

Universidade Federal do Paraná – Campus Palotina

Genética - 4º Lista de Exercícios/2011

Primeira Lei de Mendel

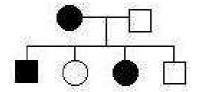
- 1. O biólogo francês Cuénot cruzou camundongos cinzentos selvagens com camundongos brancos (albinos). Na primeira geração, todos eram cinzentos. De muitas ninhadas ele obteve resultados na F2: 198 camundongos cinzentos e 72 brancos. Proponha uma hipótese para explicar estes resultados, provando-a estatisticamente.
- **2.** Desejando-se saber a probabilidade de nascer um potro de cor tordilha do acasalamento do garanhão SHAKE com a fêmea AMETISTA, ambos tordilhos, um criador forneceu as seguintes informações: Do acasalamento de animais não tordilhos entre si, toda a progênie é sempre igual aos progenitores; Do acasalamento de animais tordilhos entre si, podem nascer descendentes tordilhos e não tordilhos; O pai de AMETISTA não é tordilho; Cruzado com uma égua não tordilha, SHAKE gerou um potro igual à mãe. Em função destas informações, qual a resposta que você daria para o criador?
- **3.** Em coelhos, a pelagem é condicionada por uma série alélica representada por: C (selvagem) > C^{ch} (chinchila) > C^{h} (Himalaia) > C^{a} (albino). Quais os genótipos dos indivíduos envolvidos nos seguintes cruzamentos:
 - a) Selvagem X Chinchila: 5 pretos, 3 chinchilas, 2 albinos
 - b) Chinchila X Himalaia: 5 chinchilas, 6 himalaias, 1 albino
 - c) Himalaia X Himalaia: 7 himalaias, 1 albino
- **4.** O sistema ABO do sangue humano é controlado por uma série de 3 alelos **I**^a; **I**^b, **i**. Os alelos **I**^a e **I**^b são dominantes sobre **i** e são codominantes entre si. Quais os tipos sanguíneos prováveis dos descendentes de um casamento onde ambos os cônjuges são do grupo AB.
- 5. Nas três questões seguintes, diga quem é o pai mais provável da criança:
 - a) Mãe do tipo A, e a criança do tipo AB, um dos possíveis pais é A e o outro é B;
 - b) Mãe do tipo O, e a criança também; um dos possíveis pais é A e o outro é AB;
 - c) Mãe do tipo AB, e criança também; um dos possíveis pais é A e outro é AB.
- **6.** A exostose múltipla é uma anomalia que ocorre em humanos e eqüinos, sendo caracterizada por lesões nos ossos e determinada por um gene autossômico dominante. Quais as proporções fenotípicas esperadas no cruzamento:
 - a) Um macho com exostose, filho de mãe normal, com uma fêmea normal?

