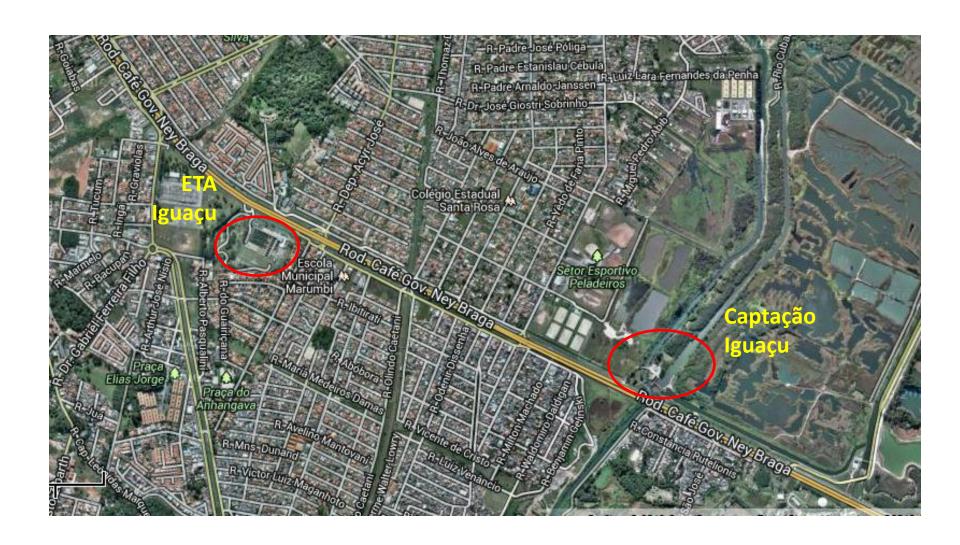

4 – Captação de águas superficiais

É um conjunto de estruturas e dispositivos, construídos ou montados junto ao manancial, para retirada de água para suprir o sistema de abastecimento

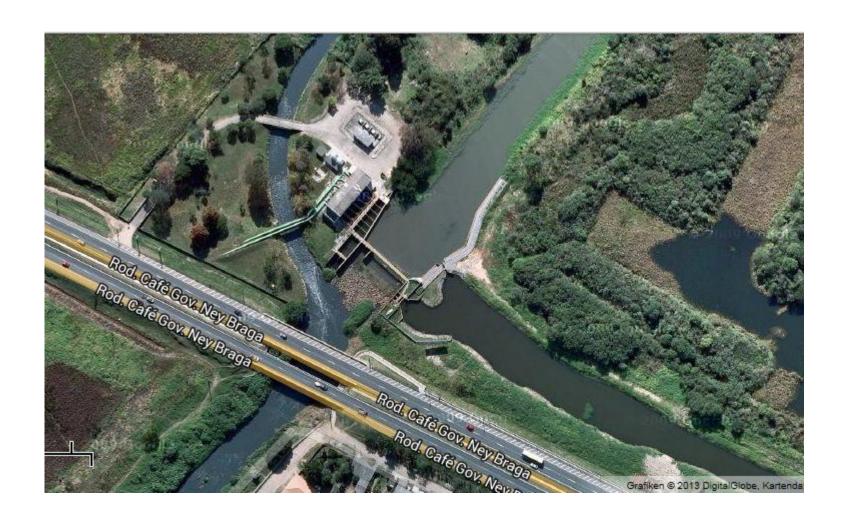
 Manancial Superficial: Córregos, rios, lagos e represas.

4.1 – Manancial

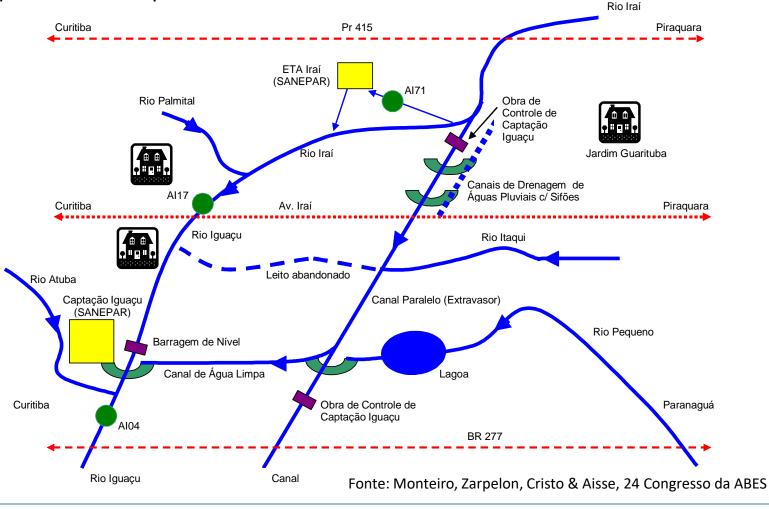
- Seleção do manancial:
 - Quantidade e qualidade adequadas em qualquer época do ano
 - Proximidade ao local de consumo
 - Locais favoráveis à construção da captação
 - Transporte de sedimentos pelo curso de água
 - Condições futuras
- Estudo técnico, econômico e ambiental para a escolha do local de captação


