 53	50	4
53 57	55	1
57 61	59	5
61 65	63	6
Total		26

Ex: $Md = (n + 1) / 2 \rightarrow Md = (26 + 1) / 2 \rightarrow 27 / 2$

→ Md = 13,5 → A classe mediana é aquela onde estão os números que ocupam entre a 13ª e a 14ª posição.

Assim, basta observar as freqüências e somá-las até se chegar na posição da mediana, que no caso, estará entre a 13ª e a 14ª posições. Assim, estas estão incluídas na 3ª classe \rightarrow 49 |----- 53.

Assim, a classe mediana é a que vai de 49 l----- 53 (ou: de 49 a 52).

3) <u>Moda</u>: Mo

É simplesmente a classe onde está concentrada a maior parte dos dados. Basta olhar a freqüência absoluta de cada classe e determinar a **classe modal.**

Ex: a 1ª classe é a que tem a maior frequência (7), assim, a classe 41 |---- 45 é a classe modal

EXERCÍCIOS

1) Supondo os seguintes dados, já ordenados:

a) calcule a média $(\overline{x} = \sum x / n) \rightarrow e$ explique seu significado

$$\overline{\mathbf{x}} = 664 / 50 \Rightarrow 13,28$$

O valor 13,28 é um ponto de equilíbrio entre os dados, ou seja, eles se distribuem em torno deste valor.

b) calcule a mediana (Md) \rightarrow Md = (n+1)/2 \rightarrow e explique seu significado

Md = (50+1)/2 = 51/2 = 25,5 (entre a posição 25 e 26)

Posição 25 = 12 e posição 26 = 13

 $Md = 12 + 13 / 2 \rightarrow 12,50$

Metade dos dados está acima de 12.50 % e a outra metade está abaixo.

c) calcule a moda (Mo) → explique seu significado e diga se a amostra é homogênea, ou heterogênea. Mo = 12 e 15

Os valores 12 e 15 são os mais frequentes na amostra, ou seja, há muito dados com tais valores. A amostra tem 2 modas, sendo assim caracterizada como "bimodal" e, por esse motivo, é uma amostra heterogênea.

2) Os dados abaixo referem-se à altura em cm de uma amostra de 54 universitários de sexo masculino e já estão organizados em orem crescente.

160	160	161	162	162	162
164	164	165	165	166	166
166	167	167	168	168	169
169	169	169	170	170	170
170	171	171	171	172	172
172	172	173	174	174	174
175	175	175	177	177	177
177	177	178	178	179	179
180	180	183	185	188	192

Calcule: a) média - b) mediana - c) moda

a) média
$$\rightarrow$$
 M = $\sum x / n$

 $M = 9277/54 \rightarrow 171.80$

b) mediana
$$\rightarrow$$
 Md = (n+1)/2

Md = $(54+1)/2 = 55/2 = 27,5 \rightarrow$ (entre a posição 27 e 28)

Posição 27 = 171 e posição 28 = 171 \rightarrow Md = 171 + 171 / 2 \rightarrow 171

c) moda
$$\rightarrow$$
 Mo

Mo = 177

- 3) A tabela abaixo (Tab. I) apresenta o percentual de água no cérebro de cobaias machos com 90 dias de idade. Determine e dê o significado:
- a) da média dos dados;
- b) da mediana;
- c) da moda.

Tab	. I	Tab. I		
Dados	brutos]	Dados org	ganizados
80,06	68,86		68,86	79,86
68,97	79,90		68,97	79,87
79,85	79,91		79,25	79,90
79,87	79,55		79,55	79,91
79,86	79,25		79,85	80,06

a) Média: $M = \sum x / n$

$$\mathbf{M} = (80,06 + 68,97 + 79,85 + 79,87 + 79,86 + 68,86 + 79,90 + 79,91 + 79,55 + 79,25) / 10$$

$$M = (776,08) / 10 \rightarrow M = 77,61$$

A média significa que os dados se distribuem em torno do valor de 77,61 %.

b) Mediana: $Md = (n + 1) / 2 \rightarrow com os dados organizados$

$$Md = (10 + 1) / 2 \rightarrow Md = 5,5$$

Md = números que estão entre as posições 5 (79,85) e 6 (79,86) \rightarrow (79,85 + 79,86) / 2

Md = 79,855 → não arredondar a mediana, quando esta ficar igual a um dos números da amostra.