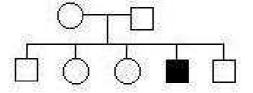
- b) Do macho referido em a) com uma fêmea afetada, que já produziu um descendente normal?
- c) Qual a probabilidade de 2 filhos do cruzamento b) serem normais?
- **7.** Os cavalos palominos são heterozigotos e exibem uma coloração dourada, com crina e a cauda de cor mais clara. Um par de alelos, D e d, está envolvido no controle dessa cor, sendo que a homozigose de D determina cor alazã (castanho avermelhado) e os homozigotos para d são quase brancos, chamados de cremelo. Determine a proporção palomino: não Palomino na descendência do cruzamento de cavalos palominos entre si. Que cruzamento produzirá apenas descendentes palominos?
- **8.** Cruzando-se raposas de fenótipo prateado entre si, obtem-se entre os descendentes cerca de 2/3 prateados e 1/3 selvagem.
 - a) Formule uma hipótese que explique este fenômeno;
- b) De acordo com sua hipótese, qual seria o resultado de um cruzamento de raposas selvagens com prateadas?
 - c) Seria possível estabilizar uma população de fenótipo prateado?
- **9.** Na galinha da raça Andaluza, ocorre ausência de dominância entre alelos responsáveis por plumagem branca e plumagem preta. Da mesma forma, os alelos que determinam penas normais e penas lanosas (extremamente arrepiadas). De um acasalamento obteve-se a seguinte descendência: 117 indivíduos com plumagem azul e moderadamente arrepiada, 57 com plumagem branca moderadamente arrepiada e 62 co plumagem preta moderadamente arrepiada. Dê os genótipos e fenótipos das aves cruzadas comprovando estatisticamente a sua resposta.
- **10.** Na galinha o gene para pescoço pelado domina o seu alelo para pescoço emplumado. Um criador possui aves com ambos os fenótipos reproduzindo-se ao acaso. Ele pretende uniformizar o seu plantel para caráter de pescoço pelado. Como deverá orientar a escolha dos reprodutores para atingir o seu objetivo em menos tempo?
- **11.**Crianças Rh(-) podem ser filhas de progenitores Rh(+) ou Rh(-), mas crianças Rh(+) sempre tem pelo menos um dos progenitores também Rh(+). Qual dos fenótipos é controlado por um alelo dominante?
- **12.** Em Drosophila um gene dominante D provoca o fenômeno "dichaete", que altera as cerdas e provoca o estiramento das asas mesmo em repouso. Em homozigose é letal e precoce.
- a) Faça o cruzamento entre duas moscas "dichaete", fornecendo as proporções fenotípicas genotípicas;
- b) Faça o cruzamento entre uma mosca "dichaete" e uma normal, fornecendo as proporções fenotípicas e genotípicas.
- **13.** Os dados seguintes referem-se à porcentagem relativa do pigmento melanina em cobaias, de acordo com os genótipos: $c^k c^k = 88\%$; $c^d c^d = 30\%$; $c^r c^r = 12\%$; $c^a c^a = 0\%$. Se entre todos os alelos ocorre ausência de

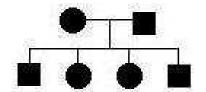
dominância, quais serão os fenótipos em percentagem de melanina dos indivíduos abaixo e seus possíveis descendentes:

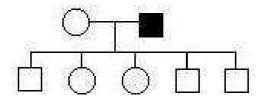
a)
$$c^k c^a \times c^d c^r$$

- b) O que se observa quanto à porcentagem relativa do pigmento melanina dos descendentes em relação aos seus progenitores?
- **14.** Em Camundongos é conhecida uma serie alélica que controla a intensidade da pigmentação da pelagem: D (cor normal), d (cor diluída), d1 (letal precoce). Sabe-se ainda que D>d>d1. Dê as proporções fenotípicas e genotípicas na desmama do cruzamento entre um camundongo de cor normal, filho de mãe clara e que teve irmãos mortos e uma camundonga de cor clara que, em cruzamentos anteriores teve natimortos.
- 15. Nas questões a seguir determine os genótipos solicitados dentro das genealogias (ou heredogramas):
- a) Um homozigoto recessivo resulta de um cruzamento entre um progenitor heterozigoto e outro com fenótipo dominante. Qual o genótipo deste último?
- b) Dois progenitores de fenótipos dominantes produzem 9 descendentes, 2 dos quais apresentam fenótipo recessivo. Qual o genótipo dos pais?
- c) Um progenitor apresenta fenótipo dominante e outro recessivo. Dois descendentes apresentam fenótipo dominante. Que genótipo é possível para o genitor dominante?
- 16. Admita os genes abaixo em seres humanos, situados em cromossomos diferentes


A lóbulo da orelha livre R cabelo ruivo P polidactilia


aa lóbulo de orelha preso rr cabelo não ruivo pp dedos normais


LL Cabelo liso Ll cabelo ondulado ll cabelo crespo


Um casal onde o homem apresenta genótipo AaLIPpRr e a mulher AaLIppRr, deseja saber a probabilidade de virem a ter um filho com lóbulo de orelha preso, cabelo ruivo, ondulado e dedos normais.

17. Considere que o padrão de herança representado se refere a um único par de genes em várias famílias diferentes. Determine o mecanismo genético e forneça todos os genótipos possíveis:

- **18.** Em certa espécie animal, o alelo Y determina pelagem negra, e o alelo y determina pelagem amarela. Um indivíduo de corpo negro é submetido ao cruzamento teste e produz uma progênie de 4 filhotes. Pergunta-se:
 - a) Qual a probabilidade de todos os indivíduos serem amarelos?
 - b) Qual a probabilidade de que 1 seja amarelo e 3 sejam negros?
 - c) Qual a probabilidade de que pelo menos um seja negro?