Quantidade

- Vazão correspondente ao dia de demanda máxima para o alcance do plano
- Estudo hidrológico:
 - Regime de Q
 - Variação da cota do nível de água (mín e máx)
 - Q mínima para o tempo de retorno (Tr) adequado
 - Q enchente
 - Construção de barragens ou de elevação do nível
 - Problema de inundação da área
 - Obras de proteção da seção do rio


Qualidade

Maiores detalhes na parte de Tratamento


- Inspeção sanitária do local
 - Uso do solo (agentes poluidores)
- Condições futuras
 - Crescimento de agentes poluidores?
- Importante monitoramento da qualidade da água
 - Variações bruscas na qualidade podem impactar o tratamento
- Importância da proteção dos mananciais
 - Primeira Barreira para um abastecimento seguro
 - Custo

Captação Iguaçu

Esquema do canal paralelo - 2001

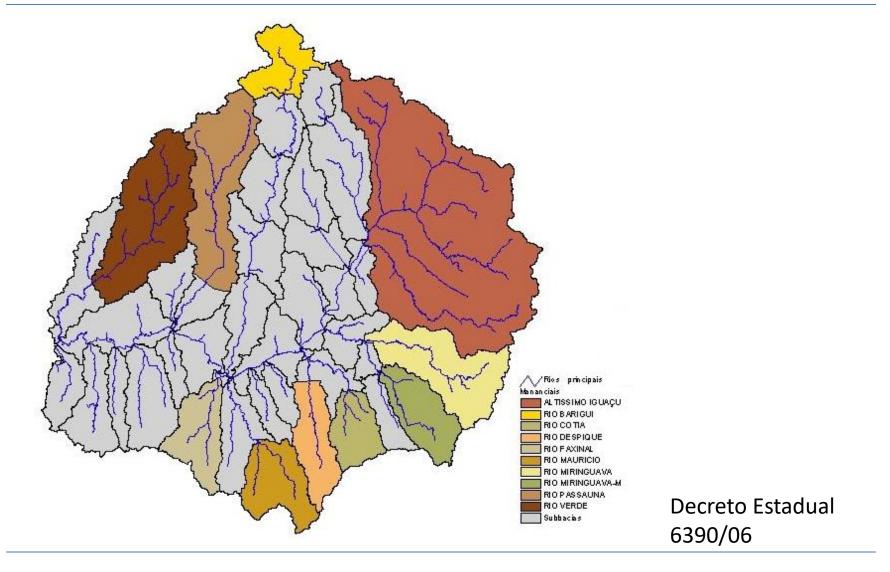
Captação no rio Iguaçu - Sanepar

Monteiro et al. (2007)

Mananciais - PR

Lei Estadual 8935 (07/03/89) - Dispõe sobre requisitos mínimos para as águas provenientes de bacias mananciais destinadas ao abastecimento público.

Lei Estadual 12248 (31/07/98) — Cria o sistema integrado de gestão e proteção dos mananciais da RMC.

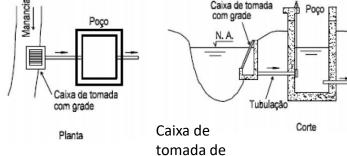

Decreto Estadual 6390 (05/04/2006) - Delimita as áreas de interesse de Mananciais de Abastecimento Público da Região Metropolitana de Curitiba.

Coordenadas dos pontos de captação para abastecimento de água

Rio	Coordenadas UTM do ponto de captação		
	X	Y	
Rio Passaúna	663.921 E	7.177.337 N	
Rio Curral das Éguas	668.636 E	7.150.200 N	
Altíssimo Iguaçu	682.030 E	7.180.336 N	
Rio Cotia	679.880 E	7.161.282 N	
Rio Verde	655.212 E	7.186.497 N	
Rio Itaqui	643.361 E	7.183.352 N	
Rio Despique	674.842 E	7.162.275 N	
Rio Faxinal	662.658 E	7.161.207 N	
Rio Maurício	669.530 E	7.153.366 N	
Rio Miringuava	685.372 E	7.167.332 N	
Rio Barigüi	672.424 E	7.201.344 N	
Rio Cerro Azul	685.753 E	7.162.428 N	

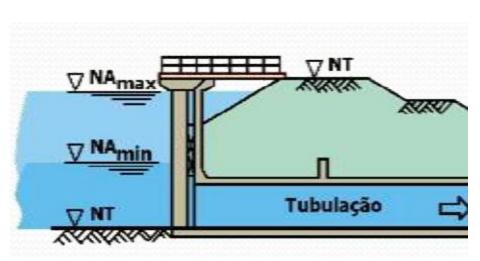
Fonte: Decreto Estadual 6390/06

Áreas de interesse de mananciais de abastecimento público da região metropolitana de Curitiba