Metade dos dados está acima de 79,855 % e a outra metade está abaixo.

- c) Moda: Mo
- → não há moda → não há nenhum valor que apareça mais vezes que os outros.
- 4) No exercício acima, se você tivesse que representar a amostra apenas com "uma" medida de tendência central, qual você escolheria e porquê?

R: A medida que deve ser escolhida é a "média", pois ela é o ponto de equilíbrio de uma amostra que tenha dados próximos entre si. A "mediana" só seria utilizada se a amostra tivesse dados muito diferentes (distantes) entre si. Já a "moda" nunca deve ser usada sozinha para representar a amostra toda, pois simplesmente revela o dados mais freqüente da amostra. Ela deve ser utilizada juntamente com pelo menos uma das outras medidas de tendência central.

- 5) Uma clínica possui 10 pacientes com as seguintes idades: { 8, 10, 11, 47, 48, 49, 51, 55, 56, 57 }. Qual das medida de tendência central representaria melhor esta amostra de pacientes? Escolha somente "uma" medida, dê o seu <u>valor</u> e explique a <u>razão</u> de sua escolha.
- R: → Média = 39,2 → 39 anos → Mediana = 48 + 49 / 2 = 48,5 → 48 anos → Moda = não há moda Das medidas de tendência central acima demonstradas, deve-se utilizar a "mediana" (Md = 48 anos) para representar toda a amostra, pois esta possui dados (idades) com valores muito diferentes entre si, sendo melhor representada pela mediana. Observando somente a mediana, espera-se encontrar 50 % dos pacientes com mais do que 48 anos e 50 % com menos. Se a amostra fosse representada pela média, esperaria-se encontrar pacientes próximos de 39 anos, porém, não há nenhum com idade próxima a tal valor.

→ "EXERCÍCIO SOBRE FREQÜÊNCIAS E MEDIDAS DE TENDÊNCIA CENTRAL"

- 1) A tabela abaixo representa o salário (R\$) de uma amostra de 25 funcionários selecionados em uma empresa.
- a) Construa para estes dados a distribuição de freqüências em intervalos de classes, organizando os dados primeiramente em um Rol, já passando para a elaboração da "tabela de freqüência com intervalo de classes" (por meio da Regra de Sturges). A "tabela de freqüência sem intervalos de classes" não será feita, pois todos os valores são diferentes entre si. Após encontrar a freqüência absoluta, calcule a freqüência absoluta acumulada, a freqüência relativa e a freqüência relativa acumulada. Faça então, um histograma para representar esses dados, dizendo se eles têm ou não uma distribuição normal.

Tabela: salário (R\$) de 25 funcionários de uma empresa.

	()								
1298,00	1000,00	1478,88	1700,00	1601,00	1400,00	1698,98	1800,99	1500,00	1500,00
1245,00	1598,05	1350,00	1645,45	1301,20	1248,50	1504,00	1458,44	1100,10	1520,00
1399,85	1450,20	1787,02	1402,25	1988,85					

→ 1° PASSO: ROL

1000,00	1100,10	1245,00	1248,50	1298,00	1301,20	1350,00	1399,85	1400,00	1402,25
1450,20	1458,44	1478,88	1500,00	1500,00	1504,00	1520,00	1598,05	1601,00	1645,45
1698,98	1700,00	1787,02	1800,99	1988,85					

→ 2° PASSO: REGRA DE STURGES

 $\frac{\text{N}^{0} \text{ de classes (K)} \rightarrow \text{K} = 1 + 3,33 \log n}{\text{K} = 1 + 3,33 \log 25 \rightarrow \text{K} = 1 + (3,33 \times 1,40) \rightarrow \text{K} = 1 + (4,662) \rightarrow \text{K} = 5,662 \rightarrow \text{K} = 6}$