RESPOSTAS

- **1.** Controle monogênico, dialélico, com dominância do alelo determinante de fenótipo cinzento (A). Para hipótese de 3:1 o qui-quadrado calculado é 0,4 não sendo significativo para um grau de liberdade a 5%.
- 2. Probabilidade de nascer tordilho: 3/4
- 3. a) Parentais: CC^a e C^{ch}C^a; Descendentes: preto CC^{ch} ou CC^a; Chinchila C^{ch}C^a; albino C^aC^a
- b) Parentais: C^{ch}C^a e C^hC^a; Descendentes: Chinchila C^{ch}C^h ou C^{ch}C^a; himalaia C^hC^a; albino C^aC^a
- c) Parentais: C^hC^a e C^hC^a; Descendentes: Himalaia C^hC^h ou C^hC^a; albino C^aC^a
- **4.** A,B e AB
- **5.** a) Pai tem que ser B; b) Pai tem que ser A; c) Qualquer um dos dois
- 6. a) ½ com exostose e ½ normal b) ¾ com exostose e ¼ normal c) 1/16
- 7. a) 1:1 b) Fêmea avermelhada X macho cremelo ou fêmea cremelo X macho avermelhado
- **8.** a) O fenótipo prateado é determinado pela heterozigose de um gene que é letal em homozigose (ausência de dominância).
- b) ½ prateadas: ½ selvagens
- c) Não, porque uma vez que o fenótipo prateado é decorrente do genótipo heterozigoto sempre haverá segregação na descendência de animais prateados, com surgimento das formas homozigotas (letal e selvagem).
- **9.** Genótipo das aves cruzadas: AaBB X Aabb Fenótipos: Plumagem azul normal X Plumagem azul lanosa. Qui-quadrado calculado: 0, 227 e aceita-se H0.
- **10.** Deve se usar como reprodutoras apenas aves de pescoço pelado. Sempre que destas surgir um descendente de pescoço emplumado o mesmo deverá ser descartado, bem como ambos os pais, que serão heterozigotos. Outro modo é acasalar indivíduos de pescoço pelado com emplumado. O que apresentar toda a descendência (100%) de pescoço pelado é homozigoto devendo permanecer no plantel e se apresentar descendentes de pescoço emplumado deve ser descartado, pois é heterozigoto.
- **11.** Rh (+)
- 12. a) Cruzamento: Dd X Dd. Proporção genotípica: 2 Dd : 1 dd; proporção fenotípica: 2 dichaete : 1 normal;
- b) Cruzamento: Dd X dd. Proporções genotípicas: 1 Dd : 1 dd; proporção fenotípica: 1 dichaete : 1 normal.
- **13.** Progenitores: $c^k c^a = 44\%$ e $c^d c^r = 21\%$; descendentes: $c^k c^d = 59\%$; $c^k c^r = 50\%$; $c^a c^d = 15\%$; $c^a c^r = 6\%$

b) Metade dos descendentes apresentou a percentagem de pigmentação maior que dos progenitores e a outra metade menor.

14. Proporções genotípicas: ¼ Dd; ¼ Dd1; ¼ dd; ¼ dd1 ou 1/3 Dd; 1/3 Dd1; 1/3 dd1

Proporções fenotípicas: 2/4 normais; 2/4 claros ou 2/3 normais, 1/3 claros.