4.2 – Captação em cursos de água

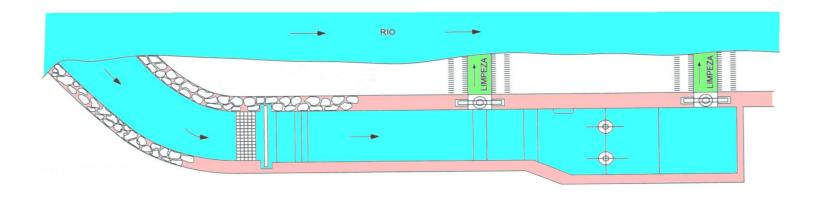
Variação do nível de água


Pequena variação

Grande variação

água

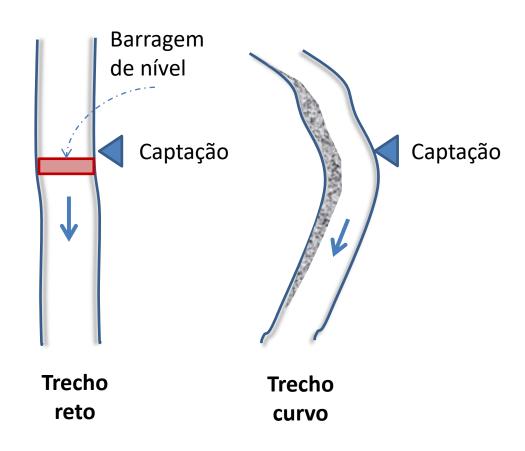
- → Torre de tomada
- → Captação flutuante



Concentração de Sólidos em Suspensão

Transporte intenso: $C_{ss} > 1.0 \text{ g/L}$

- → inserção de barragem oblíqua em relação ao eixo do rio
- → Localização da tomada de água em canal lateral



Escolha do local de captação

Importante inspeção local

VERIFICAR:

- Características hidráulicas
- Geologia
- Áreas inundáveis
- Focos de poluição (existentes e potenciais)
- Processos de erosão e sedimentação
- Acesso ao local para manutenção e operação
- Necessidade de estabilização da seção do rio
- Energia elétrica
- Margens estáveis
- Locais sem formação de bancos de areia

4.3 - Partes constituintes da captação

DISPOSITIVOS DE CONTROLE CANAIS TUBULAÇÕES

BARRAGEM VERTEDOR ENROCAMENTO

TOMADA DE ÁGUA **GRADEAMENTO**

DESARENADOR

Obras para elevar nível de água a uma cota prédeterminada

Caso contrário

Q demanda < Q mín manancial

h profundo e grande lâmina de água

Captação a fio d'água

Q demanda > Q média manancial

→ Procurar outro manancial para atender a demanda ou completar a vazão

Barragem/Represa

- → Reservatório de regularização
- → Barragem/represa

Grande Porte

Material: Concreto

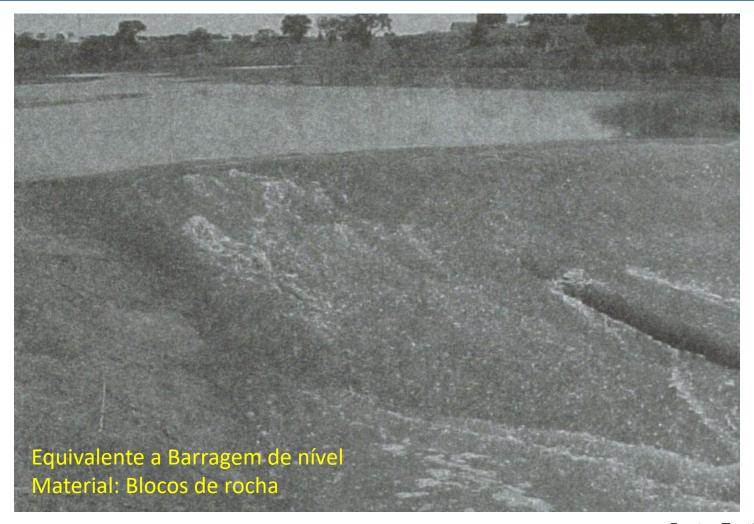
- → Barragem de nível
- → Enrocamento
- → Vertedor

Pequeno Porte

Q demanda < Q média manancialE períodos do ano com:Q demanda > Q mín manancial

Só eleva o nível de água do manancial (não regulariza vazões)