Amplitude do intervalo de classes (A) → A = amplitude amostral / K A = 1988,85 – 1000,00 = 988,85 / 6 → A = 164,81 → NUNCA ARREDONDAR A AMPLITUDE DE INTERVALO DE CLASSES QUANDO AVARIÁVEL FOR "QUANTITATIVA CONTÍNUA"

→ <u>3º PASSO: CONSTRUÇÃO DE UMA TABELA DE FREQÜÊNCIA COM INTERVALOS DE CLASSES</u>

Classes	Salários R\$	Nº funcionários (Freq. absoluta)	Freq. absoluta acumulada	Freqüência relativa (%)	Freq. relativa Acumulada (%)
1	1.000,00 - 1.164,81	2	2	8	8
2	1.164,81 - 1.329,62	4	6	16	24
3	1.329,62 - 1.494,43	7	13	28	52
4	1.494,43 - 1.659,24	7	20	28	80
5	1.659,24 - 1.824,05	4	24	16	96
6	1.824,05 - 1.988,86	1	25	4	100
	Total	25		100	

b) Determine e dê o significado: da média dos dados; da classe mediana e da classe modal, dizendo se a amostra é unimodal, ou bimodal e se é homogênea, ou heterogênea.

→ Média

1º - encontrar o ponto médio das classes.

Classes	Salários R\$	Ponto médio	Nº funcionários (Freq. absoluta)
1	1.000,00 - 1.164,81	1.082,405	2
2	1.164,81 - 1.329,62	1.247,215	4
3	1.329,62 - 1.494,43	1.412,025	7
4	1.494,43 - 1.659,24	1.576,835	7
5	1.659,24 l 1.824,05	1.741,645	4
6	1.824,05 - 1.988,86	1.906,455	1
	Total		25

Média:

 $M = \sum (ponto médio x freq. absoluta) / n (número total de dados)$

 $\mathbf{M} = (1082,405 \times 2) + (1247,215 \times 4) + (1412,025 \times 7) + (1576,835 \times 7) + (1741.645 \times 4) + (1906,455 \times 1) / 25$

 $M = 1.477,949 \implies M = 1.477,95$

Os salários dos 25 funcionários estão distribuídos em torno do valor de R\$ 1477,95

→ Classe Mediana (Md)

 $Md = (n+1)/2 \rightarrow n = número total de dados$

 $Md = (25 + 1) / 2 \rightarrow Md = 13$

A classe mediana é aquela que inclui o número que está na 13ª posição dentro da distribuição de freqüências dos dados organizados.

A classe mediana, então, é a 3ª, a que vai de 1329,62 ├── 1494,43.

Assim, metade dos funcionários recebem igual ou menos do que a faixa de R\$ 1329,62 a R\$ 1494,42; e a outra metade, recebe igual, ou mais do que isso.

→ Classe Modal (Mo)

Essa empresa tem uma distribuição de salários **bimodal** (é heterogênea) ou seja, possui duas classes de salário que têm uma alta freqüência, que são a 3ª e a 4ª classe.

Assim, a maior parte dos funcionários recebe entre R\$ 1329,62 e 1.659,23

EXERCÍCIOS → MEDIDAS DE TENDÊNCIA CENTRAL

- 1) A mediana da série de dados { 1, 3, 8, 15, 10, 12, 7 } é:
- a) igual a 15
- b) igual a 10

c) igual a 8

- d) igual a 3,5
- e) não há mediana, pois não existe repetição de valores.
- 2) Segundo o site de VEJA na Internet, 28% da população brasileira é de origem africana, 32% de origem portuguesa, 20% de origem italiana e 20% de outras origens. Qual é a moda quanto à origem ?
- a) 32%
- b) 20%
- c) 32% da população.

d) origem portuguesa.

- e) não podemos identificar a moda por falta de dados.
- 3) Na série de dados formada por { -1, -2, 3, 4 }:
- a) a mediana está entre -2 e 3.
- b) a mediana é 0,5.

c) a questão a) e b) estão corretas.

- d) a mediana é 2.
- e) não existe mediana, pois não há dados repetidos.
- 4) Na série de dados formada por { 3, 1, 2, 3, 6 }:
- a) mediana > moda > média.
- b) moda < média < mediana.
- c) moda = mediana = média.
- d) mediana = média e não há moda.
- e) média > mediana e não há moda
- 5) Quando desejamos o ponto médio exato de uma distribuição de freqüência, basta calcular:
- a) o desvio médio.
- b) a média.
- c) a moda.

d) a mediana.