15. a) Heterozigoto b) heterozigoto c) homozigoto dominante ou heterozigoto

16. 3/64

18. a) 1/16 b) 1/16 c) 1/16

Universidade Federal do Paraná – Campus Palotina

Genética - 5ª Lista de Exercícios/2011

Segunda Lei de Mendel

- **1.** O cruzamento entre cães castanhos (homozigotos), mas de genótipos diferentes resultou em uma geração F1 de pelagem preta. Em F2 obteve-se a seguinte descendência: 50 castanhos; 70 pretos; 8 brancos. Qual o controle genético de tal caráter?
- **2.** Considerando um indivíduo com o seguinte genótipo AaBBCcDdEEFf, pergunta-se: Quantos gametas deferentes, em relação aos genes em questão, são possíveis? E qual a freqüência de gametas ABCDEF?
- **3.** Os resultados de uma analise fenotípica de 96 descendentes de uma população F2 em 2 experimentos estão tabulados abaixo:

EXPERIMENTO	FENÓTIPO I	FENÓTIPO II
01	70	26
02	76	20

Calcule o qui-quadrado para cada uma das experiências supondo:

- a) Razão de 3:1
- b)Razão de 13:3
- c) Qual das hipóteses está mais bem representada pelos dados?
- **4.** A cor preta dos pelos dos cães da raça Cocker Spaniel é governada por um alelo dominante (V) e a cor vermelha por seu alelo recessivo (v). O padrão uniforme é governado pelo alelo dominante (U) e o padrão malhado pelo recessivo (u). Os genes considerados segregam de maneira independente. Um macho de cor preta (heterozigoto) uniforme é cruzado com uma fêmea de cor vermelha uniforme e produzem uma ninhada de 6 filhos, alguns malhados e outros não. Determine os genótipos dos progenitores.
- **5.** Cruzamento entre ratos pretos do biotério produziram os seguintes descendentes: 14 de cor creme, 19 albinos e 47 pretos. Quais são os genótipos dos ratos e explique o fenômeno.
- **6.** Em seus experimentos, Mendel observou que em ervilhas, a semente amarela é dominante sobre a verde, já a de forma lisa é dominante sobre a forma rugosa. Pergunta-se:
- a) Que razão fenotípica podemos esperar em F2 quando cruzarmos semente amarela lisa com verde rugosa, todos puros?
 - b) Qual a proporção de indivíduos amarelos na geração F2?
 - c) Qual a proporção de indivíduos verdes na geração F2?

- **7.** No gado Vacum, um gene dominante (N) produz um entalhe profundo e cada orelha, enquanto um outro gene recessivo (u), situado em outro cromossomo, produz uma anormalidade na unha. Um criador possui em seu rebanho animais com ambos fenótipos e deseja eliminar tais características. Como ele deve proceder e qual dos caracteres será mais facilmente eliminado?
- **8.** Abaixo estão relacionados dados relativos à um experimento com uma espécie vegetal, onde se analisou 2 características: a cor e a forma do tubérculo, na geração F2.

Classe fenotípica	Resultado observado	
Vermelho esférico	296	
Vermelho oval	307	
Vermelho alongado	598	
Branco esférico	103	
Branco oval	96	
Branco alongado	200	

Tire todas as conclusões possíveis, demonstrando estatisticamente.

- **9.** O padrão de pelagem em cães é determinado por um lócus dialélico em que o gene S, dominante, determina pelagem uniforme e o seu alelo recessivo determina pelagem malhada, o lócus B controla a coloração da pelagem, com dominância do alelo para cor preta. Uma fêmea com pelagem uniforme marrom cruzada com um macho de pelagem uniforme preta, produziu uma ninhada de 6 filhotes, com os seguintes tipos de pelagem: 2 uniforme pretos, 1 malhado marrom e 1 malhado preto. Determine os genótipos de todos os animais envolvidos.
- **10.** Galinhas com fenótipo rastejante (pernas e asas mais curtas que o normal) cruzadas entre si sempre produzem descendência constituída de 2/3 de aves rastejantes e 1/3 normais. Cruzamento de aves normais geram apenas descendência normal. Considerando a característica cor de pele, observa-se que do acasalamento de aves de pele branca entre si pode nascer descendência de pele branca ou amarela, mas do acasalamento de indivíduos de pele amarela toda a descendência possui pele igual a dos pais. Que proporção fenotípica seria esperada do acasalamento de aves heterozigotas para ambos os loci?
- **11.** Estudando-se determinada característica verificou-se que a proporção fenotípica obtida em F2 era de 9:7. Qual o resultado esperado para o cruzamento teste?
- **12.** Em um determinado cereal autógamo (reproduz-se naturalmente por autofecundação) foi feito o cruzamento artificial entre plantas de sementes brancas e plantas de sementes amarelas, obtendo-se uma descendência constituída exclusivamente por indivíduos com sementes de cor amarela. Reproduzida naturalmente, esta geração originou 1512 indivíduos de semente amarela e 98 de semente branca. Elabore e teste uma hipótese genética para explicar estes resultados.
- **13.** Um dado cruzamento produziu uma geração F2 com a proporção de 157:43. Com base no teste de quiquadrado, determine a probabilidade de um desvio por acaso admitindo-se uma hipótese de 13:3.
- **14.** Um cruzamento origina uma descendência constituída por 110 indivíduos de um fenótipo e de 90 de outro. Determine pelo teste de qui-quadrado a probabilidade de um desvio casual em relação a:

- a) Uma hipótese de 1:1
- b) Uma hipótese de 9:7
- c) Que conclusão genética você tiraria?
- **15.** Em galinhas domesticas a presença simultânea dos genes para crista rosa (R) e crista ervilha (E) produz crista noz. A homozigose recessiva de ambos os pares produz o fenótipo crista serra. Aves de crista rosa acasaladas com aves de crista noz produziram 15 descendentes de crista noz, 14 de crista rosa, 5 de crista ervilha e 6 de crista serra. Determine os genótipos envolvidos comprovando sua hipótese pelo teste de qui-quadrado.
- **16.** Em porquinho da índia, do acasalamento de animais pretos de pêlo liso com animais brancos de pêlo frisado foi obtida uma geração numerosa em que todos os animais apresentavam pêlo preto e frisado. Alguns destes indivíduos foram por sua vez cruzados com animais brancos de pelo liso.
 - a) Explique o mecanismo genético que controla estas características
 - b) Determine as proporções fenotípicas e genotípicas esperadas no último acasalamento.
- **17.** Admitindo o mesmo controle genético determinado na questão anterior, determine a proporção esperada de indivíduos homozigotos com pelo preto frisado, do acasalamento entre animais de pelo preto frisado, cuja mãe tinha pelo branco e o pai, pelo liso.
- 18. Adita o controle genético da questão anterior:
- a) Do acasalamento de dois animais de mesmo genótipo nasceu um descendente frisado e branco, e outro preto e liso. Acasalando-se novamente os mesmos progenitores, que descendência pode ser esperada?
- b) Um porquinho da índia negro e frisado é acasalado com uma fêmea branca e frisada, produzindo 28 filhotes frisados pretos, 31 frisados brancos, 11 lisos pretos e 10 lisos brancos. Determine o mecanismo genético.
- **19.** A tabela abaixo refere-se à avaliação de 1600 plantas F2 de uma espécie vegetal, segregando para 2 caracteres: tipo de folha e cor de flor.

Planta	Vermelha	Rosa	Branco
Lisa	295	615	300
Enrugada	95	185	110

Pede-se para:

- a) Determinar a herança de cada caráter;
- b) Determinar se os genes que controlam estes 2 caracteres estão ligados;
- c) Utilizando símbolos apropriados determinar os genótipos correspondentes aos 6 fenótipos.