Barragem de Nível



Vertedor

Fonte: Tsutiya, 2006

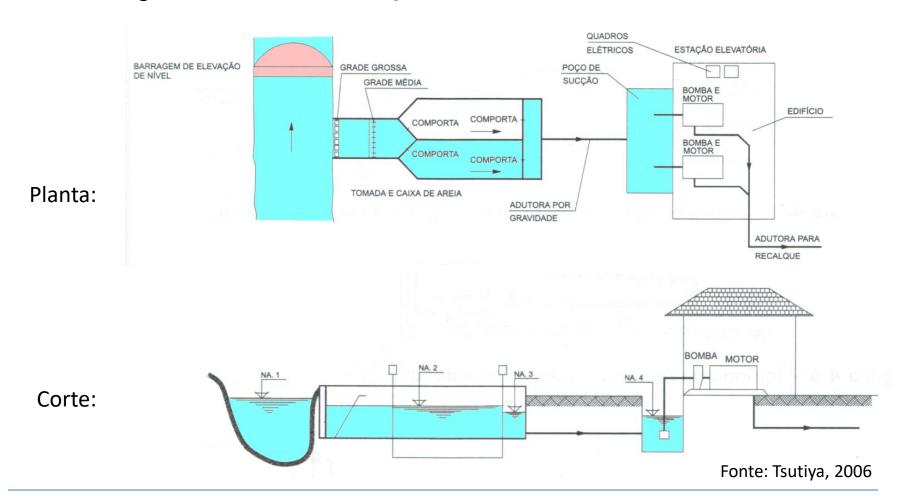
Enrocamento

Fonte: Tsutiya, 2006

Tomada de água

Conjunto de dispositivo para conduzir água do manancial para demais partes

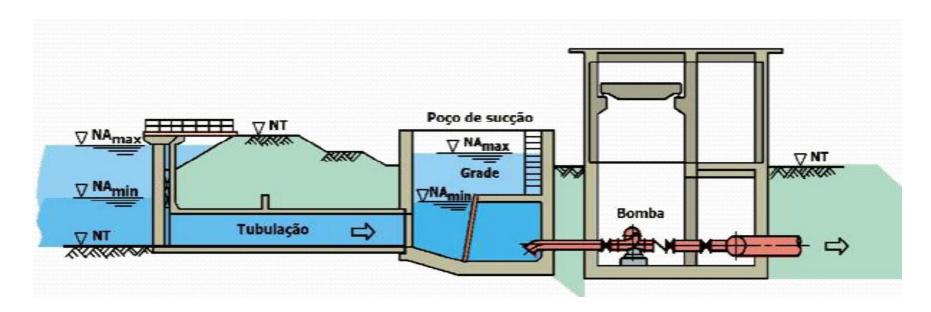
Condições a serem obedecidas:


- Velocidade nos condutos livres ou forçados > 0,60 m/s
- Nos casos em que possa ocorrer vórtice, prever dispositivo para evitar sua formação

Tipos:

- Tubulação simples
- Caixa de tomada
- Canal de derivação (médio e grande porte)
- Poço de derivação
- Tomada de água com estrutura em balanço
- Flutuantes (pequeno e médio porte)
- Torre de tomada (Grande porte)

Barragem de nível → gradeamento → caixa de areia → EE

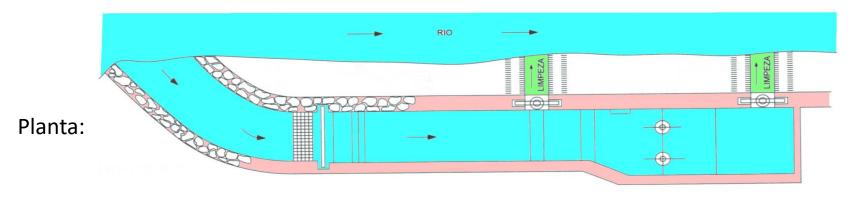

Tomada típica de água em cursos de água com **PEQUENA** VARIAÇÃO DE NÍVEL DE ÁGUA:

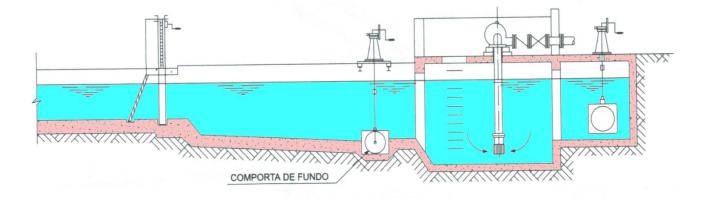
Através de tubulação

Tomadas em rios ou represas com **GRANDE** VARIAÇÃO DE NÍVEL DE ÁGUA:

- → TORRE DE TOMADA
- → CAPTAÇÃO FLUTUANTE

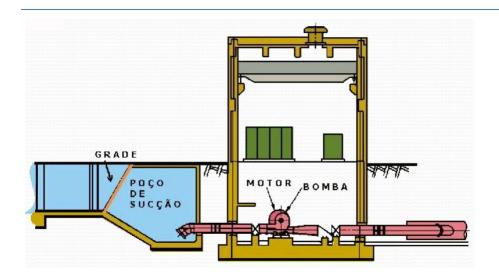
Fonte: Tsutiya, 2006


http://castelodebode.blogspot.com/2010/04/subsistema-de-castelo-do-bode.html

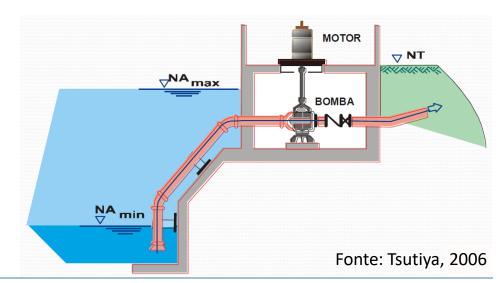


Através de canal

O canal desvia parte da água do rio para a captação

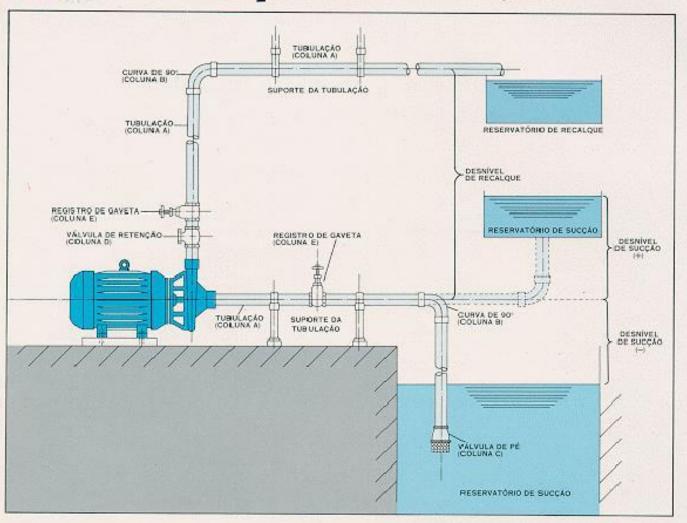


Corte:


Fonte: Tsutiya, 2006

Diretamente por bombas

Tomada de água com tubulação vertical


Tomada de água com tubulação horizontal

Fonte: Tsutiya (2006); EPUSP

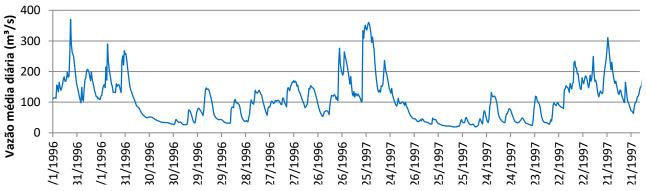
Croqui de Instalação

Exercício 1

1) Analise as vazões dos rios e indique o tipo de captação para cada caso:

Caso A:

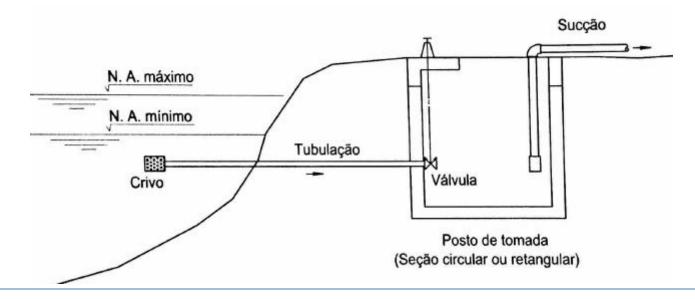
$$Q_{min} > Q_d$$


Caso B:

$$Q_{min} < Q_d < Q_{média}$$

Caso C:

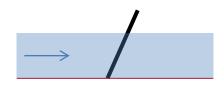
$$Q_{m\acute{e}dia} < Q_d$$


2) Qual é a vazão mínima?

Exercício 2

Fonte: Heller & Pádua (2010)

Dimensionar uma tubulação de <u>tomada de uma captação de água de superfície</u> destinada a uma comunidade com população de projeto de 2000 hab, com consumo per capita médio de água macromedido de 150 L/hab/d. Considere coeficiente de reforço do dia de maior consumo (k₁) igual a 1,2; consumo da ETA de 3% do consumo da população. As unidades de produção de água deverão ser projetadas para funcionarem no máximo 16h/d. O comprimento da tubulação de tomada é de 5m, de ferro fundido revestido internamente com argamassa de cimento (C de Hazen-Williams de 130) e ela descarrega num poço de tomada (veja figura)


Gradeamento

Impedir passagem de material flutuante para dentro do sistema

	Grades grosseiras	Grades finas	Telas
	Cursos de água sujeitos a regime torrencial		
Dimensão dos materiais a serem retidos:	> 7,5 cm	< 7,5 cm	
Espaçamento entre barras:	7,5 – 15 cm	2 – 4 cm	8 – 16 fios/dm
Espessura das barras	3/8" (0,95cm) 7/16" (1,11cm) 1/2" (1,27cm)	1/4" (0,64cm) 5/16" (0,79cm) 3/8" (0,95cm)	

Limpeza manual:

Inclinação para jusante em relação à horizontal de 70° a 80°

Limpeza mecanizada:

Q > 500 L/s Quando necessidade de limpezas frequentes

Dimensionamento

NBR 12213/92

Área de abertura das grades

Seção de passagem referente ao nível mínimo de água ≥ 1,7 cm² para cada L/min de vazão captada, de modo que a velocidade resultante ≤ 10 cm/s

Perda de carga (h) nas grades e telas:

h: perda de carga (m)

$$h = k \frac{v^2}{2g}$$

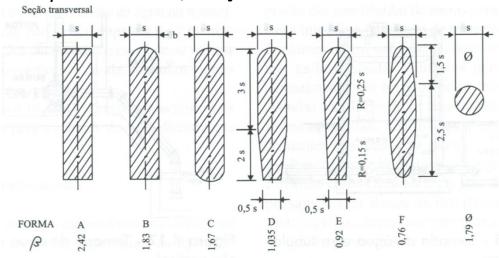
v: velocidade média de aproximação (m/s), considerando como obstruída 50% da respectiva seção de passagem (velocidade de aproximação é a velocidade da água na seção imediatamente a montante da grade ou tela)