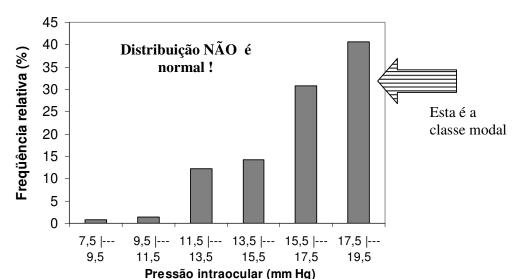
- e) qualquer medida de posição
- 6) Considere uma amostra com 2351 dados (elementos). A "posição" da mediana é representada pelo:
- a) 1175° elemento.

b) 1176° elemento.

- c) ponto médio entre o 1175° e o 1176° elemento.
- d) 1175,5° elemento.
- e) impossível resolução, pois não há identificação dos elementos.
- 7) Qual medida de tendência central deve ser usada para representar amostras que possuem dados muito discrepantes (diferentes) entre si?
- a) moda

b) mediana

- c) média
- d) amplitude
- e) nenhuma delas


- 1) A tabela abaixo representa a pressão intraocular (em mm Hg) de uma amostra de 140 pa cientes.
- → a) Calcule a **freqüência absoluta acumulada**, a **freqüência relativa** e a **freqüência relativa acumulada**. Faça então, um **histograma** para representar esses dados, mostrando o polígono de freqüência e dizendo se os dados têm ou não uma **distribuição normal**.
- → b) Determine e dê o significado: da média dos dados da tabela; da classe mediana e da classe modal, dizendo se a amostra é unimodal, ou bimodal e se é homogênea, ou heterogênea. Indique no histograma a coluna que representa a classe modal

Pressão intraocular (mm Hg)	Número de pacientes (freqüência absoluta)	Freqüência absoluta acumulada	Freqüência relativa (%)	Freqüência relativa acumulada (%)
7,5 9,5	01	1	0,71	0,71
9,5 11,5	02	3	1,43	2,14
11,5 13,5	17	20	12,14	14,28
13,5 15,5	20	40	14,29	28,57
15,5 17,5	43	73	30,71	59,28
17,5 19,5	57	140	40,72	100,00
Total	140		100	

Pressão intraocular (mm Hg)	Ponto Médio	Número de pacientes (freqüência absoluta)
7,5 9,5	8,5	01
9,5 11,5	10,5	02
11,5 13,5	12,5	17
13,5 15,5	14,5	20
15,5 17,5	16,5	43
17,5 19,5	18,5	57
Total		140

Classe modal → 6ª classe, de 17,5 |--- 19,5 → 50 % dos valores estão acima do intervalo desta classe e 50 % estão abaixo. → amostra unimodal homogênea

Classe mediana \rightarrow n+ 1 / 2 \rightarrow 141/2 = 70,5 (posição da Md) \rightarrow classe Md = 5^a classe, de 15,5 |--- 17,5 \rightarrow classe com a maior frequência.

1) A tabela abaixo representa a pressão intraocular (em mm Hg) de uma amostra de 140 pa cientes.

- → a) Calcule a **freqüência absoluta acumulada**, a **freqüência relativa** e a **freqüência relativa acumulada**. Faça então, um **histograma** para representar esses dados, mostrando o polígono de freqüência e dizendo se os dados têm ou não uma **distribuição normal**.
- → b) Determine e dê o significado: da média dos dados da tabela; da classe mediana e da classe modal, dizendo se a amostra é unimodal, ou bimodal e se é homogênea, ou heterogênea. Indique no histograma a coluna que representa a classe modal

Comprimento da carapaça (cm)	Número de pacientes (freqüência absoluta)	Freqüência absoluta acumulada	Freqüência relativa (%)
7,5 9,5	01		
9,5 11,5	02		
11,5 13,5	17		
13,5 15,5	20		
15,5 17,5	43		
17,5 19,5	57		
Total	140		