RESPOSTAS

- 1. O genótipo dos pais é AAbb e aaBB. Quando os dois genes dominantes estão no mesmo cromossomo ocorre o fenótipo preto e na recessividade deles ocorre o fenótipo branco. Fazendo-se retrocruzamento de F1, observa-se interação tritipica na freqüência de 9:6:1. São dois loci dialélicos que segregam independentemente.
- **2.** a) 16 b) 1/16
- 3. a) I= 0,21 e II= 0,88 (não são significativos)
- b) I= 3,36 e II= 0,25 (o primeiro é significativo e o segundo não)
- c) A hipótese 3:1
- 4. a) VvUu e vvUu
- **5.** Genótipo dos parentais: AaBb; genótipos dos descendentes: albino aabb ou aaB; creme A_bb e preto A_B_. Ocorre interação não alélica tritípica, segregação independente, sendo que A + B caracterizam fenótipo preto. O alelo A caracteriza fenótipo creme e o alelo B ou aabb, fenótipo albino. O qui-quadrado calculado é 0,126 não sendo significativo para dois graus de liberdade a 5%.
- **6.** a) Proporção fenotípica: 9/16 amarelo liso; 3/16 amarelo rugoso; 3/16 verde liso; 1/16 verde rugoso.
- b) 12/16
- c) 4/16
- **7.** O criador deve descartar os progenitores que gerarem filhos com tais características, para selecionar os homozigotos dominantes no caso da anormalidade da unha e os homozigotos recessivos para o caso do entalhe profundo, permanecendo assim, apenas os animais com características normais. A característica mais fácil de eliminar é entalhe profundo na orelha.
- **8.** Ocorre um cruzamento entre genes que expressam dominância completa e outro com ausência de dominância. O qui-quadrado calculado para a hipótese 3:3:6:1:1:2 é de 0,473 não sendo significativo para 5 graus de liberdade a 5%.
- **9.** Fêmea: Ssbb; macho: SsBb; descendentes: uniforme-preto: S_Bb; malhado-marrom: ssbb; uniforme-marrom: S bb.
- **10.** Proporção fenotípica: 6/12 rastejante-branco; 2/12 rastejante-amarelo; 3/12 normal-branco; 1/12 normal-amarelo.
- **11.** 3:1
- **12.** Para a hipótese de 15:1 o qui-quadrado é de 0,074, tabelado para 1 grau de liberdade. A probabilidade a 0,071 é de 3,84. A coloração das sementes obedece a um controle de dois loci dialélicos, ocorrendo dominância completa do alelo que determina cor amarela em ambos os loci. Ocorre interação ditípica entre ambos de tal modo que a semente será amarela sempre que houver pelo menos um alelo dominante em qualquer lócus e será branca apenas no duplo recessivo. Os progenitores cruzados artificialmente eram AABB X aabb, tendo gerado um F1 AaBb que, por autofecundação produziu uma proporção fenotípica de 15/16de plantas com semente amarela para 1/16 de plantas com semente branca.

- 13. qui-calculado = 0,99. Em um grau de liberdade a probabilidade de ocorrer é de 0,50 a 0,30.
- 14. a) a probabilidade se encontra entre 0,2 e 0,1
- b) a probabilidade se encontra entre 0,8 e 0,7
- c) a probabilidade de 9:7 apresenta uma probabilidade de ocorrência maior, logo conclui-se que se trata de uma característica controlada por interação ditípica entre dois loci diléalicos independentes. Um fenótipo manifesta-se na presença de alelo dominante em ambos os loci enquanto que a recessividade em pelo menos um deles determina o outro fenótipo. O cruzamento foi feito entre dois heterozigotos.
- **15.** Progenitores: Rree (rosa) e RrEe (noz); descendentes: rosa 1/8 RRee + 2/8 Rree; noz 1/8 RREe + 2/8 RrEe; ervilha 1/8 rrEe; serra –1/8 rree. O qui-quadrado calculado é 0,267 e o tabelado a 5% para 3 graus de liberdade é 7,82. A hipótese aceita é 3:3:1:1.
- **16.** a) As duas características são controladas por loci dialélicos independentes. O gene para cor preta (P) e o gene para pelo frisado (F) são dominantes sobre os respectivos alelos. Primeiro cruzamento: PPff X ppFF; segundo cruzamento PpFf X ppff.
- b) Proporção genotípica: ¼ PpFf; ¼ Ppff; ¼ ppFf; ¼ ppff; (1:1:1:1)

Proporção fenotípica: ¼ preto-liso; ¼ preto-frisado; ¼ branco-liso; ¼ preto-frisado; (1:1:1:1)

- **17.** DDEE = 1/16
- **18.** a) Proporção fenotípica: 9/16 preto-frisado; 3/16 preto-liso; 3/16 branco-frisado; 1/16 branco-liso.
- b) Macho PpFf e fêmea ppFf. A hipótese proposta é de 3:3:1:1.
- **19.** a) Ocorre um cruzamento entre genes que expressam dominância completa e outro com ausência de dominância.
- b) Sim
- c) Vermelha e lisa: AAB_; vermelha e enrugada: AAbb; rosa e lisa: AaB_; rosa enrugada: Aabb; branca e lisa: aaB ; branca enrugada: aabb.