K: coeficiente de perda de carga, em função dos parâmetros geométricos das grades ou telas (grandeza adimensional)

Coeficiente de perda de carga (k) nas grades e telas:

 $h = k \frac{v^2}{2g}$

Grades:


$$k = \beta \left(\frac{s}{b}\right)^{1,33} sen\alpha$$

s: espessura das barras

b: distância livre entre barras

 α : ângulo da grade em relação à horizontal

β: coeficiente, função da forma da barra:

Telas:

$$k = 0.55 \frac{1 - \varepsilon^2}{\varepsilon^2}$$

Porosidade (ϵ): razão entre área livre e a área total da tela

Tela de malha quadrada: $\varepsilon = (1 - nd)^2$

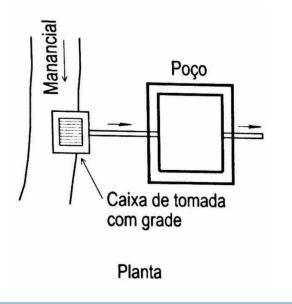
Tela de malha retangular: $\varepsilon = (1 - n_1 d_1) (1 - n_2 d_2)$

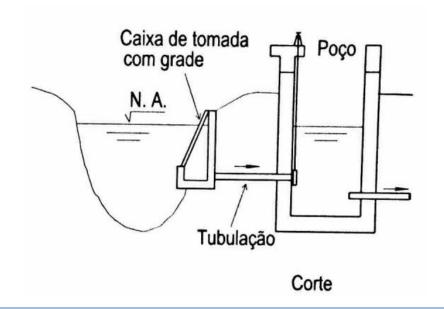
n: número de fios por unidade de comprimento

d: diâmetro dos fios

Exercício 3

Fonte: Heller & Pádua (2010)


Dimensionar uma tomada de água para vazão de captação de 20 L/s num ribeirão que apresenta regime de escoamento torrencial em períodos de chuva, com transporte de sólidos flutuantes de grandes dimensões. As alturas das lâminas de água mínima e máxima são, respectivamente, de 0,70m e 1,60m. Discutir tipo de tomada de água.

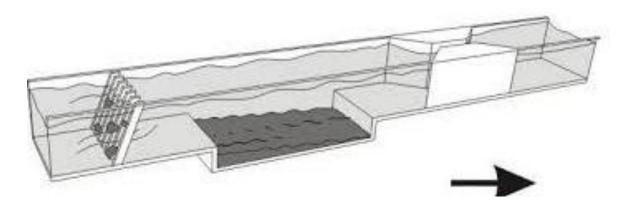

Solução:

Utilizando caixa de tomada.

Laje de fundo da caixa de tomada colocada 0,40m acima do leito do curso de água. As alturas das lâminas de água mínima e máxima do ribeirão sobre a laje resultam, respectivamente, 0,30m e 1,20m.

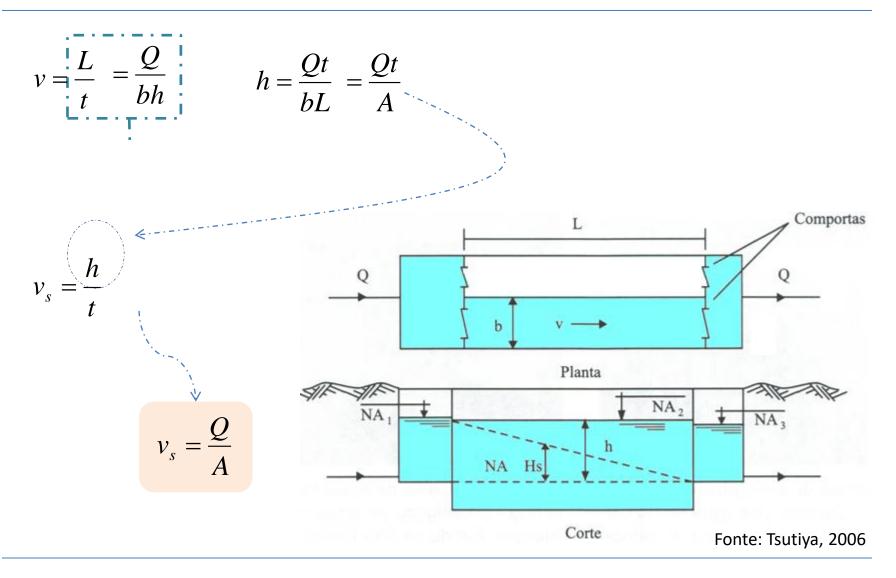
Dimensionar a grade da caixa de tomada.

Desarenador ou Caixa de Areia


Dispositivo por onde a água passa com velocidade reduzida – processo de sedimentação

Finalidade: Não permitir entrada de areia no sistema

Recomendado: 2 desarenadores, sendo 1 de reserva (para facilidade de


limpeza).

Dimensionamento de cada desarenador para Q final de plano

Fonte: Tsutiya, 2006

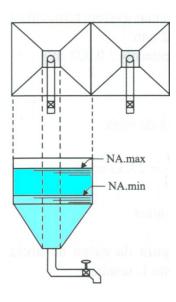
Desarenador ou Caixa de Areia

Cenário de dimensionamento:

V crítica de sedimentação da partícula: v_s ≤ 0,021 m/s (p/ repartícula)

(p/ remoção de partículas c/ d ≥ 0,2mm)

- V escoamento longitudinal: v_h ≤ 0,30 m/s
- Comprimento do desarenador, obtido atendendo condições anteriores, multiplicar por coeficiente de segurança ≥ 1,5 → para compensar turbulência na entrada e saída da caixa de areia
- Relação $L/b \ge 3 4 \rightarrow$ para evitar curtos-circuitos
- **b** ≥ **0,5 m** → para possibilitar facilidade de construção e operação

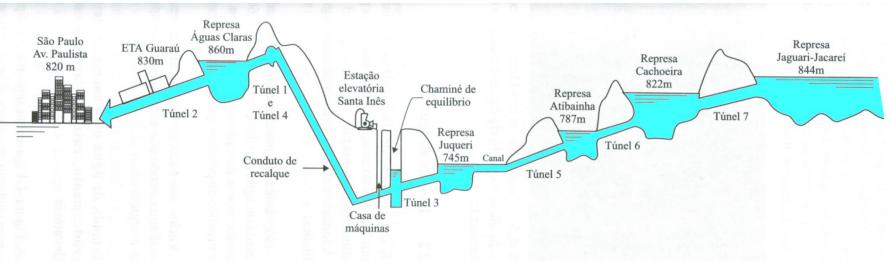

Pode-se adotar largura em função da altura (Tabela ao lado), observando que essa altura não compreende somente a lâmina de água, mas do desnível total entre a laje de fundo do desarenador e a superfície do terreno.

Altura total (m)	Largura mínima (m)
< 1,00	0,60
1,00 – 2,00	0,90
2,00 -4,00	1,20
> 4,00	2,00

 Desarenador de nível variável: considerar condições de operações para níveis máximos e mínimos

Fonte: Tsutiya, 2006

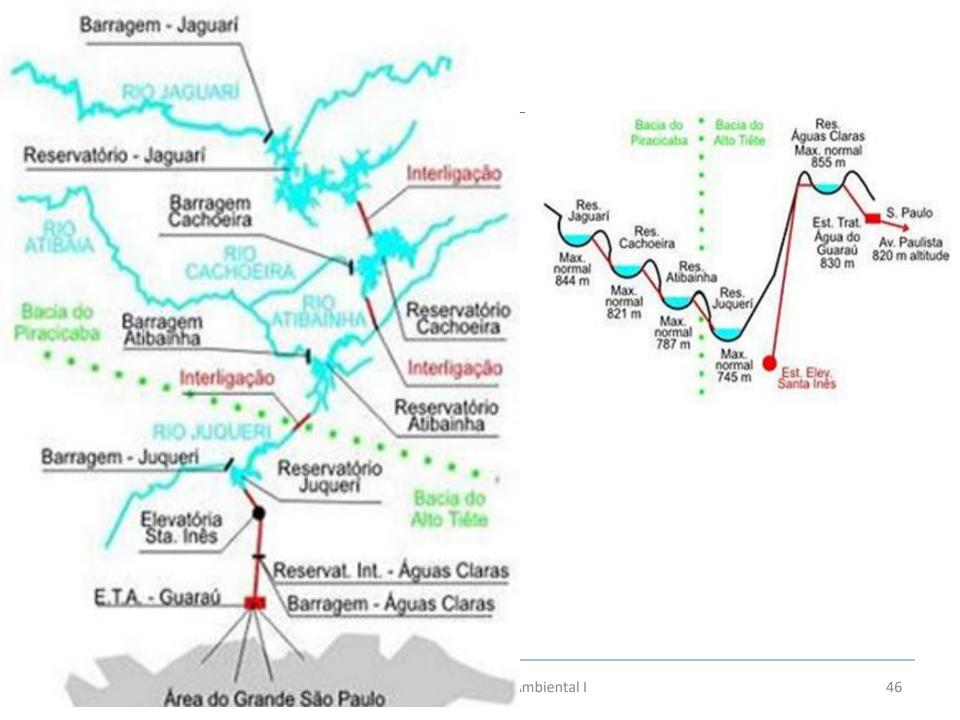
- Remoção de areia da caixa:
 - Hidráulica: tubulação no fundo de tronco de pirâmide
 - Equipamentos: bombas tipo draga
 - Manual:
 - depósito capaz de acumular mínimo equivalente a 10% do volume do desarenador
 - · Largura mínima que permita acesso e limpeza


Fonte: Tsutiya, 2006

Exercício 4

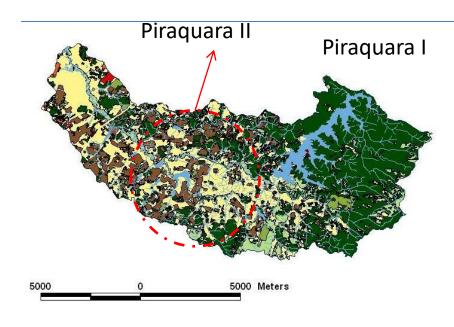
Fonte: Heller & Pádua (2010)

Dimensionar um <u>desarenador</u> para a vazão de projeto de 20 L/s, a ser construído anexo à captação de água de um ribeirão. No ponto escolhido para a captação, o NA mínimo do ribeirão apresenta altura de 0,95m em relação ao seu leito. Já no local previsto para a construção do desarenador, a superfície do terreno fica a 1,25m acima do NA mínimo do ribeirão. As partículas a serem removidas possuem diâmetro médio ≥ 0,2 mm.

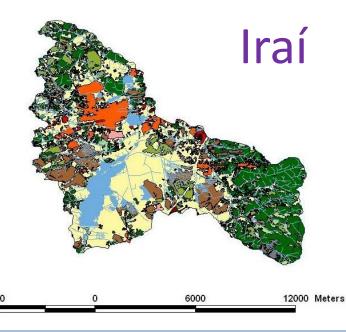

4.4 – Alguns sistemas

Desenho esquemático do Sistema Cantareira

Fonte: SABESP, 2002 (apud Tsutiya, 2006)


Ver outros desenhos em Tsutiya (2006) e Heller & Pádua (2010)

Breve histórico do sistema público de abastecimento de água da RMC Fonte:


abastecimento de agua da RIVIC Fonte: adaptado de Sanepar, 2005						
.0	Mananciais	(L/s)				

Ano	Mananciais	(L/s)	
1908	1908 Mananciais da Serra (cabeceiras do rio Piraquara). 150 L/s até o		
	reservatório do Alto São Francisco		
1945	Captação do Iraí e a ETA Tarumã (500 L/s), posteriormente ampliada		
(ETA Tarumã	para 800 L/s.		
desativada em	(Desde então os "Mananciais da Serra" passaram a abastecer apenas a		
2004)	cidade de Piraquara)		
1968	Captação Iguaçu, junto à BR-277 e a ETA respectiva		
1978	Construída a barragem do reservatório Piraquara I		
1982	Barragem do rio Passaúna foi concluída em 1982, com sua captação e		
1989	ETA de capacidade nominal 500 L/s, ampliada em 1989 para 2000 L/s. O		
	sistema Passaúna não é interligado com os outros dois.		
2000	Entrou em operação o reservatório do Iraí		
2002	Inaugurada a nova ETA Iraí, ao lado da captação		
	(ETA Tarumã foi desativada em agosto de 2004)		
2008	ETA Miringuava (2.000 L/s)		
2008	Inauguração da barragem Piraquara II		
	Aqüífero Karst para contribuição ao sistema integrado, com previsão de	120	
	se extrair até 600 L/s no município de Colombo, no entanto, somente são		
	utilizados 120 L/s para o sistematintegrado (Colombo-sede e Fervida).	47	

Piraquara

Manaciais da Serra — Piraquara/PR

Pólos de produção existentes e os respectivos mananciais na RMC

Sistema	Pólos de produção	Mananciais
		Captação Iraí, sendo alimentado pelo reservatório Iraí
	Pólo de Produção	(formado pelos rios Cangüiri, Timbu , Curralinho e
Sistema do	P1	Cerrado) e pelos rios Iraizinho e Piraquara (margem
Altíssimo		esquerda).
Iguaçu	Pólo de Produção P2	O Pólo de Produção P2 é ligado à captação Iguaçu,
		que é alimentada pelas sobras da captação Iraí, mais
		os rios Itaqui e Pequeno (margem esquerda).
F	Pólo de Produção P3	Reservatório do Passaúna, formado pelo rio Passaúna
		e seus afluentes, num ponto que delimita uma bacia de
		145 km², a montante do Distrito de Tomaz Coelho.
		4 poços tubulares situados na sede municipal de
	Produção do	Colombo e 4 poços tubulares na localidade de Fervida,
	Aqüífero Karst	no Município de Colombo, abastecendo sua sede e a
		região de São Gabriel.

Fonte: adaptado de Sanepar, 2005

Tarefa de casa

- Ler norma pertinente: NBR 12 213 Projeto de Captação de Água de Superfície para Abastecimento Público, promulgada em 1992
- Ver em Tsutiya (2006), cap.4, outras configurações de tomadas de água
- Ler capítulo referente à captação em Heller & Pádua (2010)
- Fazer um resumo dos tipos de captação em forma de tabela com três colunas: Tipo de tomada; aplicado em; não aplicado em

Literatura

- Tsutiya, Milton Tomoyuki. 2006.
 Abastecimento de Água. São Paulo:
 Departamento de Engenharia Hidráulica e
 Sanitária da Escola Politécnica da Universidade de São Paulo. 643p. 4ª. Edição
- Heller & Pádua. 2010. Abastecimento de água para consumo humano. 2ª. Edição revista e atualizada. Belo Horizonte: Editora UFMG